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Electronic Health Records (EHR) contain extensive patient data on various health outcomes and risk 
predictors, providing an efficient and wide-reaching source for health research. Integrated EHR data 
can provide a larger sample size of the population to improve estimation and prediction accuracy. To 
overcome the obstacle of sharing patient-level data, distributed algorithms were developed to 
conduct statistical analyses across multiple clinical sites through sharing only aggregated information. 
However, the heterogeneity of data across sites is often ignored by existing distributed algorithms, 
which leads to substantial bias when studying the association between the outcomes and exposures. 
In this study, we propose a privacy-preserving and communication-efficient distributed algorithm 
which accounts for the heterogeneity caused by a small number of the clinical sites. We evaluated 
our algorithm through a systematic simulation study motivated by real-world scenarios and applied 
our algorithm to multiple claims datasets from the Observational Health Data Sciences and 
Informatics (OHDSI) network. The results showed that the proposed method performed better than 
the existing distributed algorithm ODAL and a meta-analysis method. 

Keywords: distributed computing; heterogeneity; median; meta-analysis; multi-site analysis; 
surrogate likelihood. 

1. Introduction

Real-world data, including Electronic Health Records (EHR) data, claims data, and many others,
have become a major source for medical and health research. In particular, EHR systems have been 
increasingly implemented across the nation to investigate various research questions in the last few 
decades [1-4]. EHR data contain various patient health data collected routinely at the point of care 
including diagnosis, medications, procedures, imaging, clinical notes, etc. Researchers conclude that 
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the meaningful use of the data relies on the successful integration of clinical information from 
multiple centers [5]. The multicenter study provides researchers a larger sample size of the 
population to improve the estimation and prediction accuracy, which can also contribute to 
accelerating knowledge discovery and enhancing the generalizability of scientific findings [6].  

A few successful networks have been founded and have become beneficial to multicenter 
research. For example, the Observational Health Data Sciences and Informatics (OHDSI) 
consortium was founded (https://ohdsi.org/) for the primary purpose of developing open-source 
tools that could be shared across multiple sites. OHDSI developed the OMOP Common Data Model 
[7] for data standardization. This tool enables each site to convert a variety of datasets into a common 
format. It also allows a single script to be shared and ran across sites without the alteration of format. 
The standardization procedure decreases the probability of translation error when converting a 
database into another format and increases the efficiency of data analysis. Another example is the 
National Pediatric Learning Health System (PEDSnet) that contains data from eight of the nation's 
largest pediatric health systems [8]. This network comprises clinical information from millions of 
children and provides increasing opportunities for multicenter pediatrics research.  

In multicenter research, privacy protection is a major challenge of data sharing [9]. In many 
situations, it is not feasible to share patient-level information, especially for important clinical 
outcomes and demographic information. Thus, some EHR-based studies have been done to develop 
the models to share and integrate patient information with privacy-preserving feature [10-14]. 
Currently, the state-of-the-art method for multicenter logistic regression without sharing patient-
level information is to conduct a meta-analysis, which fits a logistic regression model separately 
within each site and reports the point estimates and standard errors of the odds ratios, and obtain a 
combined result through a weighted average. For example, a treatment pathway study [15], a birth 
season – disease risk study [15, 16] and several pharmacovigilance studies [17] have been 
successfully conducted in such fashion within the ODHSI consortium.  

