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The discovery of cancer drivers and drug targets are often limited to the biological systems - from
cancer model systems to patients. While multiomic patient databases have sparse drug response
data, cancer model systems databases, despite covering a broad range of pharmacogenomic plat-
forms, provide lower lineage-specific sample sizes, resulting in reduced statistical power to detect
both functional driver genes and their associations with drug sensitivity profiles. Hence, integrating
evidence across model systems, taking into account the pros and cons of each system, in addition
to multiomic integration, can more efficiently deconvolve cellular mechanisms of cancer as well as
learn therapeutic associations. To this end, we propose BaySyn - a hierarchical Bayesian evidence
synthesis framework for multi-system multiomic integration. BaySyn detects functionally relevant
driver genes based on their associations with upstream regulators using additive Gaussian process
models and uses this evidence to calibrate Bayesian variable selection models in the (drug) outcome
layer. We apply BaySyn to multiomic cancer cell line and patient datasets from the Cancer Cell Line
Encyclopedia and The Cancer Genome Atlas, respectively, across pan-gynecological cancers. Our
mechanistic models implicate several relevant functional genes across cancers such as PTPN6 and
ERBB2 in the KEGG adherens junction gene set. Furthermore, our outcome model is able to make
higher number of discoveries in drug response models than its uncalibrated counterparts under the
same thresholds of Type I error control, including detection of known lineage-specific biomarker
associations such as BCL11A in breast and FGFRL1 in ovarian cancers. All our results and imple-
mentation codes are freely available via an interactive R Shiny dashboard at tinyurl.com/BaySynApp.
The supplementary materials are available online at tinyurl.com/BaySynSup.
Keywords: Additive Gaussian processes, cancer driver genes, gene-drug associations, hierarchical
Bayesian variable selection, KEGG gene sets, spike-and-slab priors.

1. Introduction
With the advent of sophisticated techniques and platforms, large-scale datasets covering multiple
layers of cellular omics are becoming increasingly available.1,2 Consistent advancements have been
made in the last few years towards adding more dimensions to these high-throughput datasets, namely
(1) additional to patient-level disease databases, model systems such as cell lines, patient-derived
xenografts and organoids are being studied extensively in context of cancer and other diseases;3,4 (2)
assessing clinical information and therapeutic response with omics data to make pharmacogenomic
discoveries is becoming increasingly common.5,6 Multiple challenges arise during investigations of
such datasets, including but not limited to computational inefficiency, complex nature of associations
among the omic variables considered, and the biological interpretability and clinical implications of
the results.7 Specifically in context of cancer, the necessity to not only detect biomarker associations
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with drug/treatment regimens but also to assess the functional relevance and mechanism of such
associations is paramount, potentially guiding future therapeutic advances. Thus, novel algorithms
that integrate multi-omics patient and model systems profiles can potentially reveal novel biomarkers,
drug targets and predictive models in cancer.
Multi-dimensional data integration in cancer To address the wide range of complexity and vari-
ability in both detection and management of cancer, a number of multi-omics approaches have been
able to uncover intricate molecular mechanisms and discover prognostic candidates.8 Data integra-
tion approaches have proven particularly useful - both vertical (multiple experiments on a common
cohort of samples)9,10 and horizontal (meta-analysis of different cohorts)11,12 integration methods
have been developed.13 To simultaneously identify pharmacogenomic associations and correspond-
ing functional mechanisms, singular usage of either of these dimensions is insufficient due to the
richness of the currently available omics databases. Multi-omics patient databases of cancer such
as The Cancer Genome Atlas (TCGA),14 while rich in transcriptomic, proteomic and other levels of
omics profiles, do not typically provide comprehensive and systematic drug response on the same co-
hort of patients, restricting utilization of these profiles directly in pharmacogenomic contexts. Model
systems databases such as the Cancer Cell Line Encyclopedia (CCLE)15 and Genomics of Drug Sen-
sitivity in Cancer (GDSC)16 provide both molecular profiles and drug sensitivity information on the
same set of models, but the cancer- or lineage-specific sample sizes of such databases are lower than
their patient counterparts and association models built solely on them may suffer from the lack of suf-
ficient statistical power to detect all the true signals. In this work, we propose a solution to this, based
on a multi-stage hierarchical Bayesian framework that synthesizes information from both patient and
model system databases across multiomic levels to improve the identification of novel cancer driver
genes and association with drug responses.
A Bayesian evidence synthesis procedure Our integrative framework is called BaySyn: a multi-
stage hierarchical Bayesian evidence synthesis pipeline for analysis of multi-system multiomic data.
The first stage identifies cancer driver genes by detecting transcriptomic associations with upstream
changes, which are then utilized to inform biomarker association models in the second stage to im-
prove selection. Specifically, the first stage uses additive Gaussian process regression models to de-
tect potential nonlinear associations of gene expression data with corresponding copy number and
methylation profiles for both cell line cancer lineages and patient cancer types. To tackle the issue of
lower sample size in cell line data, we propose multi-lineage versions of these mechanistic models
that can deconvolve lineage and upstream main effects as well as any potential interactions, in ad-
dition to single-lineage versions of the same. Evidence synthesized across a common pool of genes
from the two sources is then used in a calibrated Bayesian variable selection procedure in the sec-
ond stage to identify genes having high association with an outcome variable of interest, such as
drug response data. Specifically, the evidence quantifications from the mechanistic models are used
in these outcome models to upweight the prior probability of selection of different biomarkers in
a spike-and-slab prior setting. A conceptual schematic of the procedure is presented in Figure 1,
providing a high-level summary of the multi-model system evidence synthesis through the mecha-
nistic models and calibrated biomarker selection via the outcome models. We apply our framework
to multiomic CCLE and TCGA datasets from pan-gynecological cancers (breast, ovary, and uterus
lineages). Our mechanistic models provide cancer-specific and cross-lineage evidence that implicate
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several relevant functional genes such as PTPN6 and ERBB2 in the KEGG adherens junction gene
set. Furthermore, our outcome model is able to make higher number of discoveries in drug response
models than its uncalibrated counterparts under the same thresholds of type I error control, including
detection of known lineage-specific biomarker associations such as BCL11A in breast and FGFRL1
in ovarian cancers.
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Fig. 1: Conceptual schema of the BaySyn framework.

