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Gene imputation and TWAS have become a staple in the genomics medicine discovery space; 
helping to identify genes whose regulation effects may contribute to disease susceptibility. However, 
the cohorts on which these methods are built are overwhelmingly of European Ancestry. This means 
that the unique regulatory variation that exist in non-European populations, specifically African 
Ancestry populations, may not be included in the current models. Moreover, African Americans are 
an admixed population, with a mix of European and African segments within their genome. No gene 
imputation model thus far has incorporated the effect of local ancestry (LA) on gene expression 
imputation. As such, we created LA-GEM which was trained and tested on a cohort of 60 African 
American hepatocyte primary cultures. Uniquely, LA-GEM include local ancestry inference in its 
prediction of gene expression. We compared the performance of LA-GEM to PrediXcan trained the 
same dataset (with no inclusion of local ancestry) We were able to reliably predict the expression of 
2559 genes (1326 in LA-GEM and 1236 in PrediXcan). Of these, 546 genes were unique to LA-
GEM, including the CYP3A5 gene which is critical to drug metabolism. We conducted TWAS 
analysis on two African American clinical cohorts with pharmacogenomics phenotypic information 
to identity novel gene associations. In our IWPC warfarin cohort, we identified 17 transcriptome-
wide significant hits. No gene reached are prespecified significance level in the clopidogrel cohort. 
We did see suggestive association with RAS3A to P2RY12 Reactivity Units (PRU), a clinical measure 
of response to anti-platelet therapy. This method demonstrated the need for the incorporation of LA 
into study in admixed populations. 

Keywords: Local Ancestry, Gene Expression Model, LA-GEM, PrediXcan, Gene Imputation, 
Population-specific Genetic Variations, Admixed Populations, Ancestry-specific Gene 
Associations  

1. Introduction

It is widely acknowledged that large-scale genetic studies investigating human diseases have often 
failed to encompass the extensive diversity seen in global populations, as they primarily focus on 
individuals of European descent.1This insufficiency of ethnic diversity in such studies limits our 
understanding of the genetic underpinnings of human diseases and intensifies health disparities. 
Moreover, the paucity of ethnic diversity in human genomics research could lead to a potentially 
hazardous deficiency, or even errors, in our capacity to apply genetic research findings to clinical 
procedures or public health policies. 

† Contributed equally to the work. 
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PrediXcan is one of the first and most popular methods used to predict gene expression levels in 
different tissues or cell types for use in transcriptome-wide association studies (TWAS).2 The 
method leverages large publicly available multi-omic datasets that includes paired single nucleotide 
polymorphism (SNP) data and gene expression data from multiple individuals and tissues.2-3 By 
training a predictive model on these reference datasets, PrediXcan can predict the expression levels 
of a given gene in a new individual, based on that person's genetic variation. Outside data can be 
trained through various available methods.4,5 There are various extensions to PrediXcan that have 
been developed which extend this method to multi-tissue TWAS and causal gene prioritization.5-9 

 
In any association studies, undetected population stratification can lead to false-positive.  Therefore, 
it is critical to implement appropriate correction to adjust these effects.10 One such measure, used in 
genome-wide association studies (GWAS), is the inclusion of principal components (PCs), with the 
first few PCs estimating global ancestry (GA) in the cohort. GA is largely directed by demographic 
history of the population. However, for admixed population the effects of nearby SNPs or epigenetic 
changes has been shown to have a significant effect of gene expression11. Thus, local ancestry may 
be an important consideration in gene expression prediction. Here we have incorporated LA as 
predictor in PrediXcan framework to assess the if including this variable in the African American 
population resulting in the improved predictability of the gene models. 

2.  Methods 

In this paper, we propose a modification to PrediXcan method titled LA-GEM (Local Ancestry 
based Gene Expression prediction Model) to incorporate local ancestry predictors (LA) along with 
cis region genetic variants in the development of gene expression prediction models.  We have used 
our African American multi-omic hepatocyte dataset (N = 60) to create gene expression prediction 
models, however this method can be used on any multi-omic data from an admixed cohort in which 
local ancestry inference is available. 

2.1.  Primary Hepatocyte Cohort 

Sixty-three African Ancestry (AA) primary human hepatocyte (PHHs) cultures were acquired. AA 
PHHs were either purchased from commercial companies (BioIVT, TRL/Lonza, Life technologies, 
Corning, and Xenotech), or isolated in-house from cadaveric livers. Livers with active cancer or a 
history of hepatocarcinoma were excluded from the study. To account for differences in PHH 
sourcing, transcriptomic data went through additional QC measures (i.e., PC visualization, batch 
correction) to ensure any differences from source and isolation method were corrected. PHHs were 
isolated from cadaveric livers using a modified two-step collagenase perfusion procedure previously 
described in Park et. al.12 Only hepatocyte cultures with RNA Integrity Number (RIN) over 8 and 
with sufficient RNA to conduct NGS were used in the study. 
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2.2.  Genotyping, quality control and imputation 

DNA was obtained from around 1 million cells of each PHH culture using the Gentra Puregene 
(Qiagen) kit following manufacturer’s protocol. All extracted DNA samples were barcoded for 
genotyping. Illumina Infinium Multi-Ethnic Global Kit was used for SNP genotyping and standard 
genotyping protocol was followed. SNPs were filtered out before imputation based on following 
criterion: (1) SNPs present on the sex and mitochondrial chromosomes. They were filtered out as 
they could alter the minor allele frequency (MAF) values (2) SNPs having A/T or C/G as it may 
introduce flip-strand issues. (3) SNPs with low genotype quality (call rate < 0.95).  
 
