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Transcriptome-wide association studies (TWAS) have recently gained great attention due to their 
ability to prioritize complex trait-associated genes and promote potential therapeutics development 
for complex human diseases. TWAS integrates genotypic data with expression quantitative trait loci 
(eQTLs) to predict genetically regulated gene expression components and associates predictions with 
a trait of interest. As such, TWAS can prioritize genes whose differential expressions contribute to 
the trait of interest and provide mechanistic explanation of complex trait(s). Tissue-specific eQTL 
information grants TWAS the ability to perform association analysis on tissues whose gene 
expression profiles are otherwise hard to obtain, such as liver and heart. However, as eQTLs are 
tissue context-dependent, whether and how the tissue-specificity of eQTLs influences TWAS gene 
prioritization has not been fully investigated. In this study, we addressed this question by adopting 
two distinct TWAS methods, PrediXcan and UTMOST, which assume single tissue and integrative 
tissue effects of eQTLs, respectively. Thirty-eight baseline laboratory traits in 4,360 antiretroviral 
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treatment-naïve individuals from the AIDS Clinical Trials Group (ACTG) studies comprised the 
input dataset for TWAS. We performed TWAS in a tissue-specific manner and obtained a total of 
430 significant gene-trait associations (q-value < 0.05) across multiple tissues. Single tissue-based 
analysis by PrediXcan contributed 116 of the 430 associations including 64 unique gene-trait pairs 
in 28 tissues. Integrative tissue-based analysis by UTMOST found the other 314 significant 
associations that include 50 unique gene-trait pairs across all 44 tissues. Both analyses were able to 
replicate some associations identified in past variant-based genome-wide association studies 
(GWAS), such as high-density lipoprotein (HDL) and CETP (PrediXcan, q-value = 3.2e-16). Both 
analyses also identified novel associations. Moreover, single tissue-based and integrative tissue-
based analysis shared 11 of 103 unique gene-trait pairs, for example, PSRC1-low-density lipoprotein 
(PrediXcan’s lowest q-value = 8.5e-06; UTMOST’s lowest q-value = 1.8e-05). This study suggests 
that single tissue-based analysis may have performed better at discovering gene-trait associations 
when combining results from all tissues. Integrative tissue-based analysis was better at prioritizing 
genes in multiple tissues and in trait-related tissue. Additional exploration is needed to confirm this 
conclusion. Finally, although single tissue-based and integrative tissue-based analysis shared 
significant novel discoveries, tissue context-dependency of eQTLs impacted TWAS gene 
prioritization. This study provides preliminary data to support continued work on tissue context-
dependency of eQTL studies and TWAS. 

Keywords: TWAS; integrative; context; PrediXcan; UTMOST. 

 
1.  Introduction 
Improving antiretroviral therapy (ART) efficacy and safety is an ongoing goal for addressing the 
HIV pandemic. According to the Joint United Nations Programme on HIV and AIDS (UNAIDS) 
(http://aidsinfo.unaids.org/), approximately 36.7 million people worldwide were living with human 
immunodeficiency virus (HIV) in 2016. Over the past three decades there has been immense 
progress on HIV care and treatment, and in 2017 there were about 20.9 million HIV-positive people 
who had access to ART. The connection of genomics with pharmacology has led to the discovery 
of numerous single nucleotide polymorphisms (SNPs) in drug absorption, distribution, metabolism, 
and elimination (ADME) genes and off-target genes. Many SNPs have been related to effects and/or 
pharmacokinetics of antiretroviral drugs1-6. However, most trait-related SNPs lack connections to 
actual functional genes, which suggests the need for alternative analysis approaches. 

The emerging field of transcriptome-wide association studies (TWAS) offer a new way to 
directly identify gene-trait associations via integration of genotypic data and expression quantitative 
trait loci (eQTLs). eQTLs are an important class of genetic functional elements, which affect 
transcriptional regulation on target genes. Integration of eQTL information with genotypic data 
allows TWAS to estimate the extent to which a gene’s expression level is regulated by genetic 
variants and how this correlates with traits of interest8. The Genotype Tissue Expression Project 
(GTEx7) provides the data and the opportunity to identify eQTLs and estimate effect sizes for 
multiple human tissues (44 tissues in GTEx v6p). With GTEx, TWAS can explore gene-trait 
associations on tissues whose gene expression profiles are otherwise hard to obtain, such as liver 
and heart. However, current TWAS focuses primarily on eQTLs identified in a tissue-by-tissue 
manner, while many studies have either acknowledged or supported the power of an integrative 
tissue context in identifying single-tissue and multi-tissue eQTLs9,10.  

