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Various deep learning models have been developed for different healthcare predictive tasks using 
Electronic Health Records and have shown promising performance. In these models, medical codes 
are often aggregated into visit representation without considering their heterogeneity, e.g., the same 
diagnosis might imply different healthcare concerns with different procedures or medications. Then 
the visits are often fed into deep learning models, such as recurrent neural networks, sequentially 
without considering the irregular temporal information and dependencies among visits. To address 
these limitations, we developed a Multilevel Self-Attention Model (MSAM) that can capture the 
underlying relationships between medical codes and between medical visits. We compared MSAM 
with various baseline models on two predictive tasks, i.e., future disease prediction and future 
medical cost prediction, with two large datasets, i.e., MIMIC-3 and PFK. In the experiments, MSAM 
consistently outperformed baseline models. Additionally, for future medical cost prediction, we used 
disease prediction as an auxiliary task, which not only guides the model to achieve a stronger and 
more stable financial prediction, but also allows managed care organizations to provide a better care 
coordination. 
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1. Introduction

Being able to detect the early onset of diseases and identify risk factors make early intervention
and risk management possible. Due to the complex nature of the problem and the diverse factors 
affecting future health conditions, effective data-driven solutions were not possible until the 
accumulation of a large amount of health data from Electronic Health Records (EHR) during the 
last two decades. EHR data contain rich health information, including medical codes (e.g., 
diagnoses, procedure, and medications), place of services, clinical notes, laboratory tests, and 
medical costs. With the increasing volume of EHR data, many deep learning models have been 
developed and applied to various healthcare tasks, such as disease predictions [1-4], phenotyping 
learning [5, 6], embedding learning [7, 8] and future cost prediction [9, 10]. The critical challenge 
for most of these tasks is to obtain a good representation of patients’ historical medical records.  

In claims data, a specific type of EHR, each patient can be viewed as a sequence of medical 
visits (facility and pharmacy visits) ordered by time, and each visit contains a set of unordered 
medical codes. One common way to model this structured data is to aggregate the medical codes 
within a visit to form a visit-embedding, then feed the longitudinal visit-embeddings through a 
recurrent neural network (RNN) to generate the representation of a patient. However, obtaining the 
patient’s representation via such an approach has two limitations: (1) aggregating multiple types of 
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medical codes as a bag of codes will lose the complex relationships among them. (2) traditional 
RNN is not able to capture the dependencies among the visits nor handle the irregular time intervals. 

To address these two limitations, we propose a multilevel self-attention model (MSAM) that 
utilizes the self-attention mechanism [11] at both medical code-level and visit-level, respectively. 
MSAM first embeds the discrete medical codes into a continuous distributed space, and then feeds 
the code embeddings through a code-level self-attention layer to form a visit representation. The 
code-level self-attention layer can relate different codes of a visit and embed relevant contextual 
information into each medical code. This self-attention mechanism can help the model better 
"understand" the usage and severity of each medical code. Next, MSAM combines each visit 
embedding and its corresponding time embedding, and then feeds them through a visit-level self-
attention layer to generate the patient representation. The time embedding and visit-level self-
attention layer enable the model to handle the irregular time intervals between visits and capture the 
progression of diseases. Finally, the learned patient representation is combined with demographic 
information (e.g., age, sex, and prior medical cost) to predict future events. As shown in Figure 1, 
MSAM is designed to capture the underlying relationships within the medical claims. 

 

 
Fig. 1.  An example sequence of the medical visits for a patient. There are many underlying relationships 
within medical claims data: 1) The asthma diagnoses in visit-1 and visit-4 might indicate different health 
concerns based on their nearby procedure codes. 2) The pharmacy claim (visit-2) is likely related to the 
first asthma visit, as it contains drugs related to asthma. 

