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A major goal of molecular systems biology is to understand the coordinated function of
genes or proteins in response to cellular signals and to understand these dynamics in the
context of disease. Signaling pathway databases such as KEGG, NetPath, NCI-PID, and
Panther describe the molecular interactions involved in different cellular responses. While
the same pathway may be present in different databases, prior work has shown that the
particular proteins and interactions differ across database annotations. However, to our
knowledge no one has attempted to quantify their structural differences. It is important
to characterize artifacts or other biases within pathway databases, which can provide a
more informed interpretation for downstream analyses. In this work we consider signaling
pathways as graphs and we use topological measures to study their structure. We find
that topological characterization using graphlets (small, connected subgraphs) distinguishes
signaling pathways from appropriate null models of interaction networks. Next, we quantify
topological similarity across pathway databases. Our analysis reveals that the pathways
harbor database-specific characteristics implying that even though these databases describe
the same pathways, they tend to be systematically different from one another. We show that
pathway-specific topology can be uncovered after accounting for database-specific structure.
This work presents the first step towards elucidating common pathway structure beyond
their specific database annotations.
Data Availability: https://github.com/Reed-CompBio/pathway-reconciliation.
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1. Introduction

Cells respond to signals through a series of molecular interactions, culminating in gene ex-
pression changes that alter the cell’s behavior. The protein-protein interactions that occur in
response to specific stimuli are described as signaling pathways. These pathways characterize
cell growth, proliferation, stress, and death, among many other biological processes. For over
a decade, the growing knowledge about cellular signaling has been collected in databases such
as KEGG,1 NetPath,2 NCI-PID,3 and Panther.4 These resources are all manually curated,
organized into specific signaling pathways, and comprise protein interactions supported by
scientific literature. They are the scientific community’s best guess as to how proteins in-
teract within a larger system of cellular response and are often the starting point for many
downstream analyses of ‘omic data such as gene function enrichment and identifying genetic
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associations. Pathway databases have also seen extensive use for studying human diseases –
many databases focus on pathways that are known to be dysregulated by disease2,3 or describe
the altered pathways themselves.1,5

While the number and utility of signaling pathway databases grows, there still remain
limitations in their broad use. Signaling pathways from different databases are often incom-
plete,6 though they contain high-quality interactions due to each database’s manual curation
steps. Pathways with the same name may contain different protein-protein interactions or
pathways characterizing the same response may be called different names.6–8 For example,
NetPath’s Wnt signaling pathway describes 120 molecules whereas KEGG’s Wnt pathway de-
scribes 140 molecules, including non-canonical pathway components.1,2 These challenges arise
for a number of reasons: pathway nomenclature has not been standardized, pathway crosstalk
and noncanonical signaling blurs the pathway boundaries, and we simply have not yet quan-
tified all of the biological interactions that occur. The lack of consistency across pathway
databases indicates that the choice of database can change the results of downstream omic
analysis, which has been previously shown.9 New databases integrate existing pathways and
offer standardized APIs and data file formats.9–12

However, we are still left with a fundamental question: How do we reconcile signaling
pathway annotations across databases? Work on protein interaction networks have shown that
simply taking the union of the networks is prone to propagating noise.13 Instead of taking the
union or intersection of pathway members, we consider the databases separately and strive to
elucidate pathway-specific features that are shared across databases.

Pathway Reconciliation Problem. Suppose there are n signaling pathways of interest
{P1, P2, . . . , Pn}. A pathway database Dk = {P (k)

1 , P
(k)
2 , . . . , P

(k)
n } contains representations of

each pathway of interest. Given a collection of m such signaling pathway databases D =

{D1, D2, . . . , Dk, . . . , Dm}, identify features of each pathway Pj that are present in the database
representations {P (1)

j , P
(2)
j , . . . , P

(k)
j , . . . P

(m)
j }.

Our working hypothesis is that, even though each database Di is manually curated with
different goals and scopes, if the databases describe similar signaling pathways then we should
be able to uncover some information about the structure of each pathway Pj.

