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Dynamic processes are inherently important in disease, and identifying disease-related dis-
ruptions of normal dynamic processes can provide information about individual patients.
We have previously characterized individuals’ disease states via pathway-based anomalies
in expression data, and we have identified disease-correlated disruption of predictable dy-
namic patterns by modeling a virtual time series in static data. Here we combine the two
approaches, using an anomaly detection model and virtual time series to identify anomalous
temporal processes in specific disease states. We demonstrate that this approach can infor-
matively characterize individual patients, suggesting personalized therapeutic approaches.
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1. Introduction

Predictable dynamic processes characterize many biological states, from development to the
cell cycle to healthy aging. We are interested in using these processes to identify unusual
disease-related temporal dynamics that may offer potentially actionable information about
individual patients. The most prevalent data source, although by no means the only possible
one, for such a project is bulk expression data, which is readily available for a variety of
dynamic disease states. Transcriptomic profiles need not explicitly include time series; instead,
we can create virtual time series from static data, so long as age or temporal information
is available. We apply this approach to both developmental and degenerative disorders in
which there are normal age-related changes to discover patient-specific temporal disruptions
of expression that are associated with disease.

This problem is related to anomaly detection,1 a machine learning paradigm in which
rare anomalous events are detected using only normal (or mostly normal) training samples.
Common applications of such methods include fraud, intrusion, or spam detection. In a
biological context, anomaly detection can be used to characterize specific patients with rare
or heterogeneous disorders.

However, the dimensions of transcriptomic data sets - typically at least tens of thousands of
features, representing genes or transcripts, but much smaller numbers of samples - often make
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traditional anomaly detection approaches perform poorly. Furthermore, typically only a small
fraction of genes provide phenotypic information about the underlying samples. Fortunately,
gene expression also has a great deal of underlying structure. We can thus use known domain
information, such as previously-defined sets of functionally related genes, to make learning on
these data sets possible.

There has been substantial prior work applying anomaly detection to bioinformatics prob-
lems. Previous efforts relating to expression data have explored identifying differentially ex-
pressed genes or gene sets.2–5 Only recently have other methods begun to explore outliers
in the context of characterizing individual samples,6,7 but none of these methods considers
outlier individuals in a temporal context.

Our group previously introduced Feature Regression and Classification (FRaC),8 a robust
feature prediction approach for the general anomaly detection problem, and showed that it
is more robust to irrelevant variables than top competing methods.9 We then used FRaC as
a component of CSAX,10 a pathway-based method for identifying and interpreting anomalies
in individual gene expression samples. CSAX addresses the issue that to learn something
clinically useful about an individual patient, is often not enough to simply know that a given
sample is anomalous - we also need to know why. Such information might distinguish differ-
ent disease subtypes, provide insight into the mechanisms of disease, or provide additional
information about a particular patient’s condition.

Several additional methods characterize individual samples via enrichment using molecular
signatures, including ssGSEA (single sample gene set enrichment analysis),11 GSVA (gene set
variation analysis),12 PLAGE (pathway level analysis of gene expression),13 and combining
z -scores.14 However, none of these identifies breakdowns in expected temporal dynamics.

For this purpose, we previously developed TEMPO,15 a temporal modeling method for
characterizing time-related expression dysregulation in disease. TEMPO works by finding gene
sets where there is a good predictive model of age or time as a function of pathway-specific
gene expression in healthy patients that breaks down consistently in patients with a disease
or phenotype of interest.

Here we introduce anomaly-TEMPO (aTEMPO), an extension of TEMPO for anomaly
detection incorporating temporal dysregulation in disease. Using insights from Cousins et al.,16

in which we demonstrated that it is possible to perform similarly accurate anomaly detection
to FRaC while modeling only a small subset of the features, we use aTEMPO to model time
using expression of limited numbers of functionally related genes. Modeling time in this way
removes the scaling dependency on the size of the feature space, making aTEMPO practical
to run on large data sets. This allows for the significant runtime improvements of Cousins
et al.16 while retaining CSAX’s ability to interpret anomalies in individual patients’ samples.
We compare aTEMPO to original TEMPO as well as to general-purpose anomaly detection
algorithms and to previous anomaly detection methods designed for expression data, and we
show that in its specific domain, aTEMPO is consistently better at anomaly detection than
comparator algorithms. We further show how aTEMPO uncovers medically relevant insights
about individual patient samples that other non-temporal methods do not.
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2. Methods

2.1. aTEMPO

Fig. 1. PLSR prediction for an arbitrary gene set G1. Error likelihoods LG1,D are used as anomaly
scores for gene set G1.