 
In the present study, we evaluated MSAM on two predictive tasks, future disease prediction and 

future medical cost prediction, with two large real-world datasets, MIMIC-3 and PFK. We compared 
our model to state-of-the-art approaches and our model demonstrated the best performance 
compared to these approaches. For cost prediction, we used disease prediction as an auxiliary task 
to achieve a stable and interpretable result. A case study was performed to demonstrate the 
reasonableness of the attention weight and interpretability of the predicted cost.  
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2.  Related Work 

2.1.  Future disease prediction 

One of the important prediction tasks in healthcare is future disease prediction. Accurate disease 
prediction results can help physicians to process patient's historical medical records and make 
automated clinical decision support possible. Riccardo Miotto et al. [12] first introduced a three-
layer stacked autoencoder to model patient records and used the learned patient representation for 
future disease prediction. In order to capture the sequential information of medical visits, RNN-
based models [13, 3] have been used to improve the prediction of future diseases. Later, many 
studies developed methods that could cope with the irregularity of the temporal gaps between 
visits. For example, Baytas et al. [5] proposed a time-aware RNN model that could handle the 
irregular time intervals between medical visits. Further, researchers have used TIMELINE [1], 
which uses a weight decay factor to learn the disease progression pattern and can distinguish 
chronic and acute diseases. Also, some deep learning models, such as GRAM [14] and KAME 
[15], have leveraged medical domain knowledge from medical ontology and achieved better 
prediction performance. 

Although these models achieved a promising result for disease prediction, none of them take the 
complex relationships among medical codes into consideration. More recently, some studies [16, 
17] started modeling the inherent relationships between different kinds of medical codes. MIME, 
proposed by Choi et al., can model the encounter structure of EHR and derive the visit embedding 
that is able to capture the dependencies among medical codes. Their study, however, heavily relied 
on the structure information within EHR data. This structure information might not exist in some 
EHR datasets such as claims data. 

Compared with the aforementioned models, our MSAM not only can capture the underlying 
dependency between medical codes/visits automatically, but is also able to model the irregular visit 
time gaps. These two properties allow MSAM to effectively encode a patient’s medical information, 
which improves prediction performance. 

2.2.  Future medical cost prediction 

Medical cost is a proxy for resource use and has been operationalized in a variety of ways in 
health-related investigations (e.g., prices, charges, reimbursements, and indirect costs). In this 
study, we define medical cost as the actual paid amount to the accountable care organizations 
(ACOs) and narrow our analysis of previous research to studies with similar definitions and 
research goals. 

Accurate forecasting of future medical cost is vital for healthcare organizations to coordinate 
care and resources and to evaluate the effectiveness of interventions. Three different kinds of 
approaches have been developed for predicting future medical cost: 1) rule-based models [18] [19], 
2) machine learning models with cost-related predictors only [20, 21], and 3) machine learning 
models with cost-related features plus medical codes [22-24].  

Many of the commercial solutions for cost prediction use rule-based models developed by 
medical experts. For example, the ACG systema, developed by Johns Hopkins and the DxCG 

                                                        
a https://www.hopkinsacg.org/ 
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modelb, implemented by Verisk (Jersey City, NJ) are two dominant models for predicting the future 
medical cost. Despite their outstanding performance, developing and maintaining these rule-based 
models consumes large amounts of resources. 

Data-driven approaches such as machine learning and deep learning, provide another strategy to 
predict future medical cost without relying on manually developed rules. Cowen et al. [22] applied 
regression models to aggregated medical codes and prior cost to model future medical cost. 
However, this method ignores the temporal information within medical data. Bertsimas et al. [24] 
developed a CART mode, which considered temporal patterns from the cost features. They found 
that adding aggregated medical features barely improved their model performance. Additionally, 
Morid et al. [10] captured the spike features (i.e., the fluctuation of prior medical cost) to model 
future cost. These two methods utilized temporal information about prior medical cost and largely 
improved the prediction performance. This improvement suggests that temporal information is vital 
for modeling future medical cost. 

Compared to the above models, our MSAM for cost prediction can not only further leverage the 
irregular temporal information, but also take advantage of the underlying relationships within 
medical claims. In addition, to mitigate the training difficulties caused by the highly skewed cost 
data, we utilized disease prediction as an auxiliary task to achieve a stable prediction. 

3.  Methods 

This section will introduce the terminology and notation we use to describe the dataset and model 
(section 3.1), followed by a general description of MASM (section 3.2), the self-attention encoder 
unit (section 3.3), and the loss function adopted for future diseases prediction and future medical 
cost prediction (section 3.4). The source code of this work is freely available on GitHub 
(https://github.com/1230pitchanqw/MSAM) 

3.1.  Terminology and Notation 

Each patient in our datasets was represented as a sequence of medical visits 𝑣", 𝑣$, … , 𝑣& ordered 
by service date 𝑡. The 𝑖-th visit 𝑣& is represented by a set of codes that include diagnoses, procedures 
and prescriptions {𝑐", 𝑐$, … , 𝑐+} ⊆ |𝐶|, where 𝐶 represents the entire set of medical codes. 

