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Brain imaging genetics, an emerging and rapidly growing research field, studies the re-
lationship between genetic variations and brain imaging quantitative traits (QTs) to gain
new insights into the phenotypic characteristics and genetic mechanisms of the brain. Her-
itability is an important measurement to quantify the proportion of the observed variance
in an imaging QT that is explained by genetic factors, and can often be used to prioritize
brain QTs for subsequent imaging genetic association studies. Most existing studies define
regional imaging QTs using predefined brain parcellation schemes such as the automated
anatomical labeling (AAL) atlas. However, the power to dissect genetic underpinnings under
QTs defined in such an unsupervised fashion could be negatively affected by heterogene-
ity within the regions in the partition. To bridge this gap, we propose a novel method to
define highly heritable brain regions. Based on voxelwise heritability estimates, we extract
brain regions containing spatially connected voxels with high heritability. We perform an
empirical study on the amyloid imaging and whole genome sequencing data from a land-
mark Alzheimer’s disease biobank; and demonstrate the regions defined by our method
have much higher estimated heritabilities than the regions defined by the AAL atlas. Our
proposed method refines the imaging endophenotype constructions in light of their genetic
dissection, and yields more powerful imaging QTs for subsequent detection of genetic risk

∗These authors contributed equally to this work.
‖Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI con-
tributed to the design and implementation of ADNI and/or provided data but did not participate in
analysis or writing of this report. A complete listing of ADNI investigators can be found at: http:
//adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

© 2021 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.

Pacific Symposium on Biocomputing 27:109-120(2022)

109



factors along with better interpretability.
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1. Introduction

Brain imaging genetics,1–3 an emerging and rapidly growing research field, studies the re-
lationship between genetic variations and brain imaging quantitative traits (QTs) to gain
new insights into the phenotypic characteristics and genetic mechanisms of the brain. With
recent advances in multimodal neuroimaging and high throughput genotyping and sequenc-
ing technologies, researchers are able to investigate the mechanisms behind biological and/or
pathological pathways from genetic determinants to brain structure and function and then
to the human cognition, behaviors and disorders. In particular, the availability of rapidly
growing brain imaging and genomics biobanks has led to a large body of literature concerning
methodological developments and biomedical applications in brain imaging genetics (e.g.,4–10).

Heritability11 is an important measurement to quantify the proportion of the observed
variance in an imaging QT that is explained by genetic factors, and can often be used to
prioritize brain QTs for subsequent imaging genetic association studies. Currently, many ex-
isting heritability studies couple the atlas-based brain parcellations with imaging measures to
define the brain QTs. However, most of the brain parcellations are predefined based on the
anatomical knowledge and/or structural and functional annotation without embracing genetic
explanation for the corresponding regions of interest (ROIs). Thus, in brain imaging genetics,
regional imaging QTs are often defined based on these predefined brain parcellation schemes
such as the automated anatomical labeling (AAL) atlas.12 However, the power to dissect ge-
netic underpinnings under QTs defined in such an unsupervised fashion could be negatively
affected by heterogeneity within the regions in the partition.

To bridge this gap, we propose a novel method to define highly heritable brain regions. We
employ the Genome-wide Complex Trait Analysis (GCTA),13 which is a widely used statis-
tical tool for heritability estimation. It utilizes the individual-level genetic data to construct
the genetic relationships among subjects and uses a mixed linear model to quantify the envi-
ronmental effect and genetic effect for the variation of phenotypic quantitative traits. In this
work, we propose a data driven method to group highly heritable voxel-level imaging QTs
according to their significance level estimated from GCTA and their spatial location.

From voxelwise heritability estimates, we extract brain regions containing spatially con-
nected voxels with high heritability based on a user-specified threshold. To evaluate our pro-
posed method, we apply our data driven method to the amyloid imaging data and the whole
genome sequencing (WGS) data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
cohort,14–16 which is a landmark Alzheimer’s disease biobank. We demonstrate the regions de-
fined by our method have much higher estimated heritabilities than the regions defined by the
AAL atlas. Our proposed method refines the imaging endophenotype constructions in light
of their genetic dissection, and yields more powerful imaging QTs for subsequent detection of
genetic risk factors along with better interpretability.

The rest of this paper is organized as follows. We introduce our heritability estimation
method in Section 2, discuss our data and materials in Section 3, describe our experimental
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workflow in Section 4, present and discuss our results in Section 5, and conclude the paper in
Section 6.

