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Genome-Wide Association Studies, or GWAS, aim at finding Single Nucleotide Polymor-
phisms (SNPs) that are associated with a phenotype of interest. GWAS are known to suffer
from the large dimensionality of the data with respect to the number of available samples.
Other limiting factors include the dependency between SNPs, due to linkage disequilibrium
(LD), and the need to account for population structure, that is to say, confounding due to
genetic ancestry.

We propose an efficient approach for the multivariate analysis of multi-population
GWAS data based on a multitask group Lasso formulation. Each task corresponds to a
subpopulation of the data, and each group to an LD-block. This formulation alleviates the
curse of dimensionality, and makes it possible to identify disease LD-blocks shared across
populations/tasks, as well as some that are specific to one population/task. In addition, we
use stability selection to increase the robustness of our approach. Finally, gap safe screening
rules speed up computations enough that our method can run at a genome-wide scale.

To our knowledge, this is the first framework for GWAS on diverse populations com-
bining feature selection at the LD-groups level, a multitask approach to address population
structure, stability selection, and safe screening rules. We show that our approach outper-
forms state-of-the-art methods on both a simulated and a real-world cancer datasets.

Keywords: Genome Wide Association Studies, Feature selection, Multitask group Lasso,
Stability selection, Safe screening rules

1. Introduction

Over the last 15 years, Genome-Wide Association Studies (GWAS) have become one of the
most prevalent methods to identify regions of the genome associated with complex phenotypic
traits, and in particular complex diseases in humans.1 One of the major concerns in GWAS is
population stratification, which arises when allele frequency differences between cases and con-
trols are due to differences in genetic ancestry rather than to association with the phenotype.
Many correction methods have been proposed to adjust the inflation of associations in diverse
populations, including methods based on principal components analysis or on linear mixed
models.2 However, it is possible that these techniques lead to overcorrection, in particular by
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masking population-specific disease loci.
An additional issue in GWAS is Linkage Disequilibrium (LD), which manifests as corre-

lation between adjacent Single Nucleotide Polymorphisms (SNPs), creating statistical depen-
dence between those markers and reducing statistical power.3 Combining strongly correlated
SNPs into blocks, that is to say, groups of adjacent and correlated SNPs, and modeling the
association signal over an entire region, is one way to address this limitation.

Classical approaches for GWAS are based on single-marker analyses, testing for association
between each SNP and the phenotype independently. This may prevent the detection of effects
that are due to SNPs acting additively, leading many authors to favor fitting a linear model to
all SNPs jointly.4 Penalized regression approaches, such as the Lasso, which uses an `1-norm
regularization to shrink some coefficients of the model to zero, effectively removing them from
the model, are particularly suited to this task.

Additional regularizers can be used to enforce additional prior hypotheses on the coeffi-
cients of such a linear model. Among them, the group Lasso3,5 ensures sparsity at the level of
pre-defined groups of features, and the multitask Lasso6,7 fits models on related tasks jointly,
encouraging similar sparsity patterns across all tasks.

In this work, we propose to combine both approaches into a multitask group Lasso frame-
work, in which groups correspond to pre-defined LD patterns, and each task corresponds to a
subpopulation, therefore simultaneously addressing the limitations of single-marker analyses
and the issues of both LD and population structure.

In addition, we draw on the stability selection framework8 to improve the stability of
the results, that is to say, their robustness to small perturbations in the input data, such as
the removal of a few samples. Indeed, because the number of SNPs is typically much larger
than that of samples, penalized regression approaches tend to select different sets of SNPs
when presented with slightly different subsets of the same data, which severely limits their
interpretability.

Finally, we use the recently proposed gap safe screening rules proposed by E. Ndiaye et
al.9 to improve computational complexity, and scale our approach to about one million SNPs.

In what follows, we present our proposed approach in detail, place it in the context of
existing work, and evaluate it on both a simulated data set and a real-world cancer GWAS
data set.