Using PLINK9, individuals with discordant sex information were identified using the sex check 
function and duplicates or related individuals were identified using the identity-by-descent (IBD) 
method. An IBD cutoff score of 0.125 was used, indicating third-degree relatedness or closer. No 
samples were removed after these QC steps. SNPs with MAF<0.05 were removed. Patient ancestries 
were confirmed using a principal component analysis (PCA) plot of linkage disequilibrium (LD) 
pruned genotype data. LD pruning was conducted to identify the principal dimensions of genetic 
variation between samples. Samples that did not cluster along the spectrum for AA within this PCA 
plot of raw genotype data were removed.11 One individual was excluded after sample and 
genotyping QC analysis, leaving 62 individuals. 
 
Genotypes were imputed by the TOPMed imputation server (version 1.6.6)12-14 using the TOPMed 
r2 reference panel, GRCh38/hg38 array build, and 0.3 estimated r2 (rsq) filter threshold. Post-
imputation QC includes removal of SNPs with poor imputation quality scores (<0.8), failed Hardy-
Weinberg equilibrium tests (p < 0.00001), and low MAFs (<0.05).  This resulted in a total of 
5,189,820 SNPs included for model building. 

2.3.  Local ancestry inference 

LA was inferred using RFMix (v.1.5.4). RFMix takes as input a set of reference panels (populations 
with known ancestry) and a set of test individuals, and uses a hidden Markov model to infer the 
most likely ancestry of each segment of the test individuals' genomes. The output of RFMix is a set 
of probabilities for each test individual, indicating the likelihood that a specific haplotype segment 
comes from one of the reference populations.13 In this analysis we use Yoruba (African Ancestry) 
and American white (CEU – European Ancestry) as our refences populations. 

2.4.  RNA-sequencing and Quality Control 

Total RNA was extracted from each PHH culture three days after plating using the Qiagen RNeasy 
Plus mini kit. Samples with an RNA integrity number (RIN) less than 8 were removed from analysis. 
This resulted in the removal of 2 samples leaving 60 individuals at the end. Libraries were prepared 
for sequencing using the TruSeq RNA Sample Prep Kit, Set A (Illumina) per manufacturer’s 
protocol. The cDNA libraries were prepared and sequenced using either HiSeq2500 (Illumina) or 
HiSeq4000 (Illumina) instruments by the University of Chicago’s Functional Genomics core, 
producing single-end 50bp reads with approximately 50 million reads per sample. As two 
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instruments were used in this study, we were cognizant of potential batch effect and incorporated 
methods for correction as previously described.14 

2.5.  Gene Expression Quantification 

Gene expression was quantified using a collapsed gene model following the GTEx isoform 
collapsing procedure15. To evaluate gene-level expression, reads were mapped to genes referenced 
with GENCODE(v.25) using RNA-SeQC. HTSeq supplied raw counts for gene expression analysis 
using Bioconductor package DESeq2(v1.20.0). Counts were normalized by regularized log 
transformation, batch correction was performed using ComBat-Seq14, and PCA was performed 
using DESeq2. 
 
Gene expression was normalized by trimmed means of M-values normalization method (TMM) 
implemented in edgeR.16 Transcripts per million (TPM) was calculated by first normalizing counts 
by gene length and then by read depth.17 Gene expression values were filtered based on expression 
thresholds < 0.1 TPM in at least 20% of samples and ≤ 6 reads in at least 20% of samples. The 
expression values for each gene were normalized across samples with inverse normal 
transformation. To account for unmeasured confounding variables in transcriptome data, we used 
probabilistic estimation of expression residuals (PEER).18 

2.6.  LA-GEM Framework 

LA-GEM consists of mainly three steps: 
 
For gene expression prediction, a linear model was trained using reference panel that includes 
genotype, LA predictor, interaction predictor (interaction between genotype and LA predictor) and 
corresponding expression data2,19 using the following training model equation19: 

  (1) 

where 𝑤!, 𝑤" and 𝑤# are the regression parameter needed to be trained, S = (𝑆$, , 𝑆%, …,	𝑆!) is 
the genotype data in the cis region of interest, A = (A1, A2, …, Ab) is the local ancestry predictors 
for all SNP positions in the cis region and I = (I1, I2, …, Ic) is the Interaction predictor (I = S x A). 
 
Genetically regulated gene expressions are then determined using the above model for new dataset 
that include combination of genotype and local ancestry information using the following equation: 

  (2) 

Estimated genetically regulated gene expressions ŷ_g is then associated to the phenotype using the 
following equation: 

  (3) 
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LA-GEM prediction models were trained on 60 African American PHH samples followed by 5-fold 
cross-validation. Gene models with an average correlation 𝜌 ≥ 0.1 and 𝑃 < 0.05 between predicted 
and observed Expression were deemed well predicted. 

 
Fig. 1.  Flowchart showing LA-GEM workflow. 

2.7.  TWAS association using LA-GEM gene imputation. 

As a proof of concept, we use LA-GEM to impute hepatic gene expression in two clinical cohort to 
identify novel gene associations to drug response. As the expression of hepatic genes are especially 
important in platelet function and drug metabolism, we imputed gene expression of 1323 genes 
which were then used in the TWAS conducted using PrediXcan.2 We prespecified a TWAS p-value 
of 3.8x10-5 as significant (0.05/1323). 