In this study, we aimed to address whether and how single tissue and integrative tissue context 
of eQTLs influence TWAS gene prioritization by comparing two distinct TWAS methods, 
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PrediXcan11 and Unified Test for MOlecular SignaTures (UTMOST12). PrediXcan uses elastic-net 
regression model and identifies eQTLs in a tissue-by-tissue manner. UTMOST adopts group-lasso 
and search through all tissues at once to spot eQTLs of a certain gene. This strategy allows 
UTMOST to identify single-tissue specific eQTLs similar to PrediXcan but increase the chance of 
detecting multi-tissue eQTLs. Here, 38 baseline (i.e. pre-ART) laboratory values and genotypic data 
of 4,360 ACTG clinical trials participants from multiple previous studies13-19 comprised the input 
for TWAS. Genotyping had been previously generated in multiple phases with Illumina assays: 
650Y (phase I), 1M Duo (phase II and III), or Human Core Exome (phase IV). We performed the 
two TWAS methods separately in a tissue-specific manner (i.e. 44 tissues) (Figure 1). If tissue 
context-dependency of eQTLs did not affect TWAS gene prioritization, we expected to observe 
shared gene-trait associations between single tissue-based analysis (PrediXcan) and integrative 
tissue-based analysis (UTMOST). The results partially supported this hypothesis, but also suggested 
varied gene prioritization abilities of single tissue-based and integrative tissue-based approaches 
respectively. The former found more unique gene-trait pairs, while the latter tended to prioritize 
genes expressed in multiple tissues. This study provides supportive evidence for tissue context-
dependency of eQTLs and its impact on TWAS gene prioritization.  

2.  Methods 

2.1.  Data and Study Participants 

In this study, we used four different genotyping phases of ACTG studies in a combined dataset that 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. This study investigates the influence of tissue context-dependency of eQTLs on TWAS gene 
prioritization by comparing two distinct TWAS methods, PrediXcan and UTMOST. PrediXcan assumes single 
tissue context of eQTLs, while UTMOST assumes eQTLs to possibly have effects in multiple tissues.  

Pre-imputation Quality Control
- Sex check
- Genotype and sample call rate (> 99%)
- Minor allele frequency (> 5%)
- Relatedness check

Genotype Data

ACTG Phases Sample Size Number of Variants

Phase I-IV 4,396 3,751,837

Imputed Data

ACTG Phases Sample Size Number of Variants

Phase I-IV 4,396 27,438,241 

Phenotypic Data

ACTG Phases Sample Size Baseline Lab Traits

Phase I-IV 5,185 39

Phenotype Quality Control
- Normal distribution 
- Inclusion of samples in genotyping
- Sample missing rate (< 80%, i.e., about 1K 

individuals each trait)

Post-imputation Quality Control
- Filter for biallelic SNPs
- Imputation score (> 0.7)
- Sex check
- Genotype call rate (> 99%)
- Sample call rate (> 98%)
- Minor allele frequency (> 5%)
- Relatedness check (!" < 0.25)
- Principal component analysis

Final Imputed and Phenotypic Data
ACTG 
Phases

Sample 
Size

Number of 
Variants

Baseline Lab 
Traits

Phase I-
IV 4,360 2,185,490 38

- Gene prioritization
1) Overlapped genes between PrediXcan and 

UTMOST
2) Distinct genes

- Prioritized tissues
- Replication

1) Replications between methods
2) Replication with precedent studies

- Visualization
1) Manhattan plots

Subsequent Analysis and Visualization

Transcriptome-wide Association Analysis
- Gene-trait associations
- Significance threshold: Tissue-wise q-value < 0.05

Transcriptome-wide Association Analysis

Predict Gene Expression Levels 
- 2 kinds of eQTLs from PrediXcan and UTMOST, 

separately
- 44 different tissues

Predict Gene Expression Levels

Sex Distribution
- 3,538 males (81.8%) 
- 822 females (18.9%)
Self-reported Race/ethnicity Distribution
- 1,814 White, non-Hispanic (41.6%)
- 1,570 Black, non-Hispanic (36.0%)
- 855 Hispanic (19.6%)
- 121 varied others (2.9%)
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included samples and data from participants in prospective, randomized ART-naïve treatment 
trials13-19. Clinical trial designs and results, and results of a genome-wide pleiotropic study results 
for baseline laboratory values have been described elsewhere13-21.  