2. Methods

Our proposed approach, MuGLasso, follows four steps, which we detail in this Section. First,
we assign each sample to a genetic population, hence forming different but related tasks
(Section 2.1). Second, we create LD-groups from correlations between SNPs, so as to perform
feature selection at the level of groups rather than individual SNPs(Section 2.2). Third, we
jointly fit one regularized model per task, using an `2,1 penalty that enforces sparsity at the
level of LD-groups (Section 2.3). Finally, we use stability selection to improve the robustness
of the solution (Section 2.4).
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2.1. Population stratification

Population structure, whereby the data is made of subsets of individuals that differ systemati-
cally both in genetic ancestry and in the phenotype under investigation, is a major confounding
factor in GWAS. Indeed, it leads to detecting allele frequency differences in cases and con-
trols that correspond to differences in ancestry, instead of a more direct association between
genotype and phenotype. Several approaches have been developed to adjust for population
structure.

Among them, a large number of methods rely on Principal Component Analysis
(PCA),10–12 and consist of including top Principal Components (PCs) of the genotypes as
covariates in regression models. In addition, linear mixed models13 can be used to model the
phenotype as a combination of fixed and random effects, with the covariance of the latter be-
ing computed from a genetic similarity matrix. Although they often outperform PCA-based
methods, the mixed model approaches tend to be more computationally demanding. Both ap-
proaches are similar in that regressing out principal components can be seen as approximation
of a linear mixed model.2

However, these techniques may lead to ignoring population-specific SNPs, which is why we
propose a multitask approach that can identify disease loci that are either population-specific
or shared between populations. We therefore form tasks by separating the data into subpop-
ulations, identified as clusters (using k-means clustering) on the projection of the genotypes
on their top PCs.

2.2. Linkage disequilibrium groups

Linkage disequilibrium (LD) is the non-random association of alleles of at least two loci.14 LD
can be leveraged to form groups of correlated SNPs. Grouping SNPs helps to alleviate the
curse of dimensionality in GWAS by reducing the number of testing possibilities. This can be
achieved by combining p-values within a group of correlated SNPs15, or through the use of
penalized regression approaches that perform feature selection at the level of groups, rather
than at the level of individual SNPs.3 The latter has the advantage over individual statistical
testing of modeling the additive effects of multiple genetic markers simultaneously.

2.2.1. Adjacency-constrained hierarchical clustering

In many species, including humans,16 LD is known to be correlated to the physical distance
between SNPs. Hence, genomes can be clustered in LD blocks of strongly correlated adjacent
SNPs, called in this paper LD-groups. Such LD-groups can be obtained using adjacency-
constrained hierarchical agglomerative clustering,3 in which only physically adjacent clusters
can be merged.

2.2.2. LD-groups across populations

Because LD patterns may be influenced by genetic ancestry,17 we perform LD-groups parti-
tioning for each population separately. We then combine those LD-groups into common shared
LD-groups. More specifically, the set of coordinates of the boundaries of the shared LD-groups
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is obtained as the union of the sets of coordinates of the boundaries of the LD-groups for each
population. This procedure is described in Supplementary Figure B1.

2.3. Multitask group Lasso

2.3.1. General framework and problem formulation

We use a penalized regression approach to fit a multivariate linear model between the phe-
notype and the SNPs, with a regularization term that ensures that (1) the solution is sparse
at the level of LD-groups and (2) the regression coefficients are smoothed within groups and
across tasks. Such an approach provides shared LD-groups associated with the phenotype
across all tasks, and allows for some LD-groups to be specific to each task.

Problem formulation Given a set of p SNPs measured for n samples, we split the n samples
in T subpopulations/tasks, each of size nt for t = 1, . . . , T , and the p SNPs in G LD-groups,
each of size pg for g = 1, . . . , G. For each population t, we denote by x(t)

m the p-dimensional
vectors of SNPs of the m-th sample in the population (m = 1, . . . , nt), and by y(t)

m its phenotype.
We then formulate the following optimization problem:

min
B∈Rp×T

1

n

T∑
t=1

nt∑
m=1

L

y(t)
m ,

p∑
j=1

β
(t)
j x

(t)
mj

+ λ

G∑
g=1

√
pg

∥∥∥B(g)
∥∥∥
F
, (1)

where β(t) ∈ Rp is the vector of regression coefficients specific to task t : β(t) = (B1t, . . . , Bpt),
L is the quadratic loss if the phenotype is quantitative (y ∈ R) and the logistic loss if it is
qualitative (y ∈ {0, 1}), ‖.‖F denotes the Frobenius norm, and B(g) is a pg×T matrix containing
the regression coefficients, across all tasks, for the SNPs of group g.