2.7.1.   African American warfarin Cohort 

Through the International Warfarin Pharmacogenomics consortium (IWPC) we collect information 
from 340 African American patients on warfarin as well as 199 African Americans who were part 
of the University of Alabama Birmingham Warfarin cohort assess though dbGAP 
(phs000708.v1.p1). Briefly, clinical and demographic data on stable warfarin dose was collected, 
defined as the dose of warfarin needed to elicit and INR within therapeutic rage (2-3) for three 
consecutive clinical visits as previously described.20 

2.7.2.  ACCOuNT Clopidogrel cohort 

Through the ACCOuNT Consortium21 we recruited 180 African Americans on the anti-platelet 
drug, clopidogrel. All subjects included in the TWAS had a biomarker measure of clopidogrel 
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response, P2Y12 Reactivity Units (PRU). All subjects were on 75 mg of clopidogrel for at least 15 
days with inclusion and exclusion criteria as described previously.21 

2.8.  Log Ratio of Interaction Predictors 

To quantify the relative influence of interaction predictors in our LA-GEM model, we calculated a 
Log Ratio for each gene using the formula:  
 
Log Ratio = log2(Count of Interaction Predictors +1) – log2(Count of SNP Dosage Predictors +1) 

 
A positive Log Ratio indicates that a gene relies more heavily on interaction predictors, while a 
negative value suggests greater reliance on genetic dosage predictors.  

2.9.  Code Availability 

The LA-GEM model was implemented in R and employs SNP-based local ancestry calculated using 
RFMix version 1.5.4. The source code is publicly available and can be accessed at 
https://github.com/pereralab/LA-GEM. 

3.  Results 

We built two gene expression prediction models, LA-GEM and PrediXcan (using AA PHH as 
training). We assessed predictive performance using five-fold cross-validation (R2 of model 
performance). We found that LA-GEM was able to impute 1323 genes at a rho>0.1, p-value ≤ 0.05 
(Average rho = 0.397) as compared to 1236 genes imputed well using the PrediXcan model 
(Average rho = 0.403) in the same dataset without LA (Fig. 2). The average number of predictors 
for LA-GEM is shown in Table 1. 

 
 
 

 
Fig. 2.  Venn diagram showing number of predictable genes in each of the model. 

LA-GEM
Number of Predictable genes 1323
Number of Predictors 71702
Number of SNP Dosage Predictor 46028
Number of Interaction Predictors (L.A X SNP Dosage) 25674

Table 1 – Summary table showing total number of Predictable 
genes and number of different Predictors used to train the model.
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3.1.  Gene list enrichment analysis of predictable genes 

KEGG Pathway enrichment analysis (Statistical overrepresentation test) was performed using 
g:Profiler28 for predictable genes (1323 genes) obtained from LA-GEM. The analysis yielded 
significant enrichments for several pathways as shown in Fig, 3, notably those linked to 
pharmacogenomics. Among these, three pathways were found to be prominently enriched: 
"Metabolism of xenobiotics by cytochrome P450" (KEGG:00980) with a fold enrichment of 3.37 
and an adjusted p-value of 0.00285, "Drug metabolism - cytochrome P450" (KEGG:00982) with a 
fold enrichment of 3.18 and an adjusted p-value of 0.01097, and "Drug metabolism - other enzymes" 
(KEGG:00983) with a fold enrichment of 2.74 and an adjusted p-value of 0.04196.  

 

 
 

Fig. 3.  Gene set enrichment of 1323 predictable genes obtained from LA-GEM. Y-axis show categories 
with their corresponding -log10(p-value) in the X-axis.  Color shows the fold enrichment value for each of 

the processes.  

3.2.  Genes unique to LA-GEM  

Among the 1323 predictable genes, 546 genes were found to be unique to LA-GEM model which 
were not reported by PrediXcan model as significant (Fig. 2). Out of the 546 unique genes, 2 genes 
(MME and LRRC37A2) were found to be strongly associated with global West African ancestry as 
previously reported12. In addition, CYP3A5 CYP1A1, CYP4F2, CBR1, and UGT2A1 was also among 
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the genes unique to LA-GEM which is known to show significant variability in level of expression 
between population of different ancestry and are important to drug response22. 

3.3.  Genes unique to  PrediXcan  

Among the 1323 predictable genes, 459 genes were found to only in the PrediXcan model (Fig. 2). 
Out of the 459 genes, 6 genes (DHODH, SNAI1, RBBP9, ENSG00000271239, NPR2, and 
SLC39A11) were found to be strongly associated with global West African ancestry as previously 
reported.12 

3.4.  Genes common to LA-GEM and PrediXcan  

Among the 1323 predictable genes, 777 genes were found to be well imputed by both models. Out 
of these 777 genes, 4 genes (CDK18, GREM2, COL26A1 and MMP20-AS1) were found to be 
strongly associated with West African ancestry as previously reported.12 The rho average for CDK18 
and GREM2 were higher in LA-GEM (0.48 versus 0.33 and 0.28 versus 0.26, respectively) but the 
inverse was true for COL26A1 and MMP20-AS (0.39 versus 0.44 and 0.32 versus 0.54 respectively) 
The rho average for these genes were evenly distributed around the diagonal (Fig. 4), suggesting 
one model did not outperform the other in these commonly imputed genes. For genes that were 
unique to the PrediXcan model, the average difference in rho between models was 0.42. For those 
gene that were uniquely to LA-GEM the average difference in Rho was 0.46. However, these 
differences in prediction accuracy were not a significant difference between the two groups of genes 
(p = 0.07).  
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Fig. 4.  Correlation plot between rho-averages of gene well predicted with LA-GEM and PrediXcan 

models. Top 10 genes showing the maximum rho-average difference between methods are labelled in dark 
blue color. Red line shows perfect correlation.  Well predicted genes unique to LA-GEM model are shown 

in light blue. Well predicted genes unique to PrediXcan model are shown in grey. Well predicted genes 
common between LA-GEM and PrediXcan model are shown in light green. Genes of interest with 

pharmacogenomic relevance or which are associated with West African ancestry are shown in violet and 
are labelled in red. 