The rest of the paper is organized as follows. Section 2 summarizes the multi-stage data inte-
gration framework. Section 3 describes the CCLE and TCGA data processing and analysis pro-
cedures, along with summarization of interesting results. We finish with a brief discussion of
our proposed procedure and findings in Section 4. All the processed datasets, R codes for the
pipeline, and the complete set of real data results are available for access via an interactive R
Shiny dashboard at tinyurl.com/BaySynApp. The supplementary materials are available online at
tinyurl.com/BaySynSup.
2. Methods
Multi-stage integration pipeline Following Figure 1, for a given set of samples (patients/model
systems), we build gene-specific mechanistic models to infer functional relevance of the genes in
the samples of interest based on the association of the gene’s expression pattern with its upstream
covariates such as copy number changes or DNA methylation. Particularly, in case of model systems,
certain cancer lineages may contain a low number of samples and the mechanistic models may suf-
fer from a lack of sufficient statistical power to identify true associations with upstream factors.
Therefore, we build two versions of the mechanistic models depending on the sample size scenarios
- a multi-lineage model that can borrow strength across samples from different lineages (used in
this work for modeling the cell line samples; Section 2.1.1), and a single-lineage version that can
be applied to a set of samples from a single cancer lineage/type (used in this work in context of the
patient samples; Section 2.1.2). Based on statistical summaries of significance of the upstream factors
for each gene from these models, we then build the outcome-specific Bayesian hierarchical variable
selection models (outcome models, in short; Section 2.2) that can incorporate such prior information
and borrow strength to improve selection of genes. The pseudocode for the complete framework is
available at Supplementary Notes Section S1.1. The specifics of each type of model are described in
full detail in the rest of this section.
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2.1. Mechanistic Models
For the mechanistic models, we investigate a gene of interest specifically in relation with its upstream
factors to detect whether it is a functional driver, and repeat the procedure across the complete pool
of genes included in the analyses. This approach offers a highly parallelizable framework, and the
efficiency only depends on the computational resources used by each individual model. Further, the
class of genomic associations with upstream factors that we are interested in may be highly nonlinear,
as has been indicated in past cancer literature.17,18 Therefore, we intend to equip our models with
sufficiently flexible specifications that can identify a broad range of association patterns. Keeping
these useful features in mind, we describe the mathematical details of the multi- and single-lineage
mechanistic models below.
2.1.1. Multi-lineage Mechanistic Models
Notations We begin with setting up some notations. Let 𝑀 denote the number of lineages across
which we intend to borrow strength in a single mechanistic model, and let {𝑛1,… , 𝑛𝑀} denote the
lineage-specific sample sizes, with 𝑛 =

∑𝑀
𝑐=1 𝑛𝑐 being the total sample size. Across a total of 𝑗 ∈

{1,… , 𝑞} genes, let 𝐺𝑖𝑗 denote the (continuous) normalized expression data for the 𝑗th gene in the 𝑖th
sample. Let 𝐿𝑖 denote the lineage (tissue/cancer type) of the 𝑖th sample, and let 𝐔𝑖𝑗 = (𝑈𝑖𝑗1,… , 𝑈𝑖𝑗𝑝𝑗 )