As in TEMPO,15 for a gene set G, aTEMPO trains a partial least squares regression
(PLSR) model,17 using the pls package in R, to predict age as a function of the expression of
all genes in G. Ages for all the control samples C = {S1, S2, ...Sj} are predicted in leave-one-
out cross-validation using j separate PLSR models M1,M2, ...Mj (Figure 1), identically to the
procedure used by TEMPO. Ages for test samples D = {Sj+1, . . . , Sk} are predicted using
MTest, trained on all the control samples.

We obtain a vector of prediction errors for G, the differences between the predicted ages for
G and the actual ages. We call this vector of prediction errors EG, where EG,s is the prediction
error for sample s under gene set G. Let µG and σG be the mean and standard deviation of
the observed prediction errors on the control samples for gene set G, and let NG(x) be the
probability of seeing an error at least as large as x under the normal distribution with mean
µG and standard deviation σG. The error likelihood for gene set G and sample s is then:

LG,s = −log(NG(EG,s)) (1)

Rather than using these error likelihoods to compute a dysregulation score for a gene set,
we can instead consider it as an anomaly score. Given a collection of gene sets, we will obtain
a matrix of anomaly scores with one entry for each gene set and test set sample. To obtain a
single anomaly score for sample s, we simply sum over all gene sets:

As =

n∑
i=1

LGi,s (2)
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where a larger As indicates a higher likelihood that the sample is anomalous. We note that
As could be modified by changing which gene sets are included in the summation, perhaps by
restricting to known disease-associated gene sets, or to only those gene sets with significantly
predictive models under the criteria used in TEMPO.

2.2. Single Sample aTEMPO

We evaluate aTEMPO’s single sample characterization by constructing a training set of all
normal samples and a test set of all disease samples. aTEMPO produces an anomaly score for
each disease sample and gene set, which we use as the single-sample score.

2.3. Other Methods

We compared aTEMPO to top-performing general anomaly detection methods Local Outlier
Factor18 and one-class support vector machines,19 as well as gene expression specific methods
FRaC and CSAX. We use the same implementations of FRaC, LOF, and one-class SVMs as
described in Noto et al. (2015).10 The CSAX implementation is largely identical as well, al-
though minor changes were made to prevent extraneous bagging in instances where additional
bagging would make no significant difference to the final anomaly scores (results not shown).

To further test whether considering gene sets in a temporal context improves accuracy
over considering only individual genes, we also compared to a version of FRaC that used only
the anomaly score for the age feature.

We compared aTEMPO’s single sample output to ssGSEA, PLAGE, GSVA, and z-scores
using the GSVA package in R. However, as all four of these packages produce enrichment
scores - where both high and low values also indicate an enrichment - scores produced by
these methods are not directly comparable to aTEMPO scores, where a large value indicates
an anomaly and a low value does not. In these cases, we compare gene sets with negative en-
richment scores and gene sets with positive enrichment scores to the corresponding aTEMPO
scores separately.

Connectivity mapping20 is a technique by which gene expression changes due to a disease or
phenotype can be matched to drugs that reverse observed expression changes in a set of drug-
treated cells. To evaluate patient-specific observations derived from aTEMPO, we queried the
Clue interface21 for drug connectivity using the 150 most up- and down-regulated genes in the
given sample or in the consensus signature for a set of samples.

