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Phenome-wide association studies (PheWAS) allow agnostic investigation of common genetic 
variants in relation to a variety of phenotypes but preserving the power of PheWAS requires careful 
phenotypic quality control (QC) procedures. While QC of genetic data is well-defined, no established 
QC practices exist for multi-phenotypic data. Manually imposing sample size restrictions, identifying 
variable types/distributions, and locating problems such as missing data or outliers is arduous in 
large, multivariate datasets. In this paper, we perform two PheWAS on epidemiological data and, 
utilizing the novel software CLARITE (CLeaning to Analysis: Reproducibility-based Interface for 
Traits and Exposures), showcase a transparent and replicable phenome QC pipeline which we believe 
is a necessity for the field. Using data from the Ludwigshafen Risk and Cardiovascular (LURIC) 
Health Study we ran two PheWAS, one on cardiac-related diseases and the other on polyunsaturated 
fatty acids levels. These phenotypes underwent a stringent quality control screen and were regressed 
on a genome-wide sample of single nucleotide polymorphisms (SNPs). Seven SNPs were significant 
in association with dihomo-γ-linolenic acid, of which five were within fatty acid desaturases FADS1 
and FADS2. PheWAS is a useful tool to elucidate the genetic architecture of complex disease 
phenotypes within a single experimental framework. However, to reduce computational and 
multiple-comparisons burden, careful assessment of phenotype quality and removal of low-quality 
data is prudent. Herein we perform two PheWAS while applying a detailed phenotype QC process, 
for which we provide a replicable pipeline that is modifiable for application to other large datasets 
with heterogenous phenotypes. As investigation of complex traits continues beyond traditional 
genome wide association studies (GWAS), such QC considerations and tools such as CLARITE are 
crucial to the in the analysis of non-genetic big data such as clinical measurements, lifestyle habits, 
and polygenic traits. 

Keywords: PheWAS; Phenotype; Quality control; Precision medicine. 

 
1.  Introduction 

Phenome-wide association studies (PheWAS) seek to identify factors significantly associated with 
multiple human-health related traits. Unlike genome-wide association studies (GWAS), which 
analyze a single phenotype of interest with respect to genome-wide genetic variation, PheWAS 
leverage that genetic variation against complex, phenome-wide information. The consideration of 
multiple phenotypes allows PheWAS to assess the interconnectedness of health conditions, making 
them useful tools for follow-up investigation of risk loci identified in GWAS1,2,3. PheWAS can 
identify statistical pleiotropy or potentially elucidate gene networks as part of disease etiology3,4. 
Like GWAS, they suffer from a great multiple testing burden and incompatibility with rare variant 
analysis3,5.  

