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Abstract

We have created a course entitled “Representations and Algorithms for
Computational Molecular Biology” with three specific goals in mind.  First, we
want to provide a technical introduction for computer science and medical
information science students to the challenges of computing with molecular
biology data, particularly the advantages of having easy access to real-world data
sets.  Second, we want to equip the students with the skills required of
productive research assistants in molecular biology computing research projects.
Finally, we want to provide a showcase for local investigators to describe their
work in the context of a course that provide adequate background information.
In order to achieve these goals, we have created a programming course, in which
three major projects and six smaller assignments are assigned during the quarter.
We stress fundamental representations and algorithms during the first part of the
course in lectures given by the core faculty, and then have more focused lectures
in which faculty research interests are highlighted. The course stressed issues of
structural molecular biology, in order to better motivate the critical issues in
sequence analysis. The culmination of the course was a challenge to the students
to use a version of protein threading to predict which members of a set of
unknown sequences were globins.  The course was well received, and has been
made a core requirement in the Medical Information Sciences program.

1.  Introduction

At Stanford University, students can become active in molecular biology computing
through numerous routes.  The departments of computer science, medical
information science, electrical engineering, structural biology, biochemistry, genetics,
and mathematics all have students who are currently engaging in research that can be
considered within the scope of computational molecular biology.  The ways in which
these students choose their research projects are, of course, quite different.  The
students in the biological sciences are usually part of a group that is motivated to
solve a particular problem, and computer technology has been identified as a key
component of the solution.  The students in the technical fields have a much more
diverse set of paths.  Sometimes, they have had an interest in biological problems,
and have sought advisors with computational efforts.  Other times, the algorithms



being used by a group are of particular interest to the students.  Some students are
hired simply for their programming skills.

We have noted that the more serendipitous pathways to computational biology taken
by engineering and computer science students are not without risks:  (1)  The “big
picture” of the research may be missed by these students, and may lead to
substantial communication problems in the course of the work.  This often involves
a basic understanding of the biological vocabulary, but can also involve
understanding the performance goals of a program.  (2)  There is wide variation in
the degree of preparation these students have for working with biological data.  The
inherent noise level of biological data is often unexpected for students familiar with
more restricted, formalized engineering domains.  The lack of previous exposure can
also lead to attempts to reinvent the wheel.  (3)  Many students with potential interest
in biological computing as an application area for new algorithmic methods have no
good way to be introduced to the computational biology literature and previous
results.  They often select application domains that are more familiar, and apply new
algorithms to familiar computer science topics such as string matching, code
parsing, virtual reality.  Given an appropriate introduction, they might instead choose
areas such as sequence analysis, sequence-structure correlation and three-
dimensional structure modeling and analysis.

In order to address these problems, we created a course that was specifically targeted
to non biological computer science and information science students.  The title of the
course was “Representations and Algorithms for Computational Molecular
Biology,” and was offered in the spring quarter, 1995.  The course was widely
advertised especially to graduate students and undergraduates in computer science
and medical information science.  The course required significant computer
programming, some use of off-the-shelf molecular biology computational tools, and
use of WWW resources.  We stressed that the goal of the course was to prepare
students for building such tools, not necessarily being “power users” of such tools.
We also stressed that extensive knowledge of biology was not a requirement for
taking the course, but that an interest in biology was essential.  In the remainder of
this report, we discuss how we addressed three critical issues: (1) teaching “just
enough” biology, (2) selecting programming assignments, and (3) putting together a
lecture schedule.  Finally, we will summarize our evaluation of the course, as well as
the student feedback we received.  This course was taught by two faculty members.
One of us is in the Section on Medical Informatics (part of the Department of
Medicine, described in Appendix III of the supplementary material included with the
electronic proceedings) with a courtesy appointment in Computer Science.  The other
of us is a consulting faculty in both the Department of Computer Science, and the
Program in Symbolic Systems.  The course had a single teaching assistant, who was
a senior graduate student in computer science, focusing on biological applications in
his dissertation work.