𝑇

denote the 𝑝𝑗 × 1 vector of upstream information from sample 𝑖 matched to gene 𝑗. Our mechanistic
models are gene-specific, allowing different sample sizes for each gene. However, for simplicity of
notations, we describe the models assuming a fixed 𝑛.
Model structure For the 𝑗th gene, we build an additive multi-lineage mechanistic model containing
separable components for the main effects of lineage and each upstream covariate, along with any
possible interactions of lineage with the upstream factors. Assuming the 𝐺𝑖𝑗s to be mean-centered,
the general mathematical form of such a model is presented in the following equation.

𝐺𝑖𝑗 = 𝑓1𝑗(𝐿𝑖)
⏟⏟⏟

Lineage main effect

+
𝑝𝑗
∑

𝑣=1
𝑓2𝑗𝑣(𝑈𝑖𝑗𝑣)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Upstream main effects

+
𝑝𝑗
∑

𝑣=1
𝑓3𝑗𝑣(𝐿𝑖, 𝑈𝑖𝑗𝑣)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
Interaction effects

+ 𝜀𝑖𝑗
⏟⏟⏟

Error

,∀𝑖 ∈ {1,… 𝑛}. (1)

The simplest choice is to specify each component 𝑓∙ as a linear model. Such models have been ex-
plored in context of cancer omics.19 Although they are computationally simple, they may not be fully
able to capture the general range of cellular association patterns. An obvious nonlinear extension is
to use splines to construct piece-wise linear mean profiles. Such approaches have also been explored
in this context.20 However, there are multifold challenges – including specifying the number of knots
(hence the degree of adaptable nonlinearity) and increasing computational intensity with increasing
number of covariates. To build a general class of additive association models while maintaining a
reasonable extent of computational efficiency, we use Gaussian process (GP) models.
To build an additive GP model with interaction effects, we adapt an existing approach proposed in
context of longitudinal data.21 In a repeated measures setting, this approach provides a way to in-
corporate sample-level baseline effects and treatment effects in a nonlinear fashion. We extend this
idea to our scenario to include lineage-level baseline effects (treating the experiments on cell lines
from the same lineage akin to a repeated experiment setting) and changes in the effects of upstream
covariates across different lineages. While samples belonging to cancers sharing some larger group-
specific commonalities (e.g. all gynecological cancers) may share patterns of mechanistic impacts
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of upstream platforms on gene expressions, there may still be cancer-specific differences in the exact
effects. Briefly, we use a GP equipped with a zero-sum (zs) kernel for the main effect of the cate-
gorical lineage variable, one with an exponentiated quadratic (eq) kernel for the main effects of the
continuous upstream variables, and a product of the zs and eq kernels for their interactions, following
existing approaches.21,22 The specifics of the GP model along with the prior choices are described in
detail in Supplementary Notes Section S1.2.
Model fitting and hypothesis testing The interest now is in building mechanistic models and test-
ing for different main and interaction effects of interest. We use a dynamic Hamiltonian Monte Carlo
(HMC) sampler to obtain draws from the posterior distributions of the parameters. Since we are inter-
ested in evaluating the roles of lineage, upstream factors, and any possible interactions in explaining
the variability in gene expressions, we are interested in testing the following hypotheses.

(1) Lineage main effect: 𝐻0𝐿𝑗 ∶ 𝑓1𝑗 = constant.
(2) Upstream main effects: 𝐻0𝑈𝑗 ∶ 𝑓2𝑗𝑣 = constant,∀𝑣 ∈ {1,… , 𝑝𝑗}.
(3) All upstream effects: 𝐻0𝑈𝐼𝑗 ∶ 𝑓2𝑗𝑣, 𝑓3𝑗𝑣 = constant,∀𝑣 ∈ {1,… , 𝑝𝑗}.