2.4. Expression Data Sets

We evaluate each algorithm on expression data sets for human diseases where age is a reported
and disease-relevant variable, the first four of which were described in Pietras et al.:15

Autism spectrum disorder (ASD): Based on a study by Alter, et al.22 (GSE25507 in the
Gene Expression Omnibus (GEO) database23), this data set includes expression microarrays
characterizing peripheral blood lymphocytes of 72 children with autism spectrum disorders
and 59 controls, with ages ranging from 2 to 14 years.
Huntington’s disease (HD): This data set includes normalized gene counts from an
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RNASeq experiment characterizing blood from 91 Huntington’s disease carriers, 27 of whom
are pre-symptomatic, and 33 similar-aged controls24 (GSE51779 in GEO). Samples are anno-
tated with patient ages in years to .01 precision.
Alzheimer’s disease (AD): We include all samples from Batch 1 marked as “included in
the case-control study” in an Illumina beadchip data set by Sood, et al.25 from the AddNeu-
roMed consortium26 (GSE63060 in GEO). It contains 49 samples characterizing peripheral
blood in Alzheimer’s patients and 67 from similar-aged controls, with ages in integer years.
Chronic obstructive pulmonary disease (COPD): This data set includes small airway
gene expression microarray data from 15 smokers with COPD and 12 smokers who are appar-
ently healthy, derived from studies by Carolan, et al.27 and Tilley, et al.28 (GSE5058 in GEO).
Each patient has an integer age in years.
Bronchopulmonary dysplasia (BPD): Drawn from a study on preterm birth complica-
tions by Pietrzyk, et al.29 (GSE32472 in GEO), this data set includes microarray data profiling
peripheral blood of 66 five-day-old infants born preterm and later diagnosed with BPD, plus
35 controls who did not develop BPD but may have had other complications. Gestational ages
at birth range from 22 to 33 weeks.

2.5. Gene Set Collections

For aTEMPO and CSAX, we used the same Gene Ontology30 gene sets used in Pietras et
al.15 for the four data sets originally described in that paper. This collection excludes all gene
sets of size greater than 500 or less than 5, resulting in a total of 6079 gene sets. For BPD,
we used DFLAT31 biological process gene sets, generated October 2017, excluding gene sets
of size greater than 500 or less than 10, resulting in 4917 gene sets.

2.6. Anomaly Detection Tasks

We evaluate aTEMPO and each of the comparator methods on five replicates of “semi-
supervised” anomaly detection tasks, where we train on normal samples only and evaluate
on normal and abnormal test data. Specifically, for each data set and replicate, we generate
a training set consisting of a randomly-selected 2

3 of the known normal data, and a test set
consisting of the remaining 1

3 of the normals and all of the anomalies (corresponding to disease
states). Each anomaly detection algorithm is given access to the expression data and ages for
each sample, and asked to produce an anomaly score for each test set sample. We calculate the
Area Under the ROC Curve (AUC) for each replicate and algorithm to assess each method’s
ability to distinguish normals from anomalies.

3. Results

Full results for all data sets and methods on anomaly detection and single sample tasks, as well
as several supplemental tables, are available on the project website at bcb.cs.tufts.edu/atempo.

3.1. Anomaly Detection

On the semi-supervised anomaly detection task, aTEMPO outperformed competitors on all
five data sets (Table 1). While there is often a close competitor, no other individual method
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is consistently strong on all five data sets. Performance is best on the COPD or BPD data
sets for all methods. This observation likely partially reflects the fact that COPD is the data
set analyzing the most disease-relevant tissue (small airway cells rather than blood).

Table 1. Average anomaly detection AUCs over five replicates, with stan-
dard deviations, for each method. Top scores per data set are in bold.

FRaC, age One-class
aTEMPO FRaC feature CSAX LOF SVM

ASD 0.692 0.531 0.683 0.534 0.533 0.500
(0.025) (0.063) (0.034) (0.077) (0.060) (0.000)

AD 0.615 0.586 0.493 0.507 0.605 0.526
(0.030) (0.050) (0.019) (0.044) (0.047) (0.025)

COPD 0.987 0.987 0.710 0.854 0.707 0.500
(0.030) (0.018) (0.147) (0.130) (0.042) (0.000)

HD 0.622 0.468 0.616 0.491 0.550 0.506
(0.070) (0.045) (0.038) (0.034) (0.056) (0.034)