3.5.  Differential Role of Interaction Predictors in LA-GEM and PrediXcan Models 

In the process of model training for LA-GEM, we observed differences in the role played by the 
type of predictors, especially interaction predictors, in model efficacy. Among the 546 genes 
uniquely imputed by the LA-GEM model, 137 genes (or approximately 25% of these significant 
genes) exhibited a positive Log Ratio of the Count of Interaction predictors. This observation 
underscores the relevance of interaction predictors as significant contributors in the unique 
imputation capability of the LA-GEM model. 

In contrast, among the 777 genes that were common between LA-GEM and PrediXcan, only 119 
genes (approximately 15% of these significant genes) had a positive Log Ratio of the Count of 
Interaction predictors. This relatively lower proportion suggests that the common genes might rely 
less on interaction predictors in the LA-GEM model than the genes unique to it. 
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The detailed distribution of the Log Ratio of the Count of Interaction predictors for these gene sets 
is depicted in Fig 5. This difference in the involvement of interaction predictors between genes 
unique to LA-GEM and those common with PrediXcan provides further insight into the 
distinguishing features of these models. 

 
Fig. 5.  Distribution of Positive Log Ratios of Count of Interaction Predictors in Genes Unique to LA-

GEM and Common to LA-GEM and PrediXcan 

3.6.  TWAS association to warfarin dose 

Using the IWPC warfarin cohort we imputed hepatocyte gene expression (restricted to those genes 
that were well imputed – N = 1325) and conducted a TWAS. The top associations are shown in the 
Manhattan plot (Fig. 6). Bonferroni corrected significant associations were found with 17 genes. No 
association was seen with known warfarin genes VKORC1, or CYP2C9 as these gene were not well 
imputed in our models. 
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Fig. 6.  Manhattan plot of TWAS results. The figure shows the association of imputed gene expression to 

stable warfarin dose in the IWPC cohort. The x-axis show the relative genomic position of each gene 
tested (N = 1323) and the y-axis show the Log(10) p-value. The red dashed line marked the threshold of 

significance for this study. 

3.7.  TWAS association to PRU in patient taking clopidogrel. 

Using the ACCOuNT cohort, we imputed the hepatic gene expression in 180 African American 
patients on clopidogrel. We found no transcriptome-wide significant associations. However, one top 
association showed RASA3 gene expression associated with increased PRU (p = 0.0014, Beta = 
0.61). This gene has known association to platelet aggregation.29 

4.  Discussion 

This study introduces a novel computational model, LA-GEM, designed to enhance gene expression 
prediction by integrating local ancestry (LA) predictors with cis-regional genetic variants. The 
development and deployment of such a model emerge from the understanding that complex trait 
prediction may be augmented by considering population-specific genetic variations. In many 
traditional models, such as PrediXcan, the unique genetic contributions of LA are not considered, 
potentially leading to overlooked associations.2 

 
Our findings revealed that LA-GEM improved gene expression prediction compared to PrediXcan 
in some genes, suggesting that the inclusion of LA predictors can effectively supplement traditional 
cis-regional genetic variants. This improvement was demonstrated by the imputation of 1323 genes 
at a rho>0.1, p-value ≤ 0.05 by LA-GEM, compared to 1236 genes imputed by PrediXcan without 
considering LA. 
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Beyond these numbers, our study unveiled a set of 546 genes uniquely predicted by LA-GEM and 
777 genes common in both LA-GEM and PrediXcan AA model. Out of 1323, 6 genes (MME and 
LRRC37A2, CDK18, GREM2, COL26A1 and ENSG00000281655) were previously found to be 
associated with global West African ancestry and exhibited significant differential expression when 
compared to individuals of European descent.12 These genes are not only statistically significant but 
also relevant to pharmacogenomics. For instance, GREM2, a gene involved in developmental 
processes23, is also associated with allopurinol efficacy24. and MME, implicated in neuropeptide 
degradation25 and associated with ACE inhibitor-induced cough26, were amongst the uniquely 
predicted genes. Lastly variants in COL26A1 have been associated to Aspirin-intolerant asthma.27 
 
Importantly, this study highlights the valuable implications of integrating LA predictors in gene 
expression models for drug response studies. By significantly predicting genes such as CYP3A5, 
CYP1A1, CYP4F2, CBR1, and UGT2A1 - well-known contributors to drug metabolism and disease 
progression30-33 - our model may aid in TWAS studies of inter-individual variations in drug 
responses and adverse drug reactions in African Americans. A particular emphasis should be placed 
on CYP3A5. This gene has been widely recognized for variability between different ethnic groups. 
The splice variant CYP3A5*3, associated with reduced enzyme activity, is less frequent in African 
populations, resulting in a functional enzyme in African populations. As most European carry the 
CYP3A5*3, the effect of this enzyme on drug response is not well accounted for in studies of 
European individuals. CYP3A5 is thought to contribute to drug efficacy and toxicity, including 
responses to immunosuppressants such as tacrolimus.34-35  
 
We applied LA-GEM to the African American warfarin and clopidogrel cohorts, demonstrating its 
utility in clinical studies. The warfarin cohort revealed 17 genes with significant associations with 
warfarin dose requirement, providing novel potential genetic influencers of warfarin dosage 
response beyond the well-known VKORC1 and CYP2C9 genes36-37. The most significate TWAS hit 
was GAS2L1 (associated with increased warfarin dose requirement, p = 7.7x10-10), which has 
previously been associated with thrombocytopenia in women.38 Also, the gene SELENOO on 
chromosome 22 showed association to decrease warfarin dose requirement (p = 5.5x10-6). A 
previous study in Sub-Saharan Africans found variants near this gene associated to increase R-6 
Hydroxy-warfarin metabolite measurement.39  
 