In addition to meta-analysis, distributed algorithms have been recently developed to decompose 
computational tasks into multiple components.  Each component is computed in parallel at a single 
site and patient-level information is not required to be transferred across sites. For example, an 
algorithm called WebDISCO (a Web service for distributed Cox model learning) was developed to 
fit the Cox proportional hazard model distributively by Cox [18], and Wu et al. developed a 
distributed algorithm for conducting logistic regressions, named GLORE (Grid Binary LOgistic 
Regression).  Both algorithms have been successfully deployed to the pSCANNER consortium [9, 
19]. However, as acknowledged by the investigators, the GLORE and WebDISCO are known as 
iterative algorithms that require iterative information transfer across the sites until convergence is 
reached. These two methods could be time-consuming and communication-intensive in practice. To 
address these issues, Duan et al. proposed a non-iterative privacy-preserving distributed algorithm 
to perform logistic regressions (termed as ODAL) [15], which utilizes the patient-level data from 
one site and aggregated information from other sites. The accuracy and efficiency of the ODAL 
method were proved to be comparable to the pooled patient-level datasets through a wide spectrum 
of settings in practice.  
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However, one common limitation for all of the aforementioned distributed algorithms is that 
they all assume that the data from different sites are homogeneous. This assumption is often 
impractical in biomedical studies. Specifically, data from different study sites within a distributed 
research network are often heterogeneous due to various reasons. For example, different coding, 
labeling systems might be used in different sites, which lead to different data structures. In this case, 
substantial mapping work is required through methods such as the OMOP Common Data Model [7] 
to unify the data structure and coding system to make the data sources interoperable.  Furthermore, 
heterogeneity might also be caused by different patient population and hospital-level effects due to 
intrinsic differences in geographical locations and variations in clinical operations, etc., which can 
result in the overall distribution of the data in each site to be different. In this paper, we assume the 
structure of the data is unified while the distributions of the data are heterogeneous.  

One motivating example is the PEDSnet, a National Pediatric Learning Health System [8], for 
facilitating multi-institutional data integration, cohort discovery, and advanced analytics that 
enables rapid learning. The PEDSnet consortium includes eight hospitals and health systems across 
the nation, such as the Children’s Hospital of Philadelphia, Cincinnati Children's Hospital, Seattle 
Children's Hospital. There is a substantial difference in patient characteristics as well as clinical 
practices across these hospitals. Another example is our recent collaboration with the Janssen 
Research and Development at Johnson & Johnson, where we are interested in integrating drug safety 
signals from five massive medical claims/electronic health records databases. There is also a 
substantial heterogeneity across these five databases. 

In general, ignoring heterogeneity across the sites could lead to biased estimates of the 
associations between exposures and outcomes [21, 22]. It is critically important to develop robust 
methods for data integration that can account for the heterogeneity in the data across sites.  To this 
end, in this paper, we attempt to develop a simple yet effective privacy-preserving distributed 
algorithm for fitting logistic regression within heterogeneous health systems without sharing 
patient-level data. The key idea is to modify the ODAL algorithm [20] by communicating robust 
summary statistics that are less sensitive to the existence of “outlying studies”. Through simulation 
studies and real data analysis using databases from the Janssen Research, we found that our new 
algorithm, which we refer to as the “robust-ODAL” method, is substantially more robust to the 
outlying studies and produces less biased estimates than the current ODAL method and traditional 
meta-analysis method. 

2.  Method 

In this section, we introduce the proposed robust-ODAL method. Simulation studies are 
performed to compare the method with state-of-the-art methods in terms of estimation bias. 

2.1.  Proposed Algorithm 

Suppose we have data stored in K different clinical sites. We assume the majority of the K sites 
(hereafter referred to as Group 1) are relatively homogeneous, and a small number of sites (hereafter 
referred to as Group 2) are considered heterogeneous in terms of the patient population, clinician 
population, data quality, etc. (illustrated in Fig. 1). We are interested in integrating the estimates 
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from the majority of the K sites. However, a challenge for such data integration is that the 
identification of which sites belonging to the majority of sites is unknown. To handle this type of 
heterogeneity and keep the algorithm to be entirely data-driven, we propose the following 
distributed algorithm by strengthening the algorithm in Duan et al. (2019) [20]. 

