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Brain imaging genetics is an emerging research field aiming to reveal the genetic basis of
brain traits captured by imaging data. Inspired by heritability analysis, the concept of
morphometricity was recently introduced to assess trait association with whole brain mor-
phology. In this study, we extend the concept of morphometricity from its original definition
at the whole brain level to a more focal level based on a region of interest (ROI). We pro-
pose a novel framework to identify the SNP-ROI association via regional morphometricity
estimation of each studied single nucleotide polymorphism (SNP). We perform an empirical
study on the structural MRI and genotyping data from a landmark Alzheimer’s disease
(AD) biobank; and yield promising results. Our findings indicate that the AD-related SNPs
have higher overall regional morphometricity estimates than the SNPs not yet related to
AD. This observation suggests that the variance of AD SNPs can be explained more by
regional morphometric features than non-AD SNPs, supporting the value of imaging traits
as targets in studying AD genetics. Also, we identified 11 ROIs, where the AD/non-AD
SNPs and significant/insignificant morphometricity estimation of the corresponding SNPs
in these ROIs show strong dependency. Supplementary motor area (SMA) and dorsolateral
prefrontal cortex (DPC) are enriched by these ROIs. Our results also demonstrate that
using all the detailed voxel-level measures within the ROI to incorporate morphometric in-
formation outperforms using only a single average ROI measure, and thus provides improved
power to detect imaging genetic associations.
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1. Introduction

Brain imaging genetics studies genetics using imaging as phenotype in order to reveal the
underlying genetic basis of neurobiological traits and phenotypes.1 It aims to examine how
the difference in genetic markers such as single nucleotide polymorphisms (SNPs) affect brain
structure, function or connectivity2 quantified by features extracted from multimodal brain
imaging data. Thanks to the recent advances in multimodal neuroimaging and high throughput
genotyping technologies, there appears a large body of literature in this field to investigate
genetic and molecular pathways behind brain imaging phenotypes.3–7

Heritability8 is an important measurement in brain imaging genetic studies. It quantifies
the proportion of the total variance of imaging quantitative traits (QTs) explained by genetic
variants, which is able to help rank and prioritize heritable imaging QTs and provide guid-
ance for subsequent imaging genetic association studies. A recent study adapted the concept
of heritability and proposed a new global measurement of anatomical signature for a given
trait to quantify the proportion of trait variation which can be explained by whole-brain mor-
phology, and this measure is named as “morphometricity”. It offers a novel strategy to assess
the neuroanatomical correlation of the trait and their underlying associations.9 Morphome-
tricity analysis has been applied and helped researchers detect the associations that cannot
be captured by traditional statistical models.10–13

In this study, we extend the concept of morphometricity from its original definition at
the whole brain level to a more focal level based on a region of interest (ROI). We propose a
novel strategy to identify the SNP-ROI association via regional morphometricity estimation
of each SNP, which can serve as an alternative strategy to the traditional association models
used in the genome-wide association studies (GWAS). To capture the ROI-level morphometric
information and discover the ROI-level brain imaging genetic associations, a typical choice is
to define imaging QTs using ROI-level summary statistics. However, the detailed voxel-level
signals are ignored with the use of the ROI-level QTs. To bridge this gap, in this work,
we propose a voxel based method, which is able to capture more detailed information when
performing the imaging genetic association studies via regional morphometricity estimation,
and thus provides improved power for association detection.

The rest of the paper is organized as follows. We introduce morphometricity estimation
in Section 2, discuss our data and materials in Section 3, describe our experimental design in
Section 4, present and discuss our results in Section 5, and conclude the paper in Section 6.

2. Methods

Given a trait, its morphometricity is defined as the proportion of the trait variation that can
be explained by brain morphology (e.g., as captured by measurements derived from structural
brain MRI scans). The primary aim of morphometricity analysis is to examine and globally
quantify the statistical association between a trait and all the studied morphometric measures
(e.g., the whole brain anatomical signature of a trait9), rather than identifying one or more
specific morphometric measures associated with the trait.

Morphometricity9 is grounded in linear mixed effects (LME) modeling:

y = Xβ + a+ ε, (1)
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where y is an N × 1 vector of a trait with N being the number of subjects, β is the vector of
fixed effects, X is the matrix of confounding variables, a is an N × 1 vector of trait variants
with a ∼ N(0,Kaσ

2
a), and ε ∼ N(0, Iσ2ε) is the error term. I is the identity matrix. Ka is

interpreted as a scaled anatomic similarity matrix (ASM). Entries in the ASM quantify the
pairwise global similarity between the brain morphologies of two individuals. There are two
widely used kernels (linear and Gaussian) to construct the ASM. In this study, we use a
Gaussian kernel on standardized imaging features, with the (i, j)-th entry defined as

exp

(
−
∑
k

(vik − vjk)2

Ms2k

)
,

where vik denotes the k-th imaging measurement from subject i, M is the total number of
measurements, and sk is the sample SD of the k-th measurement.