To perform these tests, we use model comparison procedures using HMC-based draws of the joint
log-posterior function of the parameters in a model. For a model M containing all or some of the com-
ponents in Equation (1), let 𝐻0∙ be the test of interest and M∙ be the null model, which is a submodel
of M not containing the components set to constant under 𝐻0∙. For example, if we are interested in
testing the lineage main effect in a main effects-only model M, M∙ would be an upstream-only model.
We define pseudo-Bayes factors (pBF∙𝑗s) as scalar summaries of component significance, defined to
be the mean difference of the log-posteriors evaluated across the MCMC draws between the two
models being compared. The pBFs for the three hypotheses above and for the 𝑗th gene are denoted
respectively by pBF𝐿𝑗 , pBF𝑈𝑗 , and pBF𝑈𝐼𝑗 . Note that these quantities are approximations for the
traditional log-Bayes factors (lBFs) for comparing Bayesian models under equal model priors. To
compute an lBF, one has to compute the expected posteriors for each model, followed by their log-
ratio. Here, we are computing an empirical average of the difference of log-posteriors of the model
parameters. The exact expressions of these quantities for a given HMC sample of the parameters
are derived in Supplementary Notes Section S1.3. We use standard cut-offs for significance used for
lBFs at a log10(∙)-scale: < 0.5 (no evidence), 0.5 − 1 (substantial), 1 − 2 (strong), and > 2 (decisive).23
From now on, by pBF we always mean a quantity already in this scale.
Sequential evidence detection To identify driver genes, we quantify evidence of any upstream ef-
fect on gene expression untangled from any possible lineage effect. To this end, mimicking classical
approaches in regression settings, we follow a sequential scheme as described in Supplementary
Figure S1.

(1) Test for any lineage main effect using pBF𝐿𝑗 . If pBF𝐿𝑗 ≤ 1, go to Step 2. Else go to Step 3.
(2) Test 𝐻0𝑈𝑗 using pBF𝑈𝑗 . Set mechanistic evidence 𝑗1 = pBF𝑈𝑗 .
(3) Test 𝐻0𝑈𝐼𝑗 using pBF𝑈𝐼𝑗 . Set mechanistic evidence 𝑗1 = pBF𝑈𝐼𝑗 .
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2.1.2. Single-lineage Mechanistic Models
These models do not include any lineage main or interaction effects. Thus, from Equation (1), the
full models reduce to the following for the 𝑗th gene, using same notations as before.

𝐺𝑖𝑗 =
𝑝𝑗
∑

𝑣=1
𝑓𝑗𝑣(𝑈𝑖𝑗𝑣)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Upstream main effects

+ 𝜀𝑖𝑗
⏟⏟⏟

Error

,∀𝑖 ∈ {1,… 𝑛}. (2)

We use the same eq kernel parametrization for the GP priors on each 𝑓∙ as we used for the 𝑓2∙ com-
ponents in the multi-lineage models. We now test 𝐻0𝑗 ∶ 𝑓𝑗𝑣 = constant,∀𝑣 ∈ {1,… , 𝑝𝑗} for each
gene. We compare the full model in Equation (2) with a noise-only null model. The derivation of
the corresponding pBF𝑗 is described in Supplementary Notes Section S1.4. We assign the evidence
𝑗2 = pBF𝑗 , as described in Supplementary Figure S1.
2.2. Outcome Model
For a given pool of genes, it is possible to compute multiple lines of evidence (𝑗 = (𝑗1,… , 𝑗𝐸)𝑇

for gene 𝑗). For example, for a given gene 𝑗, we may compute one pBF from a multi-lineage model
built on cell line samples, and another pBF from a single-lineage model built on patient samples
(𝐸 = 2). With interest in some disease- or therapy-related phenotype/outcome 𝑌 and the selection of
biomarkers associated with it, the goal is to inform the outcome model about any level of evidence
captured in these 𝑗𝑒s in a covariate-specific way to possibly improve selection.

(1) Sufficiently strong evidence in favor of a covariate ⟹ higher prior probability of inclusion.
(2) Otherwise, a uniform prior is placed on selection/non-selection for that particular covariate.

We utilize a hierarchical Bayesian setting with calibrated spike-and-slab priors, described below.
Let 𝑌𝑖 be the mean-centered continuous outcome for the 𝑖th sample. Simple extensions to categor-
ical/censored outcomes are possible, but in this work we only focus on continuous outcomes. The
mathematical form of the calibrated Bayesian variable selection (cBVS) model is then the following.

𝑌𝑖 =
𝑞
∑

𝑗=1
𝛽𝑗

⏟⏟⏟
Gene expression coefficients

𝐺𝑖𝑗 + 𝜂𝑖
⏟⏟⏟

Error

, 𝑖 ∈ {1,… , 𝑛}. (3)

Model and prior specifications The errors 𝜂𝑖 are iid N(0, 𝜏2),∀𝑖 ∈ {1, ..., 𝑛}. A standard conjugate
prior is used for 𝜏2 ∼ Inverse-Gamma( 𝜈

