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Translational bioinformatics (TBI) is focused on the integration of biomedical data science and 
informatics. This combination is extremely powerful for scientific discovery as well as translation into 
clinical practice. Several topics where TBI research is at the leading edge are 1) the clinical utility of 
polygenic risk scores, 2) data integration, and 3) artificial intelligence and machine learning. This 
perspective discusses these three topics and points to the important elements for driving precision 
medicine into the future. 
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1. Introduction

Translational bioinformatics (TBI) is a multi-disciplinary and rapidly emerging field of biomedical 
data sciences and informatics that includes the development of technologies that efficiently 
translate basic molecular, genetic, cellular, and clinical data into clinical products or health 
implications. TBI involves applying novel methods to the storage, analysis, and interpretation of 
a massive volume of genetics, genomics, multi-omics, and clinical data; this includes diagnoses, 
medications, laboratory measurements, imaging, and clinical notes. TBI bridges the gap between 
bench research and real-world applications to human health. Many health-related topics are 
increasingly falling within the scope of TBI, including rare and complex human disease, cancer, 
biomarkers, pharmacogenomics, drug repositioning, genomic medicine, and clinical decision 
support systems. 

TBI in precision medicine attempts to determine individual solutions based on the genomic, 
environmental, and clinical profiles of each individual, providing an opportunity to incorporate 
individual genomic data into patient care. While a plethora of genomic signatures have 
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successfully demonstrated their predictive power, they are merely statistically significant 
differences between dichotomized phenotypes (for example cases and controls of a specific disease) 
that are in fact severely heterogeneous phenotypes. Despite many translational barriers, connecting 
the molecular world to the clinical world and vice versa will undoubtedly benefit human health in 
the near future. 

Due to the rapid pace of TBI, we assembled diverse perspectives to review the state of the art in 
translation bioinformatics including the clinical utility of polygenic risk scores, data integration, 
and artificial intelligence in medicine. We provide perspective on where the current efforts are 
focused and where the future is headed for biobanks in different disciplines, especially about the 
utility of polygenic risk scores. Additionally, special attention will be given to data integration. In 
particular, radiogenomics or imaging genomics is one of the primary areas that focus on the 
relationship between imaging phenotypes and genomics. We also discuss artificial intelligence and 
machine learning and how these are being used now for integrating electronic health record (EHR) 
and omics data as well as how we anticipate they will be used in the future. Translational 
bioinformatics is a fast-moving field and we believe that integrating the basic science community 
from genomics, bioinformatics, computer science, and statistics together with the translational 
community including clinical/medical informatics, pharmacogenomics, and genomic medicine 
will be mutually beneficial to accelerate the translational of biomedical research into precision 
medicine. 

2. The clinical utility of polygenic risk scores

Many research programs have capitalized on these population-based registries with 
complementary biobanks for research linkage to the health registry including UK Biobank 1, 
FinnGEN 2, and deCODE 3. EHRs and national health registries have both been adopted as clinical 
data sources for genetic and genomic analyses for a wide variety of diseases/conditions. The utility 
of these clinical data linked with genetic and genomic data has enormous potential for disease gene 
discovery. Much research is ongoing to identify risk factors for complex disease, evaluate the 
potential repurposing medications for multiple phenotypes, and the identification of novel 
therapeutic targets. In particular, the development of polygenic risk scores (PRS) as well as 
genomic risk assessments, which integrate PRS with known clinical risk factors, are an emerging 
area of research in large scale biobanks linked with clinical data sources. PRS is a value 
accumulated based on the effect sizes of multiple genetic variants across the genome and has 
shown great promise in the prediction of risk for many diseases 4. Furthermore, recent studies for 
many diseases suggest that our knowledge of the common variants underlying diseases or 
phenotypes has improved to a point where polygenic risk profiling provides personal and clinical 
utility by identifying groups of individuals who could benefit from the knowledge of their 
probabilistic susceptibility to disease 5. As more health systems and academic medical centers 
continue to build large scale biobanks, the opportunities for discovery in biobanks linked to clinical 
data sources will continue to explode. 