3.2.  Model Architecture 

As shown in Figure 2, medical codes within each medical visit were first projected into a m-
dimensional continuous embedding space via a trainable code embedding matrix 𝑊1 , Then the 
medical codes were passed through the code-level encoder and aggregated into a visit embedding 
𝑣& via the following equation, 

𝑣& = 3 𝑆1	6𝑐78𝑐", 𝑐$, … , 𝑐+9
|:;|

7<"
, (1) 

                                                        
 
b https://www.cotiviti.com/solutions/quality-and-performance/dxcg-intelligence 
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where |𝑣&| denotes the number of codes within visit |𝑣&| and 𝑆1 denotes the code-level self-attention 
encoder (the detail of self-attention encoder is shown in Section 3.3). 
 

 
Fig. 2.  The MSAM architecture.  

 
Next, we added the time embedding, generated by the time encoding function 𝑇𝐸, for each 

medical visit in order to capture the irregular service date information: 

𝑒& = 𝑣& + 𝑇𝐸(∆𝑡&), (2) 

where ∆𝑡&	represents the time interval between the visit 𝑣& and the time the model makes the 
prediction. And 𝑒& is the combination of the time embedding and the visit embedding. There are 
many possible functions for encoding time. In our experiments, we used the sinusoid encoding 
function [11].  

After we obtaineds the vector representation for each medical visit, we aggregated the visit 
vectors via the visit-level self-attention encoder 𝑆:  and formed the intermediate patient 
representation 𝑢 as follows: 

𝑢 =3 𝑆:	(𝑣G|𝑣", 𝑣$,… , 𝑣&)
|H|

G<"
, (3) 

where |𝑢| denotes the number of visits and 𝑆: denotes the visit-level self-attention encoder. 
Finally, we concatenated the intermediate patient embedding 𝑢  and the one-hot encoded 

demographic embedding 𝑑 , then stacked three fully connected feedforward layers to obtain the 
patient embedding 𝑝. We also used a skip-connection [25] between each layer to increase the 
representative power: 

𝑝 = 𝐹([𝑢, 𝑑]) + 𝐹, (4) 
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Where 𝐹(𝑢) contains three feedforward blocks and " + 𝐹" represent the skip-connection operation 
between each layer. 

3.3.  Self-attention Encoder Unit 

 
Fig. 3.  The architecture of the self-attention layer (for code-level).  

 
The implications of medical codes and visits vary depending on the context. To capture this 
contextual information, we applied the two self-attention units to both code-level and visit-level. A 
self-attention unit contains a self-attention layer, normalization layer and a feed forward residual 
connected layer. Figure 3 illustrates the architecture of the self-attention layer and the equations are 
shown below: 

𝑆1	6𝑐78𝑐", 𝑐$,… , 𝑐+9 = 𝜎:(𝑓 S𝑐7 +3 ∝1U1V 𝑐7
|:|

G<"
W) (5)

∝1U1Y,∝1U1Z,… , ∝1U1|[|= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥	 S
𝑄1U𝐾1Y
√𝑚

,
𝑄1U𝐾:Z
√𝑚

,… ,
𝑄:U𝐾:|[|
√𝑚

W (6)

𝑄1U = 𝑊e𝑐7 (7)
𝐾1U = 𝑊7𝑐7 (8)

 

where 𝜎 denotes the residual connection and layer normalization, 𝑓 denotes the feedforward 
block. 𝑊e,𝑊e ∈ 𝑅j×j are weight matrices for generating query and key vectors 𝑄𝑐𝑘 and 𝐾𝑐𝑘. ∝𝑐𝑘𝑐1 
denotes the attention score for a code 𝑐G when generating the vector representation of code 𝑐7. 