BPD 0.845 0.758 0.816 0.714 0.729 0.686
(0.025) (0.062) (0.039) (0.080) (0.033) (0.048)

We had additional phenotypic information for two data sets. Patients with the Hunting-
ton’s genotype were either symptomatic or asymptomatic at the time of the study, and BPD
patients were designated as having either mild, moderate, or severe BPD. We additionally
evaluated anomaly detection to identify only members of these subgroups (full results on-
line). Here, aTEMPO was still the best-performing method overall, though again there was
often a close competitor and aTEMPO was slightly outperformed by another method in two
cases. We also found that aTEMPO’s ability to identify disease cases as anomalous increased
with disease severity, a pattern that holds for all five comparator methods as well. However,
no method performed well at identifying pre-symptomatic Huntington’s patients as atypical
when trained on normal controls.

Nonetheless, aTEMPO and CSAX can potentially mitigate this problem by using only a
subset of the gene-set-specific anomaly scores for each patient. Both aTEMPO and CSAX
compute a single anomaly score for each sample that is the sum of anomaly scores for each
gene set and sample. Instead of using all gene sets, we could instead compute an anomaly
score using only a subset of the gene sets - ideally those which we know to be related to the
disease of interest.

For example, on the HD data set, semi-supervised anomaly detection of asymptomatic
Huntington’s disease is poor, with the most accurate method obtaining an AUC of only 0.55.
However, by using only those gene sets found to be dysregulated by TEMPO when comparing
the normal patients in each replicate to the symptomatic patients, we are able to obtain
far better performance even on the asymptomatic patients. The average AUC of aTEMPO
improves from 0.520 to 0.727 using this approach, and the average performance of CSAX
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changes from 0.469 to 0.610. We conclude that in domains where we have some prior knowledge
about the types of anomalies we are looking for - for example, early detection of a known
disease - we can likely increase the predictive power of aTEMPO.

3.2. Single-sample aTEMPO for precision medicine

3.2.1. Individual aTEMPO results differ from TEMPO

There is significant variation in suprisal values amongst individual patients with a disease.
While TEMPO reports a single dysregulation score for each gene set that captures the overall
trend of dysregulation in that gene set, the suprisal value for an individual patient might
be quite different. Supplemental Table 3 shows the average of the rank correlations between
the TEMPO dysregulation scores for each gene set and each disease sample’s anomaly scores
for each gene set. There is generally a mildly positive rank correlation (0.07 - 0.43) between
the typical sample’s results and the TEMPO results across all samples, but the variance is
quite high. The correlation can even be substantially negative for individual samples (e.g.
below -0.5). Cases in which individual patients’ dysregulation in a particular gene set differs
substantially from an overall disease average might offer especially valuable opportunities for
precision therapeutics.

3.2.2. aTEMPO differs from non-temporal single-sample methods

Overall, correlations between the scores for either the positively or negatively enriched gene
sets from any of the comparator methods for a given patient and the aTEMPO scores for
the corresponding gene sets for that patient are low, as can be seen in Table 2 (correlations
shown are for BPD - tables for other data sets are similar, and available online). Correlations
of results between the different enrichment-based methods are more substantial, with the
exception of ssGSEA. This illustrates that temporal modeling produces novel and distinct
results from those found by single-sample enrichment methods.

Table 2. Average correlations between single sample score vectors for the same
patient across methods in BPD. Correlations between aTEMPO and enrich-
ment-based methods include only gene sets that are either positively or nega-
tively enriched in the comparator method.

ssGSEA Plage Zscore aTEMPO (+) aTEMPO (−)
GSVA 0.102 -0.212 0.829 0.062 -0.052
ssGSEA -0.029 0.105 0.043 -0.08
Plage -0.156 0.018 -0.008
Zscore -0.004 -0.016
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3.2.3. Sample heterogeneity in bronchoplumonary dysplasia (BPD)

For BPD, we used subjects’ disease severity and sex to examine how single sample aTEMPO
characterizes sample heterogeneity and disease subtypes. To consider broader patterns of
heterogeneity that may be related to clinical properties of the BPD patients, we identified
gene sets defining large distinct subgroups within the aTEMPO results.