Morphometricity9 is defined as

m2 =
σ2a

σ2a + σ2ε
=
σ2a
σ2y
, (2)

where σ2y is the total trait variance. The LME model has already been implemented in the
morphometricity tool available at people.csail.mit.edu/msabuncu/morphometricity/. In
this work, we slightly modify this tool by adding an implementation of the significance or
p-value estimation using a likelihood ratio test,9 and apply it to compute two variants of the
regional morphometricity for all the studied genetic traits.

Instead of computing global morphometricity at the whole brain level, we calculate regional
morphometricity at the ROI level. Given an ROI and a SNP (i.e., a genetic trait), we propose
to calculate the ROI-based regional morphometricity of the SNP to examine the SNP-ROI
association. To achieve this goal, we design two approaches to calculate the ASM:

• Approach 1: We extract a single ROI measure for each subject (i.e., average of all the
voxel measures in the ROI; see Figure 1(d)), and use that to compute the ASM.

• Approach 2: We calculate the ASM using all the voxel measures with the ROI (see
Figure 1(e)).

We anticipate that the second strategy will capture the ASM more accurately than the first
strategy, and thus have improved power to detect imaging genetic associations.

3. Materials

The genotypinig data, demographic data and imaging data used in the preparation of this
article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu).14–16 The ADNI was launched in 2003 as a public-private partnership, led
by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease
(AD). Up-to-date information about the ADNI is available at www.adni-info.org.
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Table 1: Participant characteristics. Total number of subjects, age, and sex are shown in
this table. The mean ± sd for the age of all subjects within each diagnosis group are reported.
The number of male/female subjects within each diagnosis group is also reported.

Diagnosis CN SMC EMCI LMCI AD Overall

Number 341 85 265 495 286 1,472

Age (mean ± sd) 75.1 ± 5.4 72.4 ± 5.7 71.2 ± 7.1 73.9 ± 7.6 75.1 ± 8.0 73.9 ± 7.2

Sex (M/F) 182/159 36/49 147/118 306/189 162/124 833/639

After pre-processing and matching the subjects among the genotyping data, demographic
data and imaging data, there are 1,472 participants (N = 1,472) in our study, including
341 cognitively normal (CN), 85 with significant memory concern (SMC), 265 with early
mild cognitive impairment (EMCI), 495 late MCI (LMCI), and 286 AD subjects. A brief
characteristic description of the participants is shown in Table 1.

Structural MRI scans were processed with voxel-based morphometry (VBM) using the
Statistical Parametric Mapping (SPM) software tool.17 All scans were aligned to a T1-weighted
template image, segmented into gray matter (GM), white matter (WM) and cerebrospinal
fluid (CSF) maps, normalized to the standard Montreal Neurological Institute (MNI) space
as 2×2×2 mm3 voxels. The GM maps were extracted and smoothed with an 8mm FWHM
kernel, and analyzed in this study. A total of 185,405 non-background voxels, covering cortical,
sub-cortical, and cerebellar regions and measuring GM density, were studied in this work as
voxel-level imaging traits. Based on the AAL atlas,18 116 ROI-level traits were also obtained
by averaging all the voxel-level measures within each ROI.

For the genotyping data, we performed quality control (QC) using the following criteria:
genotyping call rate > 95%, minor allele frequency > 5%, and Hardy-Weinberg Equilibrium
> 1e-6. After the QC, rs429358 (APOE) SNP is added to the genotyping data. We extracted
54 AD related SNPs, which were reported in the main text of at least one of the three
landmark AD genetics studies.19–21 54 AD non-related SNPs were also extracted serving for
the comparison purpose. For the AD non-related SNPs, we first downloaded the AD related
SNP list from DisGeNet (www.disgenet.org)22 which includes 1,843 SNPs. Our 54 AD non-
related SNPs are randomly selected from our genotyping data so that none of those belongs
to the above 54 selected AD related SNPs and the 1,843 DisGeNet AD SNPs.

4. Experimental Design

Our overall experimental pipeline is presented in Figure 1. The pipeline is designed to compare
two strategies to identify imaging genetic associations via ROI-based regional morphometricity
estimation for each of 54 AD related SNPs and 54 non-AD related SNPs. As mentioned earlier,
the first strategy constructs the ASM using a univariate average measure for the ROI, and
the second strategy constructs the ASM using all the multivariate voxel measures within the
ROI. We expect that the second strategy provides improved detection power.