2.2.  Quality Control 

2.2.1.  Genotypic data 

A total of 4,393 individuals were genotyped in four phases. Phase I was genotyped using Illumina 
650Y array; Phase II and III were genotyped using Illumina 1M duo array; Phase IV was genotyped 
using Illumina HumanCoreExome BeadChip. 

The computational preparation of genotypic data included pre-imputation quality control (QC), 
imputation, and post-imputation quality control. Pre- and post-imputation quality control followed 
the same guidelines22 and used PLINK1.9023 and R programming language. Imputation was 
performed on ACTG phase I-IV combined genotype data. Genotyped variants surviving the pre-
imputation quality control comprised the input datasets for imputation, which used IMPUTE224 with 
1000 Genomes25 Phase 1 v3 as the reference panel. ACTG phase I-IV combined imputed data had 
4,941 individuals and 27,438,241 variants. The following procedures/parameters were used in the 
post-imputation quality control by PLINK1.90: sample inclusion in phase I-IV phenotype 
collection, biallelic SNP check, imputation score (> 0.7), sex check, genotype call rate (> 99%), 
sample call rate (> 98%), and minor allele frequency (MAF > 5%), and relatedness check (!" > 0.25). 
Subsequent principal component analysis (EIGENSOFT26) projected remaining individuals onto the 
1000 Genomes Project sample space to examine for population stratification. The first three 
principal components were used as covariates to adjust for population structure in the subsequent 
analysis. The final QC’ed ACTG phase I-IV combined imputed data contained 2,185,490 genotyped 
and imputed biallelic SNPs for 4,360 individuals (Figure 1).  

2.2.2.  Phenotypic data 

The ACTG clinical trials included in this analysis collected baseline (i.e., pre-ART) laboratory traits 
from 5,185 ART-naïve individuals. We only retained individuals who have been genotyped and 
traits that were normally distributed and met a criterion of phenotype missing rate < 80%. The final 
combined phenotype dataset of ACTG genotyping phase I-IV retained 38 traits and the same number 
of individuals as the QC’ed imputed dataset (Figure 1).  

2.3.  Predict Unmeasured Gene Expression Levels 

We adopted two TWAS methods, PrediXcan and UTMOST, to predict unmeasured gene expression 
levels in a tissue-specific manner. PrediXcan and UTMOST have estimated SNP effect sizes on 
gene expression levels in 44 tissues, which are available at http://predictdb.org/ and 
https://github.com/Joker-Jerome/UTMOST, respectively. The PrediXcan and UTMOST scripts 
were pulled from their GitHub project repositories on April 23rd and Jun 6th, 2018, respectively.  

PrediXcan and UTMOST followed the same multivariate models. Let # denote the sample size 
and $ denote the number of eQTLs in a certain gene. A gene’s expression level can be predicted 
using the multivariate model as follows: 
 % = '( (1)
where % is the # × 1 vector of predicted gene expression levels of the gene, ' is the # ×$ matrix 
of genotypes, and ( is the $ × 1 vector of eQTLs’ estimated regulatory effects on the gene.  
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Predicted gene expression levels were likely to differ between the two methods as each has a 
different hypothesis of eQTL regulatory mechanisms in terms of tissue context-dependency. To 
discover trait-related tissues without assumptions, we predicted gene expression levels in 44 tissues.  

2.4.  Transcriptome-wide Association Analysis 

We tested for gene-trait associations by performing transcriptome-wide association tests on 
predicted gene expression levels and ACTG baseline lab traits using PLATO27,28. All baseline lab 
traits included in this study were continuous and thus were modeled using linear regression. Age, 
sex, and the first three principal components calculated by EIGENSOFT were included as covariates 
in linear models to adjust for sampling biases and underlying population structure. PrediXcan and 
UTMOST have different degrees of diversity in the number of eGenes and gene-trait associations 
among tissues. To avoid biases due to an uneven number of associations among tissues, p-values 
were adjusted using FDR with using Benjamini–Hochberg procedure29 in a tissue-specific manner. 
For this study, we consider gene-trait associations significant if they had single tissue-wise q-value 
< 0.05. 