Specifically, we consider gene sets where the anomaly score for that gene set is one of the
100 highest for at least a fifth of the samples, and where it is not one of the 100 highest
for at least another fifth of the samples, suggesting that there are sub-populations of BPD
cases with different patterns. There are 123 such gene sets in the aTEMPO results, many of
which are related to vascular development, neurodevelopment, and hearing. Fifty three of these
gene sets are significantly related to BPD severity (ANOVA p-values ≤ .05). These include
two vascular gene sets (“vasculogenesis” and “aorta morphogenesis”), six neurodevelopmental
gene sets, and four hearing-related gene sets (including “cochlea development” and “inner
ear morphogenesis”). These associations were not found by any of the static single sample
comparator methods.

While BPD severity has previously been associated with male sex,32 only a single one of the
123 gene sets is significantly associated with sex. However, average anomaly scores for males
are higher than those for females (5.07 vs 4.67) and the average intra-class rank correlations
for the anomaly score vectors are lower in males than females (0.17 vs 0.25). This suggests
that the primary difference in between sexes might not be any specific gene set, but rather a
greater lack of uniformity in progression of BPD in males.

The observed dysregulation of vasculogenesis and its correlation with BPD severity is
particularly interesting, because vascular development is known to be disordered in infants
with BPD, but whether this is a cause or consequence of the disorder, or of common co-
morbidities such as sepsis or retinopathy of prematurity, is the subject of active debate.33

BPD is also known to correlate with neurodevelopmental delays in the toddler and preschool
years,34,35 but the cause of this correlation is again not known, and it is thought that infection
might play a role in causing both. Hearing loss has also been associated with BPD,36 but
the correlation has been putatively attributed to ototoxicity from postnatal antibiotic use.
The association of these functions at five days of life with the severity of disease in a future
diagnosis of BPD hints at other possible and perhaps actionable causes.

3.2.4. Huntington’s disease anomalies suggest precision therapeutics

The gene set with the highest average aTEMPO anomaly score in HD patients is “negative
regulation of DNA recombination,” for which three patients had surprisal scores more than
three standard deviations above the mean. The gene set with the third highest average suprisal
is “positive regulation of sodium ion transmembrane transport.” The aTEMPO scores for
these gene sets are moderately correlated (0.49) across samples, even though the gene sets are
completely distinct.

Recombination is invaluable in repairing the double stranded breaks (homologous recom-
bination) implicated in HD and other trinucleotide repeat disorders. Acidosis, thought to be
a product of impaired energy metabolism in HD brains that leads to CNS lactate build up
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and disruption of acid-sensing ion channels, has been observed in HD models in vivo and in
vitro as well as in patient brains.37 These findings suggest that modulation of ion channels
may be of therapeutic benefit in the subset of patients with high surprisal scores in both DNA
recombination and sodium ion transport pathways, as temporally dysregulated ion channels
may have an influence on regulation of recombination and DNA repair pathways.

To assess precision medicine opportunities for those pathways suggested by aTEMPO to
be developmentally anomalous, we queried the Broad’s connectivity database (https://clue.
io/). Connectivity mapping in these three individual patients indeed suggests drugs affecting
ion transport. ATPase inhibitors are also over-represented among the top hits in several of
these patients. Sodium-related ATPase activity is known to be disrupted in Huntington’s
patients, likely causing aberrant mitochondrial function.38

3.2.5. Alzheimer’s disease, tyrosine phosphorylation, and cholinergic balance

The gene sets with the highest average surprisal in the aTEMPO results from AD patients were
“peptidyl-tyrosine modification” and “phosphatidylcholine metabolic process.” In particular,
there were six AD patients for whom “phosphatidylcholine metabolic process” and related
gene sets were highly anomalous (aTEMPO scores of at least ten).

