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The study and treatment of cancer is traditionally specialized to the cancer’s site of origin.
However, certain phenotypes are shared across cancer types and have important implications
for clinical care. To date, automating the identification of these characteristics from routine
clinical data - irrespective of the type of cancer - is impaired by tissue-specific variability and
limited labeled data. Whole-genome doubling is one such phenotype; whole-genome doubling
events occur in nearly every type of cancer and have significant prognostic implications.
Using digitized histopathology slide images of primary tumor biopsies, we train a deep
neural network end-to-end to accurately generalize few-shot classification of whole-genome
doubling across 17 cancer types. By taking a meta-learning approach, cancer types are
treated as separate but jointly-learned tasks. This approach outperforms a traditional neural
network classifier and quickly generalizes to both held-out cancer types and batch effects.
These results demonstrate the unrealized potential for meta-learning to not only account
for between-cancer type variability but also remedy technical variability, enabling real-time
identification of cancer phenotypes that are too often costly and inefficient to obtain.
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1. Introduction

Genomic characteristics of a patient’s cancer, such as gene mutations and aneuploidy, are
increasingly used to improve the course of care.1,2 Despite their clinical benefit, however,
these characteristics are difficult to measure from routinely-collected patient data. Moreover,
identifying the same characteristic across cancer types is made difficult by cancer’s inherently
heterogeneous nature and the limited size of patient cohorts. There is an unmet need to
build tools that automate fast identification of cancer phenotypes from routinely-collected
patient data, irrespective of cancer type, particularly when the phenotype (i) has prognostic
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Fig. 1. Representative histopathology image tiles from four cancer types, depicting tumor biopsy
samples with (top) and without (bottom) whole-genome doubling.

or therapeutic implications and (ii) is expensive or slow to measure under traditional means.
Whole-genome doubling (WGD) is one such phenotype. WGD is a genome-wide aber-

ration characterized by the presence of at least twice the normal number of chromosomes
and is associated with advanced metastasis and overall poor prognosis.3 Patients with WGD
events are more prone to aneuploidy, which lends itself to more aggressive treatment regimens
for multiple cancer types.4,5 Moreover, WGD itself confers unique vulnerabilities that can be
therapeutically targetable.6–9 The prevalence and prognostics of WGD merits knowledge of
WGD status in determining the course of care; however, measuring WGD is inefficient. Kary-
otyping costs $11k/diagnosis and DNA sequencing costs $10k/genome, both of which take
several weeks to complete.10,11 The medical oncology community would significantly benefit
from automating WGD identification via more time- and cost-efficient means.

We propose inferring WGD from digitized histopathology images of tumor biopsies, a
routinely-collected source of patient data (Figure 1). Across cancer types, the tissue morphol-
ogy is a manifestation of the genomic characteristics of the tumor. However, histopathology
images from different cancer types exhibit tissue-specific characteristics (e.g., colon, lung, skin)
even if they share the same WGD status. Traditionally, good performance on cancer-related
classification tasks has been achieved via training separate models for each cancer type.12 This
approach has several shortcomings: (i) it necessitates acquiring many training examples from
all cancer types, as each model learns from a single cancer type, and (ii) the models are not
interchangeable, i.e., a model trained to classify WGD for lung cancer is unable to classify
WGD for breast cancer. Successfully integrating machine learning into the clinic necessitates
a model that can sufficiently handle inter-cancer diversity.13

Recent work by Ref. 14 to classify WGD from histopathology images across cancer types
shows good performance on only seven out of 27 cancer types. We propose using meta-learning
to automate the classification of WGD across cancer types (Figure 2). In the meta-learning
regime, models are learning to learn from few examples. Let us consider a toy example of
the standard meta-learning framework. We are given three small datasets: Dataset A contains
images of cats/non-cats, Dataset B contains images of dogs/non-dogs, and Dataset C contains
images of horses/non-horses. Each dataset has been curated to train a binary classifier on its
respective label (i.e., cat, dog, horse). Instead of training on each task individually, however,
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Fig. 2. Overview of meta-learning. The model is trained on multiple tasks (“meta-training”), and at
deployment time, the model is presented with a small set of labeled examples and quickly bootstraps
a task-specific classifier (“meta-testing”). In contrast, under standard supervised learning, the model
remains static at deployment time. Positive-labeled examples are highlighted in green.