3.  Results 
We compared the influence of tissue context-dependency of eQTLs on TWAS gene prioritization 
by comparing single tissue-based analysis (PrediXcan) and integrative tissue-based analysis 
(UTMOST). We performed TWAS on ACTG phase I-IV combined datasets. The data aggregation 
of ACTG phase I-IV provided a larger sample size to ensure the power of identifying gene-trait 
association. QC procedures left the ACTG phase I-IV combined imputed data with 4,360 individuals 
and 2,185,490 SNPs. There were 38 baseline lab traits in the final phenotypic datasets. 

Single tissue-based and integrative tissue-based analysis identified a total of 430 significant 
gene-trait associations (103 unique gene-trait pairs regardless of tissue, q-value < 0.05) and share 
11 unique gene-trait pairs. Single tissue-based analysis identified 116 of the 430 significant 
associations (64 unique gene-trait pairs), encompassing 41 genes, 17 traits, and 28 tissues. 
Integrative tissue-based analysis identified the remaining 314 significant associations (50 unique 
gene trait pairs), encompassing 38 genes, 20 traits, and all 44 tissues.  

3.1.  Tissue Context-dependency Influenced TWAS Gene Prioritization 

Gene prioritization results from single tissue-based analysis (PrediXcan) and integrative tissue-
based analysis (UTMOST) were compared to evaluate the influence of tissue context-dependency 
of eQTLs on TWAS. Single and integrative tissue-based analyses shared 11 of 103 unique gene-
trait pairs regardless of tissue (Table 1). Several of these replicated the findings of previous studies 
(Table 2). The lowest p-value by integrative tissue-based analysis was for MROH2A-total bilirubin 
levels20 (UTMOST, q-value = 6.0e-27), which had a moderate p-value from single tissue-based 
analysis (q-value = 0.005). Another replication was between PSRC1 and two lipid-related traits, 
cholesterol and LDL, which have been reported in other studies30-33. Although it was SORT1, which 
neighbors PSRC1, that has been functionally related to LDL via mice knockdown experiments34.  
ALDH5A1 and GPLD1 have been  associated with the liver function test, alkaline phosphatase 
(ALP)35. In the cases of PSRC1, ALDH5A1, and GPLD1, integrative tissue-based analysis 
(UTMOST) prioritized the genes in their biological function-related organ, liver, which was not    
always the case for single tissue-based analysis (PrediXcan). Possible novel associations were 
observed between absolute neutrophil count and C1orf20436, ATF6, and VANGL237.  
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Table 1. Significant gene-trait associations (q-value < 0.05) shared by single and integrative tissue-based analysis. The 
two different analyses shared 11 out of 103 unique significant gene-trait pairs. 

Traits Genes Methods #Tissues Major Tissue Types* 

Absolute 
neutrophil 

count 

ATF6 
ATF6 

PrediXcan 1 Brain 

UTMOST 2 Brain, Transformed Fibroblasts 

C1orf204 
C1orf204 

PrediXcan 1 Brain 

UTMOST 5 Brain, Ovary, Pituitary 

VANGL2 
VANGL2 

PrediXcan 1 Brain 

UTMOST 1 Brain 

Alkaline 
phosphatase 

ALDH5A1 PrediXcan 9 Artery, Colon, Liver, Lung, Nerve, Pancreas, Skin, Thyroid, Transformed 
Lymphocytes 

ALDH5A1 UTMOST 39 

Adipose, Adrenal Gland, Artery, Brain, Breast, Colon, Esophagus, Heart, Liver, 
Lung, Nerve, Ovary, Pancreas, Pituitary, Prostate, Skeletal Muscle, Skin, Small 
Intestine, Spleen, Stomach, Testis, Thyroid, Transformed Lymphocytes, Uterus, 
Vagina 

GPLD1 PrediXcan 2 Artery, Thyroid 

GPLD1 UTMOST 24 
Adipose, Artery, Brain, Esophagus, Heart, Liver, Lung, Nerve, Pituitary, 
Prostate, Skeletal Muscle, Skin, Small Intestine, Stomach, Testis, Thyroid, 
Transformed Lymphocytes, Vagina, Whole Blood 