2. Method

Given an imaging QT, its heritability11 is defined to be the proportion of its total phenotypic
variance that is explained by the aggregated genetic effect captured by pedigree information
or all the single nucleotide polymorphisms (SNPs) on a genotyping or sequencing array.1 Since
ADNI is a population study instead of a family study, subjects are unrelated and no pedigree
information is available for heritability analysis. However, there is SNP-based genotyping and
WGS data in ADNI. Therefore we focus on estimating heritability using the SNP data.

In particular, we use the following linear mixed effects (LME) model to estimate SNP-based
heritability:13

y = Xβ +Wu+ ε, (1)

where y is an N × 1 vector of quantitative traits (QTs) with N being the number of subjects,
β is the vector of fixed effects, X is the matrix of confounding variables (i.e., age, sex and
population structure represented by first 10 principal components in our experiments), u
is a vector of SNPs effects with u ∼ N(0, Iσ2u), where I is an identity matrix, and W is
a standardized genotype matrix. ε ∼ N(0, Iσ2ε) is the error term. The genetic relationship
matrix (GRM) between individuals is defined as A = WW

′

M , where M is the number of SNPs.
In fact, heritability17 is formally defined as the proportion of phenotypic variation that is

due to variation in genetic values. In the LME model, it can be computed as

h2 =
Mσ2u

Mσ2u + σ2ε
=
Mσ2u
σ2y

. (2)

The LME model has already been implemented in the GCTA tool.13 Thus, in this work,
we directly use GCTA to compute heritability for all the studied QTs.

3. Materials

Data used in the preparation of this article were obtained from the ADNI database.14–16

Specifically, the genetic data used in our analysis were the ADNI whole genome sequencing
(WGS) data downloaded from the Alzheimer’s Disease Sequencing Project (ADSP) website at
https://www.niagads.org/adsp.18,19 All the imaging and other data were downloaded from
the ADNI website at https://adni.loni.usc.edu.

The ADNI was launched in 2003 as a public-private partnership, led by Principal Inves-
tigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). The
up-to-date information about the ADNI is available at https://www.adni-info.org.

Our WGS data contains 31,200,009 SNPs with 1,546 samples. We performed the quality
control (QC) using the following criteria: minor allele frequency (MAF) > 0.001; call rate
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Table 1: Participant characteristics. Total number of subjects, age, and sex are shown in
this table. The mean ± sd for the age of all subjects within each diagnosis group is reported.
The number of male/female subjects within each diagnosis group is also introduced.

Diagnosis CN MCI AD Overall

Number 333 384 330 1,047

Age (mean ± sd) 77.2 ± 6.8 76.4 ± 7.7 77.3 ± 7.7 76.9 ± 7.5

Sex (M/F) 149/184 226/158 189/141 564/483

(GENO) > 98%; identity-by-descent (IDB) estimates < 0.25; Hardy-Weinberg test at 10−6

significance threshold; missing rate per person (MIND) < 0.05; excluding the outliers from
Heterozygosity X missingness plot. After QC, 15,363,329 SNPs and 1,546 samples are pre-
served.

Out of 1,546 subjects with the WGS data available after QC, 1,047 participants have com-
plete [18F]florbetapir (AV45) PET data (measuring amyloid burden) and are included in our
analysis. Table 1 shows the participant characteristics; and our analysis includes 333 cogni-
tively normal (CN), 384 mild cognitive impairment (MCI), and 330 AD subjects. For these
AV45 PET scans, the data was registered to the Montreal Neurological Institute space, and
the standard uptake value ratio was computed by intensity normalization using the cerebellar
curs reference region. ROI-level AV45 measures were extracted based on the AAL atlas,12

where 116 ROI-level QTs were obtained by averaging all the voxel-level measures within each
ROI.

4. Experimental Workflow

The overall pipeline for our proposed method identifying highly heritable self-defined regions
is shown in Figure 1. Starting from the three dimensional brain phenotype measurements, we
first vectorize the 3D measurements into a single vector for each subject in Step (a). After
filtering the background voxels defined by voxels with phenotype measurements being all 0
across all the subjects in Step (a), we are able to formulate a two dimensional voxel-based
phenotype measurements matrix (M1 in Figure 1). The vectorization step is done with the
voxels’ 3D coordinates preserved in a different file where the file stores the index and the
spatial location for each brain voxel. In Step (b), we calculate the genetic relationship matrix
(GRM) (M3 in Figure 1) using the WGS data from ADNI (M2 in Figure 1) to quantify the
genetic similarity between subjects.

