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Many existing methods for estimation of infectious disease transmission networks use a
phylogeny of the infecting strains as the basis for transmission network inference, and accu-
rate network inference relies on accuracy of this underlying evolutionary history. However,
phylogenetic reconstruction can be highly error prone and more sophisticated methods can
fail to scale to larger outbreaks, negatively impacting downstream transmission network
inference.

We introduce a new method, TreeFix-TP, for accurate and scalable reconstruction of
transmission phylogenies based on an error-correction framework. Our method uses intra-
host strain diversity and host information to balance a parsimonious evaluation of the
implied transmission network with statistical hypothesis testing on sequence data likelihood.
The reconstructed tree minimizes the number of required disease transmissions while being
as well supported by sequence data as the maximum likelihood phylogeny. Using a simulation
framework for viral transmission and evolution and real data from ten HCV outbreaks, we
demonstrate that error-correction with TreeFix-TP improves phylogenetic accuracy and
outbreak source detection. Our results show that using TreeFix-TP can lead to significant
improvement in transmission phylogeny inference and that its performance is robust to
variations in transmission and evolutionary parameters. TreeFix-TP is freely available open-
source from https://compbio.engr.uconn.edu/software/treefix-tp/.

Keywords: phylogeny reconstruction, transmission network inference, infectious disease,
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1. Background

The study of infectious disease has benefited greatly from advances in computational molecu-
lar epidemiology. The efficacy of public health efforts to combat the spread of these pathogens
has rapidly expanded as technology improves – most notably, the onset of powerful high
throughput or next-generation sequencing (NGS) methods has provided molecular epidemi-
ologists with the ability to quickly and cheaply sequence the genomes of the infecting strains
(viral or bacterial)1 which in turn has opened the door for computational analysis of these
sequences and of disease transmission. By understanding disease transmission, those investi-
gating a disease can more effectively combat its spread. Computational methods for molecular
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epidemiology have had a positive impact on public health in a number of cases,2,3 and continue
to be widely used for the study of infectious disease transmission,4 including for the ongoing
COVID-19 pandemic (e.g., through the popular https://nextstrain.org/ncov/global web
portal).

Transmission network inference is a challenging computational problem, which has been re-
flected in the number of new methods developed for understanding disease transmission, espe-
cially that of rapidly-evolving RNA viruses.5–10 A key challenge with studying the transmission
of rapidly evolving RNA and retroviruses11 is that they exist in the host as “clouds” of closely
related sequences. These strain variants are referred to as quasispecies by virologists,12–16 and
the resulting genetic diversity of the strains circulating within a host has important impli-
cations for efficiency of virus transmission, virulence, disease progression, drug/vaccine resis-
tance, etc..17–21 The advent of next-generation sequencing technologies, has revolutionized the
study of quasispecies, but most existing transmission network inference methods are unable
to make use of the ability to sequence multiple distinct strain sequences per host. However,
methods that explicitly consider multiple strain sequence per host have recently started to be
developed; such methods include Phyloscanner,7 SharpTNI,22 and TNet.23

Fig. 1. Phylogeny-based transmission net-
work inference: In this figure, internal nodes of
the phylogenetic tree on the left are labeled by one
of hosts a, b, c, or d, represented here by the differ-
ent colors. This labeling of internal nodes causes
some of the edges in the tree to have different la-
bels at their two end points, and such edges rep-
resent transmission edges in the final transmission
network. In the figure we see transitions from a
to b, a to d, and b to c, yielding the transmission
network shown on the right.

Some of the most powerful and widely
used techniques for transmission net-
work inference, including Phyloscanner,7

SharpTNI,22 and TNet,23 are based on
computing and using phylogenies of the
infecting strains.5–8,24 We refer to these
strain phylogenies as transmission phyloge-
nies. These phylogeny-based methods in-
fer transmission networks through a host
assignment for each node of the transmis-
sion phylogeny, where this phylogeny is
either first constructed independently or
is co-estimated along with the host as-
signment. Leaves of the transmission phy-
logeny are labeled corresponding to the
host from which they are sampled, and an
ancestral host assignment is then inferred
for each node/edge of the phylogeny. This
ancestral host assignment defines a trans-
mission network, where transmission is in-
ferred along any edge connecting two nodes
labeled with different hosts. In the case of a
rooted phylogeny, this coloring also confers
direction of transmission, where the host
for the ancestral sequence along a trans-

mission edge is considered to be the source of the transmission, and the host of the child
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sequence is considered to be the recipient. This is illustrated in Figure 1.
Two of the most widely-used methods for inference of transmission phylogenies are