2
, 𝜈𝜆
2
). Let 𝜷 = (𝛽1,… , 𝛽𝑞)𝑇 denote the 𝑞-dimensional vector of

regression coefficients. We place a calibrated hierarchical spike-and-slab prior on 𝜷.
𝜷|𝜹, 𝜏 ∼ N𝑞(𝟎,𝐃𝜹,𝜏),
𝛿𝑗|𝜃𝑗 ∼ Bernoulli(𝜃𝑗), ∀𝑗 ∈ {1, ..., 𝑞},

𝜃𝑗 ∼ Beta
(

 (𝑗),
1

 (𝑗)

)

, ∀𝑗 ∈ {1, ..., 𝑞}. (4)
Here 𝐃𝜹,𝜏 = 𝜏2𝐀𝜹, where 𝐀𝜹 is the 𝑞×𝑞 diagonal matrix 𝐀𝜹 = diag{𝛿1𝑣1+(1−𝛿1)𝑣0,… , 𝛿𝑞𝑣1+(1−𝛿𝑞)𝑣0}
and 𝑣1 ≥ 𝑣0 > 0 are respectively the slab and spike variances. The binary latent variables 𝛿𝑗 are
variable inclusion indicators with 𝛿𝑗 = 1 meaning that the 𝑗th variable is included in the model.
 is a calibration function mapping the evidence vector 𝑗 = (𝑗1,… , 𝑗𝐸)𝑇 to the prior covariate
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inclusion probability 𝜃𝑗 . The advantages of the hierarchical formulation (Equation (4)) coupled with
the evidence calibration function  are multifold. First, by adapting  , our framework allows the
user to incorporate other significance quantities (such as p-values) into the final outcome model.
Any external upstream information, including categorical and continuous covariates, can be used in
the mechanistic layer to compute such summary statistics. Finally, by tuning  appropriately, our
framework allows the user to control the impact of the prior information on selection, as we show
below. We discuss all these in more detail in Section 4.
Choice of evidence calibration function We use a calibration function  on ℝ𝐸 → [0, 1] to ag-
gregate multi-dimensional prior evidence into a scalar prior probability. To this end, we use a four-
parameter logistic map reflecting the maximal evidence across all sources on a continuous and non-
decreasing spectrum of evidence strength. The exact mathematical form and the motivation behind
this choice are described in Supplementary Notes Section S1.5. Using this function, the calibrated
prior means of 𝜃𝑗 (representative values of maximal evidence at the pBF∕ ln(10) scale in parentheses)
are as follows: 0.502 (0.25), 0.543 (0.75), 0.726 (1.5), 0.962 (3). As illustrated in Supplementary Fig-
ure S2, the corresponding prior distributions of 𝜃𝑗 shift from an uniform prior to one concentrated
close to one with increase in prior evidence strength.
Variable selection Inference is centered around the posterior 𝓅(𝜷, 𝜹,𝜽, 𝜏|𝒀 ,𝑮,, 𝜈, 𝜆, 𝑣0, 𝑣1), where
𝜷, 𝜹, and 𝜽 are the 𝑞 × 1 vectors of all 𝛽𝑗s, 𝛿𝑗s, and 𝜃𝑗s respectively, 𝒀 𝑛×1 is the outcome vector, 𝑮𝑛×𝑞
is the design matrix, and 𝑞×𝐸 is the matrix of the 𝑗𝑒s. We approximate this using a Gibbs sampler
implemented via the rjags R package.24 We obtain posterior estimates of the parameters (i.e., 𝛽𝑗s,
�̂�𝑗s, and 𝜏) as their corresponding empirical posterior means. Model selection is performed using
the collection of 1 − �̂�𝑗 as p-value type quantities and applying a false discovery rate (FDR) control
procedure,25 described in Supplementary Notes Section S1.6.
3. Multi-system and Multi-platform Integrative Analyses of Pan-Gynecological Cancers
We perform an integrative analysis of cancer cell lines data from CCLE and patient samples from
TCGA.14,15 Using multi-lineage mechanistic models for cell line samples and single-lineage mech-
anistic models for patient samples, we quantify gene-specific associations of expression with corre-
sponding copy number and methylation data. We then use the pBFs from these two sources to inform
and build cBVS models of drug response on gene expression based on the cell line samples. Specif-
ically, our multi-lineage mechanistic models on the cell line samples borrow strength by combining
data across three gynecological lineages - breast, ovary, and uterus. The single-lineage mechanistic
models on the patient samples are built separately for each of the three corresponding TCGA cancer
types by tissue - breast invasive carcinoma (BRCA), ovarian serous cystadenocarcinoma (OV), and
uterine carcinosarcoma (UCS). The outcome models on the cell line samples are built in a lineage-
specific way for a collection of drugs of interest in gynecological cancers. Our investigations are
aimed broadly at answering two sets of questions.

