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Cancer results from an evolutionary process that yields a heterogeneous tumor with distinct
subpopulations and varying sets of somatic mutations. This perspective discusses computa-
tional methods to infer models of evolutionary processes in cancer that aim to improve our
understanding of tumorigenesis and ultimately enhance current clinical practice.
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1. Introduction

Cancer results from an evolutionary process where somatic mutations accumulate in distinct
populations of cells.1 This theory has been corroborated by high-throughput sequencing stud-
ies of tumors in the last decade,2 demonstrating that a tumor is not homogeneous but rather
composed of clones with varying sets of somatic mutations. This phenomenon of intra-tumor
heterogeneity is a major cause of relapse and resistance to treatment.3 Metastasis, i.e. the mi-
gration of tumor cells to anatomical locations distinct from the primary tumor, is the primary
cause of death in cancer.4 Thus, the life history of a tumor is the end product of an evolution-
ary process characterized by cell division, cell mutation and cell migration. The emerging field
of cancer phylogenetics views cancer through the lens of evolution and employs phylogenetic
techniques to reconstruct, analyze and compare life histories of tumors.5 This perspective will
discuss recent advances in (i) computational methods for reconstructing cancer phylogenies
from sequencing data, (ii) the identification of common evolutionary patterns and trajecto-
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ries in cancers, (iii) inference and deconvolution of mutational signatures of cancers, and (iv)
adaptive therapies for treating cancer based on evolutionary models.

2. Reconstruction of cancer phylogenies from sequencing data

Not only are tumors distinct due to separate evolutionary processes, but each tumor contains
multiple subclones that each share a common ancestor and set of somatic mutations. Somatic
mutations are genetic and epigenetic alterations that occur during an individual’s lifetime.
The former range from single-nucleotide variants (SNVs), which alter a single nucleotide, to
copy-number aberrations (CNAs), which duplicate or delete large genomic regions, as well
as other structural variants (SVs), which include CNAs in addition to inversion and trans-
position/translocation of genomic segments. To study cancer evolution, researchers rely on
computational methods that infer phylogenies from sequencing data, underpinned by an evo-
lutionary model that constrains the types of allowed changes. Initially, bulk DNA sequencing
was used, yielding short DNA sequences, or reads, from millions of cells with diverse genomes.
Such data require deconvolution methods,6–10 which yield many plausible phylogenies.11 On
the other hand, single-cell DNA sequencing (scDNA-seq) yields reads from individual cells,
and generally does not require deconvolution, but has elevated error rates, requiring special-
ized methods to simultaneously infer trees and correct errors.12–15 Recent methods have been
proposed to infer tumor phylogenies from bulk and scDNA-seq data of the same tumor.16,17

Importantly, current models for cancer evolution and corresponding phylogeny inference meth-
ods focus either only on SNVs6–10,12–15 or on CNAs,18–20 but not yet both in full generality. We
anticipate that future research will focus on evolutionary models and computational methods
that capture the interplay and evolutionary history of genomic SNVs, CNAs, SVs, and epige-
nomic alterations. Moreover, we expect that techniques that have been developed for tumor
phylogeny inference will be applicable to lineage tracing.21

3. Identification of common evolutionary patterns and trajectories in cancers

While each cancer results from a different instantiation of an evolutionary process, the com-
plexity of all cancers can be reduced to a small number of principles, so called hallmarks of
cancer ,22 corresponding to different biological pathways. Nevertheless, there is an exponential
number of combinations of mutations in which these traits can be acquired. Cancer subtypes
divide primary cancers into smaller groups based on morphological and/or molecular features.
There is increasing evidence that more granular cancer subtypes based on common evolu-
tionary patterns better stratify patients in terms of survival and therapy response.23 Recently,
several methods have been introduced to infer evolutionary trajectories from cancer phylogeny
cohorts.23–25 Briefly, REVOLVER23 is a machine-learning method that uses transfer learning
to identify hidden evolutionary patterns in cancer cohorts. CONETT26 is a combinatorial
optimization method to detect recurrent tumor evolution trajectories using a consensus tree
approach. Similarly, RECAP25 is a computational method that resolves ambiguities in can-
cer sequencing data and detects subtypes of evolutionary trajectories by simultaneously (i)
identifying a single tree among the solution space of trees for each patient, (ii) assigning pa-
tients to clusters and (iii) inferring a consensus tree for each cluster of patients. While current
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approaches use mutations in matching genes across patients as a key signal, we anticipate
further developments that will enable the inference of evolutionary trajectories composed of
pathways or sets of mutated genes that are mutually interchangeable.