BEAST25 and RAxML.26 For instance, among existing transmission inference methods,
TransPhylo6 uses BEAST to infer a transmission phylogeny, while Phyloscanner7 uses RAxML.
BEAST uses Markov Chain Monte Carlo (MCMC) to estimate phylogenies and evolutionary
parameters for several sophisticated models of evolution. Because the models implemented are
highly complex, BEAST is prohibitively slow for use on anything other than small data sets.
As a result, more scalable, but slightly less accurate, maximum likelihood based methods, such
as the state-of-the-art RAxML method,26 are often used in practice for inferring transmission
phylogenies. There are also several methods which address transmission phylogeny reconstruc-
tion specifically from a transmission perspective, and use transmission information to inform
phylogenetic inference. These methods often perform co-estimation of both the transmission
phylogeny and network, and often model within-host evolution. BEASTlier5 and Phybreak8

both use Bayesian inference for co-estimation of transmission phylogeny and network, and so
run into the same scalability issues as BEAST. Thus, even though accurate reconstruction of
the transmission phylogeny has a direct impact on transmission network inference, all exist-
ing phylogenetic inference methods for transmission phylogenies are either prohibitively slow
and unscalable or suffer from poor inference accuracy. Furthermore, none of these existing
phylogenetic inference methods can take advantage of the information provided by multiple
sequences from each infected host.

In this work, we introduce TreeFix-TP, a new method for reconstructing transmission
phylogenies that is as scalable as RAxML but significantly more accurate. TreeFix-TP im-
proves the accuracy of infectious disease transmission phylogenies using an error-correction
approach. Specifically, TreeFix-TP leverages both sequence and host information to recon-
struct more accurate phylogenies than maximum likelihood on its own by minimizing the
number of inter-host transmissions while maintaining statistical support. Similar error cor-
rection approaches have been successfully used for reconstruction of gene trees;27,28 however,
these previous methods are based on leveraging a known species phylogeny to error-correct and
improve gene trees, and they are therefore inapplicable to the current setting where the goal
is to reconstruct the strain tree itself (analogous to the species tree). We address this problem
by leveraging intra-host strain diversity and defining a fitness function based on minimizing
the number of inter-host transmissions implied by the underlying phylogeny.

In this study, we compare the phylogenetic reconstruction accuracy of Treefix-TP to
RAxML.26 We show that TreeFix-TP reconstructs significantly more accurate transmission
phylogenies than RAxML, and is robust to variations in transmission model, sequence length,
rate of evolution, and number of viruses. Furthermore, we demonstrate the use of TreeFix-TP
for improving source detection in 10 real-world HCV outbreaks.

2. Methods

2.1. Minimizing inter-host transmissions

The availability of multiple strain sequences from each host provides valuable additional in-
formation that can be used to improve the inference of transmission phylogenies. Consider an
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ideal evolutionary scenario with a complete transmission bottleneck and no re-infection. In
such a scenario, all sequences sampled from the same host should form a single monophyletic
clade. For N hosts, this ideal case would result in a coloring with N single-color sub-graphs
and would imply N − 1 transmissions. Deviations from this ideal would be reflected in the
transmission phylogeny and imply a few additional transmissions. Thus, when multiple strain
sequences are available from each host, a biologically meaningful criterion for estimating the
“correctness” of a transmission phylogeny is to minimize the number of implied inter-host
transmissions. Note that the problem of computing the minimum number of implied inter-
host transmissions on a given transmission phylogeny is equivalent to the well-known small
parsimony problem in phylogenetics and can be solved very efficiently.29 By minimizing the
number of inter-host transmissions implied by a candidate phylogeny, and carefully avoiding
over-fitting, we can improve the accuracy of a given phylogeny.

2.2. Description of TreeFix-TP

The input for TreeFix-TP is a multiple sequence alignment of infectious disease sequences, a
maximum likelihood phylogeny constructed on the infectious disease sequences, and a map-
ping from all sequences to known hosts. TreeFix-TP aims to find the transmission phylogeny
which is well supported by sequence data and has the minimum transmission cost. Using
the maximum likelihood phylogeny as a starting point, we perform iterative local searches
and evaluate each candidate tree using a statistical likelihood test and an evaluation of the
transmission cost. Candidate phylogenies which are statistically equivalent to the maximum
likelihood phylogeny, and with a lower transmission cost, are accepted and set as the starting
point for the next local search iteration.