2.3.2. Related work

`2,1-norm regularization Our approach is closely related to the group Lasso5 and multitask
Lasso,6 which both make use of an `2,1-norm regularization. More precisely, the group Lasso
corresponds to a special case of Equation (1), with a single task (T = 1), resulting in sparsity
at the group levels. Using a group Lasso where the groups are defined based on LD blocks has
been successfully applied to GWAS on up to 20 000 SNPs.3 The multitask Lasso corresponds to
a special case of Equation (1), with each group containing exactly one SNP. This formulation
ties sparsity patterns across tasks and has been applied before to multi-population GWAS,
although only a few thousand SNPs.7

The multitask group Lasso we propose can also be reformulated as an `2,1-norm regulariza-
tion problem, through the creation of a new dataset (X̃, ỹ) where X̃ ∈ Rn×pT is a block-diagonal
matrix such that each of the T diagonal blocks corresponds to the SNP matrix X(t) ∈ Rnt×p

for task t, and ỹ is a n-dimensional vector obtained by stacking the phenotype vectors for
each task. Equation (1) can then be rewritten as:

min
b∈RpT

1

n

n∑
i=1

L

(
ỹi,

pT∑
k=1

bkx̃ik

)
+ λ

G∑
g=1

√
pg

∥∥∥b(g)
∥∥∥

2
, (2)
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with b(g) ∈ RpgT the regression coefficients corresponding to all SNPs of group (g) for all tasks.
In essence, this is a group Lasso with G groups each containing T copies (one per task) of the
pg features of SNP group g. Thus Bjt = bp(t−1)+j .

Other multitask group Lassos Other authors have proposed variations on the idea of a
multitask group Lasso before. Several publications18,19 add a second regularization term to our
formulation, increasing within-group or across-task sparsity. Unfortunately, this dramatically
increases computational time, and indeed none of these publications analyze genome-wide
data sets. In addition, because interpretation will be done at the group level rather than at
the SNP level, within-group sparsity is not necessarily desirable in this context.

Several authors have built on these propositions and add a third regularization term,
either enforcing group-independent task sparsity20 or overall sparsity (with an `1-norm over
all coefficients).21 Again, the addition of these regularizers severely hinders the applicability
of these methods at a genome-wide scale due to computational limitations.

Hence none of these methods is readily applicable to our setting. In addition, their stability
has never been evaluated, even though it is an important criterion for the reliability and
interpretability of the results (see Section 2.4).

2.3.3. Gap safe screening rules

To speed up the computation of the solution of Equation (2), we call upon gap safe screening
rules,9 which are used to efficiently identify features for which the regression coefficients will
be zero and hence ignore them when solving the problem. Such screening rules have been
proposed for a large number of popular regularized regressions,9 including `2,1-norm regular-
izations. In particular, Equation (2) can be solved using the Gap Safe Rule packagea. We
briefly summarize the idea underlying gap safe screening rules in Appendix B.3.

2.4. Stability selection

Unfortunately, in GWAS, penalized regression approaches often lack stability, that is to say,
robustness to slight variations in the input dataset.22 However, stability increases both the
reliability of the results and the interpretability. To address this limitation, stability selec-
tion8,22 consists of performing feature selection repeatedly on subsamples of the data and only
retains the features most often selected. More specifically, given a subsample I ⊂ {1, . . . , n} of
size bn/2c of the data, we call Ŝλ(I) the set of features selected by the selection procedure of
interest (for example, a Lasso), with hyperparameter λ, on this subsample of the data. For
any feature j ∈ {1, . . . , p}, we call Π̂λ

j the probability that feature j is selected on a random
subsample of size bn/2c of the data. This probability is determined, given m such random
subsamples I1, I2, . . . , Im, as the proportion of those subsamples for which the feature selection
procedure selects feature j: Π̂λ

j = 1
m

∑m
k=1 1j∈Sλ(Ik). Finally, given a a threshold 1

2 < πcutoff ≤ 1

(in this work, we used πcutoff = 0.75), the stable set of selected features is determined as
Ŝstable = {j : maxλ∈Λ Π̂λ

j ≥ πcutoff}.