3.4.  Loss Function 

Disease prediction is a multiclass classification task, whereas the medical cost prediction is a 
regression task. Accordingly, we used negative log-likelihood loss function for disease prediction 
and mean-squared-error for cost prediction,   

𝐿𝑜𝑠𝑠n = −(𝑦	𝑙𝑜𝑔𝑦s + (1 − 𝑦) log(1 − 𝑦s)), (9)

𝐿𝑜𝑠𝑠1 = −
1
2
(𝑦 − 𝑦s)$ (10)

 

where 𝑦 is the target value and 𝑦s is the predicted value.  
Medical cost is highly skewed and can be affected by many personal or accidental factors such 

as transportation accident, sports damage, and even financial status. Thus, in order to mitigate the 
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uncertainty and stabilize the predicted result, we jointly performed disease prediction	as an auxiliary 
prediction task with a ratio coefficient 𝜆 for medical cost prediction. 

𝐿𝑜𝑠𝑠zH{ = 𝜆	𝐿𝑜𝑠𝑠1 − (𝑢	𝑙𝑜𝑔𝑢s + (1 − 𝑢) log(1 − 𝑢s)) (11) 

4.  Experiments 

4.1.  Source of Data 

Medical Information Mart for Intensive Care III (MIMIC-3) [26] is a freely accessible dataset that 
contains medical records for around 38,000 patients from an intensive care unit (ICU) over 11 years. 
MIMIC-3 does not contain medical cost information and is therefore only used for future disease 
prediction. Patients with less than two medical records were excluded from the experiments. 

Partner for Kids (PFK) is one of the largest pediatric ACOs for Medicaid enrollees in central 
and southeastern Ohio. Our PFK dataset contains 146,287 enrollees’ medical claims from 2013 to 
2014 with two years of continuous eligibility. In accordance with the Common Rule (45 CFR 
46.102[f]) and the policies of Nationwide Children’s Institutional Review Board, this study used a 
limited dataset and was not considered human subjects research and thus not subject to institutional 
review board approval. 

4.2.  Dataset preprocessing 

For future disease prediction using the MIMIC-3 dataset, the dataset was constructed using previous 
medical records to predict the disease of the next visit. Diagnosis codes and procedure codes were 
extracted from the records. In order to improve model performance and outcome stability, we aimed 
to predict the grouped diagnosis categories instead of the specific diagnosis. We used Clinical 
Classification Softwarec (CCS) to group the diagnosis codes into around 280 categories. 
 

Table 1. Statistical information of the MIMIC-3 and the PFK datasets. 
 

Dataset MIMIC-3 PFK 
# of patients 

Age avg. 
Male pct. 

7,537 
-- 
-- 

146,287 
8.5 

51% 
Avg. # of visits per patient 
Avg. # of codes per visit 

1.6 
15.9 

8.9 
5.0 

# of Diagnosis, Procedure, Drug 
# of CCS categories 

(4894, 1442, --) 
282 

(7497, 4499, 338) 
291 

Avg. cost per patient 
Median cost per patient 

-- 
-- 

$1282.1 
$514.8 

 
For prediction experiments using the PFK dataset, we used the prior year’s medical information 

to predict the disease or medical cost of the next year. Diagnoses, procedures, and medications (drug 

                                                        
c https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp 
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class) were extracted from claims for disease prediction. Diagnoses, procedures, medications, age, 
gender, and medical cost (i.e., the actual paid amount to the ACO) were extracted for future cost 
prediction. The facility and pharmacy visits were grouped by month. We converted all negative paid 
amounts into 0 and removed all claims with empty service date (less than 0.1% of such claims). 
Table 1 lists the detailed statistics about the two datasets after preprocessing. 

4.3.  Implementation details 

All models including baselines were implemented using TensorFlow. The dimensionality of code 
embedding and visit embedding were chosen from {100, 200}. The number of self-attention head 
and feedforward block were chosen from {1, 2, 3}. The auxiliary coefficient 𝜆 was chosen from 
{10-2, 10-3, 10-4, 10-5}. Hyper-parameters that yield the best model performance on the validation 
dataset were then used for testing. More detail information is shown in the GitHub repository. 

5.  Results 

5.1.  Future disease prediction 

Objective: Predict all diagnosis codes in the next visit for the MIMIC-3 dataset and predict all 
diagnosis codes in the next year for the PFK dataset. Evaluation Metric: Recall@k is defined as 
the number of successfully recalled medical codes from the k recalled codes divided by the number 
of true positive diagnosis codes. Recall@k reflects the accuracy of clinical diagnostic decision and 
is widely used in many disease prediction tasks [2, 3]. 
 