we instead train on how to learn to learn the tasks from only a few training examples. At
meta-training, the model is presented with eight labeled images from each dataset before
being asked to correctly classify eight new unlabeled images from each dataset. Therefore, at
meta-test time, when the model is given a fourth dataset, Dataset D, which contains images
of frogs/non-frogs, it will ideally have learned to learn a new task. Namely, after the model
is presented with eight labeled images from Dataset D, it will be able to accurately classify
subsequent images from Dataset D as either a frog or a non-frog.

In this work, we adapt the model-agnostic meta-learning (MAML) framework to the prob-
lem of WGD classification from histopathology images across multiple cancer types.15 We take
a multi-task view by treating WGD classification for each cancer type as a separate, learnable
task. By optimizing for fast learning on each task, the MAML approach is able to outperform
a traditional neural network classifier and generalize well to unseen cancer types in the held-
out meta-test set. We subsequently extend this approach to accounting for batch effects, or
distributional shifts across histopathology images due to technical variation in data collection.
Batch effects are pervasive in biomedical datasets. Whereas under standard practices (e.g.,
fitting a simple model such as linear regression), we mitigate batch effects by incorporating
a batch effect-specific term, the complexity of deep neural network classifiers invalidates this
solution because the interactions between variables entangles the batch effect with the effect
of interest. We show that meta-learning is able to address this problem by treating each batch
as its own task-specific dataset such that the model is focused on learning to learn the label
(e.g., WGD status) instead of learning specifics about the batch (e.g., image brightness).

Ultimately, we extend the application of meta-learning beyond classifying different labels
(one label per task) to two novel use cases in medical imaging: classifying the same label
across (i) different cancer types (one cancer type per task) and (ii) different batches (one
batch per task). Thus, in a real-world scenario where a clinician would like to quickly classify
the WGD status of a particular cancer type or batch, he/she need only label a small handful
of histopathology images for the meta-learner to automate labeling of subsequent images.
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Fig. 3. Summary of the distribution of WGD status by cancer type for samples from The Cancer
Genome Atlas. Refer to Appendix A in the Supplementary Materials for acronym descriptions.

2. Related Work

Much effort has been devoted to automating cancer diagnosis by training neural networks to
discern tumor from normal tissue in histopathology images.16,17 Cancer diagnosis efforts have
further delved into cancer subtyping of individual cancer types.18,19 Such work has progressed
in tandem with detailed tissue segmentation approaches.20,21 More recently, increasing efforts
are being made in multi-class classification, namely aggregating cancer types in an attempt
to accurately diagnose the correct cancer type from all possible cancer types.22,23

Applying machine learning to histopathology images in order to infer characteristics of a
patient’s cancer is a growing research area.24 One avenue of applications has focused on predict-
ing survival and prognosis.25,26 Another avenue has focused on using morphological features
to infer molecular features about a patient’s cancer.12,27 Moreover, studies demonstrate we are
now able to predict phenotypes such as microsatellite instability and tumor mutational burden
from histopathology images of certain cancer types.28,29 While these advancements have im-
portant therapeutic implications, their applicability is cancer type-specific. The application of
meta-learning to medical imaging is relatively nascent. While meta-learning algorithms have
been used to classify diabetic retinopathy and rare diseases, meta-learning has unrealized po-
tential for applications in cancer.30–33 In this work, we attempt to fill the gap by marrying a
meta-learning training regime to a generalizable cancer classification task.