In the ACCOuNT clopidogrel cohort, we discovered an association between RASA3 gene expression 
and increase P2Y12 Reactivity Units (PRU) level. While the most notable role of RASA3 involves 
platelet function and hemostasis29, this gene's function is not limited to platelets and the 
bloodstream. It is broadly expressed in many tissues, including the brain, lungs, and kidneys, 
suggesting it might have additional roles outside of platelets. In cancer biology, the Ras and RAP 
GTPases regulated by RASA3 are often involved in tumorigenesis. For instance, inactivation of 
GAPs (like RASA3) can lead to overactive Ras signaling, which can contribute to the development 
of cancer.40 This gene has also been associated to pulmonary hypertension in Sickle Cell Disease.41  
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In terms of computational efficiency, LA-GEM and PrediXcan showed similar performance during 
the model training phase. Specifically, for our limited dataset of 60 hepatocyte samples, both models 
completed the training within a time frame of approximately 2 to 3 hours. It's worth noting that the 
computational time is expected to scale linearly with the size of the sample pool, thus offering 
scalability as more comprehensive datasets become available. 

Several innovative methods have set the stage in ancestry inform gene expression prediction. 
Notable among these are METRO42, which enhances transcriptome-wide association studies 
(TWAS) through a likelihood-based inference framework, and MATS43, which jointly analyzes 
samples from multiple populations to account for ancestral heterogeneity in gene expression effects. 
Additionally, a study by Lauren et al.44 addressed the genetic architecture of gene expression across 
diverse populations, emphasizing the necessity for diverse population sampling in genomics. 
Despite their valuable contributions, none of these methods utilize SNP-based local ancestry as an 
intrinsic part of their predictive models. Our approach, LA-GEM, distinctively integrates SNP-based 
local ancestry predictors along with cis-regional variants to make more nuanced gene expression 
predictions. This unique aspect of LA-GEM not only adds a new layer of granularity to the existing 
methodologies but also paves the way for future explorations in this growing field. 

While our findings are promising, there are several limitations to our study. First, we constructed 
the LA-GEM models with a limited cohort of 60 hepatocyte cultures. This is reflective of the overall 
lack of comprehensive multi-omics data in the African American population. With greater amounts 
of data on which to build these models, we will be better able to predict tissue specific patterns in 
the under-represented populations. This is also evident by the much greater number of well imputed 
gene available for the GTEx liver model (N = 3356) which is built on 153 liver samples. It should 
be noted that only 12 of these sample have any African Ancestry. Second, it is clear that there are 
still genes that are better predicted without the addition of LA. This suggests that to comprehensively 
use TWAS in African American population may require both LA-aware as well as traditional gene 
imputation methods. Lastly, the validation of LA-GEM in other tissues and larger cohorts remains 
a crucial next step. Ultimately, the incorporation of LA predictors can contribute significantly to 
personalized medicine, paving the way for treatments and interventions more attuned to a unique 
admixed genetic background of African Americans.  

In conclusion, our study underscores the need for inclusion of LA in genomic methods. LA-GEM 
serves as a valuable tool in this endeavor, providing novel insights into the genomic architecture of 
complex traits in multiethnic populations, and highlighting the importance of considering local 
ancestry when predicting gene expression. The potential to uncover novel ancestry-specific gene 
associations can revolutionize our understanding of the interplay between genetics, disease, and 
therapeutic responses. 

5. Acknowledgment

This work was made possible for through the following grants R01MD009217 (NIH, NIMHD), and 
R21HG011695 (NIH, NHGRI) 

Pacific Symposium on Biocomputing 2024

353



 
 

 

 

References 
 

1. Popejoy, A. B., & Fullerton, S. M. (2016). Genomics is failing on diversity. Nature, 
538(7624), 161–164. https://doi.org/10.1038/538161a 

2. Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, Eyler 
AE, Denny JC; GTEx Consortium; Nicolae DL, Cox NJ, Im HK. A gene-based association 
method for mapping traits using reference transcriptome data. Nat Genet. 2015 
Sep;47(9):1091-8. doi: 10.1038/ng.3367. Epub 2015 Aug 10. PMID: 26258848; PMCID: 
PMC4552594. 

3. Mikhaylova AV, Thornton TA. Accuracy of Gene Expression Prediction From Genotype 
Data With PrediXcan Varies Across and Within Continental Populations. Front Genet. 2019 
Apr 3;10:261. doi: 10.3389/fgene.2019.00261. PMID: 31001318; PMCID: PMC6456650. 

4. Xu Z, Wu C, Wei P, Pan W. A Powerful Framework for Integrating eQTL and GWAS 
Summary Data. Genetics. 2017 Nov;207(3):893-902. doi: 10.1534/genetics.117.300270. 
Epub 2017 Sep 11. PMID: 28893853; PMCID: PMC5676241. 

5. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, Jansen R, de Geus EJ, Boomsma 
DI, Wright FA, Sullivan PF, Nikkola E, Alvarez M, Civelek M, Lusis AJ, Lehtimäki T, 
Raitoharju E, Kähönen M, Seppälä I, Raitakari OT, Kuusisto J, Laakso M, Price AL, 
Pajukanta P, Pasaniuc B. Integrative approaches for large-scale transcriptome-wide 
association studies. Nat Genet. 2016 Mar;48(3):245-52. doi: 10.1038/ng.3506. Epub 2016 
Feb 8. PMID: 26854917; PMCID: PMC4767558. 

6. Hu Y, Li M, Lu Q, Weng H, Wang J, Zekavat SM, Yu Z, Li B, Gu J, Muchnik S, Shi Y, 
Kunkle BW, Mukherjee S, Natarajan P, Naj A, Kuzma A, Zhao Y, Crane PK; Alzheimer’s 
Disease Genetics Consortium,; Lu H, Zhao H. A statistical framework for cross-tissue 
transcriptome-wide association analysis. Nat Genet. 2019 Mar;51(3):568-576. doi: 
10.1038/s41588-019-0345-7. Epub 2019 Feb 25. PMID: 30804563; PMCID: PMC6788740. 

7. Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira AN, Knowles DA, Golan D, 
Ermel R, Ruusalepp A, Quertermous T, Hao K, Björkegren JLM, Im HK, Pasaniuc B, Rivas 
MA, Kundaje A. Opportunities, and challenges for transcriptome-wide association studies. 
Nat Genet. 2019 Apr;51(4):592-599. doi: 10.1038/s41588-019-0385-z. Epub 2019 Mar 29. 
PMID: 30926968; PMCID: PMC6777347. 

8. Mancuso N, Shi H, Goddard P, Kichaev G, Gusev A, Pasaniuc B. Integrating Gene 
Expression with Summary Association Statistics to Identify Genes Associated with 30 
Complex Traits. Am J Hum Genet. 2017 Mar 2;100(3):473-487. doi: 
10.1016/j.ajhg.2017.01.031. Epub 2017 Feb 23. PMID: 28238358; PMCID: PMC5339290. 

9. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, 
de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and 
population-based linkage analyses. Am J Hum Genet. 2007 Sep;81(3):559-75. doi: 
10.1086/519795. Epub 2007 Jul 25. PMID: 17701901; PMCID: PMC1950838.  

10. Kang SJ, Larkin EK, Song Y, Barnholtz-Sloan J, Baechle D, Feng T, Zhu X. Assessing the 
impact of global versus local ancestry in association studies. BMC Proc. 2009 Dec 15;3 
Suppl 7(Suppl 7):S107. doi: 10.1186/1753-6561-3-s7-s107. PMID: 20017971; PMCID: 
PMC2795878. 

Pacific Symposium on Biocomputing 2024

354



 
 

 

 

11. Zhong Y, De T, Alarcon C, Park CS, Lec B, Perera MA. Discovery of novel hepatocyte 
eQTLs in African Americans. PLoS Genet. 2020 Apr 20;16(4):e1008662. doi: 
10.1371/journal.pgen.1008662. PMID: 32310939; PMCID: PMC7192504. 

12. Park CS, De T, Xu Y, Zhong Y, Smithberger E, Alarcon C, Gamazon ER, Perera MA. 
Hepatocyte gene expression and DNA methylation as ancestry-dependent mechanisms in 
African Americans. NPJ Genom Med. 2019 Nov 25;4:29. doi: 10.1038/s41525-019-0102-y. 
PMID: 31798965; PMCID: PMC6877651. 

13. Maples BK, Gravel S, Kenny EE, Bustamante CD. RFMix: a discriminative modeling 
approach for rapid and robust local-ancestry inference. Am J Hum Genet. 2013 Aug 
8;93(2):278-88. doi: 10.1016/j.ajhg.2013.06.020. Epub 2013 Aug 1. PMID: 23910464; 
PMCID: PMC3738819. 

14. Zhang, Y., Parmigiani, G., & Johnson, W. E. (2020). ComBat-seq: batch effect adjustment 
for RNA-seq count data. NAR genomics and bioinformatics, 2(3), lqaa078. 
https://doi.org/10.1093/nargab/lqaa078  

15. GTEx Consortium, Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis 
Working Group, Statistical Methods groups—Analysis Working Group, Enhancing GTEx 
(eGTEx) groups, NIH Common Fund, NIH/NCI, NIH/NHGRI, NIH/NIMH, NIH/NIDA, 
Biospecimen Collection Source Site—NDRI, Biospecimen Collection Source Site—RPCI, 
Biospecimen Core Resource—VARI, Brain Bank Repository—University of Miami Brain 
Endowment Bank, Leidos Biomedical—Project Management, ELSI Study, Genome 
Browser Data Integration &Visualization—EBI, Genome Browser Data Integration 
&Visualization—UCSC Genomics Institute, University of California Santa Cruz, Lead 
analysts:, Laboratory, Data Analysis &Coordinating Center (LDACC):, NIH program 
management:, … Montgomery, S. B. (2017). Genetic effects on gene expression across 
human tissues. Nature, 550(7675), 204–213. https://doi.org/10.1038/nature24277.1993). 

16. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics. 2010 Jan 1;26(1):139-
40. doi: 10.1093/bioinformatics/btp616. Epub 2009 Nov 11. PMID: 19910308; PMCID: 
PMC2796818. 

17. Zhao S, Ye Z, Stanton R. Misuse of RPKM or TPM normalization when comparing across 
samples and sequencing protocols. RNA. 2020 Aug;26(8):903-909. doi: 
10.1261/rna.074922.120. Epub 2020 Apr 13. PMID: 32284352; PMCID: PMC7373998. 

18. Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabilistic estimation of expression 
residuals (PEER) to obtain increased power and interpretability of gene expression analyses. 
Nat Protoc. 2012 Feb 16;7(3):500-7. doi: 10.1038/nprot.2011.457. PMID: 22343431; 
PMCID: PMC3398141. 