1.1  Teaching “just enough” biology
We stated from the start that knowledge of biology was not required, but interest in
biology was.  The first lecture was an introduction to biology and the role of
information sciences.  Starting from the definition of entropy, we argued that the
processes of life are a constant struggle against entropy.  Specifically, having
established the distinction between inside and outside, an organism must use energy
to maintain that distinction, and must develop strategies for gathering, storing, and
using the energy for that purpose.  We argued that the basic tools available to
organisms are the ability to store information in DNA and the ability to effect
function with protein (acknowledging the possibility of interesting variations).
Using this paradigm, we introduced the alphabets of DNA and protein, and
explained the ways in which some DNA sequences specify protein sequences, and
others specify “control information” necessary for timing and synchronizing
molecular expression and physical associations.  We included sections  of a standard
biochemistry text book in the course reader (see Appendix I in the supplementary
material included with the electronic proceedings).

In the introduction, we made clear to the students that they would learn biology in a
skewed manner during the course.  Specifically, they would learn little about how
biological data is collected experimentally.  In order to further set expectations, we
stressed that they would not learn how to use the available molecular biology
software, and would not be working on many state-of-the-art biological problems.
Instead, they would be exposed to the basic representations used for DNA (sequence
and the issue of pairwise and multiple alignments) and protein (sequence and
analysis techniques for three-dimensional structure).

In subsequent lectures, we introduced a small amount of relevant biology before
each lecture in order to motivate the techniques being explained.  Thus, for example,
in one lecture, we explained the functional characteristics of globin molecules and
their interaction with heme and oxygen, in order to provide background necessary to
explain the importance of conservation of HIS and GLY residues (for multiple
alignments of  globin sequences),  and the locations of the conserved helices (for
evaluating Hidden Markov Models (HMMs), and for explaining secondary structure
prediction).  The result was that our students had a very uneven understanding of
biology, with a detailed understanding of the sequences and three-dimensional
structures of globins, but having never heard of important metabolic pathways or
mechanisms of gene regulation.

We were very sensitive to the problem of using biological jargon during the course.
Each instructor made a conscious effort to monitor the other during lectures.
Students were encouraged to interrupt and ask for clarification of apparent jargon
with a very low threshold.  We also offered a “virtual email server” in which
students could ask either of the instructors for a quick email definition of a concept at
any time.  A suggestion was subsequently made that we create an on-line world-



wide web glossary.  Although we have done this for other courses, we did not create
a WWW glossary for this course.

1.2  Assignments and Projects
During the course, we distinguished between assignments, which were weekly and
designed to take 1 to 3 hours, and projects,  which were more substantial and
required  up to twenty hours.  The assignments were designed to teach the students
how to access biological data, how to perform basic manipulations, and to test out
ideas introduced in class.  The projects were designed to teach the students how
fundamental algorithms in computational molecular biology work, how they may
fail, and in what ways they are sensitive to errors in the data.  Although the initial
assignments were oriented towards using off-the-shelf software, the later
assignments and projects all required significant programming.  The students were
allowed to use any programming language of their choice, and we graded the code
by general examination of its quality, and by the quality of the results on the test
examples we provided.  We summarize here the assignments and projects in the
order in which they were assigned (these are available at anonymous
ftp://camis.stanford.edu/pub/altman/mis214 or by request to authors).

Assignment 1.  “Gathering Biological Data from the Web”  Students were given a
script in which they were asked to navigate on the WWW to the major biological
databases and retrieve a DNA sequence, protein sequence and protein structure for
the same molecule, sperm whale myoglobin.  They were asked to perform a
network BLAST search to pull out other myoglobin sequences as well.

