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Accurate prediction of TCR binding affinity to a target antigen is important for development
of immunotherapy strategies. Recent computational methods were built on various deep
neural networks and used the evolutionary-based distance matrix BLOSUM to embed amino
acids of TCR and epitope sequences to numeric values. A pre-trained language model of
amino acids is an alternative embedding method where each amino acid in a peptide is
embedded as a continuous numeric vector. Little attention has yet been given to summarize
the amino-acid-wise embedding vectors to sequence-wise representations. In this paper, we
propose PiTE, a two-step pipeline for the TCR-epitope binding affinity prediction. First,
we use an amino acids embedding model pre-trained on a large number of unlabeled TCR
sequences and obtain a real-valued representation from a string representation of amino acid
sequences. Second, we train a binding affinity prediction model that consists of two sequence
encoders and a stack of linear layers predicting the affinity score of a given TCR and epitope
pair. In particular, we explore various types of neural network architectures for the sequence
encoders in the two-step binding affinity prediction pipeline. We show that our Transformer-
like sequence encoder achieves a state-of-the-art performance and significantly outperforms
the others, perhaps due to the model’s ability to capture contextual information between
amino acids in each sequence. Our work highlights that an advanced sequence encoder on
top of pre-trained representation significantly improves performance of the TCR-epitope
binding affinity prediction∗.
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1. Introduction

T cells play fundamental roles in the adaptive immune system. T cell receptor (TCR) is a cell
surface protein complex that binds to peptides presented by antigen presenting cells (APCs)
via major histocompatibility complex (MHC, pMHC is the peptide-MHC multimers that are
presented to T cells).1 A successful binding and recognition of a foreign antigen triggers an
immune response to defend our body from the invaders. The binding is essentially determined

§Now at Google.
∗Code and models are publicly available at https://github.com/Lee-CBG/PiTE
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by two short amino acid chains.2 One is an epitope, a part of antigen peptides bound within
pMHC presented by APCs and a TCR is the counterpart. Of a TCR, the complementarity-
determining region 3 (CDR3) of TCR β chain is known to be the most important part that
interacts with its cognate epitope pairs.2–4

Accurate prediction of TCR binding affinity to a target epitope is a critical step to unrav-
eling the underlying binding mechanisms. Especially, the ability to predict computationally
is extremely valuable as it can automate screening of cognate TCRs for an epitope of inter-
est. Computational screening of a confident candidate set of TCRs for a target epitope can
dramatically reduce the time and the cost of wet lab assays, thereby further enabling rapid
development of personalized immunotherapy.5,6

Many machine learning models to predict the binding affinity of TCR and epitope se-
quences have been developed.7–14 While earlier models such as TCRex8 and TCRGP7 utilized
random forest and gaussian process respectively, more recent models leveraged a large capacity
of deep neural networks. For example, NetTCR9 and NetTCR2.010 were built on multiple con-
volutional neural network (CNN) layers with different sizes of filters to encode each sequence
followed by dense layers to predict the binding affinity scores between the encoded sequences.
To accommodate the amino acid sequential data, ERGO11 utilized a long-short term memory
(LSTM)15 layer followed by a multi-layer perceptron. Similarly, TITAN12 and ATM-TCR13

leveraged the attention mechanism.16

The first step to process the input for these machine learning models is translating string
representation of peptides (both TCR and epitope sequences) into a real-valued numeric vec-
tor. Overwhelmingly many models7–10,12 map each amino acid in a TCR (or epitope) sequence
to a predefined vector of numeric values using evolutionary-based distance matrices BLO-
SUM.17 However, the models using BLOSUM-based embedding suffer from limited perfor-
mance, especially when predicting binding affinity for out-of-sample epitopes13 not present in
the training data the models were trained on.

In order to improve generalized prediction performance, several amino acids embedding
models have been proposed.11,14,18,19 These models were trained on a large number of unpaired
TCR sequences by considering the input sequence itself as the supervision signal. Among these,
especially the embedding models14,19 whose architectures were inspired by language represen-
tation models such as Bert20 and ELMo21 have shown to learn more effective contextualized
embeddings for TCR and epitope sequences and improved prediction performance. Typically,
such models yield a larger size of embedding vectors than those of BLOSUM-based method.
Average pooling has been commonly used to reduce the size of the embedding model outputs
and enable training a binding affinity prediction model with less computational burden. How-
ever, it wipes off position-specific information and degrades prediction performance because
it averages vectors over all amino acids.

