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The majority of publications in computational biology and biocomputing develop or apply software 
approaches to relevant biological problems to some degree. While journals and conferences often 
prompt authors to make their source code available, these are often only basic requirements. 
Investigators often wish their software and tools were widely usable to the scientific community, but 
there are limited resources available to maximize the distribution and provide easy use of developed 
software.  Even when authors adhere to standards of source code availability, the growing problem 
of system configuration issues, language and library version conflicts, and other implementation 
issues often impede the broad distribution, availability of software tools, and reproducibility of 
research.  There are a variety of solutions to these implementation issues, but the learning curve for 
applying these solutions can be steep.  This tutorial demonstrates tools and approaches for packaging 
and distribution of published code, and provides methodological practices for the broad and open 
sharing of new biocomputing software. 

1. Rationale for Tutorial

A cornerstone of biocomputing and computational biology is the release of new algorithms for
data analysis, often in the form of an author-developed software implementation.  With the ever-
increasing need for algorithmic processing of experimental data in scientific studies, the 
reproducibility of individual studies has declined (Baker and Penny 2016; Monya and Dan 2016).  
The lack of reproducibility and open sharing of methods has had downstream impacts into more 
expensive clinical research, leading to an estimated $200 billion of wasted research funds (Chalmers 
and Glasziou 2009).  Despite improvements in certain aspects of reproducibility in recent years 
(Wallach, Boyack, and Ioannidis 2018), there are still opportunities for improvement. In their Ten 
simple rules for reproducible computational research, Sandve and colleagues enumerate the need 
for archiving exact versions of external programs, version controlling all custom scripts, storing 
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intermediate data and raw output, and providing public access to scripts, runs and results(Sandve et 
al. 2013).      

The traditionally accepted approach for standardization, distribution, and version control of 
software is the use of package repositories.  The Comprehensive R Archive Network (CRAN) is an 
extensively mirrored repository of distributions, extensions, and documentation for the R statistical 
package (Hornik 2018).  Similarly, Bioconductor serves as an extension of the R environment for 
computational biology and bioinformatics packages (Gentleman et al. 2004).  These are both 
reminders that there is an “R” in “reproducible” (Ochs 2020), and that R packages may serve as a 
useful framework for managing and organizing research projects (Vuorre and Crump 2020).  
Analogs of these repositories in the conda framework have also been developed for the Python 
language (Dale et al. 2018), and custom software and version control is now routinely stored and 
managed using Git and GitHub (Chacon and Straub 2014).  

While package management systems have dramatically improved version control and 
accessibility of software, duplicating the precise software environment used to process experimental 
data in a publication has long remained a major challenge, as reviewed in a recent challenge to run 
ten-year-old code (Perkel 2020). Within the last few years, the dramatic rise of containerization 
technologies like Docker (Merkel 2014) have for the first time allowed seamless distribution of data, 
software, and its native processing environment together as a single entity.  As a result, Docker is 
now a commonly used tool for reproducible research in multiple fields (Boettiger 2014; Cito, Jurgen; 
Gall 2016; Wiebels and Moreau 2021).  Containerization technology has been adapted for 
bioinformatics tasks (Belmann et al. 2015), deployed into custom bioinformatics registries 
(Moreews et al. 2015), and specifically adapted to high-performance computing environments 
(Kurtzer, Sochat, and Bauer 2017). Containers have been especially useful in the distribution of 
complex workflows with dependencies on multiple software tools, such as the processing of next-
generation sequencing data (Kim et al. 2017; Schulz et al. 2016).  The BioContainers Community 
has produced a list of recommendations for standardizing bioinformatics packages and containers 
(Gruening et al. 2019). 