3. Data integration

While individual analysis of omics datasets is valuable for identifying omic-phenotype 
associations, analyses using only one data type are not sufficient to fully elucidate complex 
diseases because such diseases are the end point of events cumulating with multiple variations 
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through multi-omics biology. To better understand the genetic architecture of complex diseases, 
relevant strategies for integrating multi-omics data are required. Many studies have shown that an 
integrative systems genomics approach and addressed the idea that integration of multi-omics data 
can be substantially more informative than separate analyses of each single dimension of genomic 
data 6. Data integration methods can be broadly categorized into two types of approaches, as 
follows. In multi-staged analysis, models are constructed using only two different scales at a time, 
in a stepwise, linear, or hierarchical manner. A multi-staged analysis would be applicable when 
the relationship between genotype and phenotype can be modelled in a linear manner (e.g. 
association of SNPs with DNA methylation) and subsequently associated with phenotypes. 
However, this approach is difficult to apply simultaneously to more than two types of -omics data. 
An alternative approach is meta-dimensional analysis (i.e. fusion of scales), which simultaneously 
combines all scales of data to produce complex, meta-dimensional models with multiple variables 
from different data types. The scale and richness of these ever-increasing data sets hold great 
promise, yet the complexity presents an urgent need to find effective ways to integrate diverse data 
from different levels of technologies to fully exploit the potential informativeness of big data. One 
particularly rich source of information contained in medical records are imaging data, such as MRI, 
CT scan, fundoscopic images, or histopathology slides. Radiogenomics or imaging genomics is 
one of the primary areas that focus on the relationship between imaging phenotypes and genomics. 
With state-of-the-art deep learning approaches, radiogenomics might offer a practical way to 
leverage limited and incomplete data to generate knowledge that could lead to improved decision 
making, and as a result, improved patient outcomes 7. 
 

4. Artificial intelligence in medicine  
 
The integration of genomics data with EHR data opens the door to numerous research question 
about the role of genomic variation in human health. Artificial intelligence and machine learning 
have an important role to play in answering these questions. An important challenge that 
computational methods are well-suited to is the definition of phenotypes that are more accurate 
than those provided by disease diagnoses captured in billing codes. The challenge here to find a 
mathematical function of laboratory measures, medication, and other information that can be used 
to make a more accurate diagnosis. Machine learning is ideally suited to building models of disease 
phenotypes. Once accurate phenotypes are derived, the next step is to perform association analysis. 
Genome-wide association studies in epidemiologic studies have focused almost exclusively on 
statistical tests of each genetic variant independent of their genomic or environmental context. This 
has benefits such as speed and interpretation. However, genetic variants are likely to have effects 
that are context-dependent and thus not captured by univariate models. Machine learning can 
complement statistical methods by modeling non-additive effects among multiple factors. Further, 
machine learning can capture heterogeneity of genetic effects that can also be quite common. The 
development and application of machine learning methods in biobanks is an active area of research 
and very much in its infancy. Issues such as choosing the right machine learning methods for the 
data, interpreting the results, and developing actionable validation and implementation strategies 
are complex and in need of future work. An emerging area addresses the first issue is automated 
machine learning (AutoML) that focuses on optimization algorithms for choosing the right 
methods for a given data set. Automated machine learning is a step towards artificial intelligence 
with the goal of developing algorithms that solve problems the way human analysts do. It is 
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important to remember that the goal of machine learning is to identify those unexpected results 
that would be missed by parametric statistical methods. 
 
5. Discussion  
 
Translational bioinformatics (TBI) lives at the intersection of informatics and biomedical data 
science. Due to the explosion of data in molecular and cellular technologies in the ‘omics era 
paired with the rapid increase in the access and availability to clinical information and imaging 
data from EHRs, the possibilities for discovery and rapid translational into clinically and 
biologically meaningful outcomes are tremendous. To all of these rich data, add the powerful 
technologies being developed in artificial intelligence and machine learning, this leads to a unique 
opportunity for biomedical data science to elevate in ways that are unprecedented. The future of 
precision medicine will be led by translational bioinformatics. 
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