Specifically, denote Y to be a binary outcome and x to be a p-dimensional predictor, which 
contains the exposures of interest and potential confounders to be adjusted in a regression model. 
Suppose that we have N observations from K different clinical sites in total and the j"# clinical site 
contains 𝑛% observations. Let (𝑥'%, 𝑌'%) denotes the i"# observation in the j"# clinical site. Under the 
assumption of a logistic regression model, the log-likelihood function for the combined data can be 
written as 
 

𝐿,(𝛽) =
1
,
∑ ∑ [𝑌'%𝑥'%4𝛽

56
'71 − log{(1 + exp(𝑥'%4𝛽)}]D

%71                           (1) 

  
Fig. 1.  Among K sites, a small number of the sites are considered heterogeneous taking into the factors of the patient 

population, clinician population, data quality, etc., compared with other relatively homogeneous sites. 
 

In the distributed algorithm, we assume that the individual patient-level information is not 
allowed to be transferred across the sites. Thus, 𝐿,(𝛽) cannot be obtained directly by integrating all 
patient-level data. Suppose we only have access to the data stored in a local site (hereafter referred 
to as Site 1) and Site 1 belongs to Group 1 (i.e., the majority of studies). The log-likelihood at Site 
1 can be written as 

𝐿1(𝛽) =
1
5E
∑ [𝑌'1𝑥'14 𝛽
5E
'71 − log{(1 + exp(𝑥'14 𝛽)}]                                (2) 

With the given initial value �̅�, we can construct the following surrogate likelihood function 
based on the local likelihood function and borrow aggregated information from other sites, i.e., 

 

𝐿G(𝛽) = 	𝐿1(𝛽) + I𝛻𝐿,K�̅�L − 𝛻𝐿1K�̅�LM𝛽																																											 (3) 

where 𝛻𝐿,K�̅�L = 	
56
,
∑ 𝛻𝐿%(�̅�)D
%71  and 𝛻𝐿%K�̅�L is the first gradient of the j"# site. 

The term 𝛻𝐿,K�̅�L is essentially the sample-size weighted average of the first-order gradients 
obtained from the sites. Under the homogenous assumption that data are identically and 
independently distributed across sites,  𝛻𝐿,K�̅�L is used to correct the shape of 𝛻𝐿1(𝛽) around the 
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initial value βO. However, if the data from the sites in Group 2 have a different distribution from the 
data in Group 1,  𝛻𝐿,K�̅�L will be influenced by Group 2 and be different from 𝛻𝐿1K�̅�L, leading to 
biased estimation of the regression parameters. 

In order to reduce the bias caused by the heterogeneous sites in Group 2, instead of taking the 
mean of the first-order gradients across sites, we propose to simply take the element-wise median 
of 𝛻𝐿%K�̅�L across sites, which is known to be more robust to potential outliers. The new proposed 
surrogate likelihood function can be written as 
 

𝐿PQ(𝛽) = 	𝐿1(𝛽) + I𝛻𝐿,RSTK�̅�L − 𝛻𝐿1K�̅�LM𝛽																																									 (4) 
 
where 𝛻𝐿,RSTK�̅�L  = 𝑚𝑒𝑑𝑖𝑎𝑛{𝛻𝐿1K�̅�L,… , 𝛻𝐿DK�̅�L}. In Equation (4), 𝐿1(𝛽)  and 𝛻𝐿1K�̅�L  can be 
obtained using data from Site 1; 𝛻𝐿,RSTK�̅�L can be computed once we obtain each	𝛻𝐿%K�̅�L from all 
sites. Notably, the intermediate quantity 𝛻𝐿%(�̅�) contains only aggregated information and has the 
dimension being the same as the parameter	𝛽. An illustration of the method is provided in Figure 2. 
The robust-ODAL estimator can be obtained by maximizing the objective function in equation (4): 

𝛽G = argmax
^
𝐿PQ(𝛽) 

Fig. 2. Illustration of the robust-ODAL method. I: Using data from Site 1 (i.e., local site) to estimate the local 
estimator �̅�, and transfer �̅� to other sites. II: Intermediate term 𝛻𝐿%K�̅�L is evaluated at each site and transfer back to 

Site 1. III: With 𝛻𝐿1K�̅�L and 𝐿1(𝛽), we obtain the surrogate function 𝐿PQ(𝛽) and the robust-ODAL estimator 𝛽G is 
obtained by maximizing the surrogate function (4). 