Table 2. The recall@k of disease prediction task. The values within parentheses indicate 
the standard deviation from 5 different random data splits. 
 
Dataset Model Recall@10 Recall@20 Recall@30 
 
 
 
MIMIC-3 
 

Most Frequent 
MLP [12]   
RNN [2] 
B-RNN  
AB-RNN [3] 
TIMELINE [1] 
MSAM 

0.2255 
0.2132(0.014) 
0.3451(0.009) 
0.3603(0.011) 
0.3671(0.011) 

-- 
0.4027(0.012) 

0.3646   
0.3526(0.018)     
0.5093(0.009) 
0.5247(0.010)  
0.5466(0.011)  

-- 
0.5783(0.012) 

0.4716 
0.4687(0.022) 
0.6210(0.009) 
0.6389(0.009) 
0.6474(0.010) 

-- 
0.6830(0.011) 

 
 
 
PFK 

Most Frequent 
MLP 
RNN 
B-RNN 

AB-RNN 
TIMELINE 
MSAM 

0.4412 
0.4612(0.003) 
0.5014(0.003) 
0.5193(0.007) 
0.5392(0.001) 
0.5397(0.001) 
0.5514(0.004) 

0.6123 
0.6589(0.005) 
0.6810(0.002) 
0.6987(0.005) 
0.6995(0.002) 
0.7079(0.002) 
0.7187(0.002) 

0.7185 
0.7761(0.001) 
0.7887(0.002) 
0.7880(0.003) 
0.7908(0.002) 
0.7929(0.001) 
0.7948(0.002) 
 

Table 2 shows the experimental results of our MSAM and baseline models on both MIMIC-3 
and PFK dataset. The Most Frequent model uses the top k most frequently occurred diagnosis code 
as the prediction. The best model performance in each column is marked in bold. 
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As shown in Table 2, our proposed MSAM consistently outperformed all baseline models on 
MIMIC-3 and PFK. Among all baselines, The Most Frequent and MLP models underperformed 
compared to advanced deep learning models. By contrast, RNN-based models showed promising 
model performance. Compared to vanilla RNN, bidirectional RNN (B-RNN) is able to remember 
medical information from both far and recent medical visits. With the help of the attention 
mechanism, the attention-bidirectional RNN (AB-RNN) can better measure the relationships 
between medical visits. TIMELINE is also an RNN-based model, it introduces a time factor that 
can capture the irregular time gaps between medical visits. As a result, as the RNN variant can 
capture more medical information, the model gains more predictive power and thus shown better 
performance. 

MSAM utilized the time embedding to capture the irregular temporal information and employed 
two self-attention units to capture the underlaying relationships within medical codes and medical 
visits. Compared to all baseline models, the recall@k of MSAM was higher for both the MIMIC-3 
and PFK datasets. This improvement shows that modeling irregular temporal information and 
underlaying relationships can increase the prediction performance. 

5.2.  Future cost prediction 

Objective: Predict the medical cost (i.e. the actual paid amount to the ACOs) in the next year for 
the PFK dataset. Evaluation Metric: Mean absolute error (MAE) is defined as the absolute 
difference between the predicted cost and the true cost. MAE is used to measure how close each 
prediction outcome was to the target value.  
 

Table 3. The evaluation results for cost prediction task, the values within 
parentheses indicate the standard deviation form 5 different random data splits. 
 

Model Medical Features $ MAE (SD) 
Most Recent 
CART [24] 

LASSO 
XGBOOST 

 
Not Included 

1120.7 (39.6) 
1318.7 (27.5) 
1033.1 (34.3) 
953.7 (28.2) 

CART [24] 
LASSO 

XGBOOST 

 
Aggregated 

1316.2 (22.4) 
1030.0 (25.9) 
991.5 (26.4) 

RNN 
B-RNN 

AB-RNN 

 
Sequential 

944.5 (31.9) 
942.6 (34.8) 
981.2 (39.3) 

TIMELINE 
MSAM 

MSAMAUX 

 
Irregular Temporal 

937.3 (31.5) 
860.8 (35.6) 
847.7 (27.7) 

 
As shown in Table 3, the two MSAM variants outperformed baselines under the MAE evaluation 

metric and the MSAM with auxiliary task achieved the best performance across all models as well 
as the lowest variance across all advanced deep learning models. The “Most Recent” model used 
the last year’s medical cost as the prediction. The “Medical Features” column indicates the medical 
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information that is utilized by the corresponding model. The best model performance is marked in 
bold. 

