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The advent of simultaneously collected imaging-genetics data in large study cohorts pro-
vides an unprecedented opportunity to assess the causal effect of brain imaging traits on
externally measured experimental results (e.g., cognitive tests) by treating genetic variants
as instrumental variables. However, classic Mendelian Randomization methods are limited
when handling high-throughput imaging traits as exposures to identify causal effects. We
propose a new Mendelian Randomization framework to jointly select instrumental variables
and imaging exposures, and then estimate the causal effect of multivariable imaging data
on the outcome. We validate the proposed method with extensive data analyses and com-
pare it with existing methods. We further apply our method to evaluate the causal effect
of white matter microstructure integrity (WM) on cognitive function. The findings suggest
that our method achieved better performance regarding sensitivity, bias, and false discovery
rate compared to individually assessing the causal effect of a single exposure and jointly as-
sessing the causal effect of multiple exposures without dimension reduction. Our application
results indicated that WM measures across different tracts have a joint causal effect that
significantly impacts the cognitive function among the participants from the UK Biobank.

Keywords: Mendelian randomization; cognitive function, brain-imaging, dimension reduc-
tion.
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1. Introduction

Imaging genetics is an emerging field that combines genetic and multi-modal brain imaging
data to investigate the genetic effects on brain function or structure and to understand the
neurogenetic mechanism of mental and neurological disorders and related disease and behavior
phenotypes. Previous studies have used imaging genetics approaches to cognition, behavior in
health and complex diseases.1–6 One increasingly important goal of imaging genetics studies
is to test for causal imaging features on disease and related outcomes; and scalable methods
to target this goal are in urgent need.7,8

Mendelian randomization (MR) methods estimate the causal effect of a modifiable expo-
sure on an outcome in an observational study by employing genetic variants as instrumental
variables (IVs).9–11 They address the limitations of traditional observational epidemiology re-
garding unobservable confounding and reverse causation10,12–14 and have been widely used in
studies of potential causal inference.15,16 To successfully examine the causal effect, three key
IV assumptions need to be met for MR analyses: i) IVs must be associated with the expo-
sure of interest; ii) IVs must not be associated with confounders of the exposure-outcome
association; and, iii) IVs must not affect the outcome except possibly through the exposure
variable.10,17–19 MR experiments have generally relied on genetic variants associated with a
single exposure to avoid violations of IV assumptions (ii) and (iii). However in practice, most
variants are pleiotropic and associated with multiple exposures that cannot be ignored.11

Fig 1A shows the classical MR framework with multiple IVs and only one single imaging
exposure. The classical MR method, such as the inverse-variance-weighted (IVW) approach,
can estimate the causal effect of individual exposures using valid IVs following the fixed effect
meta-analysis.20 However, especially in neuroimaging studies, MR analyses on only one imag-
ing trait fail to completely capture the causal effects because these kind of analyses ignore the
impact from other imaging traits, given that imaging traits are highly correlated. In addition,
the presence of pleiotropic genetic variants will ultimately lead to inflated type I error rates
and inadequate statistical power in MR analyses. For example, in Fig 1B, imaging traits have
complex interconnections and may result in a combined effect coming from multiple traits
rather than from a single exposure on the outcome. Their spatial dependency has created a
few analytical challenges. Firstly, existing MR methods for multiple exposures allowed us to
estimate causal effects of different exposures simultaneously on outcome, assuming additive
effects.7,11,21 However, these methods are restricted by complicated horizontal pleiotropy and
multicollinearity when the exposures are highly correlated as in the case of imaging features.22

Specifically, increasing the number of IVs and exposures makes the validation of IV assump-
tions challenging, consequently leading to biased causal estimates and false-positive causal
relationships.11 Secondly, the framework involves multiple IVs and imaging exposures and
usually cannot specify the subset of IVs with its influenced exposures, while preserving the
validity of IV assumptions for all. Therefore, it becomes increasingly important to identify the
subsets of strongly associated IVs and exposures as guided by their causal relationship with
the outcome

We propose a new method to address the aforementioned issues in MR analyses on multiple
imaging exposures. Our method primarily selects a set of exposures that share a common set of

Pacific Symposium on Biocomputing 27:73-84(2022)

74



IVs guided by data-driven submatrix identification algorithms.23,24 This method integrates the
most informative features from exposures while reducing the burden of horizontal pleiotropy
introduced by including too many exposures and IVs simultaneously in the MR model. In this
study, we illustrated the application of our method using data from the UK Biobank (UKB)
to examine the causal effects of white matter microstructure integrity (WM) measured with
factional anisotropy (FA) on cognitive function. We also carried out simulation studies to
compare the proposed method with existing MR methods. Both the application and simulation
results demonstrated improved causality estimation. In this initial work, we focus on the
individual-level data in one-sample MR analysis. We provide a detailed introduction of our
method in section 2, the application to UKB data in section 3, simulation studies in section
4, and conclude with a comprehensive discussion in section 5.