Signaling pathways are commonly represented as graphs and have been analyzed using
topological features such as degree, clustering coefficient, and centralities.14,15 However, de-
spite their virtues, these statistics are too simple to fully characterize complex networks.
Topological structures called graphlets have been shown to characterize networks better than
simple summary statistics.16,17 Graphlets are small, connected subgraphs that have been used
to analyze empirical networks such as world trade networks, social networks, and protein in-
teraction networks. Two- and three-node graphlets have also been used to derive global and
local network statistics that are robust to network size.18

Contributions. This paper is organized in three parts. First, we describe our methodology
for collecting, parsing, and representing signaling pathways. Using graphlet-based network
embeddings, we then examine pathway topologies in databases compared to suitable controls,
and find that pathways are distinguishable from null models. Finally, we compare pathway
databases to one another. For this last part, we identify similar pathways across databases
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which we call corresponding pathways. However, we find that pathways cluster by databases
rather than by corresponding pathways which indicates that databases contain consistent
topological structure and potentially obfuscates shared structure among pathway annotations.
Using a regression framework, we correct the database structure and reveal pathway-specific
topological structure where corresponding pathways cluster together. These results collec-
tively indicate that, while pathway databases are manually curated with different scopes and
intentions, the same pathway shares topological features across databases.

2. Data Collection and Processing

We considered ten pathway databases for this analysis, which all contain manually-curated
human pathways grouped by phenotype or response. Our goal was to select pathway databases
that were similar orders of magnitude in size, had a broad focus on different types of signaling,
and did not contain other databases as subsets. We chose seven pathway databases from this
list (Table 1). We excluded Reactome after finding that the parsed pathways were much
larger than the others (Supplementary Fig. S1), we excluded CausalBioNet due to its focus on
pulmonary and vascular signaling, and we excluded WikiPathways since it combines multiple
pathway databases.

Table 1. Pathway databases used in this analysis, after converting pathways to undirected graphs
and removing pathways with fewer than ten interactions. Number of pathways, mean and standard
devation shown. The *-expanded datasets convert complexes/families into protein identifiers (see
Section 2.1). PC: PathwayCommons.

Database Focus Parse Source n # Nodes # Edges
INOH19 Hierarchical Model PC10 114 30± 47.00 313± 1063.06
KEGG1 Broad Focus KEGG1 243 38± 30.67 40± 30.80
KEGG-expanded1 Broad Focus KEGG1 268 70± 59.50 252± 417.68
NetPath2 Immune & Cancer NetPath2 32 73± 61.67 134± 159.68
Panther4 Primary Signaling PC10 93 57± 50.02 389± 620.55
PathBank5 Model Organisms Pathbank5 576 21± 29.18 148± 543.32
PID3 Cancer PC10 203 102± 78.22 510± 788.72
SIGNOR20 Binary Causal NDEx11 36 25± 7.76 39± 31.08
SIGNOR-expanded20 Binary Causal NDEx11 36 38± 24.20 169± 483.34
Interactome Broad Focus PC10 1 18494 1017054

2.1. From Pathways to Undirected Graphs

We strove to parse the databases from pathway compendia such as PathwayCommons10 and
NDEx,11 which offer APIs and a unified file format. However, some pathways were parsed from
the original source. While many of these databases are actively maintained, some resources
such as NCI-PID and NetPath are no longer updated yet still contain useful information.
We also parsed all of Pathway Commons, which includes experimentally-sourced interaction
databases, as the interactome that is used to generate null models in Section 3.2 (Table 1).

To topologically characterize signaling pathways, we intentionally started simple. We con-
verted every pathway into an undirected graph by parsing Simple Interaction Format (SIF)
files. We only considered interactions that involved proteins and required pathways to contain
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Fig. 1. Vector representations of graph topology. (A) Undirected graphlets up to four nodes, or-
ganized by the number of nodes in the subnetwork. Supplementary Fig. S2 shows up to five-node
graphlets. (B) GHuST coefficients.18 Refer to the original publication for formal definitions.

at least ten undirected edges. KEGG and SIGNOR capture protein families and protein com-
plexes in their networks.1,20 For these databases, we parsed a collapsed version which includes
complexes and families as nodes in the network and an expanded version that converts such
entities into their constitutive proteins. Supplementary Section S1 includes more details about
this parsing. In total, we considered 1, 592 pathways in nine datasets that captured pathways
from seven distinct databases.

2.2. Topological Characterization of Networks

Graphs have been characterized by global and local characteristics such as degree distribu-
tion, clustering coefficient, and path-based centralities. Topological structures such as network
motifs (small connected subgraphs) have been shown to characterize networks. A natural gen-
eralization of a network motif is to enumerate all possible connected graphs of a specific size.
This collection of networks have been coined as graphlets.