(1) We assess within-system and between-system patterns of functional evidence garnered by the
mechanistic models (i.e., a gene may have strong mechanistic evidence of association with
the upstream factors for the cell lines only, the patients only, both, or none).

(2) We identify panels of genes whose expressions are associated with responses to specific drugs
in the cell line samples, potentially offering novel introspection into treatment selection and
the cellular mechanisms/targets of such drugs.
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3.1. Data Processing and Analysis Pipeline
Multi-omics cell line and patient data Gene expression, copy number, and DNA methylation data
on cancer cell lines from CCLE, drug response data from GDSC, along with annotation information
to match genes to upstream information, are downloaded from the depmap portal.26 Gene expression,
copy number, and DNA methylation data on TCGA patient samples, along with annotation informa-
tion matching genes to upstream covariates, are downloaded from the Xena browser.27 Sample size
and other filtering requirements result in a pool of 5,792 genes and 65 drugs to be included in all
further analyses, as described in Supplementary Notes Section S1.7. Summary information on each
dataset are available in Supplementary Table S1 and Supplementary Figures S3-S8.
BaySyn analysis of gynecological cancers For each gene, a multi-lineage mechanistic model with
𝑀 = 3 (breast, ovary, uterus) is constructed (termed the CL model hereafter) and hypothesis tests
are performed as described in Supplementary Figure S1. Further, for each gene, three single-lineage
mechanistic models (one for each cancer type – BRCA, OV, UCS) are built on the patient samples
and upstream effects are quantified following Supplementary Figure S1. As a post-model fitting in-
vestigation, we perform gene set enrichment analyses (GSEA)28 using these four sets of evidence
(CL, BRCA, UCS, OV) for the Kyoto Encyclopedia of Genes and Genomes (KEGG)29 and gene
ontology (GO) gene sets.30,31 For our analyses, we use the gene set enrichment (GAGE) procedure
implemented in the gage R package due to the reason that our pBFs are on a different scale than
typical expression levels or fold-change summaries.32 The gene set-specific hypothesis that we test
is whether the set in question exhibits significantly higher level of activity as summarized by the
evidence statistics compared to the genes outside the gene set, due to the unidirectional nature of the
pBFs. For each lineage, drug-specific response association models are built using the cBVS proce-
dure, and variable selection is performed using a 10% FDR control threshold. Illustrative examples of
annotated and integrated datasets for each stage of modeling are presented in Supplementary Notes
Section S1.8 and Supplementary Figures S9-S11.
3.2. Results
Utility of borrowing strength to detect mechanistic evidence Figure 2a summarizes the number
of genes inferred to be at the decisive level of evidence (in favor of associations with corresponding
upstream covariates) across the three single-lineage models for each TCGA patient cancer type and
the multi-lineage model for the cell lines data. The connected dots at the bottom indicate the inter-
section of the mechanistic models for which the number of genes summarized by the bar height are
decisive. The top three combinations of models in terms of detecting decisive evidence all belong to
some combination of the TCGA data sets (BRCA only, BRCA and OV, BRCA and UCS - in decreas-
ing order). However, except for the BRCA dataset which utilizes > 750 samples for all genes to build
the mechanistic models, the cell lines mechanistic models borrowing strength across three lineages
detect more unique signals (4th in the ranking) than the other TCGA datasets. This further validates
the utility of building joint nonlinear association models with main and interaction components that
can identify shared patterns of association across smaller datasets which would potentially be missed
in dataset-specific models. The list of genes uniquely identified by the cell lines mechanistic model
is available in Supplementary Table S2.
KEGG gene set enrichment analyses illustrate utility of mechanistic evidences To assess the
utility of the mechanistic evidence quantities and to validate their use in future detection of novel
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Fig. 2: Mechanistic evidence summary and gene set enrichment results. Panel (a) presents an upset plot of
the number of genes at the decisive level of evidence based on the mechanistic models for different intersections
of the patient and cell line datasets. Panel (b) presents a dotplot summarizing significance levels for KEGG
gene sets. The gene sets are ordered from top to bottom in decreasing order of q-values (≤ 0.2 included).
The labels beside the dots indicate set sizes in our analyses. Panels (c) and (d) present heatmaps summarizing
levels of mechanistic evidence for the genes in KEGG herpes simplex infection and adherens junction gene
sets respectively. Genes in the rows are ordered based on clusters resulting from the evidence statistics.