TreeFix-TP uses the Shimodaira-Hasegawa (SH) statistical likelihood test30 to determine
sequence support for a given phylogeny. This test considers two trees, in our case the maximum
likelihood phylogeny and a candidate phylogeny, with the null hypothesis that the two trees
are equally supported by the sequence data. The null hypothesis is rejected at a significance
level α which can be defined by the user. If the null hypothesis fails to be rejected, the two
trees are considered to be statistically equivalent

The transmission cost for a candidate phylogeny is calculated by solving an instance of the
small parsimony problem using Fitch’s algorithm.29 The states at the leaves of a candidate
phylogeny are the hosts from which each sequence is known to be sampled. Fitch’s algorithm,
then, calculates the minimum number of state changes required to generate the given phy-
logeny, which corresponds to minimizing the number of inter-host transmissions. In this case,
we are concerned only with the cost of a candidate and not the internal assignments of hosts,
so only the upward pass of Fitch’s algorithm is performed. Full details of the algorithm and
efficient implementation can be found in Section S1 in the Supplementary Material.
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2.3. Evaluation using simulated data sets

2.3.1. Data set generation

Fig. 2. TreeFix-TP Testing Pipeline: To eval-
uate TreeFix-TP, we first used FAVITES to gener-
ate a transmission network (a) and ground truth
viral phylogeny (b). Maximum-likelihood phyloge-
nies were then reconstructed from sequences us-
ing RAxML (c), and were error corrected with
TreeFix-TP (d). The RAxML and TreeFix-TP
phylogenies were compared using RF distance, as
described in Section 2.3.2 (e).

To evaluate the performance of TreeFix-
TP, we generated a number of simulated
data sets across a variety of parameters
and developed a testing pipeline to com-
pare TreeFix-TP with RAxML (see Figure
2). Our simulated viral data sets were gen-
erated using FAVITES,31 a recently devel-
oped framework for simultaneous simula-
tion of viral transmission networks, phylo-
genetic trees, and sequences.

A contact network was generated us-
ing the Barabasi-Albert model32 with
1000 individuals each with 100 outgo-
ing edges preferentially attached to high-
degree nodes. One host was randomly
selected to be the source of the in-
fection. Transmission was simulated for
a predefined amount of time, or un-
til all hosts were recovered under one
of two different compartmental mod-
els, either Susceptible-Exposed-Infected-
Recovered (SEIR) or Susceptible-Infected-
Recovered (SIR).33 These models are pa-
rameterized by transition rates β, λ, and δ,
where β is the rate of transition from sus-
ceptible to exposed in the SEIR model or
susceptible to infected in the SIR model, λ is the rate of transition from exposed to infected
(only in the SEIR model), and δ is the rate of recovery for infected individuals. In our simu-
lation, we had four categories of data sets with variations on infection rate β to explore the
effect of transmission model on reconstruction accuracy. λ and δ were set according to the
infection rate. These parameters can be found in Supplementary Table S2.

Due to the simulation of latent periods, data sets generated under the SEIR model tend to
exhibit an outbreak structure, where one high-degree individual infects several of its neighbors,
followed by a period of low infection. When one of the newly-infected neighbors becomes
infectious, another outbreak occurs. This is contrary to the SIR model, which tends to have a
more periodic pattern of disease transmission. In addition to varying the transmission model,
we simulated data sets with different rates of infection and recovery. This resulted in four
categories of simulation with infection rates of 0.015, 0.003, 0.01, and 0.01 respectively. We
group SEIR (0.015) and SEIR (0.01) together, and group SIR (0.003) and SIR (0.01) together
since there was no significant difference between the transmission model parameter settings.
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These transmission network parameter settings were generally based on the defaults suggested
by FAVITES, with some adjustments as necessary for preventing the occurrence of long edges
separating sequences from different hosts.

Internal evolution of the virus in infected hosts was simulated under a logistic-growth
coalescent model. Each internal phylogeny was connected according to transmission to form
a full transmission phylogeny. The branch lengths of this phylogeny were scaled to simulate
different rates of sequence evolution. Sequences were simulated using the GTR + Γ model
starting with a real HCV viral sequence from HCV outbreak data at the root (discussed in
more detail in Section 3.2). The GTR rate matrix and gamma parameter were determined by
applying RAxML to estimate parameters and construct a phylogeny for real sequences from
an HCV outbreak. Thus, the simulated sequences are designed to reflect real rapidly-evolving
RNA viral sequences.