Graphlets. Graphlets, first introduced by Przulj et al.,16 are an enumeration of small, con-
nected non-isomorphic graphs. We focus on undirected graphlets with up to five nodes (Sup-
plementary Fig. S2A). Graphlets with up to four nodes are shown in Fig. 1A. Intuitively, an
automorphism orbit (or orbit for short) of a graphlet is a set of nodes that captures a symme-
try of the graphlet. A graphlet’s orbits summarize the possible distinct positions of each node
in each graphlet. For example, there is one orbit in G0, two orbits in G1 (the middle node and
the outer nodes), and one orbit in G3. There are a total of 73 orbits in the 30 graphlets of up
to five nodes. Once these orbits have been counted, they can be combined to produce graphlet
counts for the network. We use ORCA to efficiently count orbits for each node.21

GHuST. While graphlets can be efficiently counted in a network, graphlet characterization
can be biased when networks are different sizes and densities. Recent work by Espejo et al.18

developed the GHuST framework: twelve network statistics derived from two- and three-node
graphlets (Fig. 1B). The GHuST framework captures both local and global network topology
without needing four- and five-node graphlets.

The GHuST framework involves calculating twelve network statistics (also called ρ coef-
ficients) based on the orbits from the first three graphlets (G0 – G2). These coefficients are
grouped into four types of characteristics. Global connectivity coefficients measure the propor-
tion of additional edges beyond those required for connectivity as well as leaf proportion and
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distribution. Hub coefficients measure the proportion and distribution of hubs in the network.
String coefficients measure the number and proportion of consecutive nodes of degree two
(consecutive G1 graphlets). Finally triangle coefficients measure the proportion, distribution,
and connectivity of triangles (G2 graphlets) in the network. For simplicity, we call the ρ values
GHuST coefficients and we have implemented them in our software.

3. Topological Structure of Pathway Databases

We asked firstly whether pathways are enriched for particular graphlets or GHuST coefficients
within databases, and secondly whether these pathways are distinguishable from random sub-
graphs of a protein-protein interactome. While previous work has compared graphlet distri-
butions to some random models,16,17 we used two random graph models that are particularly
well suited to answer our questions.

3.1. Signaling Pathways are Distinct from Degree-Preserving Random
Graphs

To determine whether pathways are enriched for graphlets or GHuST coefficients, we used a
random rewiring random graph model (rewire). In the rewire model, pairs of edges from
a graph G are randomly rewired, preserving the degree sequence of G. For each pathway p,
a rewire realization rewires on average ten times the number of edges in p; we generated
100 realizations of the rewire model. For each graphlet or GHuST coefficient, we computed
the Z-score of the observed value compared to the values from 100 rewire realizations and
counted the number of pathways with values that were larger than two standard deviations
from the average. Specific graphlets and GHuST coefficients exhibit statistically significant
over or under-representation in the Panther database (Fig. 2). The rewire null model net-
works have the same number of nodes and edges as the original networks, thus, the first
graphlet (number of edges, G0) and the first GHuST coefficient (line-surplus coefficient ρ1)
are not significant by construction. However, many other structural properties that show dis-
cernible pattern in pathways are prevalent (Fig. 2), and these non-random features may be
utilized to characterize pathways. Not all graphlet counts are independent of each other17

(for example, G2 can be calculated from G0 and G1), and this redundancy suggests that the

Graphlet Enrichment GHuST Enrichment

G27G4G0
ρ1: Line-surplus
coefficient

ρ8: Triangle
rate

ρ9: Triangle
concentration

G11 G20

Fig. 2. Over- and under-representation of graphlet counts (left) and GHuST coefficients (right) in
pathways from the Panther Database compared to the rewire model. Select graphlets and ρ values
are labeled below the x-axes.
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over-representation of G11 is at least in part due to the over-representation of G4 (Fig. 2).
GHuST coefficients are derived two- and three-node graphlets (e.g. the triangle rate ρ8 is
closely related to the number of triangle G2), and many triangle-based ρ values are similarly
over- or under-represented. Strikingly, pathway databases exhibit unique graphlet and GHuST
enrichment patterns (Supplementary Fig. S3 and S4).

3.2. Signaling Pathways are Distinct from Random Subnetworks of an
Interaction Network

Next, we considered whether the pathways were distinguishable from other subnetworks of a
protein-protein interactome from PathwayCommons new(the interactome from Table 1). We
wanted to preserve pathway connectivity and size when extracting a subnetwork from the
interactome. To do so, we designed a random walker induced random graph model (walker).
The walker model works as follows: given an interactome G and a pathway p containing
n nodes and m edges, select a random node from G and perform a random walk until n
nodes have been visited. Then, take the induced subgraph of G given the visited nodes to
get subnetwork H. At this point if H has m or fewer edges, return H. If not, remove edges
from H at random until H has m edges as long as their removal would not create a connected
component of size one. The walker-sampled networks are (in practice) the same size as p.a To
evaluate how well pathways from a database are distinguishable from the walker model we
randomly generate one realization for every pathway in the database, thus building a balanced
dataset with the same number of walker graphs as empirical pathways.