19. Zou H, & Hastie T. Regularization and Variable Selection via the Elastic Net. Journal of the 
Royal Statistical Society, Series B (Statistical Methodology). 2005 67(2), 301–320. 
http://www.jstor.org/stable/3647580 

20. Perera MA, Cavallari LH, Limdi NA, Gamazon ER, Konkashbaev A, Daneshjou R, 
Pluzhnikov A, Crawford DC, Wang J, Liu N, Tatonetti N, Bourgeois S, Takahashi H, 
Bradford Y, Burkley BM, Desnick RJ, Halperin JL, Khalifa SI, Langaee TY, Lubitz SA, 
Nutescu EA, Oetjens M, Shahin MH, Patel SR, Sagreiya H, Tector M, Weck KE, Rieder 
MJ, Scott SA, Wu AH, Burmester JK, Wadelius M, Deloukas P, Wagner MJ, Mushiroda T, 
Kubo M, Roden DM, Cox NJ, Altman RB, Klein TE, Nakamura Y, Johnson JA. Genetic 

Pacific Symposium on Biocomputing 2024

355



 
 

 

 

variants associated with warfarin dose in African-American individuals: a genome-wide 
association study. Lancet. 2013 Aug 31;382(9894):790-6. doi: 10.1016/S0140-
6736(13)60681-9. Epub 2013 Jun 5. PMID: 23755828; PMCID: PMC3759580. 

21. Friedman PN, Shaazuddin M, Gong L, Grossman RL, Harralson AF, Klein TE, Lee NH, 
Miller DC, Nutescu EA, O'Brien TJ, O'Donnell PH, O'Leary KJ, Tuck M, Meltzer DO, 
Perera MA. The ACCOuNT Consortium: A Model for the Discovery, Translation, and 
Implementation of Precision Medicine in African Americans. Clin Transl Sci. 2019 
May;12(3):209-217. doi: 10.1111/cts.12608. Epub 2019 Feb 12. PMID: 30592548; PMCID: 
PMC6510376. 

22. Galaviz-Hernández C, Lazalde-Ramos BP, Lares-Assef I, Macías-Salas A, Ortega-Chavez 
MA, Rangel-Villalobos H, Sosa-Macías M. Influence of Genetic Admixture Components on 
CYP3A5*3 Allele-Associated Hypertension in Amerindian Populations From Northwest 
Mexico. Front Pharmacol. 2020 May 11;11:638. doi: 10.3389/fphar.2020.00638. PMID: 
32477124; PMCID: PMC7232668. 

23. Kosinski C, Li VS, Chan AS, Zhang J, Ho C, Tsui WY, Chan TL, Mifflin RC, Powell DW, 
Yuen ST, Leung SY, Chen X. Gene expression patterns of human colon tops and basal crypts 
and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci U S A. 2007 
Sep 25;104(39):15418-23. doi: 10.1073/pnas.0707210104. Epub 2007 Sep 19. PMID: 
17881565; PMCID: PMC2000506. 

24. Brackman DJ, Yee SW, Enogieru OJ, Shaffer C, Ranatunga D, Denny JC, Wei WQ, 
Kamatani Y, Kubo M, Roden DM, Jorgenson E, Giacomini KM. Genome-Wide Association 
and Functional Studies Reveal Novel Pharmacological Mechanisms for Allopurinol. Clin 
Pharmacol Ther. 2019 Sep;106(3):623-631. doi: 10.1002/cpt.1439. Epub 2019 May 23. 
PMID: 30924126; PMCID: PMC6941886. 

25. Roques BP, Noble F, Daugé V, Fournié-Zaluski MC, Beaumont A. Neutral endopeptidase 
24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev. 
1993 Mar;45(1):87-146. PMID: 8475170. 

26. Morice AH, Fontana GA, Sovijarvi AR, Pistolesi M, Chung KF, Widdicombe J, O'Connell 
F, Geppetti P, Gronke L, De Jongste J, Belvisi M, Dicpinigaitis P, Fischer A, McGarvey L, 
Fokkens WJ, Kastelik J; ERS Task Force. The diagnosis and management of chronic cough. 
Eur Respir J. 2004 Sep;24(3):481-92. doi: 10.1183/09031936.04.00027804. PMID: 
15358710. 

27. Pasaje CF, Kim JH, Park BL, Cheong HS, Kim MK, Choi IS, Cho SH, Hong CS, Lee YW, 
Lee JY, Koh IS, Park TJ, Lee JS, Kim Y, Bae JS, Park CS, Shin HD. A possible association 
of EMID2 polymorphisms with aspirin hypersensitivity in asthma. Immunogenetics. 2011 
Jan;63(1):13-21. doi: 10.1007/s00251-010-0490-8. Epub 2010 Nov 18. PMID: 21086123. 

28. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. g:Profiler: a web 
server for functional enrichment analysis and conversions of gene lists (2019 update). 
Nucleic Acids Res. 2019 Jul 2;47(W1):W191-W198. doi: 10.1093/nar/gkz369. PMID: 
31066453; PMCID: PMC6602461. 

29. Stefanini L, Paul DS, Robledo RF, Chan ER, Getz TM, Campbell RA, Kechele DO, Casari 
C, Piatt R, Caron KM, Mackman N, Weyrich AS, Parrott MC, Boulaftali Y, Adams MD, 
Peters LL, Bergmeier W. RASA3 is a critical inhibitor of RAP1-dependent platelet 
activation. J Clin Invest. 2015 Apr;125(4):1419-32. doi: 10.1172/JCI77993. Epub 2015 Feb 
23. PMID: 25705885; PMCID: PMC4396462. 

Pacific Symposium on Biocomputing 2024

356



 
 

 

 

30. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene 
expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013 
Apr;138(1):103-41. doi: 10.1016/j.pharmthera.2012.12.007. Epub 2013 Jan 16. PMID: 
23333322. 

31. Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P, Hubbard J, Turpaz 
Y, Langaee TY, Eby C, King CR, Brower A, Schmelzer JR, Glurich I, Vidaillet HJ, Yale 
SH, Qi Zhang K, Berg RL, Burmester JK. CYP4F2 genetic variant alters required warfarin 
dose. Blood. 2008 Apr 15;111(8):4106-12. doi: 10.1182/blood-2007-11-122010. Epub 2008 
Feb 4. PMID: 18250228; PMCID: PMC2288721. 