GCTA heritability analysis for each voxel-based QT is performed in Step (c) using the
GRM and adjusted by age, sex and population structure represented by first 10 principal
components. After performing the Step (c), for each voxel-based QT, we are able to calculate
its heritability and the p-value. After estimation of the heritability with p-value for each voxel,
we map the heritability and p-value for each voxel to the 3D brain and construct a heritability
brain map and a p-value brain map. In Step (d), we filter out all the insignificant voxels and
then group the top 10%, 20%, 30% and all the 100% significant voxels to construct our highly
heritable self-defined regions by averaging all the voxel-level QTs within the regions which is
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shown in Step (f-1). Specifically, we smooth the p-value brain map using Gaussian kernel with
standard deviation 0.5. The smoothing step is realized by ndimage.gaussian filter function in
scipy Python package.20 Then we construct a binary brain map according to the brain voxel
significant level. Every voxel passing the 0.05 significant threshold (i.e., p < 0.05) is marked as
1 and the rest voxels are marked as 0. The ROI is constructed using connected components
function in connected-components-3d (cc3d) Python package.21 The detailed description of
the functions can be found online.

Finally in Step (g-1), we perform the GCTA heritability analysis again to calculate the
heritability for each self-defined region (M4 in Figure 1). For evaluating our self-defined regions,
we perform comparative heritability analyses for the following two sets of regions. In the first
comparison, we extract ROIs using a similar strategy by grouping and averaging the top 10%,
20% and 30% insignificant voxels together in Step (e) and Step (f-2), and then calculating
the heritability for each region (M5 in Figure 1) in Step (g-2). In the second comparison, we
compute the heritability for the regional level AV45 measurements defined by the AAL atlas
(M6 in Figure 1) in Step (g-3).

5. Results and Discussion

Table 2 summarizes our comparative heritability analysis results, indicating a remarkably high
heritability for our self-defined highly heritable regions (Table 2(a)) compared to the regions
defined by the AAL atlas (Table 2(b)) and the regions defined by the GCTA insignificant
voxels (Table 2(c)). Almost all the regions defined by our proposed method have high GCTA
estimated heritability:

• 100% of those ROIs whose variations can be explained at least 90% by the genetic
variations for the regions defined by the top 10% significant voxels;

• more than 90% of variations of ROIs can be explained at least 90% by the genetic
variations for the regions defined by the top 20% and top 30% significant voxels;

• for those regions defined by all the significant voxels, more than 80% of ROIs can be
explained at least 90% by the genetic variations.

At least 96.6% of all the regions defined by our proposed method have GCTA heritability
estimates more than 80%. Among those 116 ROIs defined by the AAL atlas, on the other
hand, there are only 21(18.1%) of the regions with heritability > 80%.

To further evaluate our pipeline and demonstrate our extracted regions have higher heri-
tability measurements, we apply the pipeline onto all the insignificant brain voxels estimated
by GCTA, and evaluate the heritability estimation on the regions extracted from top 10%, top
20%, and top 30% insignificant voxels. The results are shown in Table 2(c). As we expected, all
the regions extracted by insignificant voxels have relatively low GCTA estimated heritability.
There are less than 10% of the ROIs extracted from top 10% and top 20% of insignificant
voxels have heritability greater than 50%; and less than 30% for those regions extracted from
top 30% of insignificant voxels. These results re-assure that our proposed pipeline is able to
robustly select highly heritable regions.

Figure 2 shows the distributions of GCTA heritability estimates (Figure 2a) and
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Table 2: Statistics of heritability estimates for ROIs defined by top significant
voxels, top insignificant voxels, and the AAL atlas. ROItotal: the total number of ROIs
defined by the corresponding method; ROI>a%: the total number(proportion among all the
ROIs) of ROIs with GCTA estimated heritability > a% in regions defined by the corresponding
method; ROI<a%: the total number(proportion among all the ROIs) of ROIs with GCTA
estimated heritability < a% in regions defined by the corresponding method;

(a) Proposed self-defined regions (extracted from top GCTA significant voxels)

Regions ROItotal ROI>90% ROI>80% ROI>50% ROI<20% ROI<10%

Top 10% voxels 83 83(100%) 83(100%) 83(100%) 0(0%) 0(0%)
Top 20% voxels 119 117(98.3%) 119(100%) 119(100%) 0(0%) 0(0%)
Top 30% voxels 132 126(95.5%) 132(100%) 132(100%) 0(0%) 0(0%)
Top 100% voxels 118 99(83.9%) 114(96.6%) 118(100%) 0(0%) 0(0%)