3. Cohort

3.1. Cohort Selection

We obtained diagnostic hematoxylin and eosin (H&E) stained histopathology slides of primary
tumor and corresponding WGD status labels for 3,596 samples across 17 cancer types from
The Cancer Genome Atlas (TCGA) (Figure 3). We included all samples with available images
provided by the National Cancer Institute (NCI) Genomic Data Commons (GDC) Data Portal
and slide-level WGD labels provided by Ref. 34. Cancer types were chosen based on the number
of available images, selecting for cancer types whose number of images was within one standard
deviation of the median number of images (BLCA, COAD, ESCA, HNSC, KIRC, LIHC,
READ, STAD, UCEC). To include common cancer types with more than 450 images (BRCA,
LUAD, LUSC) while remaining within our storage constraints, we randomly subsampled 25%
(BRCA) or 50% (LUAD, LUSC) of the images to yield 200-250 images per common cancer
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Fig. 4. Comparison of training regimes. While traditional approaches to model optimization opti-
mize solely the global parameters (left), meta-learning also optimizes parameters that are local to
the particular task (e.g., cancer type or batch) (right).

type. Rare cancer types with less than 100 images (ACC, CHOL, KICH, OV, UCS) were
included to reflect real-world scenarios with limited labeled data. In total, 42% of slide images,
or 1,522 images, were positive for WGD, constituting 19%-82% of images by cancer type.
Refer to Appendices A and B in the Supplementary Materials for acronym descriptions and
a detailed description of cohort clinical features, respectively.

3.2. Feature Extraction

Since slides are digitized at multiple magnifications, it was important to determine which mag-
nification would be most useful for WGD classification. Preliminary training of a ResNet18-
based model on WGD classification of colorectal cancer slides at different magnifications (5x,
10x, 20x) showed the best performance at 10x magnification, which yielded the highest slide-
level accuracy and AUC. Thus, we extracted images at 10x magnification. Each histopathology
slide was segmented into adjacent, non-overlapping tiles of dimension 3×256×256 (C×H×W ),
wherein only tiles with less than 50% whitespace were retained. On average, each histopathol-
ogy image was segmented into 3,155 tiles for a cohort-level total of 10.9 million tiles.

4. Methods

4.1. Model

Let data set D consist of Z cancer types, each of which is comprised of Nz slide images sz,i and
binary labels yz,i, i ∈ {1, . . . , Nz}. As described in Section 3.2, each slide image sz,i is segmented
into Tz,i non-overlapping tiles xz,i,t, t ∈ {1, . . . , Tz,i}, with C color channels, H pixel height, and
W pixel width. Formally, we train the network with the objective: θ∗ = argmax

θ
p (Y |S, θ) =

argmax
θ

∏Z
z

∏Nz

i p(yz,i | sz,i, θ) The predictive distribution p(y | s) is parameterized by a deep

neural network comprised of a ResNet18 and two fully-connected layers.35 We initialize training
with a ResNet18 pre-trained on the ImageNet dataset.36 The pre-trained ResNet18 undergoes
additional pre-training on histopathology images sampled from the meta-train set. The final
fully-connected layers are trained from scratch on the histopathology images, while the lower
layers are fine-tuned to these images. The fully-connected layers have a hidden size of 512
with dropout and tanh activation function. We employ LogSumExp pooling across tiles as a
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smooth approximation to max pooling, enabling learning across multiple tiles. LogSumExp
pooling of the tile-level prediction scores yields the final slide-level prediction score.

4.2. Training

Model training optimizes the model parameters in order to maximize the log likelihood, yield-
ing the maximum likelihood estimation. Each model is trained on the meta-train set (BLCA,
BRCA, COAD, HNSC, LUAD, LUSC, READ, STAD), tuned on the meta-validation set
(ESCA, LIHC), and evaluated on the meta-test set (ACC, CHOL, KICH, KIRC, OV, UCS,
UCEC). Each cancer type is subsequently split into train and test sets, e.g., for ACC, eight
samples are randomly selected for the meta-test train set; the remaining samples are selected
for the meta-test test set. Prior to training, tile images are normalized by channel to the mean
and standard deviation of the meta-train set. In our baseline scenario (“CNN”), the model
is pre-trained on the meta-train set before undergoing meta-validation/-test. In our meta-
learning scenario (“MAML”), the model is pre-trained and meta-trained on the meta-train
set before undergoing meta-validation/-test. Thus, the models differ solely in training regime
while being subject to the same evaluation scheme (Figure 4). Models are trained with – and
performance is averaged over – 40 random initializations.