We propose PiTE, a Pipeline leveraging Transformer-like Encoders to predict the binding
affinity between a pair of TCR and epitope sequences. Our pipeline consists of two parts: (1)
amino acids embedding for each TCR and epitope, and (2) binding affinity prediction between
the two sequences. First, we use a pre-trained embedding model to map string representations
of amino acids sequences (e.g., GLCTLVAML) to a sequence of real-valued vectors. It leverages a
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large number of unlabeled TCR sequences to train an embedding model, and learn contextual
representations of TCRs and epitopes using a bidirectional LSTM architecture. Second, we
train a binding affinity prediction model that takes a pair of TCR and epitope embeddings
as an input and returns a binding affinity score between those two sequences. PiTE encodes
TCR and epitope amino acids embeddings using two sequence encoders, respectively, and
determines the binding affinity between those two sequences using multiple linear layers. In
particular, we explore various different types of neural network architectures to encode each
sequence on top of existing embedding models. We highlight the importance of an advanced
sequence encoder to boost the performance of the TCR-epitope binding affinity prediction.

2. Data

2.1. Positive Sample Collection

To train our models, we sampled TCR-epitope pairs with known binding affinity from three
publicly available databases–IEDB,22 VDJdb,23 and McPAS.24 Pairs with MHC class I type
epitopes and TCRβ CDR3 sequences were used in our analysis. In this paper, TCR sequence
refers to CDR3 unless otherwise stated. Sequences containing wildcard amino acids, such as
* and X were excluded. After removing duplicates from three databases, a total of 150,008
unique TCR-epitope pairs known to bind were obtained.

2.2. Negative Sample Generation

While there is real negative binding data,10 the dataset only covers a limited number of
epitopes (19 epitopes), we strictly generated the same number of negative samples so that our
data have an 1:1 ratio of positive and negative samples. In detail, we collected TCR sequences
from TCR repertoires of healthy controls in ImmunoSEQ25 portal. We then replaced TCRs
of the positive TCR-epitope pairs with TCRs randomly selected from the healthy controls,
resulting in 150,008 negative TCR-epitope pairs. Combining our collected positive pairs and
generated negative pairs, we had 300,016 unique TCR-epitope pairs in total.

2.3. Training and Testing Set Split

The binding characteristic of TCRs and epitopes is many-to-many, which means a TCR can
bind to multiple epitopes and an epitope can bind to multiple TCRs. Considering that our
dataset has 290,683 unique TCRs and 982 unique epitopes, it is highly likely that an epitope
can be found in both training and testing sets if we randomly split the sets. It is less likely
that a TCR present in both training and testing sets, but this can still happen. Therefore, the
random split of training and testing sets cannot properly measure generalization performance
of our model on novel TCRs and epitopes. In order to measure generalization performance on
novel TCRs and epitopes, we followed two dataset splitting approaches used in ATM-TCR:13

the TCR split and the epitope split. In the TCR split, no testing TCRs ever appeared in the
training set, allowing us to evaluate the performance of binding affinity prediction models on
out-of-sample TCRs. Similarly, in the epitope split, no testing epitopes ever appeared in the
training set, allowing us to evaluate the performance on out-of-sample epitopes.
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3. Methods

PiTE consists of two parts: amino acid embedding and TCR-epitope binding affinity prediction
(see Fig. 1). In the TCR (or epitope) amino acids embedding part, we use a pre-trained
embedding model to map a TCR (or epitope) sequence of string representation of amino acids
to a sequence of real-valued vectors. In the binding affinity prediction part, we train a variety
of different binding affinity prediction models, which composed of two sequence encoders (one
for TCR and the other for epitope) and a block of linear classification layers. In particular, we
are interested in how different types of encoders would perform in summarization of amino-
acid-wise embedding vectors into a sequence-wise representation.Fig 1. Pipeline

Binding / Non-binding

TCR (lt) Epitope (le)

lt × 1024 le × 1024
Block 1. 
Sequence

Summarization

layer

Block 2. 