An additional difficulty of analyzing phenome-wide datasets is the breadth and heterogeneity of 
the phenotypes, which may require different quality control (QC) considerations. Due to the 
popularity of leveraging electronic medical records (EMR) to acquire phenotypic information, 
phenome QC has focused on properly condensing EMR’s International Classification of Diseases 
(ICD) codes into distinct phenotypes2,6,7. Successful PheWAS using ICD-classification algorithms 
are well-documented1,2,6,7,8,9. Yet phenotypic classification is but one aspect of phenotype QC; less 
focus has been given to the simple but easily applicable idea of data cleaning. Evaluating sample 
size, data missingness, and identifying documentation errors are hurdles that efficient phenotype 
QC must overcome to define a high-quality phenome. Post-phenotype-classification QC excludes 
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phenotypes with low variability or sample size that may needlessly increase the multiple test burden. 
Furthermore, whereas ICD codes enable neat definition of case-control phenotypes, data from 
epidemiologic studies may document non-binary phenotypes. Such data must be perused, and 
phenotypes identified by variable type to correctly apply analytic methods, such as logistic or linear 
regression. However, given the large size of phenomic datasets, manual inspection of data is 
inefficient. Furthermore, replicable and reproducible PheWAS rely on the transparency of the QC 
workflow. Researchers benefit from data-cleaning tools with broad filtering and classification 
capabilities for simultaneous QC of phenotypes, but which also rely on sufficient user input to 
establish accountability for and leave a working record of the QC decisions made. Here we 
document QC of phenotypic data for categorical and quantitative traits, using data from the 
Ludwigshafen Risk and Cardiovascular (LURIC) Health Study and implementing QC in the 
CLARITE software (Lucas, Palmiero et al., 2019, accepted; documentation and code at 
https://github.com/HallLab). We performed two PheWAS respectively utilizing binary or 
continuous phenotypes related to cardiac health and coronary artery disease. We provide detailed 
QC pipelines for both (Fig. 1; Suppl. M1. Supplementary material is accessible at 
https://drive.google.com/file/d/1a8twpSL9Hvk95gsx6piBuo1ZuHb60wPv/view?usp=sharing). 
Phenotypes included disease diagnoses (e.g., coronary artery disease, peripheral vascular disease), 
associated risk factors (e.g., diabetes, lipid serum metabolites, hypertension), and follow-up 
mortality (Table S1). We ran an analysis while applying a proposed phenotype quality control 
pipeline, implemented in CLARITE which is designed to facilitate reproducible quality control 
workflows. We tested over 500,000 SNPs available in the LURIC data for association with case-
control and quantitative phenotypes associated with development of cardiovascular disease and 
replicated several known associations of genetic variants with dihomo-γ-linolenic acid. We 
demonstrate a QC pipeline for raw phenotypic data (Fig. 1; Suppl. M1), offer suggestions for best 
practices of phenome QC, and recommend CLARITE as a means of its efficient and transparent 
enaction. Refining phenotype QC is an easily adoptable practice to improve quality of PheWAS, 
thereby decreasing risk of spurious associations; CLARITE conveniently provides the tools for QC 
in a single package, facilitating QC for PheWAS utilizing high-dimensional data. It further 
accommodates investigations with heterogeneous or multiple sources of health data (exposures, 
biomarkers, clinical features, etc.) and facilitates the implementation of data preprocessing practices 
in PheWAS designed to screen multiple disease traits or environmental risk factors.  

2.  Methods 

2.1.  Ludwigshafen risk and cardiovascular health study  

The Ludwigshafen Risk and Cardiovascular (LURIC) Health Study, is a prospective cohort 
evaluating genetic and pharmacological risk factors of cardiovascular diseases and other associated 
phenotypes10. Beginning in 1997, the study focused on the predictors of coronary artery disease 
(CAD), myocardial infarctions (MI), Type II diabetes (T2D), and hypertension, given that they are 
prevalent in Western culture10. Participants were of white European/German ancestry and required 
a coronary angiogram, either previously obtained or performed at the Ludwigshafen Heart Centre 
prior to participation, to appropriately classify CAD10. Additionally, no participant had been 
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diagnosed with a non-cardiac disease, was recovering from surgery, nor had a history of cancer10. 
All participants gave informed consent. LURIC collected data from a standardized questionnaire 
and a physical examination10. A blood sample was taken for fatty acid measures and an oral glucose 
tolerance test was ordered for diagnosis of diabetes10. Erythrocyte fatty acid composition was 
measured with the HS-Omega-3 Index methodology described previously11. Fatty acids were 
described as percentages out of total fatty acids identified. Our data contained information from the 
2010 follow-up, and consisted of 3,316 individuals (30% female, 70% male; Table S2) from ages 
18 – 95. The case-control ratio varied by phenotype and filtering by available genotype information 
restricted the number of cases (Table S1). The LURIC study is currently ongoing. 