ahttps://github.com/EugeneNdiaye/Gap_Safe_Rules
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3. Experiments

3.1. Data

Simulated data Using GWAsimulator,23 we simulated GWAS data with realistic LD pat-
terns from two populations (CEU : Utah residents with Northern and Western European
ancestry and YRI: Yoruba in Ibadan, Nigeria) of the HapMap 3 data. We induced popula-
tion structure by varying the case:control ratio within each subpopulation (CEU 1 100:900
and YRI 900:1 100), as well as by simulating population-specific disease loci. We simulated a
total of 149 970 disease SNPs, 2 999 (resp 4 999) of which are specific to the CEU (resp. YRI)
population (see Appendix A.1). The data contains 4 000 samples and 1 400 000 SNPs.

DRIVE Breast Cancer OncoArray The DRIVE OncoArray dataset (dbGap study ac-
cession phs001265/GRU) contains 28 281 individuals that were genotyped for 582 620 SNPs.
13 846 samples are cases and 14 435 are controls. More details are available in Appendix A.2.

3.2. Preprocessing

Quality control and imputation We removed SNPs with a minor allele frequency lower
than 5%, a p-value for Hardy-Weinberg Equilibrium in controls lower than 10%, or a missing
genotyping rate larger than 10%. We removed duplicate SNPs and excluded samples with more
than 10% of SNPs missing. We imputed missing genotypes in DRIVE using IMPUTE2.24

LD pruning We performed LD pruning using PLINK25 with a LD cutoff of r2 > 0.85 and a
window size of 50Mb, both to reduce the number of SNPs and to better capture population
structure using PCA.26 1 000 000 SNPs remain in the simulated data and 313 237 in DRIVE.

PCA and population structure We used PLINK25 to compute principal components of
the genotypes. We thus identify two populations in the simulated data, matching the CEU
and YRI populations (see Supplementary Figure C1a). In DRIVE, we identify two populations
(see Supplementary Figure C1b), which we call POP1 (samples from the USA, Australia and
Denmark) and POP2 (samples from the USA, Cameroon, Nigeria and Uganda).

LD-groups choice We obtain LD-groups for each of the PCA-based populations using adj-
clust27 and obtain shared LD-groups as described in Section 2.2.2. Table 1 shows the number
of LD-groups obtained for each subpopulation and the final number of shared groups.

Table 1. For each subpopulation of both datasets (simulated and real), LD-groups num-
ber is given and the shared LD-groups number after combination

Data Subpopulations LD-groups number Shared LD-groups number

Simulated data
CEU 25 281

35 792
YRI 15 636

DRIVE real data
POP1 8 152

17 782
POP2 5 032

Pacific Symposium on Biocomputing 27:163-174(2022)

168



3.3. Comparison partners

As a baseline, we use PLINK25 to perform tests of association between each SNP and the
phenotype, either using the top PCs as covariates (Adjusted GWAS), or treating each
population separately (Stratified GWAS). We also compute a PCA-adjusted phenotype as
the residuals of a regression between the top PCs and the phenotype. To evaluate the effects
of grouping correlated SNPs and separating the populations in tasks, we compare MuGLasso
to a Lasso (single task, no groups) on each population (Stratified Lasso) or on the adjusted
phenotype (Adjusted Lasso), as well as a group Lasso (single task) on each population
(Stratified group Lasso) or on the adjusted phenotype (Adjusted group Lasso).

For computational efficiency, we use bigLasso28 for the Lasso, and Gap Safe Rule9 for the
group Lasso. For all methods, we set the regularization hyperparameter by cross-validation.