Assignment 2.  “Investigating 3D structure of Myoglobin”  Students were asked to
process the Protein Data Bank (PDB) files for sperm whale myoglobin for input into
the Kinemage program, which is available for public use (Richardson, D. & J.
Richardson, 1992, “The kinemage:  A tool for scientific communication.” Protein
Science 1: 3-9.).  They were asked to make distance measurements between key
points, estimate the location of secondary structures by eye, and look at the geometry
of the oxygen binding site.  They were also asked to highlight hydrophobic and
hydrophilic residues separately in order to demonstrate the “hydrophobic amino
acids in, hydrophilic amino acids out” principle.

Project 1.  “Dynamic Programming for Sequence Alignment”  In the first project,
students were asked to encode the standard dynamic programming algorithm for
aligning sequences (for both local and global alignment).  They were given a
standard input format, and a set of test sequences to align.  They were also asked to
pull two random sequences from Genbank and align them to get a feeling for how
such alignments appear and score.

Assignment 3.  “Investigating the 3D structure of Hemoglobin and Superoxide
Dismutase”  In order to introduce the ideas of multisubunit proteins, and to illustrate
non-alpha helical secondary structure, we chose PDB files 4HHB and 2SOD.  In a



manner similar to Assignment 2, but with less explicit instructions, we had the
students visually analyze these structures, and make measurements of distances,
bond angles and dihedral angles.  We also asked them questions that allowed them
to focus on the important functional residues in both proteins.

Assignment 4.  “Computing Dihedral Angles”  The students encoded a subroutine
for computing dihedral angles, and applied this subroutine to the structures of
myoglobin and superoxide dismutase.  They then plotted the resulting phi and psi
angles to produce Ramachandran-like plots for each protein, and were asked to
identify the helical and beta regions of these plots.  They were asked to speculate on
how structure might be predicted given a training set of sequence-structure pairs
using dihedral angles.

Project 2. “RMS comparison of structures”  Whereas the first project was oriented
toward sequence analysis, the second project was geared towards comparing three-
dimensional data using the root mean squared (RMS) distance criteria.  Students
encoded a program that took two sets of points as input, and produced the rotation
and translation necessary to superimpose them optimally.  The students were
supplied code for the singular value decomposition, and were instructed to work
from an original paper describing the method (Arun, K. S., T. S. Huang & S. D.
Blostein (1987). “Least-squares fitting of two 3-D point sets.” IEEE Transactions
on Pattern Analysis and Machine Intelligence 9(5): 698-700).  They computed the
RMS distances between a number of globins, based on alignments generated using
the code written for project 1, but with a variety of different gap penalty schemes and
with different scoring matrices.  They were also asked to superimpose some globins
using a subset of “core” helices in order to demonstrate the dependence of RMS on
the set of atoms used for the superposition.  They then produced an optimal
structural alignment and compared this with the best sequential alignment.

Assignment 5.  “Distance maps and pattern recognition”  The students encoded a
subroutine for computing distances, and prepared a plot of all alpha carbon distances
less than 6 Å for myoglobin and superoxide dismutase.  They were asked to
highlight patterns in the plot corresponding to alpha-helices and parallel beta sheets.
They were asked to describe how antiparallel beta sheets might appear as well.

Assignment 6.  “Computing with Hidden Markov Models”  The students were given
a simple Hidden Markov Model for a toy system, and were asked to compute the
probabilities of various sequences given the model.  They were also asked to
speculate on the effect of various changes in the model on the probabilities.

Project 3.  “Threading protein structures and predicting structure”  In an attempt
to bring together the concepts learned in the first two projects, the students were
asked to create a program for determining if a given sequence was a globin or not.
They were given the environmental parameters as reported in Bowie et al (Bowie, J.
U., R. Luthy & D. Eisenberg, 1991, “A Method to Identify Protein Sequences That



Fold into a Known Three-Dimensional Structure.” Science 253(July 12): 164-170.),
and were asked to use the code developed for Project 1 to align the new sequence
with the environmental string corresponding to myoglobin.   In order to test their
code, they were given 4 sets of proteins:  myoglobins, non-myoglobin globins, non-
globin all alpha helical proteins, and non-alpha helical proteins.   They computed the
best score by threading and by dynamic programming for each group of proteins to
establish the background rates.  They were then given 10 unknowns that contained 3
globins, including some distant globin relatives, and were asked to make predictions
about globin vs. nonglobin for each sequence, along with a justification.