2.2.  Packages and tools 

Phenotype QC was performed in RStudio v1.1.463 with R v3.5.2 using CLARITE’s R package 
distribution (cleaning phenome data) alongside dplyr (initial variable extraction), haven (reading 
.sav files), and moments (skew calculations). CLARITE is available as an R package 
(https://github.com/HallLab/clarite)  and a Python package which accommodates a command line 
interface (https://www.hall-lab.org/clarite-python/). A GUI version of CLARITE is in development. 
CLARITE was our preferred tool for phenotype QC since its functions are designed for 
preprocessing of multivariate data. It expedites QC by simultaneous screening and/or processing of 
phenotypes. Its functions may be tailored to meet QC criteria particular to the user’s needs and its 
user-directed implementation affords easy documentation of the QC process (Suppl. M2 & M3). 
CLARITE’s suite of get*-functions (get_binary, get_categorical, get_continuous) assign variable 
type according to the number of distinct values available in the data, which allow the user to separate 
qualitative and quantitative variables for independent, variable-specific QC, such as a transforming 
a quantitative trait or assessing case-control ratios of binary phenotypes. Additional features include 
concurrently screening sample size minimums, identifying unique values, recoding missing values, 
and producing bar plots, histograms, or frequency tables across phenotypes. While CLARITE does 
support chi-square- or linear/logistic regression-based tests for association, it does not read the 
binary files (BED/BIM/FAM) in which the LURIC genotype data was stored though this capability 
is in development. Phenotype data was exported as a .txt file for downstream analysis in PLATO12, 
a software which can implement PheWAS. Data cleaned in CLARITE may be exported in a variety 
of formats to meet the requirements of the analysis software by utilizing any R function designed to 
export data.frames (e.g. write.csv, write.table). Genotype QC was implemented using PLINK13 
again due to CLARITE’s current limitations in reading binary files. Visualization of Manhattan 
plots and p-value quantile-quantile plots were implemented with ggplot2 and qqman respectively.  

2.3.  Genotype and phenotype quality control  

The LURIC genotype data initially contained 3,061 samples (2,172 male and 889 female) and 
687,262 SNPs. Prior to genotype QC, using data from the LURIC trait file, we filtered samples to 
remove pediatric cases (< 18 years) and persons missing covariate information (age, waist-hip ratio, 
BMI, and sex). Genotype QC was performed in PLINK for the remaining samples, first imposing a 
sex concordance check followed by 99% variant and sample call rates. SNPs with minor allele 
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frequency (MAF) < 0.05 were 
removed. We checked for 
sample relatedness and, from 
each related pair (kinship 
coefficient > 0.125), removed 
the sample with greater 
missingness. Finally, we 
checked that the 99% 
sample/variant call rates and 
5% MAF criteria were 
maintained following 
exclusion of related samples. 
The cleaned genotype data 
contained 2,824 samples 
(2,007 male and 817 female) 
and 577,007 SNPs. We 
calculated principal 
components (PCs) from the 
remaining samples and 
exported the first 3 PCs as 
covariates in our analysis. 

A detailed description of 
and scripts for our phenotype 
QC are available in the 
Supplementary Material 
(Suppl. M1, M2 & M3). For 
our cardiac PheWAS, 33 
disease phenotypes were 
available. Using CLARITE, 
we standardized missing 
values and selected only 
phenotypes with a minimum 
sample size of 200. Since 
PLATO does not perform 
multinomial/ordinal logistic 
regression, we defined 
variable types and restricted 
QC to binary phenotypes (no 
continuous phenotypes were 
among these selected traits). 
We filtered our data to retain 
only samples who passed 

Fig. 1. Suggested quality control pipeline for phenotype data. The 
same workflow was followed in our analyses. *The total sample size 
filter performed initially to minimize the number of phenotypes that 
needed to be sorted by variable type. This decision required an 
additional total sample seize check after filtering for samples who 
passed genotype QC. 

Phenotype data 

Filter for total sample size* 

Standardize 
missing values 
  

Select samples with complete covariate information 

Perform genotype QC using selected samples 

Begin phenotype QC 

Variable-type specific QC 
Binary 

• Visualize 
• Category sample size filter 
• Case-control ratio  

Quantitative 
• Visualize 
• Check data variability 
• Apply data transformations 

Categorical 
• Dichotomize if desired and cannot utilize 

nonbinary categorical phenotype 
Ambiguous 

• Manually inspect to determine variable type 

Remove 
phenotype(s) 

Filter for samples with available genotype information 

Total sample size check post-filtering 

Remove phenotype(s) 

Does not 
meet 

criteria 

Does not 
meet criteria 

PheWAS using post-QC genotype data 

Split phenotypes by variable type 

Remove phenotype(s) 

Does not meet 
criteria 
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genotype QC, which ensured the samples that remained contained no missing covariate information 
and has at least a 99% sample call rate. Finally, we required at least 150 cases and controls for each 
phenotype. Fifteen phenotypes remained for the cardiac PheWAS (Table S1). We considered 14 
fatty acid phenotypes for our fatty acid PheWAS (Table S1). We filtered phenotypes to meet n = 
200 minimum sample size and verified each were quantitative traits for linear regression in PLATO. 
Fatty acid phenotypes were filtered to keep only samples which passed genotype QC. Phenotypes 
were checked for skew; ten were highly skewed (skew > 0.5) and ln(1+x) transformed. Additionally, 
we ensured no phenotype contained greater than 90% zero values. All fatty acid phenotypes were 
included in the analysis. Final sample sizes varied due to differing missingness between phenotypes 
and are found in Table S1. 