 
Regarding the initial value βO, a natural choice of  βO is the maximum likelihood estimator of the 

local likelihood 𝐿1(𝛽). A detailed algorithm is outlined below. 
 

Algorithm:  

Input: Patient-level data 𝑥 = I𝑥'%M, 𝑌 = {𝑌'%}, where 𝑖 denotes the observation index and 𝑗 the 
site index. Note that 𝑥'% and 𝑌'% where j	 ≠ 1 are stored in 𝑗ab site locally. 
Output: Estimator 𝛽G of the association between 𝑥 and 𝑌 

1:   Obtain �̅� = argmax
^
𝐿1(𝛽), where 𝐿1(𝛽) = 1

5E
∑ [𝑌'1𝑥'14 𝛽
5E
'71 − log{(1 + exp(𝑥'14 𝛽)}]                             

2:   Transfer �̅� to Site 2, 3, …, K 
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3:   for j  = 2 to K do  
4:       Calculate	𝛻𝐿%K�̅�L = 	 1

56
∑ [𝑌'%𝑥'%4 𝛽
56
'71 − log{(1 + exp(𝑥'%4 𝛽)}]           

5:       Transfer 𝛻𝐿%K�̅�L to Site 1  
6:   end for  
7:   𝛻𝐿,RSTK�̅�L = 𝑚𝑒𝑑𝑖𝑎𝑛{𝛻𝐿1K�̅�L,… , 𝛻𝐿DK�̅�L} 
8:   Compute 𝐿GP(𝛽) = 𝐿1(𝛽) + I𝛻𝐿,RSTK�̅�L − 𝛻𝐿1K�̅�LM𝛽                          ▷ Equation (4) 
9:   Obtain 𝛽G = argmax

^
𝐿PQ(𝛽) 

10:   return  𝛽G 

2.2.  Simulation Design 

To evaluate the empirical performance of the proposed robust-ODAL algorithm and compare 
with existing algorithms ODAL and meta-analysis, we conducted extensive simulation studies. To 
cover a wide spectrum of practical settings, we set the total number of sites, K = 10 or 50, the sample 
size of each site was randomly sampled from a discrete Uniform distribution on (750, 1250). In 
addition, to mimic the assumption that a small number of the sites were outlying studies, we 
considered 10% or 20% of the sites being in Group 2. In other words, there were 1 (or 2) out of 10 
sites and 5 (or 10) out of 50 sites in Group 2, being substantially different from the majority group 
(Table 1). 

We considered a setting where a binary outcome was associated with two risk factors, (𝑥1, 𝑥c), 
where 𝑥1 represented a continuous confounder and 𝑥c was a binary exposure of interest (such as 
medication usage). The binary outcome Y (e.g., presence/absence of an adverse event) was 
generated from a Bernoulli distribution, with the conditional probability specified by the following 
logistic regression model, 

logit(Pr(Y = 1|𝑥)) = 𝛽h + 𝛽1𝑥1 + 𝛽c𝑥c, 
 
where	logit(p) = log	{p/(1 − p)}, 𝛽1 and 𝛽c were the coefficients of 𝑥1 and 	𝑥c respectively, and 
𝛽h was the intercept, characterizing the prevalence of the outcome Y.  

The choice of the parameter values was motivated by the empirical distributions of data in the 
real application. We simulated the continuous covariate variable to mimic the empirical distribution 
of BMI. Besides, the binary covariate variable was generated to mimic the prevalence of the risk 
factors in the real data (e.g., Hypertensive disorder). Table 2 specifies the distributions for 
generating the risk factors (𝑥1, 𝑥c). Specifically, the distribution of 𝑥1for each study site within 
Group 1 was a normal distribution with mean α1 and variance of 1, where this study-specific mean 
α1 was drawn from a uniform distribution on [-0.25, 0.25]. Such setup allowed for both within-study 
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variation (with a variance of 1) and between-study variation (over a range between -0.25 to 0.25). 
In addition, the study sites within Group 1 were relatively homogeneous because the between-study 
variation is ¼ of the within-study variation. 

