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Precision Medicine focuses on collecting and using individual-level data to improve healthcare 

outcomes. To date, research efforts have been motivated by molecular-scale measurements, such as 

incorporating genomic data into clinical use. In many cases however, environmental, social, and 

economic factors are much more predictive of health outcomes, yet are not systematically used in 

clinical practice due to the difficulties in measurement and quantification. Advances in both the 

availability of electronic health information, environmental exposure data, and the more systematic 

use of geo-coding now provide ways to systematically assess community-level indicators of health, 

and link these factors to electronic health records for evaluating their influence on disease outcomes. 

In this workshop, we discuss new electronic sources of community-level data, and provide insight 

into their utility and validity when compared with gold-standard data collection approaches. 

1. Introduction

From the earliest efforts to identify genetic polymorphisms influencing drug response (Meyer 2004), 

a fundamental goal of medical practice is to tailor clinical care to the precise, individual attributes 

of a patient.  Recent years has seen the expansion of precision medicine, with the collection of full 

genomic sequence data for pharmacogenomics studies (Bush et al. 2016; Rasmussen-Torvik et al. 

2014).  Given the dramatic and rapid expansion of knowledge in this area, it is now widely accepted 

that physicians cannot digest the literature fast enough to implement research findings in clinical 

practice (Johansen Taber and Dickinson 2014).  Resources such as the Clinical Pharmacogenomics 

Implementation Consortium (CPIC) assist by creating clinical practice guidelines for drug 

prescriptions (Caudle et al. 2014).  Clinical decision support systems also provide ways to 

implement pharmacogenomics in the clinic at point of care (Pulley et al. 2012).   

While precision medicine research has focused largely on making detailed molecular 

measurements for each patient, efforts in the Precision Medicine Initiative will capture additional 

data elements including behavioral, psychosocial, and environmental factors (Collins and Varmus 

2015). Part of the motivation for the expansion of scope is the increasing recognition that social, 

environmental, and behavioral factors are likely highly influential in disease etiology, progression, 

and treatment (Woolf et al. 2007).  In fact, a growing body of work illustrates that considering 

biological and social risk factors together as a system may lead to better intervention strategies 
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(Vaughn, DeLisi, and Matto 2013). This idea of a “cells to society” model provides a framework to 

understand and prioritize the multitude of influential factors that comprise patient health trajectories.  

To date, precision medicine research has focused much more heavily on the “cells” side of this 

model, despite the tremendous potential of understanding and addressing the “society” side.  In this 

workshop, we consider multiple scales on which we can derive social, environmental, and 

behavioral risk factors; information on the individual level, information on the community level, 

and information on the geographic level. 

2.  Information on the Individual Level 

As electronic health record systems (EHRs) have increased in their adoption, information gathered 

from a patient encounter is now recorded digitally.  Much like their paper predecessors, EHRs serve 

as a clearinghouse of patient-centric data gathered from clinical resources – laboratory values, vital 

signs, diagnoses, and procedures.  Other select factors may be patient-reported, such as 

race/ethnicity, income, and employment, but these are rarely used to support clinical care or decision 

making (Community health centers leveraging the social determinants of health 2012).  Despite their 

established importance in health, these, and other nonclinical factors, are often recorded manually 

and are not standardized (DeVoe et al. 2016).  The National Academy of Medicine has noted the 

limited collection of social and behavioral factors, and has suggested new standardized data fields 

(based on validated instruments) for systematic adoption (Adler and Stead 2015), however these are 

part of a third tier of EHR meaningful use criteria, which is likely many years away.   

Some information on social determinants of health is reported in ancillary EHR data through 

routine clinical communications (i.e. intake questions).  Indicators of socio-economic status, such 

as measures of occupational prestige, unemployment, education, and homelessness (Hollister et al. 