By default, we simulated sequences of length 1000 nucleotides and sampled 10 sequences
per infected host. We scaled the branch lengths of the phylogeny by 0.25 on data sets where
the SEIR and SIR (0.003) models were used, and by 1.5 on data sets where the SIR (0.01)
model was used. These scale factors were chosen so that the height of the tree would be
approximately ten expected mutations per-site. We varied the sequence length, number of
sequences per host, and mutation rate to quantify the robustness of TreeFix-TP to variance
in sequence evolution. The list of all transmission and evolution simulation parameters can
be found in Supplementary Table S2. For each of the four categories, we tested the effects of
varying sequence length, number of samples per host, and scale factor, varying one of these
parameters at a time from the default setting. Specifically, we simulated sequences of length
250, 500, and 1000, sampled 5, 10, and 20 sequences, and scaled the tree by double or half
the default. Including the default setting, this resulted in 7 distinct parameterizations per
category, or 28 total. Full specifications of parameters for each variation can also be found in
Supplementary Table S2.

For each set of simulation parameters, we simulated 20 different data sets for a total of
560 simulated data sets. RAxML and TreeFix-TP were limited to 8GB of memory and 10
days, and due to these limitations we were able to reconstruct phylogenies using TreeFix-TP
for 486 of these data sets. Of the 74 runs which did not complete, the simulated trees had
an average of 733.43 leaves. For the 486 simulated data sets on which we obtained results, we
had between 35 and 630 sequences, with an average of 223.41 leaves. The average number of
transmissions was 22, and 95% of data sets had between 7 and 49 transmissions. Of the data
sets for which we obtained results, only 6 had more than 60 transmissions.

2.3.2. Evaluating reconstruction accuracy

The accuracy of the reconstructed phylogeny was evaluated by calculating the Robinson-
Foulds distance34 between the true evolutionary history from the simulated data and both the
maximum likelihood tree reconstructed by RAxML and the error-corrected tree reconstructed
by TreeFix-TP. We calculated the average RF distances, normalized by the maximum possible
RF distance (number of internal edges). We calculated the RF percent decrease as follows:
Given simulated tree S, maximum likelihood tree R, and TreeFix-TP tree T , RF percent
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decrease is given by 100 × (RF (S,R) − RF (S, T ))/RF (S,R). We calculated p-values using the
one-tailed Wilcoxon Signed-Rank test implemented in Scipy 1.3.1. Additionally, we looked at
the minimum transmission cost implied by the RAxML and TreeFix-TP trees. The cost of
the TreeFix-TP tree is guaranteed to be no greater than that of the RAxML tree, but it is
valuable to see by how much the transmission cost is decreased and the relationship between
transmission cost and Robinson-Foulds distance. Note that we did not compare reconstruction
accuracy against BEAST25 since it is not scalable to data set sizes used in this study.

3. Results

3.1. Phylogenetic error correction results

For baseline evaluation, we compared the phylogenies reconstructed by TreeFix-TP and
RAxML on 35 data sets corresponding to the SEIR transmission model, sequence length
1000, 10 sequences per host, and a mutation rate of 0.25. Among these trials, 48.6% of the
data sets showed a decrease in RF distance with TreeFix-TP, while 42.86% saw no improve-
ment and 8.57% saw an increase. The average RF percent decrease for trees which improved
was 14.6%, and as high as 46.154%, while the average RF percent increase for those trees
that got worse was only 3.644%. In every run where there was no improvement, the maximum
likelihood tree generated with RAxML implied exactly as many or only one more transmission
than the true number of transmissions, so the ability for TreeFix-TP to correct errors by min-
imizing transmission was limited. Across all 35 data sets, the average normalized RF distance
of trees reconstructed with RAxML was 0.152, while trees reconstructed with TreeFix-TP had
an average normalized RF distance of 0.137 (p = 0.0003, Wilcoxon Signed-Rank). The overall
average RF percent decrease was 9.99%.

We also evaluated 32 data sets corresponding to the SIR transmission model, sequence
length 1000, 10 sequences per host, and a mutation rate of either 1.5 or 0.25 (aggregated over
both transmission rate categories). The average normalized RF distance of trees constructed
with RAxML was 0.103, while trees reconstructed with TreeFix-TP had an average normalized
RF distance 0.098 (p = 0.006, Wilcoxon Signed-Rank). The magnitude of improvement is
impacted by the large number of no-change error corrections. Specifically, under the SIR
model of transmission, 68.75% of runs had no-change, while 28.13% showed a decrease in
RF distance, and the remaining 3.13% showed an increase. The overall average RF percent
decrease was 4.36%, but those which improved had an average RF percent decrease of 14.116%,
and as high as 28.57%. For those which got worse, the average RF percent increase was 9.8%.
A comparison of these results across the SEIR and SIR transmission models suggests that
error correction might be more effective under a model of transmission that includes a latent
period, which results in transmissions patterns which more closely reflect outbreaks.