In contrast, the predictor 𝑥1 in Group 2 was generated from a normal distribution with the mean 
of 2 and the variance of 0.5. Such specification mimicked a setting with outlying studies of 
substantially different distribution in mean and variance in Group 2, compared to Group 1. 

Following a similar rationale, we generated predictor 𝑥c in Group 1 from a Bernoulli distribution 
with probability equal to αc, where αc ranged from 0.25 to 0.35. For Group 2, 𝑥c was generated 
from a Bernoulli distribution with probability equal to 0.7. This setup was mimicking a setting that 
medication is less commonly prescribed in the majority of clinical sites (with a probability of 
prescribing as 0.25~0.35), whereas the medication is very commonly prescribed (with a probability 
of 0.7) in the outlying sites due to difference in clinical practice. For example, 6-mercaptopurine 
has been less commonly prescribed for treating pediatric Crohn disease at the Children’s Hospital 
of Philadelphia (with a probability of prescribing of 23%), but is commonly prescribed at the 
Boston’s Children’s Hospital (with a probability of prescribing of 80%) [23, 24, 25].  

To cover a wide spectrum of practical scenarios, we considered both common and rare 
outcomes. The prevalence for the common disease was set at 37% (mimicking Type 2 diabetes) and 
for the rare disease was set at 0.8% (mimicking the prevalence of AMI which is around 1% in the 
real data), which corresponded to the values of  equal to -0.5 and –4.8 respectively (Table 3).  

As illustrated in Table 3, we conducted simulation studies under two different settings to mimic 
two types of heterogeneity. In setting one (left part of Table 3), we assumed there exists 
heterogeneity only in the distribution of covariates while the disease prevalence and the coefficients 
(i.e., log odds ratio) of the covariates were the same across all sites. In setting two (right part of 
Table 3), we assumed not only the distributions of variables were different but also the disease 
prevalence and the coefficients (i.e., log odds ratio) of the covariates across the sites were different. 

3.  Results 

In this section, we present the simulation results under different settings to compare three 
methods: meta-analysis, ODAL, and robust-ODAL. We also show the data evaluation results with 
three methods using the data from the Janssen Research and Development at Johnson & Johnson.  
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3.1.  Simulation Results 

Fig. 3 presents the estimations of 𝛽c, the parameter of interest. We compared the estimators of 
ODAL, robust-ODAL, and meta-analysis when the number of sites is 10 (upper two panels) or 50 
(lower two panels) for common disease (A1 and A2) and rare disease (B1 and B2).  

The box plots in panel A1 and B1 are the simulation results for setting one where variables 𝑥1 
and 𝑥c are heterogeneous across the sites and the values of disease prevalence and coefficients are 
the same across all of the sites. The box plots in panel A2 and B2 are the results for setting two, 
where the distributions of variables, disease prevalence, and 𝛽1’s are different in Group 1 and 2. 

The y-axes in the box plots present the values of estimated log odds ratio for βc under 100 
times iterations and the x-axes are three models to compare: ODAL (yellow), robust-ODAL 
(green), and meta-analysis (blue). The solid black segment in each box shows the median of the 
estimates, and the boundaries of the colored boxes give the interquartile ranges for the estimates. 

Fig. 3. Simulation results of K = 10 and K = 50 for setting one and setting two with common disease prevalence 
(37%) and rare disease prevalence (0.8%). Setting one: heterogeneity only exists in the distribution of covariates while 
the disease prevalence and the coefficients of the covariates are the same across all sites. Setting two: distributions of 

variables, disease prevalence, and coefficients of the covariates are all different across the sites.  
 