Binding affinity 
classifier layer

(u, v, |u − v | )
linear layers

Embedding Embedding

TCR Encoder Epitope Encoder

concatenation

softmax

u v

1. catELMo -> Embedding

2. SeqEnc -> TCR Encoder, Epi Encoder


3. Used different color for TCR and epi encoder

4. encode, summarization


22 x 1024  amino acid vectorS—> 1 x 1024 vector, output is the 
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Embedding


Model

Binding Affinity 
Prediction 
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Fig. 1. PiTE pipeline: A TCR sequence with length of lt is first fed to the amino acids embedding
model. Each amino acid is embedded as a 1 × 1024 vector, hence a TCR sequence is embedded as
a lt × 1024 matrix. Similarly, an epitope sequence with length le is embedded as a le × 1024. These
embeddings are then passed into each sequence encoder to obtain the summarized representation u
and v for the TCR and epitope sequence, respectively. Finally, u, v, and their absolute subtraction
|u − v| are concatenated, and fed to two linear layers followed by a softmax activation function to
predict the binding affinity between the TCR and epitope sequences. Note sequence encoder layers
and binding affinity classifier layer are trained together as one binding affinity prediction model.

3.1. Amino Acids Embedding

Amino acid embedding is a process to map each amino acid in a TCR (or epitope) sequence to a
real-valued vector. Recently, amino acid embedding models11,14,18,19 leveraging a large number
of (unlabeled) TCR sequences have shown great advantages over the BLOSUM-based models.
We use a pre-trained amino acids embedding model19 trained on unlabeled TCR sequences
collected from ImmunoSEQ portal. The embedding model adopted the overall architecture
from a widely used language representation model, ELMo,21 with different layer sizes. Note
that this paper does not aim to find an optimal architecture for amino acid embedding. We
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use this model because it performs the best on our dataset, but it can be replaced by any
other state-of-the-art embedding models such as TCR-Bert14 and DeepTCR.18

The embedding model serves as a feature extractor that maps each amino acid in a string
representation of TCR (or epitope) sequence to a numeric vector of size of 1×1024. Therefore,
a TCR sequence of length lt is represented by a sequence of embedding vectors (i.e., a matrix
of size lt × 1024). Similarly, an epitope sequence of length le is represented by a sequence of
embedding vectors (i.e., a matrix of size le×1024). These embeddings will serve as the input of
the binding affinity prediction model. Since the binding affinity prediction model requires the
input to have the same shape and size, we align TCRs and epitopes using the IMGT approach
with a predefined length l. If the length of the TCR sequence (lt) is longer than l, we remove
an embedding vector of the amino acid from the end until it equals l. Otherwise, we append
zeros to the end of embedding vectors to ensure the embedding length is l. We predefine l as
22 for both the TCR and epitope sequences. This preprocessing step is applied before feeding
the TCR (or epitope) embeddings into our sequence encoder except for the baseline average
pooling encoder.

3.2. TCR-epitope Binding Affinity Prediction

3.2.1. Sequence Encoders

Average pooling (baseline): Average pooling is a pooling technique that projects a high
dimensional matrix to a low dimensional one by averaging values with regards to some fea-
ture dimension. It has been commonly used for obtaining sequence representations from the
output of amino acids embedding models. It helps to reduce the dimension of the amino acid
embedding of which the size is generally larger than the BLOSUM embedding. We used an
average pooling with regards to the length dimension as the baseline for sequence encoders. In
detail, we performed the average pooling on each embedding of TCRs with the size lt × 1024,
and obtained a summarized TCR sequence representation with the size 1 × 1024. Similarly,
we obtained a summarized epitope sequence representation with the size 1 × 1024. It helps
to handle various lengths of TCR (or epitope) sequences by reducing the dimension of their
amino acids embedding size.

Transformers: Transformer16 is a deep learning model using an encoder-decoder structure
that leverages multi-head self-attention mechanism to learn contextual representation of texts.
Although it was originally designed for machine translation, it and its variants have been
achieving revolutionary performances in many other natural language processing tasks such
as question answering, text generation, and textual entailment.20,26

We use a multi-head self-attention module for sequence encoders, which is similar to Trans-
former encoder. The attention module allows the model to attend different amino acid residues
of a TCR (or epitope) sequence based on their contextual relationship. In detail, the module
takes three types of vectors as input: a query vector Q, a key vector K, and a value vec-
tor V . Each vector is defined by a linear projection of a TCR (or epitope) embedding, and
each element in the projection matrix is considered as a model parameter. Then the scaled
dot-product of Q and K determines the strength of contextual relationship between different
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amino acid residues. The self-attention layer is then calculated by the following equation:

Attention(Q,K, V ) = Softmax

(
QKT

√
dk

)
V.