Impact of varying sequence length To evaluate the robustness of TreeFix-TP to the
amount of sequence information available, we varied sequence length from the base 1000
nucleotides to 250 and 500 nucleotides (Figure 3a). Under the SEIR model, we found that
TreeFix-TP continued to improve the accuracy of phylogenetic reconstruction with shorter
sequence lengths, and that sequence length didn’t seem to have a large effect on the ability
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Fig. 3. Robustness of phylogeny reconstruction to different parameters: Normalized
Robinson-Foulds (RF) distance from the simulated phylogeny for reconstructions with both RAxML
and TreeFix-TP under a variety of settings. TreeFix-TP reconstructs the most accurate trees across
all data sets. (a) RF distance for varied sequence lengths. Trees are in general more accurate with
longer sequences, and TreeFix-TP improves upon RAxML to a greater extent with shorter sequences.
(b) RF distance for varied numbers of viruses sampled from each host. TreeFix-TP has the largest
improvement when fewer viruses are sampled. (c) RF distance across multiple different scale factors.
TreeFix-TP reconstructed the most accurate phylogenies with all scale factors.

of error correction to improved the accuracy of the phylogeny. At sequence length 1000, the
average normalized RF distance decreased by 9.99% from 0.152 to 0.137 after error correction
(p = 0.0003, Wilcoxon Signed-Rank). At length 500, this was a decrease of 11.03% from 0.264
to 0.235 (p = 1e−5, Wilcoxon Signed-Rank). At sequence length 250, the average RF distance
decreased by an average of 5.68% from 0.403 to 0.380 (p = 6e − 5, Wilcoxon Signed-Rank).
As expected, the absolute error rate increases sharply, for both RAxML and TreeFix-TP, as
sequence length decreases.

Under the SIR model, we found the error correction continued to have an impact at all
sequence lengths, and that error correction was more effective at shorter sequence lengths.
With sequence length of 1000, the average RF distance decreased by 4.36% (0.103 to 0.099
normalized RF, p = 0.006, Wilcoxon Signed-Rank). At length 500, there was a 7.65% decrease
(0.187 to 0.172 normalized RF, p = 0.0001, Wilcoxon Signed-Rank), and at length 250 there
was a 7.59% decrease (0.357 to 0.330 normalized RF, (p = 9e − 5, Wilcoxon Signed-Rank).
Under this model, error correction seems to be more effective with shorter sequences, likely
because longer sequences contain more information which allows maximum likelihood methods
to reconstruct a relatively accurate tree before any error correction occurs.

Impact of varying number of viruses We observed the effect of sampling different num-
bers of viruses from each infected host, from the default of 10 to 5 and 20 viral sequence
samples (Figure 3b). TreeFix-TP reconstructed more accurate phylogenies in each case, with
the largest overall improvement occurring for trees with 5 sequences from each host. Under
the SEIR model, with 20 viruses, there was an average RF distance decrease of 2.78% (0.152
to 0.148 normalized RF, p = 0.018, Wilcoxon Signed-Rank). With 10 and 5 viruses, there were
larger decreases of 9.99% and 10.18% respectively (0.152 to 0.137 and 0.183 to 0.164 normal-
ized RF, p = 0.0003, p = 8e−5 Wilcoxon Signed-Rank). Under the SIR model, with 20 viruses,
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there was an decrease in average RF distance of only 1.56% (0.108 to 0.106 normalized RF,
p = 0.072, Wilcoxon Signed-Rank). This decrease was 4.36% with 10 viruses and 6.52% with
5 viruses (0.103 to 0.099 and 0.096 to 0.089 normalized RF, p = 0.006, p = 0.013 Wilcoxon
Signed-Rank). Error correction seems to be more effective with fewer viruses, which matches
the intuition about sequence length - that more sequence data leads to originally accurate
phylogenies, and less potential for error correction.