Common disease: Setting one shows that when the heterogeneity only exists in the 
distributions of variables, the ODAL, the robust-ODAL, and the meta-analysis perform similarly 
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when the outcome is common (panel A1 in Fig. 3). Setting two presents that when the 
heterogeneity exists in variables, disease prevalence, and the coefficient of the confounder, 
estimates with the robust-ODAL method have smaller bias than those using ODAL (panel A2 in 
Fig. 3) and have similar performance with the meta-analysis. 

Rare disease: Setting one shows that when the heterogeneity only exists in the distributions of 
variables when the disease is rare, the robust-ODAL performs better than both ODAL and meta-
analysis (panel B1 in Fig. 3). A similar conclusion can be made under setting two (panel B2 in 
Fig. 3). Compared with setting one, the results show that the robust-ODAL performs much better 
than ODAL in setting two. 

To summarize, when the disease is common, the robust-ODAL performs better than (e.g., in 
setting two) or at least similar (e.g., in setting one) compared to the ODAL; the robust-ODAL 
performs similar to meta-analysis. When the outcome is rare, the robust-ODAL is more accurate in 
estimating the association between the outcome and exposure than both ODAL and meta-analysis. 

3.2.  Data Evaluation 

We applied the robust-ODAL method to study the risk factors of acute myocardial infarction 
(AMI) in a population with pharmaceutically-treated major depressive disorder using data from five 
insurance claims databases in the Janssen Research and Development at the Johnson & Johnson. 
The databases have been converted to the OMOP Common Data Model [7]. The outcome, AMI, 
was defined as the occurrence of the respective diagnosis codes in an inpatient or emergency room 
setting. We restricted the first occurrence per patient. The summaries of patients’ characteristics of 
the five sites are listed in Table 4 

The risk factors we included in the logistic model include: obesity, alcohol dependence, 
hypertensive disorder, major depressive disorder, type 2 diabetes, and hyperlipidemia [26,27], i.e., 
 
𝑙𝑜𝑔𝑖𝑡{P(𝐴𝑀𝐼=1)}	~	𝑂𝑏𝑒𝑠𝑖𝑡𝑦	+	𝐴𝑙𝑐𝑜ℎ𝑜𝑙	𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒	+	𝐻𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑣𝑒	𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟	+	𝑀𝑎𝑗𝑜𝑟	𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒	

𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟	+	𝑇𝑦𝑝𝑒	2	𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠	𝑚𝑒𝑙𝑙𝑖𝑡𝑢𝑠	+	𝐻𝑦𝑝𝑒𝑟𝑙𝑖𝑝𝑖𝑑𝑒𝑚𝑖a	

Table 4.  Characteristics of the five claims datasets at the Janssen Research and Development at Johnson & Johnson.  
Dataset CCAE  JMDC MDCD  MDCR Optum  
Number of subjects 64,222 1,976 59,861 69,164 62,348 
Median Age  43 42 35 71 47 
% of Female 69.21 36.69 73.82 68.08 69.68 
Number of outcomes      
      Acute myocardial infarction (AMI) 155 2 438 1,207 360 
% of AMI 0.24 0.10 0.73 1.75 0.58 
% of Obesity 7.15 0.71 16.54 6.71 9.62 
% of Alcohol dependence 7.15 1.01 16.54 6.71 9.62 
% of Hypertensive disorder 20.81 14.37 31.80 57.70 32.96 
% of Major depressive disorder 4.17 3.88 3.55 3.16 3.34 
% of Type 2 diabetes mellitus 7.49 2.83 14.63 21.83 12.71 
% of Hyperlipidemia 20.96 19.23 22.00 43.21 33.85 
*The full names of the five claims datasets are CCAE (IBM MarketScan® Commercial), JMDC (Japanese Medical Data 