4. Inference and deconvolution of mutational signatures of cancers

Exposures to endogeneous (e.g. DNA mismatch repair deficiency) and exogeneous (e.g. tobacco
smoke or UV light) factors lead to characteristic patterns of SNVs, or mutational signatures .27

That is, the set of somatic mutations in a tumor is the result of varying exposures to distinct
mutational processes that can be represented by “signatures” that delineate the types of muta-
tions associated with a given process. While initial work has focused on identifying the additive
effects of mutational signatures using non-negative matrix factorization,27 later work has fo-
cused on identifying non-additive secondary effects,28 including interactions between DNA
damage events and deficiencies in repair mechanisms. Recognizing that exposures to muta-
tional signatures may vary during the evolution of a tumor, one line of research has focused on
identifying the interplay between mutational processes and cancer evolution. TrackSig29 and
TrackSigFreq30 aim to construct evolutionary trajectories of signature exposures, defined by
changepoints in exposure ordered by pseudotime. In a similar vein, PhySigs31 seeks to infer the
clonal dynamics of mutational signatures in a tumor by identifying exposure shifts along the
edges of a given cancer phylogeny. There are important therapeutic opportunities associated
with studying mutational signatures in an evolutionary context. For example, mutational sig-
natures can be used as a biomarker for perturbed DNA damage repair (DDR),32,33 for which
promising cancer therapies such as PARP inhibitors exist. By taking the clonality of DDR
mutation signature exposures into account, one can identify cases where only a fraction of
cells have a DDR deficiency and therefore the patient is unlikely to have a complete response
to a therapy targeting that deficiency.

5. Adaptive therapies for treating cancer based on evolutionary models

While many targeted cancer therapies have been introduced in the past two decades,34 tar-
geted therapies often have a response rate of less than 50% in solid tumors.35 Resistance to
therapy can be classified as either primary, where patients show no response to treatment, or
secondary, where patients initially respond but later develop resistance. A prominent example
of the latter is the treatment of melanoma with vemurafenib that targets the BRAF V600E
mutation: despite an initial dramatic response, most patients eventually relapse with drug-
resistant, fatal disease.36 There is growing evidence that intra-tumor heterogeneity is a major
driver of resistance to therapy.37 To understand why, it is important to distinguish clonal
somatic mutations, which are present in every tumor cell, from subclonal somatic mutations,
which are present in only a subset of tumor cells. In chronic myeloid leukemia,38 treatment that
targets subclonal driver mutations has been associated to resistance and recurrence. More-
over, therapy itself is an evolutionary bottleneck and may lead to previously low-abundance,
resistant clones becoming dominant. Therefore, it is important to take the clonal architecture
of a tumor into account when designing treatment plans. Future research directions in this
area include identifying effective combination therapies, where multiple targeted drugs are
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used simultaneously, as well as adaptive containment strategies where targeted drugs are used
alternatingly in order to constrain evolution in tumors with multiple clones.34 Both directions
will depend on accurate computational methods for tumor phylogeny inference, as well as
high-throughput sequencing and monitoring strategies such as liquid biopsies.

6. Discussion

This perspective discussed emerging topics in cancer evolution, focusing on recent advances in
tumor phylogeny inference, identification of evolutionary trajectories, mutational signatures
as well as cancer therapy in light of evolution. While the field has mainly focused on recon-
structing a tumor’s evolutionary history in terms of genetic alterations, it is important to also
take the evolution of epigenetic mutations into account. Continued interdisciplinary collab-
oration between cancer biologists, computational method developers and clinicians on these
topics will be essential towards gaining a more thorough understanding of tumor emergence,
proliferation and metastatic expansion and response to therapy. Ultimately this will be an
essential step towards achieving the goal of improved clinical treatments.
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