In this and the remaining analyses we cluster the vector representations of the pathways
(either 30-dimensional graphlet vectors or 12-dimensional GHuST vectors) using cosine sim-
ilarity (Supplementary Section S2). Clustering quality is quantified using adjusted mutual
information (AMI), which adjusts for random chance. A larger AMI indicates that the parti-
tions are more similar, and hence X better reflects the correct labels Y . We calculate the AMI
for every possible number of clusters admitted by the agglomerative clustering algorithm.

When clustering the balanced datasets, pathways in each database are distinguishable
from walker networks, with larger AMIs associated with fewer clusters. The dendrogram of
clusters by graphlet counts for the NetPath database, for example, contains only three NetPath
pathways grouped with random networks in an otherwise perfect clustering (Fig. 3A). The
AMI of this dendrogram reflects the good clustering, especially with few clusters since we
have two labels (Fig. 3B left). To compare these results to other topological features such
as clustering coefficient, we took a single dimension from each of the graphlet counts and
GHuST coefficients that captured this information (G2 and ρ8, respectively) and clustered
the same networks using Euclidean distance; the AMI for both metrics were notably worse
(Fig. 3B middle). When clustering all 1,592 pathways and their walker models, we find that
graphlets and GHuST coefficients cluster well in aggregate (Fig. 3B right). Supplementary
Fig. S5 and S6 contain AMI plots for all individual databases.

aThis works because the walker-induced subgraphs tend to be much denser than pathways, and it
is generally straightforward to find edges which are removable without creating isolated nodes.
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Fig. 3. (A) Clustering of 32 Netpath pathways (orange leaves) and 32 walker networks (brown
leaves) by graphlet counts. (B) adjusted mutual information (AMI) of clustering according to graphlet
counts (dark blue) and GHuST coefficients (light blue). Left: AMI of five balanced datasets from
NetPath. Middle: AMI of five balanced datasets from NetPath using just G2 and ρ8. Right: AMI of
the balanced datasets containing all 1,592 pathways.

4. Topological Structure of Corresponding Pathways

After establishing that pathways are distinguishable from random graph models, we moved to
directly comparing pathways across databases. To do so, we first need to identify a subset of
pathways across the seven databases (INOH, KEGG, NetPath, Panther, PathBank, PID, and
SIGNOR) that describe similar processes. We call these corresponding pathways, and we say
that two pathways from different databases correspond if they aim to capture similar signaling
events.

4.1. An Algorithm for Identifying Corresponding Pathways

We employ a semi-automated procedure to find corresponding pathways from the seven
databases. Our approach is similar in spirit to that of ComPath,22 which generates map-
pings between pathway annotations by considering the lexical similarity between names and
content similarity between genes of each pair of pathways followed by a manual curation.
Given two pathway databases A and B, pathway a ∈ A and b ∈ B are corresponding pathways
if two conditions hold.

(1) Tokenized versions of a’s and b’s pathway names share at least one word, after ignoring
domain-specific terms (Supplementary Table 1) and common stop words.

(2) The asymmetric Jaccard overlap J(a, b) is non-zero; that is, a and b have at least one node
in common (normalized by the number of nodes in a).

Let f(a,B) denote the set of pathways b ∈ B that correspond with pathway a. Two pathways
a ∈ A and b ∈ B are symmetrically corresponding if they are corresponding pathways and each
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have the largest asymmetric Jaccard overlap among all other corresponding pathways in each
database: argmaxb′∈f(a,B) J(a, b′) = b and argmaxa′∈f(b,A) J(a′, b) = a. Since we are trying to find
broad canonical pathways across databases we ignore pathways that include diseases, model
organisms or metabolic signaling terms (Supplementary Table 2).

Next, we must identify groups of symmetrically corresponding pathways that collectively
describe a single event across multiple databases. To do so, we build an undirected graph
G = (V,E) where the nodes are pathways and two nodes are connected if the pathways are
symmetrically corresponding (Supplementary Fig. S7A). We find connected components in G

that contain pathways from at least τ different databases, where τ is a user-defined threshold
(we use τ = 6).