2016), along with country-of-origin (Farber-Eger et al. 2017) have been extracted from clinical free-

text.  Smoking status and alcohol use have also been extracted using natural language processing 

(Chen and Garcia-Webb 2014; Savova et al.).  While text extraction has limitations, the use of 

structured elements (billing codes, etc.) may also be subject to reporting bias as well (Men 2015).  

Furthermore, data extracted from clinical text ultimately relies on patient self-report, which is also 

subject to reporting bias and differences in health perception (Campos-Castillo and Anthony 2015; 

Sen 2002). For many of measures like alcohol use (Bradley et al. 2011), data suggest that patients 

may be reluctant to divulge sensitive information associated with social stigma, also known as social 

desirability bias (Althubaiti 2016).  

3.  Information on the Community Level 

Much like pharmacogenomics, the concept of using community data to inform clinical care in the 

US dates back to the 1960s (Adashi, Geiger, and Fine 2010), however early basic concepts, such as 

organizing patient charts by family and neighborhood (Froom 1977) were never widely adopted and 

have not transitioned to modern EHR systems.  Now, due to the digitization and public availability 

of data, there are unprecedented opportunities to gather community-level data for precision medicine 

studies.   

The Accelerating Data Value Across a National Community Health Center Network 

(ADVANCE) pilot study has begun conducting electronic assessments of the built environment, 
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environmental exposures, and neighborhood economic conditions to synthesize a “community vital 

sign” (Bazemore et al. 2016).  This work is similar to other assessments, like the SocioEconomic 

Status Index (Roblin 2013) and the Neighborhood Deprivation Index (Messer et al. 2006).  Another 

critical component of the built environment is access to healthy food; multiple studies have 

examined the impact of perceived availability of fast food and healthy food options (Barnes et al. 

2016, 2017).  While some information on community status can also be obtained through self-

reporting, perceptual biases may be especially problematic when defining community-level 

characteristics – how do you self-report the status of your community relative to others?  External, 

objective sources of community-level data may provide better estimates of their health impact.   

4.  Information on the Geographic Level 

Geographic Information Systems (GIS) have become an extremely useful tool for analyzing publicly 

available geospatial information (Steiniger and Bocher 2009), such as census and environmental 

exposure data.  These data resources have been used to derive community-level metrics integrated 

with EHR data, including characteristics of the walkable built environment in Pennsylvania (Nau et 

al. 2015), Massachusetts (D. T. Duncan et al. 2014), and Ohio (Roth et al. 2014).  Similar approaches 

have been applied to characterize the food environment (Fiechtner et al. 2015, 2016). There are also 

multiple sources of atmospheric pollution in the US (B. Duncan 2014), which can provide insights 

into pulmonary conditions (C. D. Sloan and Johnston 2016), along with other transient, spatio-

temporal factors like weather (C. Sloan et al. 2017).  

Geographic data has also been combined with electronic health record information to assess 

the distribution of preventable emergency department visits (Fishman 2015), to identify 

geographic risk factors for sexually transmitted infections (Comer et al. 2011), and to assess 

asthma risk (Xie et al. 2017). Importantly, studies that have performed geospatial mapping of EHR 

data find high concordance to traditionally collected studies like the Centers for Disease Control 

500 Cities Project (Birkhead 2017; CDC 2017).      

5.  Closing 

It is clear that effective precision medicine will require a complete understanding of the patient’s 

current health status, including risk factors from cells to society, to forecast disease development 

and implement treatment response.  Standards for data collection are common for clinical data 

derived from physical examinations, and even the collection of genetic data must now adhere to 

Clinical Laboratory Improvement Amendments (CLIA)-certified processes, but many EHRs are 

missing complete and uniform documentation of environmental, social, and behavioral contexts 

despite their strong influence in disease processes and treatment outcomes.  Despite this, the 

realization of a cells to society vision of precision medicine is within reach.  EHRs continue to 

evolve, along with the infrastructure to collect, store, and integrate these community-level data into 

EHRs and research databases to enable the precision of precision medicine on multiple scales.  
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