functional drivers, we perform GSEA using the four evidence sources and the KEGG and GO gene
sets. Due to space limitations we only discuss the KEGG results here. The GO results are presented
in Supplementary Figures S17-S32. Several KEGG gene sets have been implicated to have signif-
icant roles generally in cancer33,34 and specifically in gynecological cancers.35–38 The results from
our KEGG GSEA are summarized in Figure 2b, exhibiting the seven gene sets with FDR-controlled
q-value < 0.2. The gene set-specific mechanistic evidences are summarized in Figure 2c-d for the
top two KEGG gene sets; the rest are presented in Supplementary Figures S12-S16. The top gene
set identified in the KEGG analyses is the herpes simplex infection pathway (p-value = 3.88 × 10−16)
(Figure 2b). This gene set contains a large cluster of genes exhibiting decisive evidence across ma-
jority of the mechanistic models, as can be seen in Figure 2c. Following these genes are two major
clusters - one containing genes at the decisive level for the BRCA, OV, and CL mechanistic models,
and one containing genes at the decisive level for all three TCGA cancers. The consistent nature
of functional evidence across this gene set is in agreement with findings from past investigations -
multiple studies have indicated the prognostic value of members of this pathway in gynecological
cancers - including breast,39 ovarian,40 and endometrial41 cancer. The second-highest gene set in the
KEGG analyses is the adherens junction gene set (p-value = 5.52 × 10−5) (Figure 2b). The genes
PTPN6 and ERBB2 exhibit decisive levels of mechanistic evidence in all four models (Figure 2d).
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Different upstream mechanisms of the ERBB2 gene have been implicated in different gynecological
cancers, such as copy number changes in ovarian tumors42 and somatic mutations in breast cancer.43
The EGFR gene has also shown promise as a potential therapeutic target in multiple gynecological
cancers,44,45 which is in alignment with our findings of some signal in all the TCGA and cell line
models (Figure 2d).
Calibrated drug response models identify high-association lineage-specific biomarkers We
build calibrated hierarchical Bayesian variable selection-based drug response models for each lin-
eage × drug combination across all 65 drugs and all three cell line lineages. Figure 3a presents a
wordcloud where each gene is weighted by the total number of times it is selected in a drug response
model at the 10% FDR-controlled cutoff. The genes BAHCC1, ALOX12P2, and SYCP2 emerge as
the top candidates, with selection in 14, 12, and 12 models respectively. While this summary allows
us to identify general candidates for future pharmacogenomic investigations, it does not indicate any
potential lineage-specific utility of these genes. To this end, Figure 3b summarizes the number of
times the top genes across all drug response models are selected in each lineage. For breast, genes
BAHCC1, BCL11A, and SYCP2 are at the top, with respectively eight, eight, and six detected drug
associations. The role of BCL11A in triple-negative breast cancer (TNBC) stemness is well known,
and it is considered to be one of the first utilizable targets for treatment of TNBCs.46 A similar con-
firmation can be obtained for SYCP2, which has recently been identified as a prognostic biomarker
in breast cancer.47 However, to the best of our knowledge, BAHCC1 has not so far been identified
to have breast cancer-specific functional roles, which renders it as a novel detection that deserves
deeper investigations. Top genes in the two other lineages also include both novel and known func-
tional drivers - such as ALOX12P2 (nine selections, novel) and FGFRL1 (eight selections, known)48
for ovary and FBXO17 (seven selections, novel) for uterus.

(a) (b) (c)
ModelBAHCC1

ALOX12P2

SYCP2

BCL11A

ACBD7

CDCA7

FBXO17

FGFRL1

GRK5HOXC4
IL18RAP

KRT7

NEDD4

PANX2

S100A1

SPON1

SRCIN1

ZNF853

Fig. 3: Drug response model summaries. Panel (a) presents a wordcloud of top genes across all the drug
response models (three lineages × 65 drugs). The sizes of the words are proportional to the total number of
times across all models that a gene is selected based on a 10% FDR-controlled threshold. Panel (b) presents a
radar chart of the top 18 genes (selected in at least nine drug response models) according to the three lineages.
Panel (c) presents a discovery plot across increasing FDR control thresholds for the drug docetaxel in lineage
breast and the drug cisplatin in lineage ovary. BMS refers to an uncalibrated Bayesian variable selection model
based on the Bayesian model averaging procedure (see Supplementary Notes Section S1.9).