Finally, we have a last manual step that examines each connected component that passes
the τ threshold, assigns a common name to the pathway, and selects exactly one pathway
for each database based on the pathway name.b If we cannot determine a common name, we
remove that connected component from consideration. Once we have a table of corresponding
pathways for each database, we add the KEGG-collapsed and SIGNOR-collapsed datasets,
since they will have an exact match with the KEGG-expanded and SIGNOR-expanded titles.
Complete details about gathering, parsing, and finding corresponding pathways are provided
in the GitHub repository (https://github.com/Reed-CompBio/pathway-reconciliation).

Corresponding pathways have low node overlap. While we used Jaccard overlap to
determine corresponding pathways, this overlap was typically quite low. For each pathway,
we calculated the Jaccard overlap for pairs of databases, resulting in a database-by-database
heatmap of overlaps (Supplementary Fig. S8). We then calculated the average Jaccard value
for each pathway/database combination (Supplementary Fig. S7B). For Hedgehog, TNFal-
pha/Fas, TCR, and p38/MAPK, on average about a third of the nodes were shared between
any two pathways. The Notch and Wnt pathways had slightly higher overlap, with an average
of 0.5 across the rows. Notably, many of the overlaps were bleak, with minimums ranging from
0.08 (p38/MAPK) to 0.29 (Notch) across the rows.

Corresponding pathways cluster by database. Once we had corresponding pathways, we
calculated the AMI from the agglomerative clustering based on cosine similarity as described in
Section 3.2. We found that the AMI was much higher when we labeled partitions by database
instead of by pathway (the blue “Original” curves in Fig. 4A). This indicates that there
are database-specific topologies that are driving the clustering; we call this database-specific
structure.

5. Correcting for Database-Specific Structure Reveals Pathway Similarities

Database-specific structure is not particularly surprising, since each database is designed by
curators with different goals in mind. We assume that the corresponding pathways in different
databases will have some structural similarity, since corresponding pathways aim to describe
the same biological process. We wondered whether we could correct for the database-specific
structure to reveal pathway specific topological features. To do this, we used a simple ordinary

bNote that it is possible that a connected component may have two pathways b, b′ ∈ B from the
same database if they were symmetrically corresponding with other pathways in different databases.
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Fig. 4. (A) AMI of graphlet counts and GHuST coefficients for original values (blue) and regression-
transformed coordinates (brown) when clustering corresponding pathways using databases as ground
truth labels or pathways as ground truth labels. Red line denotes the correct number of clusters. (B)
Dendrograms of the clusters from the shaded plot in Panel (A) using original (top) and transformed
(bottom) graphlet counts, colored by the six pathway labels.

least squares (OLS) model to find database weights to transform pathway vector embeddings.
For this part, we normalize the graphlet counts by all counts for graphlets with the same
number of nodes (e.g., the number of triangles is normalized by the sum of G1 and G2). We
treat each graphlet value or GHuST coefficient separately. Let x(k)i,j be the ith co-ordinate in
the vector embedding where j denotes the pathway and k is the database label, in a set of at
least six corresponding pathways. For each coordinate i and pathway j, we construct a profile
y as an average over all databases as yi,j = 1

Nj

∑
k x

(k)
i,j , where Nj is the number of databases

that contain pathway j. Note that the average profile y is not specific to a database and only
has two indices i and j. We use the following linear regression for each coordinate i to identify
database-specific structure within the pathway profiles x using y as the target function:

yi,j = α
(k)
i + β

(k)
i x

(k)
i,j + ε

(k)
i,j . (1)

The estimated values of the intercept α(k)
i and the regression coefficients β(k)i that minimize the

residual sum of squares can be used to transform the i-th coordinate of any pathway profile
in the k-th database (Supplementary Fig. S9). The transformed profiles x̃ are computed as
x̃
(k)
i,j = α

(k)
i + β

(k)
i x

(k)
i,j .
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Recall that our goal is to have corresponding pathways cluster together, rather than
databases. Clustering the transformed coordinates x̃