4.2.1. Pre-Training

During pre-training, the model is trained on WGD classification using all cancer types in the
meta-train set. Slides and tiles in the train set are shuffled for every epoch and augmented via
random vertical/horizontal flips and color jitter. To prevent overfitting, we apply 50% random
dropout at each fully-connected layer. We train for up to 200 epochs with a minibatch size of
24 slides (50 randomly sampled tiles per slide) and a learning rate of 0.0001 with an Adam
optimizer.37 We reduce the learning rate by a factor of 0.1 upon validation loss plateau with
a patience of five epochs. To encourage regularization, model parameters are saved when the
binary cross entropy loss on the validation set improves upon that of the previous epoch.

4.2.2. Meta-Training

Meta-training proceeds according to Algorithm 1 using the pre-trained embeddings described
in Section 4.2.1. At every iteration, the parameters of the local (cancer type-specific) models
are set to the parameters of the global model. We sample a batch of meta-train cancer types
Zi and a batch of K examples per cancer type Zi. Using these examples, we perform one
gradient update of the local parameters. Next, we sample a second batch of K examples from
each cancer type Zi. Using these examples, we perform one forward pass with their respective
local models and store the gradient of the loss with respect to the parameters. Once one batch
of cancers is complete, the global parameters are updated using the stored gradients.

In all experiments, we meta-train for up to 50 epochs with a learning rate of 0.0001 for
both the local and global parameter updates. For each iteration, we sample a batch of 16 slides
(50 randomly sampled tiles per slide) from five out of the eight cancer types in the train set,
with uniform sampling of the cancer types. Eight slides are used for the local update, and
the remaining eight slides are used for the global update. For the local and global parameter
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Algorithm 1 Meta-Training

Require: p(Z): distribution over cancer types
Require: α, η: step size hyperparameters

Initialize θ randomly
repeat

Sample batch of cancer types Zi ∼ p(Z)

for all Zi do
Sample K examples from DZi

Evaluate ∇θLZi
(fθ) with respect to the K examples

Compute adapted parameters using gradient descent: θi = θ − α∇θLZi
(fθ)

Sample K additional examples from DZi
for the global update

end for
Update θ ← θ − η∇θ

∑
Zi∼p(Z)(LZi

(fθ′))

until forever

updates, we use an Adam optimizer and stochastic gradient descent, respectively.37

4.3. Meta-Validation and Meta-Test

Following pre-training and meta-training, we assess the model’s few-shot classification perfor-
mance using a train set size of eight slides per cancer type. The remaining slides are allocated
to the test set. The model takes a fixed number of gradient steps on the meta-validation/-test
train set before being evaluated on the meta-validation/-test test set. We employ a learning
rate of 0.0001 with an Adam optimizer.37 The amount of dropout d and number of gradient
steps g is tuned based on the average meta-validation test set binary cross entropy loss from
taking g gradient steps and applying d dropout on the meta-validation train set. Once the
optimal hyperparameters are determined, we evaluate the model by taking g gradient steps
and applying d dropout on the meta-test train set and measuring WGD classification AUC
on the meta-test test set for each cancer type in the meta-test set. In all experiments, the
baseline CNN classifier performed optimally with five gradient steps and 0% dropout, and the
MAML classifier performed optimally with 20 gradient steps and 25% dropout.

4.4. Experiments

4.4.1. Cancer Types

To assess the utility of meta-learning for generalizing few-shot WGD classification across can-
cer types, we applied the meta-training approach by treating WGD classification for each
cancer type in the meta-train set as separate tasks. During meta-training, the model is op-
timized to learn to learn WGD classification for different cancer types that exhibit different
tissue morphology. The meta-test test set classification performance of the MAML classifier
trained under the meta-learning regime is subsequently compared to that of the baseline CNN
classifier trained via standard fine-tuning of a pre-trained deep neural network.
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Fig. 5. Given the original unperturbed images (left), we assess the ability of the meta-learning
training regime to generalize few-shot classification across cancer types when faced with two batch
effects: lower resolution (center) and lower brightness (right).