Cholesterol 
PSRC1 PrediXcan 9 Brain, Esophagus, Lung, Pancreas, Pituitary, Skeletal Muscle, Skin, Whole 

Blood 

PSRC1 UTMOST 25 Adipose, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve, Ovary, 
Pancreas, Pituitary, Prostate, Skeletal Muscle, Skin, Testis, Uterus, Whole Blood 

Fasting 
cholesterol 

PSRC1 PrediXcan 9 Brain, Esophagus, Lung, Pancreas, Pituitary, Skeletal Muscle, Skin, Whole 
Blood 

PSRC1 UTMOST 22 Adipose, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve, Ovary, 
Pituitary, Prostate, Skeletal Muscle, Skin, Testis, Uterus, Whole Blood 

Fasting LDL 

PSRC1 PrediXcan 11 Brain, Esophagus, Lung, Pancreas, Pituitary, Skeletal Muscle, Skin, Testis, 
Thyroid, Whole Blood 

PSRC1 UTMOST 27 
Adipose, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve, Ovary, 
Pancreas, Pituitary, Prostate, Skeletal Muscle, Skin, Testis, Thyroid, Uterus, 
Whole Blood 

Hemoglobin 

CAMSAP1 PrediXcan 1 Nerve 

CAMSAP1 UTMOST 31 
Adipose, Artery, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve, 
Ovary, Prostate, Skeletal Muscle, Skin, Small Intestine, Spleen, Thyroid, 
Transformed Fibroblasts, Transformed Lymphocytes, Whole Blood 

LDL 

PSRC1 PrediXcan 11 Brain, Esophagus, Lung, Pancreas, Pituitary, Skeletal Muscle, Skin, Testis, 
Thyroid, Whole Blood 

PSRC1 UTMOST 27 
Adipose, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve, Ovary, 
Pancreas, Pituitary, Prostate, Skeletal Muscle, Skin, Testis, Thyroid, Uterus, 
Whole Blood 

Total bilirubin 
MROH2A PrediXcan 1 Adipose 

MROH2A UTMOST 1 Stomach 
* For simplicity, only major tissue types were shown. Skin, heart, esophagus, colon, brain, artery, and adipose have subtypes. 
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Table 2. Validation of some of the TWAS prioritized genes. 

GENES METHODS TISSUES Q-
VALUE+ ACTG TRAITS GWAS CATALOG 

REPORTED TRAITS PMID 

ATF6 PrediXcan Brain 1.30E-02 Absolute neutrophil count White blood cell count 28158719 UTMOST Transformed Fibroblasts*, Brain 1.63E-02 

VANGL2 PrediXcan Brain 1.30E-02 Absolute neutrophil count Multiple sclerosis 24076602 UTMOST Brain 4.70E-02 

ADAMTS4 UTMOST Artery 1.50E-04 Absolute neutrophil count*, White 
blood cell count 

Monocyte percentage of 
white cells 27863252 

ALDH5A1 

PrediXcan Colon*, Artery, Liver, Lung, Nerve, Pancreas, Skin, 
Thyroid, Transformed Lymphocytes 1.57E-05 Alkaline phosphatase 

Liver enzyme levels 
(alkaline phosphatase) 22001757 

UTMOST 

Artery*, Adipose, Adrenal Gland, Brain, Breast, Colon, 
Esophagus, Heart, Liver, Lung, Nerve, Ovary, Pancreas, 

Pituitary, Prostate, Skeletal Muscle, Skin, Small 
Intestine, Spleen, Stomach, Testis, Thyroid, Transformed 

Lymphocytes, Uterus, Vagina 

6.58E-03 Alkaline phosphatase 

ITLN1 PrediXcan Stomach 1.04E-05 
Alkaline phosphatase, Absolute 

basophil count, Triglyceride, Viral 
load 

Crohn's disease 18587394 

CELSR2 PrediXcan Brain*, Skeletal Muscle 6.67E-06 Cholesterol, Fasting cholesterol, 
Fasting LDL, LDL Total cholesterol, LDL 20686565, 17903299 

PSRC1 

PrediXcan Lung*, Brain, Esophagus, Pancreas, Pituitary, Skeletal 
Muscle, Skin, Whole Blood 8.47E-06 