(k)
i,j dramatically reduces the AMI for

database labels while increasing the AMI for pathway labels (brown “Transformed” curves
in Fig. 4A). This is illustrated with cluster dendrograms of the original and transformed
graphlet counts (Fig. 4B). Not only does this illustrate that the database-specific structure
is reduced, but pathways from different databases are closer in the transformed vector space.
The effect of transformation can also be seen in the first two principal components of the
GHuST coefficients, where some databases cluster in the original vector space and nearly all
pathways cluster in the transformed vector space (Fig. 5 and Supplementary Fig. S10). Notch
and Wnt overlap in the transformed space, which makes sense due to their extensive pathway
crosstalk. The first two principal components of the transformed graphlet counts also reveals
clustering by pathway (Supplementary Fig. S11). Further, regression coefficients estimated for
high-confidence corresponding pathways (τ = 6) cluster new corresponding pathway coordi-
nates in the same databases better than the original vectors (Supplementary Fig. S12 and
Supplementary Fig. S13). Using all fifteen corresponding pathways (τ = 4) in the regression
showed similar AMI trends (Supplementary Fig. S14, S15, and S16).
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Fig. 5. Principal component analysis (PCA) of the first two components for the original GHuST
coefficients (left) and the transformed coefficients (right) for the five databases that have all six
corresponding pathways for τ = 6. Marker shapes denote databases and colors denote pathways.

6. Discussion

We have presented a topology-based framework for describing pathway structure and reconcil-
ing signaling pathways across databases. Signaling pathway structure is consistently distinct
from random graph models, even when accounting for node degree and comparing to ap-
propriate subnetworks from a larger interactome. Using a new approach that accounts for
database-specific structure, we show that corresponding pathways cluster together and ulti-
mately share topological features despite coming from differently-curated resources.

We (and the folks we build our work upon) have to make many choices in the design
and execution of our work, and thus there are many sources of bias in our study. First and
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foremost, the foundation of our work builds upon the manual curation of different databases.
Some databases are considerably more well-developed than others – KEGG, for example,
is over twenty years old and is still actively maintained. Newer databases like SIGNOR and
PathBank are smaller than others but are quickly growing. Researchers might be more familiar
with a particular pathway database and slower to adopt new resources, which might also lead
to bias in the peer review of database publications. For example, updates of existing databases
may be more well-received than new databases that offer complementary resources.

Certain pathways are more studied than others, and canonical versions of pathways are
more often described than non-canonical counterparts. Examples of well-studied pathways
appear in our corresponding pathway lists, since we require that the pathways are present in
multiple databases. This might expressly contradict the goal of particular pathway databases,
for example PathBank includes model organisms beyond human pathways.

The decisions made by us and others to interpret biochemical reactions as graphs un-
doubtedly affects our results. Firstly, nearly all pathway databases capture directed, signed
interactions, and standardized pathway formats like BioPAX and SBML capture multi-way
relationships and reaction stochiometry. These details are ignored when we use undirected
graph representations. We partially addressed this issue with the expanded versions of KEGG
and SIGNOR pathways, but it certainly deserves more investigation. Directed graphlets23 and
signed graphlets24 could reveal more refined pathway structure.

Our methods are intentionally straightforward, with the goal to show that using topological
metrics on undirected networks can reveal pathway-specific structure. The regression model
has known limitations. For example, we assume coordinates to be independent of each other,
even though it is not necessarily true. Moreover, the relationship across different databases
can be non-linear and the linear transformation may not be ideal. Despite its limitations, the
model can extract pathway specific structure. We found the AMI curves based on graphlet
counts were often slightly larger than those based on GHuST coefficients, but it is striking that
GHuST performs so well given that the coefficients are derived from only two- and three-node
graphlets. Additionally, we note that the transformed coordinates do not directly translate
into networks that exhibit those coordinates. An exciting area of future work is to identify
subgraphs from a larger interactome that approximates an arbitrary graphlet count vector.

As the number of signaling pathway databases grows, topological features hold promise
in elucidating pathway specific structure. While signaling pathway representations have long
been acknowledged to be different within and across databases, we have shown that it is possi-
ble to reduce database-specific structure and find structural similarities among corresponding
pathways. Our work indicates that reconciling pathways while retaining the databases as sep-
arate entities can characterize signaling pathway structure.

Data & Code Availability. https://github.com/Reed-CompBio/pathway-reconciliation

Supplementary Information. https://tinyurl.com/rubel-PSB-supp
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17. Ö. N. Yaveroğlu et al., Revealing the hidden language of complex networks, Scientific reports 4,

p. 4547 (2014).
18. R. Espejo et al., Exploiting graphlet decomposition to explain the structure of complex networks:

the ghust framework, Scientific reports 10, 1 (2020).
19. S. Yamamoto et al., INOH: ontology-based highly structured database of signal transduction

pathways, Database 2011 (2011).
20. L. Licata et al., Signor 2.0, the signaling network open resource 2.0: 2019 update, Nucleic acids

research 48, D504 (2020).
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