Our course was taught in one quarter, which lasts about 10 weeks.  Because of time
constraints, we were unable to have the students do as many assignments and
projects as we would have liked.  Specific areas that we missed, and may try to
address in future courses included secondary structure prediction (computing Chou-
Fasman-like parameters),  identifying consensus sequences,  fragment reassembly,
and the actual computation of threading parameters (as opposed to providing them to
the students).  Each of these topics was covered in the lectures, but was not covered
in the assignments.

1.3  Lecture Content
The lecture topics for the course were selected in order to provide an introduction to
the major issues, and then to allow particular interest areas of the instructors to be
stressed.  Thus, there was an emphasis on structure during the course, and certain
areas of sequence analysis (especially the more formal algorithmic issues) were not
covered.  It is important to note that there are two other related courses taught at
Stanford:  one of them is taught in the department of biochemistry, and introduces
students to the concepts of computational molecular biology, but stresses the use of
existing tools.   The other course is taught in the department of mathematics, and
stresses the basic statistical and algorithmic issues involved in sequence analysis,
particular dynamic programming and other alignment techniques.   For this course,
eleven lectures were given  by the core faculty (marked with * here) and the rest
were given by local guest lecturers.  Each lecture was 75 minutes.   The topics of
each lecture, in order given, are summarized here.  The relevant readings are given in
Appendix I in the supplementary material included with the electronic proceedings.

1.  *Introduction to representations and algorithms in computational molecular
biology.  We introduced the processes of life as a battle against entropy, fought
mainly by developing strategies for gathering and using energy from the
environment.  We introduced DNA sequences as a method for succinctly encoding
information both about three-dimensional molecules, and also about the control
systems necessary for timing and development.  We introduced protein sequences
and structures as complex phenomena chosen from a large search space because of
their special characteristics.



2.  *Sequence alignment:  basic dynamic programming.  After demonstrating the
need to compare sequences of proteins and nucleic acids, and discussing the concept
of edit distance, we explained the basic dynamic programming algorithm for
aligning sequences with affine gap penalties.  A small example was worked out by
hand,  and students were warned that they would be writing a general purpose
program as a project.  The variations of local and global alignment were covered
following the logic of Gribskov and Devereux (Gribskov, M. & J. Devereux (1992).
Sequence Analysis Primer. UWBC Biotechnical Resource Series. R. R. Burgess.
New York, W. H. Freeman & Co.: 124-137.).

3.  *Protein structure and structure-sequence relationships:  myoglobin as case
study.  Using Kinemage software, the students were guided through the structure of
myoglobin as the first case study of the relationship between sequence and structure.
The concept of a protein as a small computational machine was introduced (and
elaborated upon in the sixth lecture).  The basic physical properties of amino acids,
and the nature of the folding problem were discussed.

4.  *Basic computations on 3D structure:  distances, bond angles, dihedral angles.
In order to provide technical followup to the previous lecture, this lecture focused on
the detailed geometry of protein structures, and the constraints placed on  this
geometry by nature.  Specifically, the calculation of distances, bond angles and
dihedral angles was discussed, as well as a look at the empirical distributions of
these quantities over sets of protein structures.  This allowed introduction of
alternative representations for structure, other than three-dimensional Euclidean
coordinates, including concepts of internal coordinates (backbone phi, psi angles),
distance maps, and object-based coordinate systems.   The computational advantages
of each were discussed.