2.4.  Statistical analysis 

PLATO12 used linear (fatty acid PheWAS) or logistic (cardiac PheWAS) regression to test the 
association of each SNP-phenotype combination, assuming an additive genetic model and adjusting 
for age, sex, BMI, waist-hip ratio, and the first 3 PCs. Fifteen cardiac disease or 14 fatty acid 
phenotypes were regressed against 577,007 SNPs. We investigated whether results met genome-
wide significance (p ≤ 5×10-8) and Bonferroni significance accounting for all tests run across both 
PheWAS (p ≤ 2.99×10-9 corresponding to 0.05/[29×577,007]). 

3.  Results 

3.1.  Cardiac PheWAS results 

While none of the SNPs tested in the cardiac PheWAS met Bonferroni nor genome-wide 
significance (Fig. S1; Table S3; Fig. S2), we investigated the top results. The SNP rs17701618 had 
the lowest p-value and was associated with stroke (p = 2.40 x 10-7, β = -0.725) and is 71kb 
downstream an intergenic long-noncoding RNA (lncRNA) RP11-456A18.1. Variant rs11701162 (p 
= 3.28 x 10-7, β = -0.479), associated with cardiomyopathy is an intronic variant of lncRNA 
LINC01671. SNP rs285584 was associated with mortality in the ten-year follow-up (p = 9.57 x 10-

7, β = -0.407) and causes a missense mutation in the PDZ Domain Containing Ring Finger 4 gene 
(PDZRN4). Two intronic variants within paralemmin 2 (PALM2) associated with Type II diabetes 
mellitus were rs4978846 (p = 1.66 x 10-6, β = 0.360) and rs10512400 (p= 1.93 x 10-6, β = 0.357).  

3.2.  Fatty acid PheWAS results 

Seven SNPs met the genome-wide significance threshold (Fig. S3; Table S4; Fig. S4) and 
Bonferroni threshold (p ≤ 2.99×10-9) in the fatty acid PheWAS; all were associated with dihomo-γ-
linolenic acid (DGLA). Five statistically significant SNPs are intronic variants in the fatty acid 
desaturase genes FADS1 and FADS2. The two variants in association with DGLA demonstrating 
the lowest p-values, rs174548 (p = 2.06 x 10-18, β = -0.035) and rs174549 (p = 2.57 x 10-18, β = -
0.035), as well as the variant rs174547 (p = 9.95 x 10-14, β = -0.029), were within FADS1. SNPs 
rs174577 (p = 10.2 x 10-14, β = -0.030) and rs174583 (p = 4.42 x 10-14, β = -0.029)) were in FADS2. 
Two more significant SNPs were outside of the FADS genes. The variant rs4246215 (p = 6.42 x 10-
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15, β = -0.03) is in the 3’ untranslated region (UTR) of flap structure specific endonuclease 1 (FEN1). 
Another significant variant, rs174534 (p = 3.24 x 10-11, β = -0.026), is an intronic variant of myelin 
regulatory factor (MYRF). The FADS2 intronic variant, rs174577, was also nearly genome-wide 
significant in association with arachidonic acid (p = 8.92 x 10-8, β = 0.231).  

4.  Discussion 

In this study we performed two PheWAS, assessing associations between cardiovascular 
diseases/risk factors and genome-wide genetic variation while addressing rigorous yet replicable 
phenotype QC. The quality of PheWAS relies on the utilization of clean phenotype data. In part, 
ICD-code classification algorithms6,1,7,9 address this and greatly facilitate PheWAS implementation 
with EMR data. However, not all PheWAS rely on EMR data, in which case the focus turns to 
designing an analysis with careful data cleaning procedures to obtain a high-quality phenome. 
Holistic and variable-type-specific QC checks are means of discarding substandard data from 
heterogenous, multivariate datasets, ensuring the preservation of high-quality phenotypes and 
reducing the multiple test burden by removing phenotypes which fail to meet quality standards. 
PheWAS using non-EMR data may particularly benefit from phenotype QC guidelines as the former 
may have nonuniform missing values, several variable types, or coding errors. We propose a 
workflow for phenotype QC (Fig. 1; Suppl. M1) that retains enough flexibility to ensure the 
researcher can choose parameters or preprocessing methods (e.g. sample size thresholds, 
transformations) pertinent to their data. We followed this pipeline on two PheWAS of our own, 
showcasing its applicability on both categorical and quantitative traits (Suppl. M2 & M3).  