The multi-head self-attention layer is defined as a concatenation of multiple self-attention
layers. Taking an embedded TCR sequence (lt × 1024) as an example, we first feed it into
a multi-head attention layer with two heads followed by a dropout layer27 with a rate of
0.1 and a layer-wise normalization.28 The output of which is then served as the input for
a feed-forward layer followed by another dropout layer with a rate of 0.1 and a layer-wise
normalization. Finally, a SiLU29 activation function followed by a global max pooling layer is
used to produce a 1 × 1024 summarized representation for the TCR sequence. Similarly, we
generate a 1 × 1024 sized representation for the epitope sequence.

BiLSTMs: LSTM15 is a type of recurrent neural networks designed for dealing with long-
term dependencies in sequential data and have been commonly used to process protein or
genomic sequences.11,30 Evidence has shown that BiLSTMs with max-pooling achieved overall
better performance than other recurrent units such as vanilla LSTMs and GRUs31 for sentence
encoding in natural language process.32 We therefore select a BiLSTM structure as one of our
sequence encoders. A BiLSTM layer consists of two LSTM layers in opposite directions: the
forward layer and the backward layer. The forward LSTM layer is used to predict the current
state given previous ones by feeding the input sequence in order, and the backward LSTM
layer is used for producing the current state given the future ones by feeding the input sequence
reversely. In this way, a BiLSTM layer can learn features from both directions.

In detail, taking an epitope sequence with length le as an example, we first use a biLSTM
layer with 32 units to encode the epitope sequence, followed by a time-distributed linear layer
with 256 neurons. The output vector size is le × 256. We then feed this vector to a SiLU
activation function29 and global max pooling layer as it has been shown the global max-
pooling achieves better encoding results in general.32 The final outputed representation vector
is 1 × 256 for the epitope sequence. Similarly, the representation size for a TCR sequence is
also 1 × 256.

CNNs: CNNs are a type of neural networks using convolution operations to extract high-
level features in image processing.33 CNNs have achieved excellent performances in many
computer vision tasks involving videos or images.34,35 A recent work suggested that CNNs
could also perform well even when dealing with sequential data such as protein sequences.36

Specifically, they trained a ByteNet-based37 CNN model on protein data and showed that
their CNN model achieved comparable performance with Transformers. We thereby design an
CNN-based architecture for the sequence encoders using ByteNet.

A ByteNet block consists of 3 one-dimensional CNN layers, each of which is followed by a
batch normalization38 layer and GeLU39 activation function. The number of filters for these
three CNN layers are 256, 512, and 1024, respectively. The first and third CNN layers with
both kernel sizes and stride steps being 1 are utilized to process the sequential TCR and
epitope sequences. The middle CNN layer is a dilated CNN40 with a kernel size of 5 and stride
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step of 1, and it is used to expand the receptive field of input sequence covered without pooling
to learn global context information. The input and output of each block are added together,
and serve as the input for the next block. Four blocks are used in total. The dilation rate for
the dilated CNN layer in each block increases by a factor of 2, ranging from 2 to 16.

Taking a TCR amino acids embedding (lt×1024) as an example, we first feed it into an 1D
CNN layer with 256 filters followed by a GeLU activation function and another 1D CNN layer
with 512 filters. Batch normalization and a GeLU activation function are then applied. The
output of which is then feed into a 1D CNN layer with 1024 filters followed by 4 continuous
ByteNet blocks. We use the final output of these ByteNets as the summarized representation
for TCR or epitope sequences. The size of summarized representation is 1 × 1024.