5.  The combinatorics of the protein folding problem, and simplifying assumptions.
This lecture focused on methods for managing the large computational search space
when predicting protein structure.  Lattice models for protein backbone structure
were discussed, as well as methods for exhaustive enumeration of conformations.
The use of constraints to filter unlikely structures was discussed, along the
computational complexity of such operations.  The goal of this lecture was to give
the students a feeling for the difficulty in predicting protein structure de novo, and the
need for algorithms which give other clues, based on sequence analysis and the
analysis of related structures.

6.  *Protein structures as mini-computers:  hemoglobin.  This lecture elaborated on
the idea of a protein complex as a small computer.  After discussing the main
features of the hemoglobin tetramer, and the mechanisms of cooperativity,  the
students were introduced to a series of mutations, along with the (predictable)
functional results.  In this way, the function of proteins was shown to follow from
sequence, and to be modifiable by sequential modifications.



7.  *Analysis of sequences:  composition, coding regions, intron/exons, reading
frames.  Using a demonstration version of the GeneWorks™ suite of sequence
analysis programs, the students were introduced to the range of computations that
occur on sequences,  and the types of questions that biologists typically ask of a
sequence.  Sequences were analyzed for amino acid composition,  the search for
open reading frames,  and the locations of introns and exons.   The algorithms used
for these computations were discussed, as were the critical assumptions underlying
them.

8.  Alternative representations of sequence:  profiles, regular expressions, and belief
networks.  Having previously introduced the basic statistics of sequences, this lecture
focused on more subtle representations of sequence including profiles, regular
expressions and belief networks.  The assumption of independence of columns was
discussed, along with methods for measuring the entropy of an alignment, and
methods for detecting covariation or correlation using entropy measures and
probabilistic measures.

9.  Simulating molecular dynamics of proteins.  The basic theory behind simulating
macromolecular dynamics was presented, along with the fundamental energy
equations, discussion of how they are parameterized,  the importance of modeling
solvent, and the reproducibility/reliability of the results.  An animated molecular
dynamics movie was shown.

10.  *Processing distances algorithmically and graphically.  Given the abundance of
distance information from both experimental and empirical sources, this talk
discussed the ways in which distances can be processed using the theory of distance
geometry, constraint satisfaction and restrained molecular dynamics.  The relative
strengths and weaknesses of these approaches were discussed.

11.  *Identifying transmembrane proteins with genetic algorithms and genetic
programming.  The principles of genetic algorithms and genetic programming were
introduced,  with an emphasis on their particular suitability to biological problems.
As an example, the evolution of a program to predict transmembrane domains in
proteins  was reviewed in detail.

12.  Hidden Markov models and multiple alignment.  After introducing the basic
issues and difficulties with multiple alignment, this lecture focused on the use of
HMMs to model biological sequences.   The basic data structures, and learning
algorithms for HMMs were reviewed, along with some successful biological
applications to the globins.

13.  *Extracting non-atomic features from protein structure.  Moving away from
purely atomic representations of structure, this lecture focused on looking at protein
structures as ensembles of biophysical and biochemical features.   The algorithms



for defining these features, as well as for detecting significantly conserved features in
an ensemble of similar structures were discussed.

14.  Computing molecular surfaces and molecular volumes.  The essential
computations involved in computing molecular surfaces using standard methods
were reviewed, as were the basic algorithms for computing Voronoi volumes for
molecular structures.  The application of these algorithms toward understanding
structural docking and molecular interactions was discussed.

15.  *Secondary structure prediction algorithms:  Chou-Fasman, GOR, and neural
networks.  The basic problem of predicting protein structure was revisisted, now
with an emphasis on detecting secondary structures.  The basic strategy used by the
most common algorithms was reviewed.   Secondary structure predictions for
globin sequences were sent off in real-time during the class to a number of servers,
and the results were compared and contrasted.

16.  Genomic computing: fragment assembly.  The low level issues involved in
compiling the human genome were covered, including the problem of base calling
from sequencing machines, the general strategy of sequencing by hybridization, and
the basic algorithms used to solve these problems.  Special stress was placed on the
problems that arise with many basic algorithms in the context of real data that is
inaccurate and contains lengthy repeats.