LDL*, Cholesterol, Fasting 
cholesterol, Fasting LDL Total cholesterol, LDL 

20686565, 17903299, 
19936222, 17903299, 

25101658 UTMOST 

Heart*, Adipose, Brain, Breast, Colon, Esophagus, 
Liver, Lung, Nerve, Ovary, Pancreas, Pituitary, Prostate, 

Skeletal Muscle, Skin, Testis, Thyroid, Uterus, Whole 
Blood 

1.75E-05 

CETP PrediXcan Colon 3.24E-17 HDL*, Fasting HDL HDL cholesterol 25884002, 20686565 

MROH2A PrediXcan Adipose 5.23E-03 Total bilirubin Bilirubin levels 25884002, 21646302 UTMOST Stomach 5.97E-27 
UGT1A1 PrediXcan Skin 7.13E-07 Total bilirubin Bilirubin levels 25884002, 21646302 

UGT1A7 UTMOST Skin*, Adrenal Gland, Colon, Esophagus, Liver, 
Stomach 5.15E-40 Total bilirubin Bilirubin levels 25884002, 21646302 

APOA1 PrediXcan Brain 2.93E-02 Triglyceride Total cholesterol, 
Triglyceride, LDL, HDL 20686565, 17903299 

APOC3 PrediXcan Heart 1.61E-02 Triglyceride Total cholesterol, 
Triglyceride, LDL, HDL 20686565, 17903299 

 
Bolded tissues are known trait-related tissues.  
* denotes the most significant tissue and/or trait that were associated with genes. 
+ q-value in the most significant tissue denoted by asterisk.   
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3.2.  Single Tissue-based Analysis Found a Greater Number of Unique Gene-trait 
Associations 

Single tissue-based analysis using PrediXcan identified 64 unique gene-trait association across 
different tissues (Figure 2). Some associations have been reported previously (Table 2). PrediXcan 
associated total bilirubin levels with UGT1A120 (skin, q-value = 7.1e-07) and MROH2A20 (adipose, 
q-value = 0.005), and LDL and cholesterol to CELSR2 30,38,39 (most significant with LDL in brain, 
q-value = 6.7e-06). HDL was associated with CETP20,32 (most significant in colon with q-value = 
3.2e-17) and  NLRC538 (adrenal gland, q-value = 7.8e-12). Triglyceride was associated with 
APOA130,39 (brain, q-value = 0.029) and APOC330,39 (heart, q-value = 0.016). 

Single tissue-based analysis identified novel gene-trait associations, which warrants further 
investigation. One interesting example was the association of ITLN1 with multiple traits, including 
HIV-1 viral load, triglyceride, and total neutrophil count. As ITLN1 was reported in a previous 
Crohn’s disease study40, our result suggested an potential relationship between Crohn’s disease and 
HIV infection41. 

3.3.  Integrative Tissue-based Analysis Found Multi-tissue Gene-trait Associations 

Regardless of tissue, integrative tissue-based analysis using UTMOST identified 50 unique gene-
trait pairs (Figure 3). Although it prioritized fewer genes, the integrative tissue-based analysis was 
more likely to prioritize multiple tissues where genes are expressed. For instance, PSRC1 is highly 
expressed in almost all tissues7. PSRC1-LDL and cholesterol associations were prioritized in at least 
ten more tissues by integrative tissue-based analysis Most importantly, they were found consistently 
in the liver which is critically involved in lipid regulation. There was some evidence for distinct 

Figure 2. Manhattan plot of gene-trait associations identified by PrediXcan. X-axis showed only significant traits. Y-
axis was the q-value transformed by -log10. For simplicity, the plot only shows the lowest p-value of a gene-trait pair, 
which may appear in multiple tissues.  
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associations identified via integrative tissue-based approach (Table 2), such as ADAMTS442 with 
white blood cell count (artery,  q-value = 0.023), and AMFR43  with fasting HDL (most significant 
in heart, q-value = 3.2e-05).  

Other prioritized genes suggested novel associations and potential pleiotropy. Most prioritized 
genes have been associated with other traits by GWAS according to GWAS Catalog44. Similar to 
the single tissue-based approach, integrative tissue-based analysis prioritized total bilirubin-
associated genes from the UGT1A45 gene locus (UGT1A7 and UGT1A10) across multiple tissues.  