To compare these methods, we report runtime, ability to recover true causal SNPs (in
the case of simulated data), and stability of the selection. To measure selection stability, we
repeat the feature selection procedure on 10 subsamples of the data, and report the average
Pearson’s correlation between all pairs of indicator vectors representing the selected features
for each subsample (see Appendix B.4 for details).

4. Results

4.1. MuGLasso draws on both LD-groups and the multitask approach to
recover disease SNPs

On the simulated data, we observe (Figure 1a) that MuGLasso is better than any other
method at recovering the true disease SNPs. Performing feature selection at the level of LD-
groups, rather than individual SNPs, improves performance. Indeed, the group Lassos and
MuGLasso outperform the SNP-level Lassos. In addition, treating all samples simultaneously
(as in MuGLasso or the adjusted approaches) also improves performance. This confirms our
hypothesis that grouping features and using all samples simultaneously both alleviate the
curse of dimensionality.

On DRIVE, MuGLasso recovers 1 051 SNPs in addition to all SNPs from the adjusted
GWAS. They point to 32 risk genes that cannot be identified by the classical GWAS; half of
those have been identified in meta-GWAS that included our samples, and another 7 have been
associated with breast cancer risk or growth in other studies (see Supplementary Table C1).

However, this increased ability to recover relevant SNPs comes with an increase in com-
putational time (see Supplementary Figure C2 on simulated data and Figure 2a on DRIVE).
However, the implementation is efficient enough to allow computations on 106 SNPs, even
with the added cost of repeated subsampling to increase stability.

4.2. MuGLasso provides the most stable selection

Figures 1b (simulated data) and 2b (DRIVE) show the stability index of MuGLasso as a
function of the number of subsamples. Increasing the number of subsamples increases the
stability of the selection. We use 100 bootstrap samples in all subsequent experiments as it
appears to be an acceptable trade-off between runtime and stability.
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Fig. 1. On simulated data, ability of different methods to retrieve causal disease SNPs as a ROC
plot (1a), and stability index of MuGLasso as a function of the number of bootstrap samples (1b).
On the ROC plot, the black dot indicates the performance of the stratified GWAS at the Bonferonni-
corrected significance threshold.

Tables 2 and 3 show the stability index of the different methods, on simulated data and
DRIVE, respectively. We ran the adjusted GWAS once on the entire data set, as would usually
be done, and therefore cannot report its stability. Our results again illustrate that stability
selection does increase the stability of Lasso methods. We confirm this by running MuGLasso
without stability selection as well as Adjusted group Lasso with stability selection on top. In
both cases, the stability index increases when stability selection is used. In addition, we report
the total number of selected SNPs and LD-groups. For methods that select individual SNPs,
we obtain the number of selected LD-groups by considering that each selected SNP selects
its entire LD-group. Our results illustrate that the improved stability of MuGLasso does not
come at the expense of selecting more features. On the contrary, stability selection provides
fewer SNPs/LD-groups with better stability.

4.3. MuGLasso selects both task-specific and global LD-groups

For both datasets, the LD-groups selected by MuGLasso are a mixture between population-
specific LD-groups (identified as those with near-zero regression coefficients for one task)
and LD-groups that are shared between both populations. Table 4 shows the number of LD-
groups/SNPs in each of these categories for MuGLasso. By contrast, the adjusted approaches
do not provide population-specific LD-groups or SNPs.

Finally, we report on Figure 3 the precision and recall of MuGLasso and the stratified
approaches on the population-specific SNPs. MuGLasso outperforms all other approaches in
both precision and recall.
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Fig. 2. On DRIVE, runtimes of the different Lasso approaches (2a) and stability index of MuGLasso
as a function of the number of bootstrap samples (2b).