3.2.2. Linear Prediction Layers

On top of the sequence encoders, we stack two dense layers for determining the TCR-epitope
binding affinity score between two sequence representations. The classifier takes a pair of
summarized TCR and epitope representation vectors as the input and predicts the probability
(0–1) that they are binding to each other. Taking a summarized TCR sequence representation
(denoted as u) obtained from the baseline sequence encoder (size of 1 × 1024) as an example,
a summarized epitope sequence representation is also 1 × 1024 size (denoted as v). We first
concatenate u, v, and their absolute subtraction |u− v| together, resulting in a 1 × 3072 input
vector under baseline circumstance. The reason we include |u − v| into the concatenation is
that we aim to force the model to not only learn features from TCR and epitope sequences
but also pay attention to the difference between them. We then feed this input vector into a
linear layer with 1024 neurons, followed by a batch normalization,38 a 0.3 rate dropout27 and a
SiLU29 activation function. The output of which is then passed into another linear layer with
a single neuron followed by a softmax function to produce a binding affinity score ranging
from 0 to 1.

4. Experiments

We compared four different sequence summarizing encoders, including average pooling as base-
line, our Transformer-based, BiLSTM-based, and CNN-based sequence encoders. We trained
the sequence encoders together with a two-layer neural network that concatenates output
representations of the encoders and predicts the binding affinity of TCR and epitope pairs.

4.1. Implementation Details

We trained TCR-epitope binding prediction models using adam41 optimizer and binary cross-
entropy loss with a learning rate of 0.001 and a batch size of 32. An early stopping method was
used to avoid over-fitting. It stops training if the validation loss has not decreased for the last
30 epochs or the epoch become larger than 200. For each type of the sequence encoder, we listed
the size of summarized representations (u for a TCR sequence and v for an epitope sequence
showed in Fig. 1), as well as the total number of trainable parameters in the TCR-epitope
binding affinity prediction models in Table 1. Note that the summarized representation size of
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our BiLSTM-based method is 1× 256, which is one fourth of other methods. We intentionally
designed in this way to build a lite sequence encoder for comparison purposes. We trained
each model for 10 runs and reported mean and standard deviation of AUC, precision, and
recall scores. We tuned the number of heads in the multi-head attention layers and the size
of binary classification layers, and selected values achieving the highest AUC in epitope split
(Supplementary table 1). Each run took less than 1 day to finish on a NVIDIA RTX 2080
GPU with 11 GB memory. All our code was developed upon Tensorflow.42

Table 1. Summarized representation size of different sequence encoder and
trainable parameters of TCR-epitope binding affinity prediction models. We show
number of total trainable parameters in the prediction model and trainable pa-
rameters in encoder layers in parentheses.

Sequence Encoder Structure Representation Size Trainable Parameters (in encoders)

Average Pooling (Baseline) 1 × 1024 3,149,825 (0)
Transformer 1 × 1024 20,082,753 (16,932,928)
BiLSTMs 1 × 256 1,364,993 (574,464)
CNNs 1 × 1024 11,430,657 (8,280,832)

4.2. Results and Discussion

Our Transformer-based sequence encoder significantly outperforms the rest three
methods. To visually compare performances of different sequence encoders, we showcased the
ROC curves for both TCR and epitope split in Fig. 2. It was constructed by plotting the true
positive rate against the false positive rate. A model is considered to have good performance if
its ROC curve is close to the top-left corner. As seen in Fig. 2, we found that our transformer-
based model outperformed the other three methods under both TCR and epitope split settings,
indicating that it can summarize the TCR and epitope amino acids embedding better. It
may be because the multi-head attention mechanism assists to learn contextual information
between amino acids. We also compared the AUC, precision, and recall scores of the methods
in Fig. 2. The mean values across 10 runs are shown on top of each bar in Fig. 2. The height
of error bars represents the standard deviation over 10 runs. A two-sample paired t-test was
carried out for statistical significance testing. A p-value less than 0.05 means a significant
performance difference, otherwise, we considered it an statistically equivalent. We showed
that our Transformer-based model significantly outperformed both the baseline and BiLSTM-
based method in TCR and epitope split. In detail, our Transformer-based method achieved
a 97.48% AUC score in TCR split, outperforming baseline and BiLSTM-based methods by
3 and 2 points, respectively. Similarly, even bigger performance gains were observed in the
epitope split. The Transformer-based method reached a 89.83% AUC score which surpassed the
baseline and BiLSTM-methods by around 5 and 4 points, respectively. Our comparison results
suggested that Transformer-based sequence encoder can best summarize TCR (or epitope)
representations.
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Fig. 2. Performance of the TCR-epitope binding affinity prediction models using variety of different
sequence encoders in a. TCR split and b. Epitope split.