(b) AAL atlas

Regions ROItotal ROI>90% ROI>80% ROI>50% ROI<20% ROI<10%

AAL atlas 116 14(12.1%) 21(18.1%) 64(55.2%) 22(19.0%) 16(13.8%)

(c) Regions extracted from top GCTA insignificant voxels

Regions ROItotal ROI>90% ROI>80% ROI>50% ROI<20% ROI<10%

Top 10% voxels 120 2(1.7%) 2(1.7%) 2(1.7%) 117(97.5%) 117(97.5%)
Top 20% voxels 116 10(8.6%) 10(8.6%) 10(8.6%) 105(90.5%) 90(77.6%)
Top 30% voxels 95 24(25.3%) 24(25.3%) 26(27.4%) 55(57.9%) 47(49.5%)

−log10(p-value) (Figure 2b). A clear pattern shows that the regions defined by significant voxels
have an extremely high estimated heritability and −log10(p-value). Most of the regions defined
by insignificant voxels have low estimated heritability and −log10(p-value). Regions defined by
the AAL atlas, serving as a baseline model, have heritability estimates and −log10(p-value)
widely distributed over most of the spectrum. These results align with our expectation.

Figure 3 shows the heritability brain map comparing our high heritable self-defined re-
gions and the ROIs from the AAL atlas. From top to bottom, it shows the GCTA estimated
heritability for the regions extracted and smoothed using top 10%, 20%, 30% and all 100% sig-
nificant voxels from voxel-level GCTA heritability estimation results. The bottom row shows
the GCTA estimated heritability results for the ROIs in the AAL atlas. As shown in the
figure, our self-defined regions have much higher estimated heritability than the AAL-defined
regions (almost all regions extracted from our proposed method have estimated heritability
close to 1). Compared to the AAL regions, our extracted regions are able to target the highly
heritable parts of the brain. We also compare our highly heritable self-defined regions with
the regions extracted from insignificant voxels estimated from voxel level GCTA analysis. The
results show that almost all the regions extracted from insignificant voxels are not heritable
(i.e., GCTA estimated heritability ≤ 10−6). All these observations indicate that our proposed
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Fig. 2: Comparison of the GCTA estimated heritability and −log10(p-value) for
regions defined by significant voxels (green), AAL atlas (red), and insignificant
voxels (blue). Regions defined by significant voxels consist of the regions defined by top 10%,
top 20%, top 30%, and top 100% significant voxels. Regions defined by insignificant voxels
consist of the regions defined by top 10%, top 20%, and top 30% insignificant voxels.

pipeline is able to capture highly heritable regions, and thus provide valuable information to
guide subsequent imaging genetic analyses.
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Fig. 3: Brain heritability map for comparison between the regions defined by the
top significant voxels and the regions defined by the AAL atlas. The AAL defined
brain ROIs are much larger than the regions defined by our proposed pipeline, making the
entire brain appear red. Although visually less striking, the proposed method has in fact
yielded many more regions with high heritablity, see Table 2 and Figure 2a for details. The
heritability map for regions defined by insignificant voxels are not included in this figure as
their signals are few and weak, and thus the resulting brain maps are visually no difference
from the background.

6. Conclusion

In this work, we proposed a novel pipeline to define and extract highly heritable brain regions
in order to guide and support the subsequent brain imaging genetic studies. We employed the
widely used GCTA tool to perform SNP-based heritability estimation for imaging quantitative
traits (QTs). We presented a data driven method to group highly heritable voxel-level imaging
QTs according to their significance level estimated from GCTA and their spatial location.
Based on voxelwise heritability estimates, we extracted brain regions containing spatially
connected voxels with high heritability. We performed an empirical study on the amyloid
imaging and whole genome sequencing (WGS) data from the landmark ADNI biobank. We
demonstrated the regions defined by our method have much higher heritability estimates than
not only the regions defined by the widely used AAL atlas but also the regions formed by
voxels with low heritability. Our proposed method refines the brain imaging endophenotype
constructions in light of their genetic dissection, and can yield more powerful imaging QTs to
gain new insights into the phenotypic characteristics and genetic mechanisms of the brain. A
potential limitation of this work is that we only performed our analysis on a discovery cohort.
We are currently identifying an independent imaging genetics cohort for a future replication
study to perform an unbiased evaluation of the heritable imaging traits detected here.
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