Table 3 shows that adding aggregated medical features to traditional machine learning 
algorithms barely improved the prediction performance. This observation was also reported by 
Bertsimas et al. [24] and indicates that the aggregated medical information largely overlaps with the 
medical cost information. On the contrary, deep learning models can fully utilize sequential or 
temporal medical information. This advantage enables the model to capture the progression of a 
patient's health condition and thus grants the model more predictive power, leading to higher model 
performance compared to traditional machine learning models. 

From the transition between aggregated data to sequential data, and then from sequential data to 
irregular temporal data, the model gains more medical information. This increase in medical 
information helps to improve the performance of the deep learning model. Consequently, the 
MSAM achieved the best model performance compared to all baseline models. This result confirms 
that being able to capture the underlying relationships can further increase the model’s predictive 
power. In addition, the implemented auxiliary task (disease prediction) mitigated the random nature 
of incurring the medical cost and stabilized the prediction. Notably, MSAMAUX achieved the lowest 
MAE score across all models and also the lowest standard deviation across all deep learning models.  

5.3.  Case study for the self-attention mechanism 

To explore how the self-attention mechanism works on claims data, we limited the number of the 
attention heads to one and analyzed the code-level attention weights via a case study. We selected 
four visits for each of the following diseases: diabetes (ICD9-250.00), asthma (ICD9-493.90), and 
convulsion (ICD9-780.39). Figure 4 shows the code-level attention scores for encoding these three 
codes. The x-axis represents the visit-id and each visit contains 3 to 4 medical codes, while the y-
axis represents the attention score. From Figure 4, we can observe that the attention score was 
different when the medical code co-occurs with different contextual medical codes. These 
differences indicate the self-attention mechanism enables each medical code to express different 
health concern given different neighboring codes. 

 
Fig. 4. Attention score analysis. Left: the attention scores on contextual medical codes when embedding 
Diabetes; Middle: the attention scores on contextual medical codes when embedding Asthma; Right: the 

attention scores on contextual medical codes when embedding Convulsions; 

Next, to better illustrate how the self-attention mechanism works, we listed the detail 
information of one of the asthma visits (the visit-1 of asthma visits in Fig 4) in Table 4 and analyzed 
the attention weight from the clinical perspective. As shown in the table, attention scores [0.18, 0.24, 
0.29, 0.29] were obtained for encoding the medical code asthma (ICD-493.90). The 0.24 attention 
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score shows that a significant amount of the attention was put on medical codes outpatient visit 
(CPT-99214). This attention score allows the model to carry certain pieces of information: the 
severity of the asthma is not high since it is an outpatient visit instead of an emergency visit. 
Similarly, the two 0.29 attention scores allowed the model to embed information: the asthma disease 
is well addressed by proper medications.  

 
Table 4. Diagnosis codes in visit-1 (i.e. “CodeSet-1”) and their corresponding 
attention scores. 
 
Date Diagnosis Codes Attention 
Sep/03 
Sep/03 
Sep/05 
Sep/05 

Asthma, unspecified type (ICD-493.90) 
Outpatient visit (CPT-99214) 
Asthma/COPD Therapy - Beta Adrenergic Agents (Drug) 
Medical Supplies & DME - Respiratory Therapy (Drug) 

0.18 
0.24 
0.29 
0.29 

 

6.  Conclusion 

In this work, we developed a multilevel self-attention model (MSAM) that can model the complex 
claims data and predict future disease and future medical cost. By utilizing the self-attention units, 
time embedding and the auxiliary task, MSAM is able to capture the underlying relationships 
among medical claims, handle the irregularity time gaps between medical visits and stabilized the 
prediction result. We examined the predictive performance of MSAM on two real-world 
healthcare datasets, MIMIC-3 and PFK. Our proposed MSAM outperforms all baseline models on 
the two predictive tasks evaluated. We also provide a case study to illustrate the effectiveness of 
the self-attention mechanism. 

In the future, we plan to test MSAM on more health-related tasks such as high-risk patient 
selection and preventable cost prediction.  
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