Starting from the 3D voxel-based morphometric measurements, we first remove the back-
ground voxels (defined by voxels without any signal across all the subjects), and then vecterize
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all the remaining voxels in Step (a). As a result, a subject-by-voxel morphometric data matrix
is obtained (M1 in Figure 1).

In Step (b), we map the voxel-level measurements to ROI-level measurements according to
the AAL atlas, where the ROI-level measurements are obtained by averaging the voxel-level
VBM measurements across all the voxels within the ROI (M2 in Figure 1). Next, we calculate
the ASM matrices in Step (d) by applying the Gaussian kernel defined in Section 2 to each
single ROI measurement vector (i.e., each column in M2).

Besides the above baseline method (Approach 1), as mentioned earlier, we also propose a
more advanced approach (Approach 2) to more accurately capture the subject-subject sim-
ilarity when calculating the ASM. Specifically, instead of averaging the voxel-level measures
within each ROI in Step (b), we group the voxels without averaging in Step (c) and use all
the multivariate voxel-level imaging measures within each ROI (i.e., M (1)

1 , M (2)
1 , ..., M (116)

1 in
Figure 1) to calculate the ASM for the ROI in Step (e). Note that the matrix M1 is equivalent
to the concatenation of all the matrices M (1)

1 , M (2)
1 , ..., M (116)

1 ; and the kth ROI-level phenotype
measurement in M2 is exactly equal to the mean of all the voxel-level measurements within
the kth ROI (M (k)

1 in Figure 1).
After that, in Step (f), the regional morphometricity for each of 54 AD SNPs and 54 non-

AD SNPs is calculated using the ASMs, and a heatmap showing the regional morphometricity
is reported. Finally, in Step (g), we use a Fisher’s exact test and brain functional annotation to
demonstrate that the second approach for ASM calculation is able to capture more interesting
imaging genetics associations than the first approach. Here the goal of the Fisher’s exact test on
each ROI is to assess whether AD-related SNPs tend to have a higher regional morphometricity
on the ROI. The identification of ROIs with such a pattern can help us explore the underlying
molecular pathway from SNPs to brain structure, and to AD outcome.

All the analysis is performed using the implementation from the existing study9 (people.
csail.mit.edu/msabuncu/morphometricity/) with our modification to add the calculation
of p-value using a likelihood ratio test.9 Our ASMs are computed using the Gaussian kernel.

5. Results and Discussion

Figure 2 and Figure 3 show the SNP morphometricity on each ROI calculated using Approach
1 and Approach 2 respectively. Rows of the heatmap represent the 108 SNPs (54 AD SNPs
and 54 non-AD SNPs) by their rs numbers, and columns of the heatmap represent 116 brain
ROIs. Our current results indicate that the AD-related SNPs have higher overall regional
morphometricity estimates than the SNPs not yet related to AD. This observation suggests
that the variances of AD SNPs can be explained more by regional morphometric features than
non-AD SNPs, supporting the value of imaging traits as targets in studying AD genetics to
study AD genetics.

To better visualize the difference between the estimated morphometricity between non-
AD SNPs and AD SNPs, we further pooled the morphometricity for SNPs among 116 ROIs
into two big groups according to their relations with AD and plot the histogram and density
plot to visualize the distribution of the morphometricity of two groups. The histogram and
density plots are shown in Figure 4. Although a large proportion of SNP morphometricity
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Fig. 2: Heatmap for SNP morphometricity on each ROI (Approach 1). This heatmap
has dimension 108×116 where each row represents a SNP and each column represents an ROI
(ROI 1 at the first column till ROI 116 at the last column). Color represents the estimated
morphometricity value for the corresponding SNP and ROI. The red line separates the AD-
related SNPs and AD non-related SNPs.

overlaps with each other, the distribution for the AD related SNP group shows an overall
higher morphometricity than the non-AD SNP group.
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Fig. 3: Heatmap for SNP morphometricity on each ROI (Approach 2). This heatmap
has dimension 108×116 where each row represents a SNP and each column represents an ROI
(ROI 1 at the first column till ROI 116 at the last column). Color represents the estimated
morphometricity value for the corresponding SNP and ROI. The red line separates the AD-
related SNPs and AD non-related SNPs.

However, a potential issue for Approach 1 is that, compared with the morphometricity
distribution for Approach 2 (Figure 4b), the morphometricity distribution for Approach 1
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(a) Distribution of Morphometricity for non-AD SNPs and AD SNPs (Approach 1)

(b) Distribution of Morphometricity for non-AD SNPs and AD SNPs (Approach 2)

Fig. 4: Comparison of Histogram and Density Plot for non-AD SNPs and AD SNPs
Morphometricity. Figure 4a shows the histogram and density plot for estimated morpho-
metricity using Approach 1; Figure 4b shows the histogram and density plot for estimated
morphometricity using Approach 2. Group 0 in each plot denotes the AD non-related SNP
group and Group 1 in denotes the AD-related SNP group.