Calibration improves statistical power to detect gene-drug associations To assess the discover-
ies for specific lineage × drug combinations, we focus on two drugs with known use in specific cancer
lineages - docetaxel for breast and cisplatin for ovary. The number of discoveries across different FDR
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thresholds for these are presented in Figure 3c-d and the corresponding discoveries are summarized
in Supplementary Tables S3-S4. Similar plots and tables for all other models are available in our R
Shiny dashboard at tinyurl.com/BaySynApp. Evidently, compared to an uncalibrated Bayesian vari-
able selection procedure implemented via the BMS R package (see Supplementary Notes Section
S1.9), cBVS models make more discoveries at the same level of error control, allowing a contin-
uum of assessment for top candidates emerging across increasing control thresholds. This indicates
the utility of synthesizing mechanistic evidence and calibrating the outcome models with such evi-
dences. Several examples of cell lines-based discoveries guided by evidences discovered in patient
data emerge. For example, the model for docetaxel response in breast cell lines identify an associa-
tion with the gene GRK5 at 10% FDR control. Cell lines overexpressing GRK5 have previously been
observed to demonstrate an increase in resistance to docetaxel in male gynecological cancers,49 and
our finding suggests that it deserves further investigations in female gynecological cancers as well.
Another top discovery at the same FDR threshold is the gene CD83, expression of which is known
to be enhanced by docetaxel in metastatic breast cancers.50 For the response model of cisplatin in
the ovarian lineage, multiple solute-carrier family (SLC) genes are selected at the 10% FDR thresh-
old. These genes are known potential biomarkers of ovarian cancer and are under investigation for
prognostic utility.51 Another interesting discovery is that of the CDCA7 gene from the cell division
cycle pathway, silencing of which has recently been shown to downregulate cisplatin resistance in
lung cancer subtypes, making it a potential therapeutic target.52 Our finding seems to indicate similar
scope in ovarian cancer, demanding further investigation. Notably, all four of these discussed find-
ings had no cell lines-based mechanistic evidence, but had decisive evidence from at least one TCGA
source – which further underscores the importance of synthesizing evidence across model systems.
4. Summary and Discussion
We propose BaySyn, a hierarchical multi-stage Bayesian evidence synthesis procedure for multi-
system multiomic integration. BaySyn detects functionally relevant driver genes based on their as-
sociations with upstream regulators and uses this information to guide variable selection in outcome
association models. We apply our framework to multiomic cancer cell line and patient datasets for
pan-gynecological cancers. pBFs from the mechanistic layer of BaySyn exhibit high enrichment in
previously known KEGG gene sets and detect driver genes known to have functional roles in the can-
cers studied. Calibrated outcome models for drug responses identify several confirmatory and novel
lineage-drug-gene combinations providing further evidence on the profitability of our approach to-
wards future precision oncology endeavors.
Several features of our framework makes it readily adaptable to more general settings and richer
datasets. The calibrated spike-and-slab prior can be generalized to include any number (more up-
stream platforms such as miRNA or mutation) and form (other evidence metrics such as p-values) of
prior information by tuning the calibration function accordingly. The outcome model can easily be
extended to include other biomarkers such as proteomics. While we use cell lines data to illustrate the
integrative approach across model systems, it is straightforward to apply our pipeline to datasets from
cancer model systems with higher fidelity to human tumors53 - such as organoids54 or patient-derived
xenografts55 - as such databases become increasingly comprehensive and available. Further, both the
stages of our framework are highly parallelizable and individual runs are quite efficient - a single
gene-specific multi-lineage mechanistic model with interactions takes approximately 20 minutes on
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average to complete, while a single lineage-drug specific outcome model takes approximately 12
minutes on average (both based on runs on a single core of a 2015 Macbook Air with 8 GB memory
and Intel i5 processor). Thus, extending our analyses to include larger gene-drug panels with similar
sample sizes is straightforward with existing parallel computing resources.
Limitations and Future Work Certain improvements are of interest given the biological context
of our work. First, although we assess mechanistic relevance at a gene-by-gene basis, at a molecular
level, genes interact in functional pathways to result in downstream modifications. This motivates
joint models for driver genes in a multivariable setting accounting for underlying gene-gene interac-
tions. Second, the relatively low lineage-specific sample sizes in cell lines data make fully Bayesian
exploration of the posteriors feasible in the outcome models. Higher data dimensions would result
in increased computation times; where-in approximate Bayesian computation schemes such as the
E-M based variable selection56 or variational Bayes57 would need to be employed. Third, while our
framework allows integration of covariate-specific prior information in a variable selection frame-
work, more granular information (both sample- and covariate-specific) may be available, allowing
improved learning of the molecular functions driving the changes in an outcome of interest. For ex-
ample, sample-specific data on tumor heterogeneity may be available, and such data may need to be
incorporated in the outcome models driving changes in the covariate effects. Finally, as outlined in
Supplementary Notes Section S1.5, in the presence of multiple lines of evidence, how best to aggre-
gate them depends heavily on the context - while multiple possible approaches exist, a case-specific
decision must be made to ensure best utilization of the evidences. A data-driven procedure of choos-
ing evidence weights would eliminate this requirement. We leave these tasks for future exploration.
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