2. Methods

In our application, brain imaging variables are multivariable exposures in the MR analysis
(see Fig 1). The high-dimensionality of exposure variables leads to two new challenges: i)
identifying causal exposures and corresponding IVs and ii) causal effect estimation for de-
pendent multivariable exposures. Specifically, it is challenging to identify a subset of imaging
variables with causal effects on the outcome and more importantly to extract a set of IVs
that are jointly valid for the selected imaging exposures. To address these issues, we estimate
the integrative causal effects of a set of dependent imaging exposures on the outcome. We
provide an overview of our three-step approach and elaborate the procedures in the following
subsections.

G1

GS

X1

XM

Y
X2

G2

G2

X Y

G1

GS

A. MR with single exposure B. MR with multiple exposures

GS-1

Interconnected 
imaging exposures

U

U

G: genetic variants - IVs in MR analysis
X: imaging exposures
Y: outcome
U: unobservable confounders

Fig. 1. Mendelian Randomization with a single exposure (left) and multiple dependent exposures
(right).

Our goal is to simultaneously select causal imaging exposures and corresponding valid IVs,
such that each selected imaging exposure has causal effect based on the selected IVs. At the
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Fig. 2. Overview of analysis framework. Our MR analysis method consists of three main steps.
The heatmap (left) shows the raw unorganized matrix of −logP -value in the first analysis step;
the heatmap (middle) shows the matrix after submatrix identification in the second step, showing a
cluster of most informative features; and, the diagram (right) shows the MR analysis on the identified
features with selected IVs in the last step.

same time, each selected genetic variant is a valid IV for all selected imaging exposure IVs,
satisfying the three commonly assumptions in MR analysis. Therefore, the IV set and exposure
set selection procedures are interactive and can be subject to substantial false positive and
false negative errors using an iterative procedure. We propose a new objective function for
joint IV and exposure set selection.

2.1. Step 1 : Mendelian randomization analysis on a single imaging
exposure

We first perform MR analysis on each imaging exposure with loci of interest and assess the
validity of IVs by following the guideline for MR investigations proposed by Burgess et al.
(2019).19 We record the validity as a indicator function for each pair of genetic variant and
imaging exposure asm in matrix AS×M = {asm}. Similarly, we store the single-exposure MR
analysis results in a matrix QS×M = {qsm}. We have

asm =

{
1, if gs ∈ G(m);

0, otherwise.
qsm =

{
− log(Psm), if asm = 1;

0, otherwise.
(1)

2.2. Step 2: Joint instrumental variables and imaging exposures selection

Next, we detect a submatrix from a large matrix of genetic variants and imaging exposures
W = A ◦ Q, where ◦ is the Hadamard product. Our objective function is an `0 shrinkage
function to extract the maximal number of valid imaging exposure-IV pairs with minimally
sized IV set and imaging variable set. Specifically:

arg max
G∗,M∗

log(wam|a ∈ G∗ & m ∈M∗)− λ0(log(||G∗||0) + log(||M∗||0)) (2)
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where G∗ is the IV set and M∗ is the imaging exposure set, ||||0 is the cardinality measure
of a set, and λ0 is a tuning parameter. The first item ensures the maximal information can
be included based on selected G∗ and M∗, while the second term penalizes the cardinality
of G∗ and M∗ to avoid the false positive errors. The objective function is non-convex due to
the `0 term, and thus computationally intensive. We employ greedy algorithms to implement
the objective function for large-sized W 23 and exhausting search algorithms for medium-small
W .24 Both algorithms can be conveniently extended to multiple sets of G∗ and M∗.

Specifically, we can search the optimal submatrix W ∗ determined by M∗ and G∗ that
contains the most informative features following a general iterative procedure:

(1) Find a submatrix W̃ ⊂W by a greedy search algorithm23 to approximately maximize the
objective function.

(2) Subtract the average of W̃ from each of its entries in W .
(3) repeat until convergence criteria is met.

This algorithm searches the solution of the objective function in an iterative-residual fashion,
which captures the most informative features of the data matrix (W ) that are of potential
causal effect inference24 with parsimonious IV set and exposure set M∗ and G∗.