(Figure 4b) overestimates the SNP morphometricity. This can be explained by the restricted
maximum likelihood (ReML) algorithm implemented by.9 In their algorithm, the ASM is re-
quired to be non-negative definite and it reconstructes every ASM which is not non-negative
definite by eigen-decomposition and changing all the negative eigenvalues to 0. This step will
eliminate all the negative relationship between subjects leading to an overall overestimation of
morphometricity. In our Approach 1, all the ASMs are calculated from a single univariate ROI
measurement vector and all of those matrices are not non-negative definite. Therefore, when
calculating the SNP morphometricity for every ROI using Approach 1, all negative relation-
ships between subjects cannot be captured and the SNP morphometricity is overestimated.

To further illustrate the advantages of Approach 2 that it can capture more information
with less noise, we performed a post-hoc analysis to test whether a SNP related to AD is
associated with the SNP’s morphometricity calculated by VBM measurements. In our analysis,
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Fig. 5: Significant ROIs in Approach 2 after the Fisher’s exact test. This brain
map highlights the ROIs that are significant (p-value < 0.05) evaluated by the Fisher’s ex-
act test. The 11 significant regions are Frontal Mid L, Frontal Inf Tri R, Rolandic Oper L,
Supp Motor Area L, Supp Motor Area R, Calcarine R, Parietal Inf R, SupraMarginal L,
Paracentral Lobule L, Cerebellum Crus2 R, and Cerebellum 9 R.

we first adjusted the p-value for morphometricity estimation using Bonferroni correction. Then
for each ROI, we conduct a Fisher’s exact test according to the number of AD/non-AD SNPs
that have a significant/insignificant morphometricity estimation. Of note, this test is used to
examine whether AD SNPs tend to have more significant morphometricity estimation than
non-AD SNPs for each ROI. The identified ROIs can be prioritized as valuable imaging traits to
study AD genetics. Among all 116 Fisher’s exact tests, none of the tests reaches the significance
level of 0.05 in Approach 1 whereas 11 (Figure 5) out of the 116 tests in Approach 2 show
strong evidence (p-value < 0.05) that the AD/non-AD SNPs and significant/insignificant
morphometricity estimation are dependent. This provides us valuable information to guide
our search for meaningful AD underlying biological mechanisms (e.g., from SNPs to brain
structure and to diagnostic outcome).

We performed brain imaging functional annotation analysis to the 11 significant ROIs
using Neurosynth23 and NeuroVault.24 Supplementary motor area (SMA), which is a part
of primate cerebral cortex, is enriched by the 11 ROIs with voxel-based Pearson correlation
0.217. Evidence has shown that neuromotor function is altered in AD patients during motor
behaviors and individuals without dementia exhibit greater activation in SMA.25 Besides SMA,
dorsolateral prefrontal cortex (DPC) is also correlated with our 11 significant ROIs with voxel-
based Pearson correlation 0.183. It has been shown that AD patients tend to have impaired
extent of DPC plasticity compared to the non-AD individuals where the DPC has a significant
impact on the patients’ working memory.26 All these existing AD-related findings support the
validity of our proposed prioritization method.

6. Conclusion

In this work, we proposed a novel strategy to identify SNP-ROI associations via regional mor-
phometricity by extending the existing morphometricity work from its original definition at
the whole brain level to a more focal level based on a region of interest (ROI). We proposed
two approaches to incorporate ROI-level morphometric information. Approach 1 employed
only a single average ROI measure, while Approach 2 embraced all the detailed voxel-level
measures within the ROI. We performed an empirical study on the structural MRI and geno-
typing data from the landmark ADNI biobank; and yielded promising results. Our findings
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indicated that the AD-related SNPs had higher overall regional morphometricity estimates
than the SNPs not yet related to AD. This observation suggests that the variances of AD SNPs
can be explained more by regional morphometric features than non-AD SNPs, supporting the
value of imaging traits as targets in studying AD genetics. In addition, we identified 11 ROIs,
where the AD/non-AD SNPs and significant/insignificant morphometricity estimation of the
corresponding SNPs in these ROIs were dependent. Supplementary motor area (SMA) and
dorsolateral prefrontal cortex (DPC) were enriched by these ROIs. Our results also demon-
strated that the proposed Approach 2 captured the ROI information more accurately than
Approach 1, and thus had improved power to detect imaging genetic associations.
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