Even with software version control and entire software environments available for download, 
specific analysis steps within a publication may not be documented with sufficient detail to 
reproduce an analysis.  While package management systems have dramatically improved version 
control and accessibility of software, and containerization allows duplication of the precise software 
environment, the exact process for analyzing experimental data may still prove difficult to reproduce 
without detailed documentation.  To address these challenges, Jupyter notebooks have emerged as 
a composite digital document that seamlessly blends code (from a variety of languages), 
documentation, and data visualization in an easy-to-follow format (Kluyver et al. 2016; Perkel 
2021). They have been specifically touted for improving research reproducibility (Beg et al. 2021; 
Rule et al. 2019), and Jupyter notebooks themselves have been researched to identify practices that 
can improve reproducibility (Pimentel et al. 2021). Jupyter notebooks have gained popularity in 
other computation-heavy fields like astronomy (Wofford et al. 2019), however their stability and 
accessibility is not always persistent after publication.  While there are also repositories for storing 
Jupyter notebooks, specific practices are needed to ensure long-term availability of accessed 
documents (Bouquin et al. 2018).  
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In a second iteration of this tutorial, we outline a technology stack that ensures high availability 
and easy distribution of software, encapsulated data, software environment, and analysis 
approaches.  Docker containers are proposed as a foundational layer, providing a stable, version-
controlled operating system along with its associated programming languages and packages, and 
data files that can be cached within the environment.  R and Python packages are the distribution 
method for custom software implementations, and are accessible within distributable containers. 
Jupyter notebooks provide detailed documentation of all analysis steps in an interactive fashion. 
Altogether, the collection of approaches outlined in this tutorial will ensure maximal distribution, 
ease of use, and reproducibility of biocomputing research projects (Beaulieu-Jones and Greene 
2017). In recent years, methods built upon this process have emerged to reduce technical hurdles 
and fit specific domains (Krafczyk et al. 2021; Kwon, Kim, and Ahn 2018; Nüst et al. 2020; Peikert 
and Brandmaier 2021; Sheffield 2019; Yenni et al. 2019).     

2.  Tutorial Speakers 

William S. Bush, Ph.D. is an Associate Professor in the Department of Epidemiology and 
Biostatistics and Assistant Director for Computational Methods in the Cleveland Institute for 
Computational Biology at Case Western Reserve University. Dr. Bush received his Ph.D. at 
Vanderbilt University in Human Genetics in 2008 and then continued as a post-doctoral fellow in 
the Neurogenomics Training Program at Vanderbilt. As a human geneticist and bioinformatician, 
Dr. Bush’s research interests include understanding the functional impact of genetic variation, 
developing statistical and bioinformatics approaches for integrating functional genomics 
knowledge into genetic analysis, and the use of electronic medical records for translational 
research.  
  
Nicholas Wheeler, Ph.D. is a Research Scientist in the Cleveland Institute for Computational 
Biology at Case Western Reserve University.  Dr. Wheeler is a macromolecular scientist and 
engineer by training with extensive expertise in the use of “big data” technologies for large scale 
data aggregation and analysis.  Dr. Wheeler manages genomic datasets and their associated meta-
data within a Spark/Hadoop cluster, with extensions to the open-source HAIL platform for 
genomic analysis, which ensures standardization and reproducibility of experimental analyses.  
Over the course of his career, Dr. Wheeler has created, validated, and submitted multiple R and 
Python packages into public repositories.  
  
Brett Beaulieu-Jones, Ph.D. is an Instructor of Biomedical Informatics in the Kohane lab at 
Harvard University.  He received his PhD from the Perelman School of Medicine at the University 
of Pennsylvania under the supervision of Dr. Jason Moore and Dr. Casey Greene. Dr. Beaulieu-
Jones’ doctoral research focused on using machine learning-based methods to more precisely 
define phenotypes from large-scale biomedical data repositories, e.g. those contained in clinical 
records. He is currently performing large-scale data integration (genomic, therapeutic, imaging) to 
both better understand the etiology of complex diseases and conditions.  
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Christian Darabos, Ph.D. is an Instructor in Quantitative Biomedical Sciences at the Geisel 
School of Medicine and the Interim Sr. Director for Research Computing at Dartmouth College. 
He co-leads the Reproducible Research initiatives at Dartmouth College and supports a series of 
workshops and tutorials which are designed to educate and support the entire research community 
on best computational and data practices, informatics and analytics tools, and high-performance 
computing.  
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