2.3. Step 3: Causal effect identification for multiple imaging exposures

Given a common IV set G∗ and a set of imaging exposures M∗, we attempt to estimate
the causal effect of multiple dependent exposures through MR analysis. It is challenging to
identify the causal effects of imaging exposures because the highly correlated exposures can
lead to imprecise causal effect estimation.25 This is a common issue that mediation analysis has
been facing.26 We adopt commonly used statistical techniques in imaging causal mediation
analysis to transform the imaging exposures into a set of orthogonal variables. Let M∗ =

(M1, . . .Mn)ᵀ ∈ Rn×p denote the matrix for p selected imaging features across n subjects, and
M̃∗ = MΦ = (M̃1, M̃2, . . . M̃n)

ᵀ
∈ Rn×V be the matrix of orthogonally transformed imaging

variables where Φ ∈ Rp×V is the transforming matrix. We can estimate Φ and M̃∗ based on
the procedure described in Chén et al. (2018).26 Furthermore, we can implement sparsity on
loadings for the components to improve the interpretability.27

We next perform MR analysis on V orthogonal imaging factors Φ with independent causal
effects. Given these conditions, we only need the MR analysis on individual factors because the
orthogonal imaging factors only have additive causal effects. For an imaging factor M̃∗v, v =

1, · · · , V , we can estimate its causal effect on the outcome (Y ) using uncorrelated IVs (G∗ =

{g1, ..., gS} ⊆ G) through the IVW method as follows:

θ̂v =

∑
s β̂Yvgs

β̂Xvgs
se(β̂Yvgs

)−2∑
s β̂Xvgs

se(β̂Yvgs
)−2

(3)

where β̂Yvgs
and β̂Xvgs

are the genetic associations based on the regression of the outcome (Y )

and the imaging factor (M̃∗v), E[Y |G∗] = β̂Yv
G∗ and E[M̃∗v|G∗] = β̂Xv

G∗, respectively, with

the approximated standard error se(θ̂v) =
√

1∑
s
β̂2
Xvgs

se(β̂Yvgs
)−2

summing across the estimates
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from all IVs in G∗.20 The overall causal effect of all exposures given the identified imaging
factors can be simply expressed as E(Y |M̃∗, G∗) =

∑V
v=1 M̃

∗
vθv. In case that the IVs are

correlated, the IVW can be extended to account for the correlation matrix using methods
such as the generalized weighted linear regression,22,28 Causal Direction-Ratio,29 and Causal
Direction-Egger.29 We leave the details of using correlated IVs in the future study and focus
on uncorrelated IVs in our current study.

Remarks
Our MR framework consists of three steps as follows: step 1: select IV candidates associated
with each imaging exposures; step 2: extract submatrices of valid IVs and corresponding imag-
ing exposures; step 3: conduct MR analysis based on IVs and transformed imaging exposures
in the extracted submatrices.

3. Application to evaluate the causal effect of white matter microstructure
integrity on cognitive function

3.1. Data and study cohort

We applied our new method to a sample of 35,291 unrelated participants (white ethnicity
backgrounds aged 40-69) extracted from the UKB to evaluate causal effect of white matter
integrity on cognitive functions.30 The exposures consisted of forty regional brain FA measures
derived from diffusion MRI based on the preprocessing workflow of the Enhancing Neuro
Imaging Genetics Meta Analysis (ENIGMA) consortium.31 The outcome was the intelligence
g estimated from five cognitive traits related to the following four domains: processing speed,
perceptual reasoning, executive function and fluid intelligence.

The intelligence g was estimated among 10,979 participants with cognitive data. The
missing values were substituted by the average of imputed values based on predictive mean
matching (PMM) method implemented in R package mice (v3.13.0).32 We estimated this
latent general intelligence factor accounting for 59% of the total variance of the cognitive
traits using R package psych (v 2.1.9).33

The genotypic data was available for all participants involved in the analysis. We im-
plemented quality control with following inclusive thresholds: minor allele frequency (MAF)
> 0.01, Hardy-Weinberg equilibrium (HWE) > 0.001, missingness per marker (GENO) < 0.05,
and missingness per individual (MIND) < 0.02 by PLINK (v1.9).34 We removed highly cor-
related genetic variants (r2 < 0.5) via LD clumping and used the variants in gene VCAN as
potential IVs since many studies have discovered significant associations between VCAN and
the FA measures, as listed in the NHGRI-EBI GWAS Catalog.35 We adjusted for variables
such as sex, age, body mass index (BMI), genotyping chip type and top ten PCs of population
admixture in our MR analysis.