Our fatty acid PheWAS identified seven SNPs associated with dihomo-γ-linolenic acid (DGLA), 
many of which had previously documented associations with DGLA or FADS activity. A previous 
association found one such SNP, rs174548, was associated with percentage of DGLA out of total 
fatty acids levels14. Another study found an association between rs174548 and delta-6 desaturase 
(FADS2) activity, measured by dihomo-γ-linolenic acid: linolenic acid (DGLA:LA) ratio15. In our 
fatty acid PheWAS, rs174577 was significantly associated with DGLA and near-significantly 
associated with arachidonic acid (AA). Dorajoo et al. (2015) found the C allele of rs174577 was 
associated with increased AA in a Singaporean cohort. The direction of this association was 
reproduced in our results (Table S4). As such, this association has been found across ethnically 
diverse cohorts. While five of the seven significant SNPs were within the FADS locus, we found a 
significant association between DGLA and variant rs174534 in MYRF. Previous works have 
documented this variant’s association with FADS1 activity (AA:DGLA ratio) in African 
Americans16. Additionally, while MYRF is foremost considered a transcription factor regulating 
myelination of the central nervous system17, recent studies have implicated de novo mutations of 
MYRF in Scimitar syndrome and other congenital cardiac and urogenital defects18,19,20. 

The relationship between PUFAs, the FADS locus, and cardiovascular disease risk has been 
implicated in multiple association studies21,22, but their functional relationship is complex. Chronic 
inflammation of the vasculature is characteristic of cardiovascular diseases and pro-inflammatory 
markers have been linked to incidence and more serious prognosis of CAD23,24,25. DGLA can be 
converted into anti-inflammatory metabolites PGE1 and 15-HETrE23,26. However, FADS1 converts 
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DGLA into AA, which when further metabolized stimulates the proinflammatory response 26,27. 
FADS1/2 further modulate the inflammatory response by converting ⍺-linoleic acid (⍺-LA) into 
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which themselves produce anti-
inflammatory agents27. Altered rates of delta-5/FADS1 and delta-6/FADS2 desaturation, as 
measured by product-to-precursor PUFA ratios, have been found in cases of CAD24 and T2D28. 
Multiple GWAS have found PUFA levels and desaturase activity are sensitive to FADS 
variants14,15,16,24,26. Further complicating the connection between PUFAs and CAD, humans obtain 
the linolenic acid precursors of DGLA, AA, EPA, and DHA through diet, which implies that a 
complex network of genetic and environmental factors governs cardiovascular disease. 
Accordingly, supplementation of “good” PUFAs has been considered a potential therapy for CAD, 
but studies document both successes 
and failures of PUFA 
supplementation to reduce cardiac 
events/mortality29,23,27. 

Our cardiac PheWAS did not 
find genome-wide nor Bonferroni 
significant results which may be 
explained by differences in power 
when considering binary and 
quantitative responses. Quantitative 
variables like serum fatty acid levels 
preserve more phenotypic 
information as dichotomizing 
variables reduces statistical power 
and potentially hides variability 
within groups30. Defining cases and 
controls is necessary when lacking a 
clear quantitative trait to define a 
condition31, but masks disease 
heterogeneity. CAD is diverse, with 
acute pathologies like myocardial 
infarction alongside chronic or 
asymptomatic etiologies32. Our 
sample had a majority of CAD cases. 
Phenotypes describing aspects of 
CAD, such as stroke, may have 
"controls" who were diagnosed with 
CAD but lacked that symptom. Thus, 
it may have been difficult to 
determine signal between affected 
and unaffected persons in the cardiac 
PheWAS due to overlap between 