Table 2. Stability index and number of selected features for different methods, on simulated data

Methods
Number of Number of Stability Selection

selected LD-groups selected SNPs index level
MuGLasso 5 623 155 312 0.4912 LD-groups
MuGLasso without stab sel 6 124 161 221 0.4412 LD-groups
Adjusted group Lasso + stab sel 6 054 162 104 0.4134 LD-groups
Adjusted group Lasso 6 347 167 204 0.3714 LD-groups
Stratified group Lasso 4 836 154 732 0.3398 LD-groups
Adjusted Lasso 5 379 158 856 0.2368 Single-SNP
Stratified Lasso 5 704 168 158 0.1742 Single-SNP
Adjusted GWAS 5 063 141 340 - Single-SNP

5. Discussion and Conclusions

We presented MuGLasso, an efficient approach for detecting disease loci in GWAS data from
diverse populations. Our approach is based on a multitask framework, where input tasks
correspond to subpopulations, and feature selection is performed at the level of LD-groups.
Assigning samples from PCA-identified populations to different tasks addresses the issue of
population stratification, and retains the flexibility of identifying population-specific disease
loci. Treating all samples together, by contrast with stratified approaches, alleviates the curse
of dimensionality. Ensuring sparsity at the level of LD-groups addresses the high correlation
between nearby SNPs and also alleviates the curse of dimensionality. Although more time-
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Table 3. Stability index and number of selected features for different methods, on DRIVE

Methods
Number of Number of Stability Selection

selected LD-groups selected SNPs index level
MuGLasso 62 1 357 0.4312 LD-groups
MuGLasso without stab sel 72 1 524 0.3911 LD-groups
Adjusted group Lasso + stab sel 59 1 293 0.3234 LD-groups
Adjusted group Lasso 68 1 466 0.2613 LD-groups
Stratified group Lasso 58 1 119 0.2498 LD-groups
Adjusted Lasso 41 874 0.2068 Single-SNP
Stratified Lasso 38 789 0.1581 Single-SNP
Adjusted GWAS 16 306 - Single-SNP

Table 4. For MuGLasso, number of selected LD-groups/SNPs, across and per population

Data Population Number of selected LD-groups (and SNPs)

Simulated data
CEU 95 (2 418 SNPs)
YRI 103 (3 081 SNPs)

shared (CEU and YRI) 5 227 (149 813 SNPs)

DRIVE
POP1 6 (148 SNPs)
POP2 2 (43 SNPs)

shared (POP1 and POP2) 54 (1166 SNPs)
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Fig. 3. For simulated data, precision and recall of MuGLasso and the stratified approaches on the
populations-specific SNPs

consuming than a classical GWAS, our implementation is computationally efficient enough to
scale to the analysis of entire GWAS data sets of about one million SNPs.

On simulated data, MuGLasso outperforms state-of-the-art approaches in its ability to
recover disease loci. This also holds for population-specific SNPs; hence performance is not
driven solely by the ability to recover disease loci that are common to all populations. In ad-
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dition, MuGLasso is the most stable of all evaluated method, which increases interpretability.
Finally, although we presented MuGLasso in the context of admixed populations, our tool

could be used in other multitask settings. In particular, tasks can stem from related pheno-
types18 or from different studies pertaining to the same trait, in a meta-analysis approach.19

Groups could also be defined according to different prior biological knowledge, for example
based on functional units such as genes, in the spirit of gene-set analyses of GWAS data. In
addition, although we only presented results on case-control studies with two populations, the
method directly applies to quantitative phenotypes and any number of tasks.

An important outcome of our study is that, although we have not included in MuGLasso
a regularization term that would enforce sparsity at the level of tasks as in Li et al. (2020),21

we still obtain task-specific groups. Including such an additional term in Equation (1) would
perhaps improve the already state-of-the-art task-specific precision and recall of MuGLasso,
but this would unfortunately come at the expense of a notable increase in computational time,
if only because of the cross-validation needed to set the value of a second hyperparameter.

An in-depth biological analysis of the loci identified by MuGLasso on DRIVE would illus-
trate the biological relevance of our method, but is out of the scope of this methodological
paper.

In the future, we are looking forward to making use of the post-inference selection frame-
work for group-sparse linear models29 to provide p-values for the selected loci. As of now, it is
unclear how to apply these ideas to case-control studies in a computationally efficient manner.
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