3.2. Results

We identified 31 out of 40 FA measures having a significant association (p-value < 0.05 adjusted
with false discovery rate36) with intelligence g after data preprocessing. In total, we found 27
genetic variants in VCAN that had highly significant associations (p-value < 5 × 10−7) with
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at least one of the 31 FA measures. These variants were weakly correlated with each other.
As shown in Fig 2B, the heatmap presented the causal effect significance (− log(p-value)) esti-
mated from MR using a single IV for every exposure, given the rows and columns represented
the 27 IVs and 31 FAs, respectively.

We observed that FAs affected intelligence g in different levels and some of these measures
had similar effects based on their common IVs (see heatmap (left) Fig 2), although they were
arranged in a random order. We further detected an informative cluster consisting of 22 FA
measures with 3 common IVs in this unorganized structure by implementing our objective
function. These FA measures were: bilateral anterior corona radiata, body of corpus callosum,
cingulum cingulate gyrus (right), cingulum hippocampus (left), bilateral external capsule,
genu of corpus callosum, posterior corona radiata (left), bilateral posterior limb of internal
capsule, posterior thalamic radiation (right), bilateral retrolenticular part of internal capsule,
splenium of corpus callosum, bilateral superior corona radiata, bilateral superior longitudinal
fasciculus, bilateral sagittal stratum, and uncinate fasciculus (left). The 3 SNPs of VCAN on
chromosome 5 included: rs173686, rs35483733, rs78483393, having reported association with
white matter integrity in the previous study.37 Fig 3B (upper) showed the correlation matrix
of the 22 FA measures selected. These imaging exposures had moderate to high correlations
between each other, suggesting non-identifiable causal effects based on existing MR methods
with independent causal effects. Following step 3 in our method, we transformed the 22 FA
measures into a single general factor. The general factor of FA (gFA) was estimated based
on 3 components achieving the highest percentage (59%) of common variance among 22 FA
measures. The number of components used was approximated by a parallel analysis (see Fig 3B
(lower)). The loading for the rest factors was unstable based on bootstrap model validation,
and thus were not used.

Next, we assessed the comprehensive causal effect of FAs (gFA) on cognitive function (in-
telligence g) via classical IVW-based MR method using the MendelianRandomization (v0.5.1)
package in R.38 The results revealed that gFA had significant causal effect on intelligence g
(β = 21.94, SEβ = 8.87, p-value = 0.013). We also explored the causal effect estimated via
MR methods incorporating penalized regression,39 robust regression,40 and leave-one-out41 to
assess the consistency of the causal estimates and possible IV outliers. The results were all
consistent with the classical IVW method showing a significant causal effect of gFA on in-
telligence g . All in agreement, these results consistently revealed that the increase of white
matter microstructure integrity can cause the improvement of performance regarding cognitive
function tests.

4. Simulation

We carried out simulation studies to evaluate our proposed framework of MR analysis for
quantitative traits under the one-sample case. For n = 500 individuals, we first randomly sim-
ulated genotypes X500×20 for 20 uncorrelated genetic variants (i.e. IVs in the MR analyses).
Here we assumed there was an underlying true factor of imaging exposure Mf500×1 = Xα20×1,
where αT = (2, 2, ..., 2, 0, 0, ..., 0) measured the effect that genetic variants had on exposures.
We also assumed that only 10 simulated genetic variants had true effect on this underly-
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Fig. 3. Mendelian randomization analysis results of imaging exposures and cognitive
function. A shows the 22 FA tracts identified within a submatrix extracted from 31 FA tracts. The
lowest significance was shown in dark blue whereas red indicated the highest significance of causal
effect; B shows the matrix of pair-wise correlation matrix of the 22 tracts along with their parallel
analysis based on PCA for estimating orthogonal factors; and, C shows the MR analysis with its
final results of the causal effect across the uncorrelated orthogonal imaging factors.

ing exposure factor, whereas the other 10 variants had no true effect. Next, we generated
20 observed imaging exposures with true casual effects on the outcome by Mi = Xα∗i + ε∗i ,
where α∗i = α + (δ∗i,1, ..., δ

∗
i,20)

T and ε∗i = (ε∗i,1, ...ε
∗
i,500)

T . In addition, we simulated another 20
observed imaging exposures without true casual effects on the outcome by M ′i = ε′i, where
ε′i = (ε′i,1, ...ε

′
i,500)

T . Here ε∗i,k, ε
′
i,k and δ∗i,j are all i.i.d random noise with standard normal dis-

tribution, where i, j ∈ {1, ..., 20} and k ∈ {1, ..., 500}. Finally, we simulated the outcome data
using the true exposure factor, i.e. Y500×1 = β ∗Mf + ε500×1, and ε = (ε1, ..., ε500)

T is another
set of standard normal random noises. We consider two cases for the causal effect size: large
(β = 1) and small (β = 0.5).