17.  Minimum description length principle and constructing evolutionary trees.  The
problem of constructing evolutionary trees was presented as a problem of
constructing a tree with the minimum description (or message) length (MDL).   The
relationship of MDL methods to Bayesian methods was discussed, and quantitative
algorithms for assessing the similarity of sequences using the MDL principle were
introduced.

18.  Representing, storing and computing with metabolic path information.  The
critical issues that arise when creating biological databases and knowledge bases
were introduced in the context of storing information about metabolic pathways.
The value of internet-based tools, and the methods used to design and create them
was discussed.  A real-time demo of the EcoCyc system for browsing knowledge
about E. Coli genomic structure and metabolic pathways was included.

19.  *Constraint satisfaction techniques for computing structure from constraints.
The concept of a constraint satisfaction network, low and high order consistency
checks, and their applicability to structure modeling was introduced.  As an example,
the construction of molecular models of large ribonucleoprotein complexes was
considered, along with the use of constraint satisfaction operators to create a
representative set of all conformations.



The readings associated with these lectures are given in Appendix I.  In general, one
or two relevant articles were provided for each lecture.  These were bundled together
in a course reader that was copied (after obtaining all necessary copyright
permissions, a service provided by the copy facility) and sold, at production cost
(around $50), in a two volume set  (a total of 426 pages).

2.  Results & Discussion
The class was announced relatively late in the academic year by electronic mail (and
did not appear in the course catalog), but generated 50 attendees during the first three
lectures.  Four senior faculty from Computer Science, Engineering, and Genetics
attended these early lectures, and expressed interest in auditing the course.   In
addition, a number of post-doctoral fellows from the biological sciences attended
these and a fair number of additional courses.  In the end, there were 24 students
who took the course for a grade.  Of these, 6 were graduate students in Medical
Information Science,  7 were graduate students in computer science, 6 were
undergraduates in computer science, and the remainder were graduate and
undergraduate students in engineering.  The final assignment in the class was an
anonymous questionnaire in which we asked students to rank the importance and
value of the lecture topics, as well as the homework assignments.   Appendix II in
the supplementary material included with the electronic proceedings contains the
detailed table of student responses.

By far the most positive lesson learned from teaching this course was the great
amount of interest in this field among both graduate and undergraduate students.
We initially feared that our late announcement (the course did not appear in the
regular printed course catalog) would lead to very low enrollment.  Our initial target
enrollment was 12-15 students, and so we exceeded this target by almost a factor of
two.   There were a large number of undergraduates who were not able to fit the
course into their schedule because of the late announcement, who showed interest in
taking the course at its next offering.  Many students see biocomputing as a growing
application area, where they expect jobs to be available.   As parts of computer
science shift focus from fundamental research and defense applications, the
opportunities within medicine and biology are receiving increased attention.  The
attraction of biology is that there are mappings from all the traditional applied
computers science subfields (for example, graphics, machine learning, user
interfaces, data structures or graph-based algorithms) that allow interests in any of
these subfields to be pursued.

In order to limit the amount of biology that we had to teach, we concentrated on a
few molecular systems.  In particular, we studied the globins, particularly
myoglobin, as the primary example for all our sequence and structure analysis
assignments, as well as the focus of many of our lectures.  This strategy was
successful overall, although it did lead to some comments by students that they were
getting tired of myoglobin by the end of the class.   However, the clear benefit of this
approach was that the students had seen the sequences and structures of the globins



using in multiple ways during the course, and never had to learn additional biology
in order to understand the constraints on algorithms that came from the biology.