a 

b 

c 

Fig. 2. Example of phenome QC in CLARITE on binary 
phenotypes. Standardization of missing values, total sample 
size filter, and variable-type identification functions (a). 
Filtering of samples, category size filters, and data 
visualization (b). Removing incomplete cases and listing 
sample size (c). 
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case/control subgroups and potential for shared risk factors across controls and cases. Additional 
power may have been lost due to the case-only sample sizes available for our cardiac PheWAS. 
Apart from the phenotype “arrhythmia type”, the overall sample sizes between the two PheWAS 
were similar (Table S1). However, in the cardiac PheWAS the number of cases ranged from about 
170 to over 2,000. Phenotypes with smaller case-only sample sizes may be robust in a single analysis 
but not when accounting for the PheWAS multiple test burden. Furthermore, while our results 
corroborated previous research connecting the FADS locus’ to PUFA levels, chronic inflammatory 
conditions, and cardiovascular diseases, the LURIC sample size was not sufficient to allocate a 
replication cohort for internal replication of significant associations. An additional limitation was 
the significance threshold imposed. Our PheWAS investigated joint-PheWAS Bonferroni-
significant associations and results that met the genome-wide significance threshold. Multi-
phenotypic analysis increases the multiple test burden provided each test is independent33. Since our 
phenotypes are related to a specific health trait, CAD, our analysis likely contains correlated 
phenotypes and a Bonferroni correction may be overly stringent34.  

We propose that rigorous phenomic QC be introduced to PheWAS methodology, a pipeline for 
which is displayed in Figure 1 and, with more detail, in the supplement (Suppl. M1). PheWAS 
already employ high-standards of genotype QC and often adopt filtering approaches to narrow down 
the variants of interest to a pathway or genomic region4,6,7,35 thereby reducing the computational 
burden and multiple test penalty. Similar consideration of phenotypic data will ensure that 
phenotypes considered are of relative high-quality. While different studies necessitate different 
considerations, we propose certain QC criteria as best practices. Firstly, we recommend that studies 
identify and document a desired sample size minimum. Secondly, in heterogenous datasets, variable 
types should be identified and separated for individual processing. Thirdly, phenotype QC should 
only be performed on samples passing genotype QC. Finally, researchers should document 
thresholds used at and order of each QC step. In our analyses, we chose CLARITE to implement 
these practices due to its functions for concurrent cleaning of variables, its flexibility of function 
parameters, and its ease of maintaining documentation and tracking QC changes (Fig. 2; Suppl. M2 
& M3).  

CLARITE provides an interface for researchers to perform high-throughput data-cleaning prior 
to PheWAS. It is similar in function to the PHEnome Scan ANalysis Tool (PHESANT) 36 which 
performs phenome scans with UK Biobank data. PHESANT automatically classifies variables, 
performs linear, logistic, ordinal logistic, or multinomial logistic regression on available traits and 
described outcome(s), and visualizes results in QQ-plots or forest plots. The trade-off for the 
automated phenome scan afforded by PHESANT is its relative lack of user customization (it 
imposes certain sample size and distinct value restrictions for variable classification) and 
applicability only to UK BioBank data, as it requires UK Biobank information on data coding to 
identify missingness and ordinal variables. While CLARITE contains similar analytic capabilities, 
performing multivariate linear or logistic regression while additionally supporting analyses 
accounting for complex sampling design and survey weights when used in tandem with the R survey 
package37, our focus is its usefulness as a tool for data cleaning. While more hands-on, CLARITE 
allows for modification to meet the researcher’s needs and easily accounts for our suggested 
practices of phenotype QC. 
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While tools like CLARITE streamline QC and our proposed QC pipeline (Fig 1; Suppl. M1) can 
improve quality of analysis, they are limited by the relatively sparse investigation into the criteria 
of phenotype quality needed to improve PheWAS power and efficacy. Standards must be developed 
to determine a significance threshold analogous to the genome-wide threshold of GWAS and give 
better insight on what produces a sufficiently powered PheWAS. Much attention is given to filtering 
and QC of genotype data; phenotypes require the same considerations. In addition to genomic data, 
personal health records and data from epidemiological studies/surveys comprise a wealth of 
information on exposures or behaviors that contribute to individual health. A more rigorous perusal 
of phenotype quality through tools like CLARITE promotes use and eases implementation of 
analyses working to integrate this information to explore complex traits and multifaceted disease 
risk. 
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