Under this simulation setting, three types of MR analyses were implemented and their
performances were compared. The first one was our method, which implemented LAS24 to
identify submatrices before MR and only included a subset of essential imaging exposures in
the MR model. The second method included all 40 imaging exposures in the MR model, and
the third one simply ran 40 MR models with single exposure independently. To evaluate, we
calculated the bias of the point estimates for causal effect β, and the sensitivity and False
Discovery Rate (FDR) for correctly selecting the true imaging exposures with casual effect.
For the later part, the second method just simply included all the exposures (i.e. selecting all)
and the third method made the selection based on its p-values with a Benjamini-Hochberg
correction (number of comparisons is 800).

We ran the simulation for 500 replications, and the results are given in Table 1. The
computation time was 60 seconds per replication using a desktop with CPU 3.40GHz and
RAM 64GB on average. In both the large effect and small effect settings, our method achieved
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smaller bias in estimating the causal effect compared to the method using all 40 imaging
exposures (0.108 vs. 0.924 for large effect, 0.05 vs. 0.473 for small effect). In terms of the
selection of causal imaging exposures, our method had substantially decreased FDR (0.15 and
0.148) while still maintaining a sensitivity closed to 1 (0.947 and 0.945).

Table 1. Simulation results for two different causal effects size β = 1 and β = 0.

Simulation results with β = 1

Method Bias of β̂ Sensitivity FDR

MR with exposures selected (our method) 0.108 (0.084) 0.947 (0.075) 0.15 (0.157)
MR with all exposures 0.924 (0.213) 1 (0) 0.5 (0)
MR with a single exposure - 1 (0) 0.5 (0)

Simulation results with β = 0.5

Method Bias of β̂ Sensitivity FDR

MR with exposures selected (our method) 0.05 (0.045) 0.945 (0.077) 0.148 (0.155)
MR with all exposures 0.473 (0.107) 1 (0) 0.5 (0)
MR with a single exposure - 1 (0) 0.5 (0)

5. Discussion

We developed a new MR framework to evaluate the causal effects of inter-correlated mut-
livariable brain imaging exposures on outcomes. Our approach provides a viable solution to
estimate the causal effect of objectively measured characteristics of the central nervous system
on externally measured neuropsychological test results by leveraging imaging-genetics data.
The utility of genetic variants as instrumental variables leads to unbiased estimates of causal
effects free from confounding effects from numerous environmental factors.

The MR analysis with brain imaging variables as exposures is intrinsically challenging. The
selection of valid IVs for all imaging exposures and the selection of causal imaging exposures
are complex and numerically difficult. We propose a new objective function to select exposures
and IVs for maximal information while controlling false positive error rate by penalizing the
cardinality of IV and imaging sets. The selected imaging variables provide spatially-specific
causes for the externally measured test results. The shared IV set also becomes the foundation
to transform the imaging exposures to orthogonal and causal independent factors as the IVs are
valid for any of the imaging variables. Last, we estimate the causal effects of the transformed
exposures of selected imaging variables and make inference.

Compared to previous studies that only repeatedly tested the associations between white
matter microstructure integrity and cognitive function, our analysis revealed a significant
comprehensive causal relationship between them. The decrease of white matter microstruc-
ture integrity causes the decline in cognitive function while adjusting for age, sex and other
covariates mentioned above. Although our current analyses focus on region-level imaging vari-
ables, our method can be extended to voxel-level analyses. We also assume that there exists no
cyclic causal effects between multiple exposures and the outcome. Our study aims to address
issues of the multiple-exposure MR particularly in the one-sample studies because the existing
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studies and resources of summary statistics for all exposures included are restricted and more
difficult to ensure valid IVs to achieve two-sample scenario.

In summary, our MR analysis framework with multivariable imaging exposures opens a new
avenue for imaging-genetics data analysis and causal inference. This study currently focuses
on MR analysis using uncorrelated IVs. Our framework can also be extended to MR analysis
using correlated IVs adopting the new MR methods that account for complex covariance
structure among IVs in future studies.
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