Center), MDCD (IBM MarketScan® Medicaid), MDCR (IBM MarketScan® Medicare) and Optum (Optum© De-
Identified Clinformatics). 
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Figure 4 shows the estimated log odds ratios as well as the 95% confidence intervals for six risk 
factors from four different methods. One direct observation is that there is a substantial difference 
between the ODAL estimates and estimates from our proposed robust-ODAL algorithm. For most 
of the risk factors, ODAL provides the point estimates of the log odds ratio closer to the pooled 
analysis. However, comparing the distributions of the data at the five claims databases, it is highly 
likely that the data stored in JMDC are very different from the other sites as it is a Japanese database 
while others are all from the US. Among the four US sites, MDCR tends to have older patients and 
therefore has a higher prevalence of AMI, hypertensive disorder, Type 2 diabetes, and 
Hyperlipidemia. Thus, data are heterogeneously distributed across the five datasets, and JMDC and 
MDCR are likely more different from the other three sites. As a consequence, it is believed that 
fitting a joint logistic regression model across all sites might lead to bias as it ignores the difference 
between the sites. And the estimates from the pooled analysis are possibly biased. Our proposed 
robust-ODAL algorithm is designed to account for such heterogeneity and as a result, it is shown to 
have the widest confidence interval, which properly reflects the potential impact of heterogeneity.  

 
Fig. 4. Comparison between the log odds ratio estimates from the ODAL (yellow), robust-ODAL (green), meta-analysis 
(blue), and pooled analysis (black) with data from OHDSI network for AMI as the outcome and CCAE as the local site. 

4.  Discussion 

Motivated by the critical need for data integration that can account for heterogeneity across 
clinical sites, we proposed a simple yet effective privacy-preserving distributed algorithm for 
logistic regressions. Our algorithm is designed to provide an estimator of multi-site logistic 
regression that is robust to the presence of outlying studies. The proposed robust-ODAL requires to 
transfer the same aggregated information as the original ODAL. However, the robust-ODAL is 
shown to have higher accuracy, compared to the ODAL, in practical settings where the data are not 
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independently and identically distributed. In addition, the robust-ODAL also outperforms traditional 
meta-analysis with less bias in settings with rare diseases.  

There are several advantages of the proposed algorithm compared to the existing distributed 
algorithms. First, compared to the iterative algorithms such as GLORE and WebDISCO [9,18,19], 
robust-ODAL does not require iterative communication across the sites, reducing the 
communication cost and the amount of administrative efforts. Secondly, implementation of the 
robust-ODAL only requires the access of individual patient-level data in a single clinical site. Only 
aggregated information is transferred from other sites to construct the surrogate likelihood function 
which avoids sharing patient-level information. Thirdly, compared to the ODAL, the robust-ODAL 
produces substantially less biased estimates of regression coefficients.  

However, the proposed method has a few limitations. First, compared to the original ODAL 
algorithm, the robust-ODAL is preferred if there exist potential outlying clinical sites. When the 
data are considered to be relatively homogeneous, the ODAL method is preferred. Secondly, based 
on the real data application, it suggested that the total number of clinical sites might affect the 
performance of the proposed method. When the total number of sites is small, the robust-ODAL 
may not perform well because the median is more sensitive (with larger variation) when the number 
of sites is small. Thirdly, the proportion of the outlying sites among all the sites also makes an impact 
on the proposed method. In this paper, we assume there exists a small proportion of outlying sites 
among all the sites. However, when the proportion is large, other methods should be considered. 

Our current investigation can be extended in several aspects. First, since currently we only have 
access to this data, we plan to apply this method to other datasets in the future. Secondly, we plan 
to develop methods to integrate other types of outcomes, including continuous, categorical, and 
time-to-event data. The integration of evidence from statistical models such as Cox proportional 
hazard models poses unique challenges due to the need for communicating risk sets across sites. 
Finally, we have been developing an open-source software R package for the direct implementation 
of our methods in distributed research networks. We believe that our algorithm can be a good 
complement to the existing distributed algorithms for better facilitating data integration across 
health systems while accounting for heterogeneity across clinical sites. 
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