4.  Discussions 

This study investigated whether and how TWAS gene prioritization was influenced by tissue 
context-dependency of eQTLs by comparing two approaches, single tissue-based TWAS 
(implemented in PrediXcan) and integrative tissue-based TWAS (implemented in UTMOST). 
PrediXcan evaluated eQTLs’ effects in the context of a single tissue, which did not consider 
potential multi-tissue effects of eQTLs� UTMOST estimated eQTLs’ effect in an integrative tissue 
setting and increase the chance of identifying multi-tissue eQTLs. We found that both types of 
analyses could replicate associations discovered by previous studies and identify novel ones. While 
there were a fair number of overlaps, the two types of analyses prioritized different sets of genes. 
Single tissue-based analysis identified more unique gene-trait associations. Integrative tissue-based 
analysis tended to prioritize the same associations in multiple tissues and most importantly 
association were found in tissues critically related to traits of interest. Results suggest that tissue 
context-dependency of eQTLs influenced TWAS gene prioritization results. 

The comparison raised questions of power and type I error rate of tested TWAS approaches. 
Integrative tissue context has shown an improved power in identifying eQTLs. As such, integrative 

Figure 3. Manhattan plot of gene-trait associations identified by UTMOST. X-axis showed only significant traits. Y-
axis was the q-value transformed by -log10. For simplicity, the plot only showed the most significant p-value of a gene-
trait pair, which may appear in multiple tissues. 
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tissue-based analysis might have universally greater power in identifying trait-associated genes than 
single tissue-based analysis. However, in this study, single tissue-based analysis found more 
validated associations (Table 2). It is hard to tell if integrative tissue-based analysis has universally 
greater power as expected, whereas single tissue-based analysis happened to identify more false 
positives. It is also possible that one type of analysis outperformed the other at certain scenarios. A 
simulation study is necessary to discern these possibilities.�

Similar to GWAS, prioritized genes might merely be tag genes for causal ones. Both kinds of 
analyses prioritized genes at the chromosome 1p13.3 locus where a lipid-related gene, SORT1, is 
located. Single tissue-based analysis associated multiple lipid-related traits with genes that neighbor 
SORT1, such as SARS, CELSR2, PSRC1, and ALX3, which all are in the 1p13.3 locus and the same 
topologically associating domain (TAD46,47). Besides PSRC1, integrative tissue-based analysis 
repetitively identified SLC6A17. Even though it is not adjacent to SORT1, this gene is in the 1p13.3 
locus and might serve as a tag gene for causal one(s). Hence, for TWAS, prioritized genes might be 
merely tag genes and fine-mapping of causal genes may need a larger search boundary than GWAS, 
such as TADs.   

Future investigation or validation experiments may be needed to explain the prioritized genes 
and/or tissues. For example, UGT1A1 glucuronidates bilirubin in the liver48, but single tissue-based 
analysis only identified a UGT1A1-total bilirubin association in skin. Further analysis found that 
there was no single UGT1A1 eQTL identified in liver by either PrediXcan or UTMOST trained on 
GTEx v6p or v7 data. It is likely that identification of UGT1A1 eQTLs is limited by tissue sample 
size (!"#$%& = 175 ) or genetic variants may regulate UGT1A1 via mechanisms other than 
transcriptional regulation. Another observation of this study was that genes adjacent to UGT1A1 
sporadically showed up as significant in either single tissue-based or integrative tissue-based 
analysis, including USP40, UGT1A6, UGT1A7, UGT1A10, KCNJ13, and also MROH2A20. These 
genes span 1Mbp in chromosome 2 and locate within the same TAD46,47. The repetitive pattern may 
suggest a specific regulatory activity that targets the whole genetic region of KCNJ13-USP40-
UGT1A-MROH2A.  

TWAS can prioritize trait-related genes, which may be important for HIV-positive patients 
regarding genetically informed therapeutic development and drug safety. This study showed that 
TWAS were able to not only replicate known associations, but also identify novel gene-trait 
associations. It also suggested the importance of biological context in eQTL studies, and the 
ensemble of TWAS methods with different transcriptional regulation assumptions gave a more 
comprehensive picture of gene-trait relationships. In the future, we would like to perform cross-
tissue TWAS analysis12,49, which aggregate gene-trait association information across all tissues and 
even across different consortia to further prioritize the trait-related genes and better describe the 
genetic architecture of complex diseases.  
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