32. Lal S, Sandanaraj E, Wong ZW, Ang PC, Wong NS, Lee EJ, Chowbay B. CBR1 and CBR3 
pharmacogenetics and their influence on doxorubicin disposition in Asian breast cancer 
patients. Cancer Sci. 2008 Oct;99(10):2045-54. doi: 10.1111/j.1349-7006.2008.00903.x. 
PMID: 19016765. 

33. Court MH, Hao Q, Krishnaswamy S, Bekaii-Saab T, Al-Rohaimi A, von Moltke LL, 
Greenblatt DJ. UDP-glucuronosyltransferase (UGT) 2B15 pharmacogenetics: UGT2B15 
D85Y genotype and gender are major determinants of oxazepam glucuronidation by human 
liver. J Pharmacol Exp Ther. 2004 Aug;310(2):656-65. doi: 10.1124/jpet.104.067660. Epub 
2004 Mar 25. PMID: 15044558. 

34. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid 
organ transplantation. Clin Pharmacokinet. 2004;43(10):623-53. doi: 10.2165/00003088-
200443100-00001. PMID: 15244495. 

35. Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, Wang D, Vinks 
AA, He Y, Swen JJ, Leeder JS, van Schaik R, Thummel KE, Klein TE, Caudle KE, MacPhee 
IA. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 
Genotype and Tacrolimus Dosing. Clin Pharmacol Ther. 2015 Jul;98(1):19-24. doi: 
10.1002/cpt.113. Epub 2015 Jun 3. PMID: 25801146; PMCID: PMC4481158. 

36. Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM, Anderson JL, 
Kimmel SE, Lee MT, Pirmohamed M, Wadelius M, Klein TE, Altman RB; Clinical 
Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation 
Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin 
Pharmacol Ther. 2011 Oct;90(4):625-9. doi: 10.1038/clpt.2011.185. Epub 2011 Sep 7. 
PMID: 21900891; PMCID: PMC3187550. 

37. Wadelius M, Chen LY, Downes K, Ghori J, Hunt S, Eriksson N, Wallerman O, Melhus H, 
Wadelius C, Bentley D, Deloukas P. Common VKORC1 and GGCX polymorphisms 
associated with warfarin dose. Pharmacogenomics J. 2005;5(4):262-70. doi: 
10.1038/sj.tpj.6500313. PMID: 15883587. 

38. Gnatenko DV, Zhu W, Xu X, Samuel ET, Monaghan M, Zarrabi MH, Kim C, Dhundale A, 
Bahou WF. Class prediction models of thrombocytosis using genetic biomarkers. Blood. 
2010 Jan 7;115(1):7-14. doi: 10.1182/blood-2009-05-224477. Epub 2009 Sep 22. PMID: 
19773543; PMCID: PMC2803693. 

39. Asiimwe IG, Blockman M, Cohen K, Cupido C, Hutchinson C, Jacobson B, Lamorde M, 
Morgan J, Mouton JP, Nakagaayi D, Okello E, Schapkaitz E, Sekaggya-Wiltshire C, 
Semakula JR, Waitt C, Zhang EJ, Jorgensen AL, Pirmohamed M. A genome-wide 
association study of plasma concentrations of warfarin enantiomers and metabolites in sub-

Pacific Symposium on Biocomputing 2024

357



 
 

 

 

Saharan black-African patients. Front Pharmacol. 2022 Sep 23;13:967082. doi: 
10.3389/fphar.2022.967082. PMID: 36210801; PMCID: PMC9537548. 

40. Vigil D, Cherfils J, Rossman KL, Der CJ. Ras superfamily GEFs and GAPs: validated and 
tractable targets for cancer therapy? Nat Rev Cancer. 2010 Dec;10(12):842-57. doi: 
10.1038/nrc2960. Epub 2010 Nov 24. PMID: 21102635; PMCID: PMC3124093. 

41. Prohaska CC, Zhang X, Schwantes-An TL, Stearman RS, Hooker S, Kittles RA, Aldred MA, 
Lutz KA, Pauciulo MW, Nichols WC, Desai AA, Gordeuk VR, Machado RF. RASA3 is a 
candidate gene in sickle cell disease-associated pulmonary hypertension and pulmonary 
arterial hypertension. Pulm Circ. 2023 Apr 1;13(2):e12227. doi: 10.1002/pul2.12227. 
PMID: 37101805; PMCID: PMC10124178. 

42. Li Z, Zhao W, Shang L, Mosley TH, Kardia SLR, Smith JA, Zhou X. METRO: Multi-
ancestry transcriptome-wide association studies for powerful gene-trait association 
detection. Am J Hum Genet. 2022 May 5;109(5):783-801. doi: 10.1016/j.ajhg.2022.03.003. 
Epub 2022 Mar 24. PMID: 35334221; PMCID: PMC9118130. 

43. Knutson KA, Pan W. MATS: a novel multi-ancestry transcriptome-wide association study 
to account for heterogeneity in the effects of cis-regulated gene expression on complex traits. 
Hum Mol Genet. 2023 Apr 6;32(8):1237-1251. doi: 10.1093/hmg/ddac247. PMID: 
36179104; PMCID: PMC10077507. 

44. Mogil LS, Andaleon A, Badalamenti A, Dickinson SP, Guo X, Rotter JI, Johnson WC, Im 
HK, Liu Y, Wheeler HE. Genetic architecture of gene expression traits across diverse 
populations. PLoS Genet. 2018 Aug 10;14(8):e1007586. doi: 
10.1371/journal.pgen.1007586. PMID: 30096133; PMCID: PMC6105030. 

Pacific Symposium on Biocomputing 2024

358