The students definitely enjoyed the “hands on” programming flavor of the course,
although not without some qualifications.  The programming assignments required
(for some students) a fairly large amount of “busy work” parsing through data bank
files and cutting and pasting data into standard formats.  We allowed students to
program using any language of their choice.   It was our clear impression that
students working in higher level languages such as Lisp, Prolog,  MatLab, and Perl
had many less problems with writing support code than students working in C or
C++.   This was highlighted in one case where a student using MatLab was able to
encode a root mean square fitting routine in less than 30 lines of code!   These
observations underscored our belief that computer science departments need to
ensure that students learn to be productive in at least one programming environment
that is geared towards prototyping, and which supports high level operators.   In
order to assist students in the future, we may provide support code for reading data
files into C, or else create data files that are more easily parsed.

We were disappointed, but not surprised, that many students did not complete the
assigned readings.   We gathered them together in a single course reader in an
attempt to minimize the barriers toward reading the primary literature.  However, the
relatively large programming load distracted most students from the readings,
especially toward the end of the course, as shown in Appendix I.   In general, the
students read those sections of the reader that were required for successfully
completing the programming projects.  Our difficulty in creating this reader, along
with the low level of student use, underscores the need for a high quality, general text
book of computational molecular biology.  Unfortunately, the different local flavors
of computational molecular biology courses makes it difficult to define a core
curriculum that should be shared, and could be the emphasis of a textbook.

We used electronic slides (made with a presentation package such as Microsoft
PowerPoint™, projected through a flat panel display from a MacIntosh CPU) for
approximately 70% of the course.   The advantages of the electronic display included
easy availability of lecture notes for students,  and the ability to do real time
demonstrations of software.  One guest lecturer did an entire lecture using Netscape.

3.  Conclusions
Our first experience teaching “Representations and Algorithms for Computational
Molecular Biology,” offered as a course in Medical Information Sciences and
Computer Science, was quite positive.  The hands-on interaction with the data was
appreciated by students, and has lead some to join computational molecular biology
efforts.   The short time available in one quarter, and the structural focus within
bioinformatics lead to a syllabus that was somewhat incomplete in its coverage of
current computational molecular biology.   In the context of all the courses related to
this area taught at Stanford, however, the emphasis on structural issues was not



unreasonable and lead to a course that filled a niche.   In addition, the constraints that
biological structure places upon many aspects of sequence analysis make it useful to
understand biological structure before focusing on sequence analysis.   This runs
counter to the standard view that the analogies between string matching and sequence
analysis in computer science are so strong, that the provide the natural starting point
for computational molecular biology courses.   An understanding of structural
principles often helps computer scientists avoid dangerous oversimplifications in
sequence analysis.  Therefore, we anticipate using the same strategy in the next
version of the course, although we will place slightly more emphasis on sequence
analysis.  The principal modifications we anticipate are:

1.  We will spend more time on the topic of dynamic programming.  These
algorithms are so fundamental to computational molecular biology, that an entire
additional lecture should be spent on its variations, the different type of scoring
matrices, and their theoretical underpinnings.

2.  We will moderately reduce our emphasis on structural computation in the
homework assignments.  We will remove one of the assignments for structural
analysis (for example, Assignments 3, 4 or 5) and instead have an assignment in
which the students analyze the statistics of sequence and  use these for classification.

3.  We will provide a bit more biological background material for students.  Despite
the difficulty in adding extra material, we may have a more constant (as opposed to
predominantly at the beginning) amount of biological reading, in order to better
motivate the algorithms and methods that are presented.  We will maintain the focus
on a small number of biological systems (particularly the globins) in order to keep a
manageable scope of required biological knowledge.

4.  We will reduce the amount of readings, and try to integrate them into
assignments more closely.  It was clear that the large amount of programming
impacted negatively on the ability of the students to read.   The course reader was
created to be a lasting reference for the students, containing some critical primary
articles in the field.  Although it is our preference that the students spend more time
actively interacting with the data and programming than reading the primarily
literature for the course, we are investigating ways to create a more readable syllabus
of papers.  There is clearly a need for a high quality textbook in this area, that covers
the topics in our course, as well as numerous others.
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