Impact of varying scale factor We found that TreeFix-TP is also robust to various rates of
sequence evolution (Figure 3c). Under the SEIR model of evolution, scale factors of 0.125, 0.25,
and 0.5 resulted in a decrease in average RF distance by 6.64%, 9.99%, and 9.76% respectively
(0.151 to 0.141, 0.152 to 0.137, 0.168 to 0.152 normalized RF, p = 0.004, 0.0003, 0.0006 Wilcoxon
Signed-Rank). Under the SIR model, we used two different sets of scale factors dependent
on the disease transmission parameters. Aggregated across SIR (0.003) and SIR (0.01), we
tested scale factors of 0.25, 0.5, 0.75, 1, 1.5, and 3. These scale factors had average RF
percent decreases of 3.05%, 2.87%, 2.02%, 0.07%, 5.97%, and 1.20% (0.111 to 0.108, 0.095
to 0.093, 0.111 to 0.109, 0.1043 to 0.1042, 0.113 to 0.106, and 0.095 to 0.094 normalized RF,
p = 0.045, 0.054, 0.034, 0.327, 0.021, 0.250). As expected, the overall RF distances tended to be
larger for very small and very large scale factors, which indicates that a reasonable rate of
evolution is important to overall phylogenetic reconstruction accuracy, but plays less of an
impact on error correction.

3.2. Source recovery in HCV outbreaks

We also evaluated the impact of using TreeFix-TP on real data sets of HCV outbreaks made
available by the CDC.9 In total, there are 10 different data sets, each representing a separate
HCV outbreak. Each of these outbreak data sets contains between 2 and 19 infected hosts
and a few dozen to a few hundred strain sequences. For each of these 10 outbreaks, the source
host of the outbreak is known (through the CDC’s epidemiological efforts). We used a simple
phylogenetic pipeline to infer a source for each of these 10 data sets as follows: We constructed
phylogenetic trees using RAxML and TreeFix-TP and rooted them using two of the most
widely used rooting methods, balanced rooting (implemented in RAxML26) and midpoint
rooting.35,36 We then used Sankoff’s algorithm for the small parsimony problem37 to label the
internal nodes of these phylogenies with hosts and report the host assignment at the root as the
inferred source of that outbreak. (Note that Phyloscanner also uses Sankoff’s algorithm to label
internal nodes of the phylogeny, but we chose not to use Phyloscanner directly because it is
very conservative in its host assignments and often leaves nodes unlabeled.) Using the RAxML
trees, the source was correctly identified in 6 (balanced rooting) and 7 (midpoint rooting) of
the 10 outbreaks. In contrast, the trees reconstructed by TreeFix-TP correctly identified the
source in 8 out of the 10 outbreaks with both rooting strategies. Furthermore, the outbreaks
correctly identified by RAxML were a strict subset of those identified by TreeFix-TP.
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3.3. Running time and scalability

Using its default number of iterations (5000) TreeFix-TP required an average of approximately
37 hours for each run, but this running time varied depending on the number of tips and length
of sequence. TreeFix-TP took less than an hour and a half for trees of 50-60 tips, but upwards
of 200 hours for trees with more than 500 tips and 1000 nucleotide-length sequences. On
average, runs took fewer than 9 minutes per tip, and scaled linearly in tree size, number of
hosts, and sequence length.

4. Discussion and Conclusions

In this paper, we have introduced a new method, TreeFix-TP, for more accurate and scalable
reconstruction of infectious disease transmission phylogenies when multiple strain sequences
are sampled from each infected host, and demonstrated its impact on phylogenetic infer-
ence and outbreak source detection. TreeFix-TP uses an error-correction approach where it
seeks to improve a given maximum-likelihood phylogeny of the infecting strains by using ad-
ditional information about which host each strain was sampled from and balancing it with
sequence-only likelihood using a statistical hypothesis testing framework. As our experimental
results show, TreeFix-TP consistently reconstructs more accurate phylogenies than the state-
of-the-art maximum-likelihood phylogeny inference method RAxML. We also demonstrate
how TreeFix-TP can be used to augment existing phylogeny-based pipelines for transmis-
sion network inference by error correcting the phylogenies before they are used for network
inference or outbreak source detection.

Going forward, it would be worthwhile to develop even more advanced, yet scalable, meth-
ods for construction of transmission phylogenies. As our experimental results show, even
though the absolute error rate of TreeFix-TP phylogenies is often significantly lower than
that of RAxML trees, this absolute error rate still remains quite high overall even after error
correction. This is partly because the ability of TreeFix-TP to error-correct depends on the
number of different hosts represented in the phylogeny, rather than on the size of the tree
itself. In the future, it may be possible to use additional information about within-host strain
evolution to further improve transmission phylogeny inference.
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