4.4.2. Batch Effects

To assess the utility of meta-learning for generalizing few-shot WGD classification across
batches, we applied two transformations to the images in the meta-test set, reflective of real-
world technical variations in image capture (Figure 5):

(1) Resolution. Reduction of the effective pixel width and height by 50% to mimic a sys-
tematic distributional shift to a lower-resolution input distribution.

(2) Brightness. Reduction of the pixel intensity by 50% to mimic a systematic distributional
shift to a dimmer input distribution.

Analogous to the experiment in Section 4.4.1, we applied the meta-training approach by
treating WGD classification for each cancer type in the meta-train set as separate tasks.
During meta-test, we assess the performance of the MAML classifier and the CNN classifier
on the batch-adjusted images of the meta-test set.

5. Results

5.1. Cancer Types

We evaluate model performance based on the meta-test test set AUC, which compares the
model prediction scores to the ground truth binary WGD labels. Table 1 depicts the classifi-
cation performance on the seven cancer types in the meta-test set. On average, the baseline
CNN classifier achieves an AUC of 0.6888, ranging from 0.6611 to 0.7000. In contrast, the
MAML classifier achieves an AUC of 0.6944, ranging from 0.6843 to 0.7022, achieving better
performance on average than the CNN classifier on five of the meta-test cancer types. Notably,
the MAML approach outperforms the baseline CNN approach on four out of the five rare can-
cer types. Taken together, the MAML approach outperforms the baseline CNN approach on
the meta-test set (Wilcoxon signed-rank one-sided p-value=0.0411).

5.2. Batch Effects

5.2.1. Image Resolution

Table 2 depicts the classification performance on the resolution-adjusted images of the seven
cancer types in the meta-test set. On average, the baseline CNN classifier achieves an AUC
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Table 1. Results comparing the WGD classifica-
tion AUC (average ± 1 std dev) on the held-out
meta-test set with baseline standard (CNN) and
meta-learning (MAML) training.

CNN MAML

ACC 0.6873 ± 0.0540 0.6988 ± 0.0581
CHOL 0.6890 ± 0.0532 0.6845 ± 0.0643
KICH 0.6928 ± 0.0312 0.7022 ± 0.0303
KIRC 0.6611 ± 0.0609 0.6843 ± 0.1018
OV 0.6950 ± 0.0393 0.7020 ± 0.0435
UCEC 0.7000 ± 0.0602 0.6859 ± 0.0816
UCS 0.6846 ± 0.0387 0.6908 ± 0.0667

Total 0.6888 ± 0.0506 0.6944 ± 0.0773

Table 2. Results comparing the WGD classifica-
tion AUC (average ± 1 std dev) on the resolu-
tion-adjusted meta-test set with baseline standard
(CNN) and meta-learning (MAML) training.

CNN MAML

ACC 0.6316 ± 0.1011 0.6930 ± 0.0689
CHOL 0.6733 ± 0.0570 0.6730 ± 0.0548
KICH 0.7081 ± 0.0261 0.6941 ± 0.0285
KIRC 0.6269 ± 0.0805 0.6401 ± 0.0855
OV 0.7097 ± 0.0728 0.7136 ± 0.0751
UCEC 0.6794 ± 0.0496 0.6877 ± 0.0569
UCS 0.6697 ± 0.0330 0.6649 ± 0.0886

Total 0.6713 ± 0.0716 0.6809 ± 0.0717

of 0.6713, ranging from 0.6269 to 0.7097. In contrast, the MAML classifier achieves an AUC
of 0.6809, ranging from 0.6401 to 0.7136, achieving better performance on average than the
CNN classifier on four of the meta-test cancer types. Taken together, the MAML approach
outperforms the baseline CNN approach on the meta-test set (Wilcoxon signed-rank one-
sided p-value=0.0312). Due to the coarse-grained nature of the resolution-adjusted images
and associated loss of pixel information, the MAML classifier learns better on the original
unperturbed meta-test set images than the resolution-adjusted meta-test set images (Wilcoxon
signed-rank one-sided p-value=0.0254). This result is consistent with our feature extraction
analysis to identify the optimal magnification, which showed superior performance on 10x
magnification images compared to 5x magnification images.