The choice of model architecture can be more important than the number of model
parameters. Our BiLSTM-based method significantly outperformed the baseline method in
both TCR split and epitope splits as well. As seen in Fig. 2, it achieved a 95.73% AUC
score in the TCR split, which is 1 point higher than the baseline of which the number of
trainable parameters are three times larger (Table. 1). We also observed that the current size
of BiLSTM-based method performed similar with a larger size BiLSTM model (representation
size 1× 1024). The large BiLSTM model achieved an AUC of 95.52% in the TCR split, and of
87.13% in the epitope split, showing that increasing the number of parameters in BiLSTM is
not a significant factor for improving the prediction performance. Moreover, we also observed
that CNN may not be an optimal structure for summarizing TCR or epitope sequences. It
performed significantly worse than baseline in both TCR split and epitope split. The AUC
score dropped around 4 points to 90.06% and 81.07% compared to baseline in both TCR and
epitope split, respectively. While the CNN-based model contains three more times parameters
than the baseline method, it failed to summarize better embeddings for sequences. It may be
because the the CNN-based model focused on leaning local contextual information but not
on global contextual information. All those results showed that carefully selecting the neural
network structure can make great improvement for TCR-epitope binding affinity prediction
than simply increasing model capacities.

The Transformer-based method performs best on most individual out-of-sample
epitopes. To take a closer look at our models’ performance on individual unseen epitopes,
we further compared AUC scores of each epitopes having the top 20 frequency in the epitope
split (Table. 2). For each epitope, we highlighted the highest AUC score across four models in
bold. We found that our Transformer-based method achieved the highest AUC scores in 17 out



of 20 epitopes. Apart from the first two epitopes, the Transformer-based and BiLSTM-based
model surpassed the baseline for the other 18 epitopes. The CNN-based model, on the other
hand, generally performed worse than baseline. Overall, the comparison results of individual
epitopes was consistent with our observation in Fig 2.

Table 2. AUC scores for Top 20 frequent epitopes in testing set

Epitopes Number of TCRs Baseline Transformers BiLSTM CNNs

MIELSLIDFYLCFLAFLLFLVLIML 23146 74.37 60.05 68.81 64.94
GILGFVFTL 10802 85.93 80.75 83 78.82
LLWNGPMAV 4716 79.75 89.51 87.41 75.75
LSPRWYFYYL 3502 71.19 93.69 80.62 78.67
VQELYSPIFLIV 2126 77.99 92.86 89.56 80.67
GMEVTPSGTWLTY 1990 74.88 93.17 86.19 76.99
ELAGIGILTV 1970 86.86 90 88.84 82.29
YEDFLEYHDVRVVL 1752 81.06 96.58 92.76 75
FLPRVFSAV 1734 78.78 89.16 84.49 75.38
MPASWVMRI 1558 75.61 89.74 81.26 75.23
FPPTSFGPL 1362 79.01 93.18 86.79 80.92
YEQYIKWPWYI 1074 67.88 95.63 87.25 77.1
VLHSYFTSDYYQLY 970 79.18 86.5 86.09 79.39
KTAYSHLSTSK 952 59.14 80.68 78.79 70.59
CRVLCCYVL 870 71.04 80.35 80.92 75.64
ILGLPTQTV 472 78.39 95.34 93.65 75.43
FIAGLIAIV 406 77.1 93.35 82.52 66.26
SMWSFNPETNIL 398 80.66 92.72 89.45 81.41
ILHCANFNV 398 80.16 95.98 90.46 85.18
FTISVTTEIL 396 76.27 94.45 88.39 80.31

5. Conclusions

This paper proposed PiTE, a pipeline that achieved a state-of-the-art performance for the
TCR-epitope binding affinity prediction problem. In particular, we explored various types
of neural network architectures for the sequence encoders that can be used on top of the
existing embedding models. We showed that the Transformer-based method achieved the best
performance. Our experimental evidence showed that the performance can be further boosted
with more advanced structure of sequence encoders.
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