Connectivity mapping queries for the signatures of these patients reveal acetylcholine re-
ceptor antagonists among the top suggested drugs for four of the six patients, including the
single most-connected drug for one patient. Acetylcholine receptors regulate phosphotidyl-
choline levels; there is a balance in the cholinergic system that needs to be maintained.39

Acetylcholine receptor antagonists have previously been proposed as AD therapeutics.40

In addition, retinol, which has also been suggested as a means to restore cholinergic balance
in AD,41,42 was the drug with the highest average negative connectivity score across these six
patients, with strongly negative scores in four of the six. Again, the aTEMPO results seem to
be identifying specific patients as candidates for suggested therapeutic approaches that have
not yet proven to be universally effective.

Further, analyses of post-mortem AD brain tissue has revealed elevated levels of phospho-
tyrosine protein and reduced specific activity of protein tyrosine kinases. These studies have
suggested that tyrosine and phosphatase systems may be important in AD pathogenesis.43,44

The results of aTEMPO support these hypotheses, suggesting that the systems of tyrosine
phosphorylation and modification are dysregulated in some patients.

The intracellular neurofibrillary tangles involved in AD are made of the microtubule protein
tau that is abnormally tyrosine phosphorylated and interacts with tyrosine kinases. The results
from aTEMPO suggest that the subset of patients with the highest surprisal scores in these
pathways may benefit from therapies that target the phosphorylation of the tau protein with
kinase inhibitors.45,46 Few such therapeutics appear in the public connectivity database, so it
was not possible to evaluate this hypothesis using connectivity queries. However, given the
prior connectivity results, the hypothesis that aTEMPO is identifying candidates for such
tau-targeting compounds seems plausible.
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4. Discussion

Anomaly detection, which can functionally characterize how a sample’s expression or other
genomic data differs from a set of normal control samples, is proving to be a promising
paradigm for precision medicine. We introduced a model that finds predictable age-related
pathway expression patterns and that identifies anomalous cases in which those patterns break
down. The highlighted pathways differ from those found by static single-sample methods or
by the original TEMPO approach. Note that in principle, there is no reason the temporal
data needs to represent patient age - it could be time since study inception, or even some
completely different ordinal variable, provided it is relevant to both the control and disease
states.

We acknowledge several limitations of our approach. Crucially, we have no independent
clinical data from these patients, so we have no way of experimentally validating that aTEMPO
gene sets truly suggest effective precision therapeutics in these studies. The connectivity data
that we used to provide some concurring evidence is derived primarily from cancer cells, whose
relevance to disease-relevant cells in the diseases we consider is variable. We also note that we
used the same expression data for the connectivity queries and the aTEMPO analysis, so this
confirmation is not truly independent. However, the data are used in a completely different
way, so finding suggested therapeutics that reflect the temporal dysregulation patterns iden-
tified by aTEMPO is still somewhat confirmatory. Nonetheless, true experimental validation
awaits future work.

Simulation would also provide a method for experimentally validating aTEMPO results.
However, while there are established and accepted methods for generating simulated static ex-
pression data sets (e.g., Law et. al.47), simulating data with time-related patterns for aTEMPO
while remaining a fair comparison for static methods is nontrivial. Development of such sim-
ulation methods is an important direction for future work.

The PLSR models currently constructed by aTEMPO are currently extremely simple.
This is necessary to reduce risk of overfitting when training models of up to 500 features
with as few as fifteen training samples. Massive multi-omics data sets might allow training of
more complicated and more accurate models, potentially incorporating other clinical variables.
Such data sets may also make libraries of pre-trained models practical, which would allow
meaningful aTEMPO characterization to be obtained for data sets consisting of only a single
patient, assuming data consistency issues could be addressed.

In the supplemental material, we explored omitting gene sets from the anomaly score if
their models were not significantly predictive. While this particular technique did not signifi-
cantly improve over normal aTEMPO, exploring other weighting schemes for As might prove
a valuable direction for future work.

Finally, one advantage that enrichment-based single sample methods like GSVA and ss-
GSEA have over characterizing single samples via anomaly detection is that they allow for
directionality. A high aTEMPO anomaly score for a gene set merely indicates that the gene
set’s normal developmental pattern is somehow dysregulated, but doesn’t directly indicate
how it is dysregulated. Future efforts should explore this issue as well.
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