5.2.2. Image Brightness

Table 3 depicts the classification performance on the brightness-adjusted images of the seven
cancer types in the meta-test set. On average, the baseline CNN classifier achieves an AUC of
0.6884, ranging from 0.6670 to 0.7101. In contrast, the MAML classifier achieves an AUC of
0.6973, ranging from 0.6837 to 0.7147, achieving better performance on average than the CNN
classifier on five of the meta-test cancer types. Notably, the MAML approach outperforms the
baseline CNN approach on three out of the five rare cancer types. Taken together, the MAML
approach outperforms the baseline CNN approach on the meta-test set (Wilcoxon signed-
rank one-sided p-value=0.0370). Moreover, the MAML classifier is able to learn equally well
on the original unperturbed and brightness-adjusted meta-test set images, with no significant
difference in performance (Wilcoxon signed-rank two-sided p-value=0.9967).

6. Discussion

In this work, we demonstrate that machine learning enables signal extraction from medical
imaging data mired in tissue site-specific idiosyncrasies. Unlabeled data is often abundant in
healthcare settings because label acquisition is expensive. The meta-learning training regime
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Table 3. Results comparing the WGD classifica-
tion AUC (average ± 1 std dev) on the bright-
ness-adjusted meta-test set with baseline standard
(CNN) and meta-learning (MAML) training.

CNN MAML

ACC 0.6742 ± 0.0801 0.7062 ± 0.0655
CHOL 0.6819 ± 0.0475 0.7147 ± 0.0388
KICH 0.7101 ± 0.0216 0.7079 ± 0.0335
KIRC 0.6670 ± 0.0795 0.7060 ± 0.0825
OV 0.6989 ± 0.0774 0.7000 ± 0.0952
UCEC 0.6899 ± 0.0312 0.6961 ± 0.0379
UCS 0.6900 ± 0.0495 0.6837 ± 0.0874

Total 0.6884 ± 0.0620 0.6973 ± 0.0704

enables fast learning with only a handful of examples. In the case of WGD classification,
the MAML classifier outperforms the baseline CNN classifier on the meta-test set when it
is trained on only eight training examples per cancer type. In addition, we introduce two
batch effects; for every image in the meta-test set, we perturb the image by (i) reducing the
brightness by 50%, or (ii) reducing the resolution by 50%. In both cases, the MAML classifier
outperforms the baseline CNN classifier on WGD classification.

Ultimately, accounting for variations between cancer types is made possible by fast learning
on only a handful of labeled images, which successfully extended to accounting for technical
variations within cancer types. From a clinical perspective, the ability to accurately and cost-
effectively stratify patients enables a more fine-grained study of and tailored approach to
treatment. From a machine learning perspective, fast adaptation to new tasks is key to miti-
gating heterogeneity in high-dimensional data that is nonspecific to the signal of interest. As
natural extensions of this work, we will expand this analysis to include all 33 cancer types
from TCGA and multiple labels beyond WGD status. We will also devise methods that can
learn from multiple slices and magnifications to capture intra- and inter-cellular patterns.38

By facilitating a more complete picture of the tumor, we envision these technologies can be
seamlessly integrated into the clinic for real-time histology assessment and decision support.39

Software and Data
The code to reproduce all results is publicly available: https://github.com/chsher/CAML.
TCGA images can be accessed via the NCI GDC Data Portal: https://portal.gdc.cancer.
gov. WGD labels can be obtained from Ref. 34. Supplementary materials: https://drive.
google.com/file/d/19psOVdf89lAy-efZuhDoCei9f2mvDujn/view?usp=sharing.
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