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Abstract

For decades, a large number of investigators have been sifting the database

of experimentally determined three-dimensional protein structures to discover re-

curring patterns of all types. Now that there are over a thousand such structures

available, the natural question is whether we have seen all substantially different

protein folds, and if not, how many have yet to be discovered? Answering the

question can be broken down into three steps: (1) choose the range and domain

for a similarity function, then (2) choose a particular similarity function, and (3)

construct a corresponding protein model space that can be searched for dissimilar

structures. In our analysis of the problem, we first chose to examine different con-

formations of the same protein, taking into account only cO: atomic coordinates.

In particular, we do not compare proteins of different chain lengths on the basis

of some kind of gapped alignment. Secondly, we use a measure of conformational

similarity based on rigid body superposition that emphasizes overall geometric re-

semblance, rather than agreement in secondary structure, for example. Third, we

employed the discrete cosine transform to construct exhaustive sets of globular

self-avoiding cO: traces that were all different from each other by a given level.

These sets of artificial structures were not too large to explicitly enumerate as long

as the level of dissimilarity was high, and the chain flexibility was low. For chains

flexible enough to match all experimental structures of 170 residue or less that are

not p-barrels, we find 128 artificial structures, of which 28 resemble nothing in

the Protein Data Bank.
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1: Introduction

The hardest, and indeed the most contentious part about estimating the number

of different protein folds is to decide what is to be compared on what. basis. There

are many reasonable choices here, depending on one's leanings toward molecular

biology, polymers, biochemistry, or geometry. Clearly the comparison of protein

sequences calls for gapped alignments, because there are many functional and

evolutionary similarities that would be obscured without realizing proteins are often

mutated by adding or deleting a few residues in the middle of a chain. Matching this

is the standard observation that segments of polypeptide chain having conserved

sequence over a family of related proteins generally correlate well with conserved

relative three-dimensional position. These conserved segments also tend to have

conserved, well-defined, secondary structure, such as a-helix or jJ-strand, and lie

in the interior of globular proteins. Alternatively, functionally important residues,

for example the active site residues of enzymes, tend to be conserved in sequence

and three-dimensional position. These observations have led many workers in

this field to assess the similarity of different proteins on the basis of various

combinations of gapped sequence alignment, matching of secondary structural

elements, matching overall visual similarity, rigid body coordinate superposition

with gaps, and agreement in biological role [2, 3, 17, 18, 19, 21]. Their underlying

philosophy is that "a protein" is really a whole family of proteins from many

different organisms whose properties cluster together more tightly than between

families. Their corresponding answer to the number of folds really is an assessment

of the number of recognizable functional families.

A more geometric view of the problem is to avoid the whole gapped compar-

ison issue by concentrating on comparing alternative conformations of the same

polypeptide chain. The difficulty here is that nature only furnishes us with at most

one stable conformation for any particular sequence, so conformational variety can

be seen only by comparing pieces of experimental structures or by artificially con-

structing structures. Thus, Cohen and Sternberg [4] examined the root-mean-square
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deviation in cO: coordinates after optimal superposition (D) for pairs of random,

compact, self-avoiding chain conformations and estimated 5 x 1013 statistically

significantly different conformations for BPTI. See also [12, 10, 11].

Our approach has been to compare different artificial conformations of the

same protein on an absolute geometric basis that does not depend on the statistical

distributions of such comparisons. This avoids the gapped alignment question.

Secondly, not being able to rigorously define "folding topology" or "motif", we

measure similarity by rigid body superposition of cO: coordinates, which is of

course sensitive to overall shape, and will even compare helices with extended

strands. Finally, the number of different conformations for a given protein chain

length we take to be the number of artificial structures we can generate that all differ

by at least some specified similarity cutoff. These sets can also be compared with

the experimentally determined protein structures seen in the Protein Data Bank

(PDB) [1].

2: Methods

2.1: Conformational Similarity

The usual measure of difference between two conformations, A and B, of the

same protein having nr residuesis just D(A, B), the root-mean-squaredistance

between corresponding Co: atoms after optimal rigid body superposition, where

obviously atom i in A corresponds to atom i in B. A better, related measure [15] is

p(A B) - 2D(A, B)
, - (2R2(A) + 2R2(B) - D2(A, B))1/2

where R is the radius of gyration. An intuitive interpretation of this formula is as

follows. After optimal superposition, the cO: atoms of structures A and B have

(1)

coordinates ai, hi, i = 1,..., nT, respectively. Imagine the difference structure,

having coordinates (ai - hi), and the mean structure, with coordinates (ai + bi)/2.

Then p(A, B) is just the ratio of the radius of gyration of the difference structure to

that of the mean structure. When A and B are very similar, the difference structure

is small compared to the mean structure, and p is nearly zero.
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To summarize ref. [15], there are key values of P that are independent of

any statistical interpretation: p( A, B) = 0 if and only if they are identical up to

a rigid body translation and rotation, p ~ 0.3 to 0.5 for obvious visual similarity,

p = /475 = 0.894... is the smallest value for which the mirror image of B could

be more similar to A than B is, p=1 when the mean and difference structures have

equal radii of gyration, p = yI2 = 1.414... is the similarity of any structure to

its own mirror image, and p=2 is the maximal dissimilarity possible. Technically,

the 0.894 and 1.414 values require the two structures to be scaled so that all three

principal moments of inertia are equal. However, typical compact protein structures

are spherical enough (axial ratios of about 2) that the scaled and unscaled p differ

by only about 5%. Otherwise, these values are independent of overall size of A

and B, and of their relative sizes.

At least p provides a quantitative scale of similarity so that we can set a cutoff

value for dissimilarity, Pc, somewhere between 0 and 2, and enumerate a set of

dissimilar structures. Naturally, the set size increases with decreasing pc, so we

will work around Pc=1 (i.e., enormously dissimilar) and extrapolate down to levels

corresponding to visually recognizable similarity. What we really want to know is

how big the space of globular protein structures is, but what we will actually do

is produce as large a set of artificial structures as we can such that all differ by at

least Pc. This is roughly analogous to measuring the size of a table by randomly

placing as many dinner plates on it as we can, subject to the constraint that no

plate covers the center of another. Here, the radius of a plate corresponds to Pc.

An initial strategy of random placement enjoys a high success rate at first, but

eventually the remaining bare spots are so small that it is more productive to place

the new plate over an old one and then randomly move it away so that it covers

the center of no old plate. This search strategy is illustrated in Fig. 1. In order

to see how this carries over to proteins, we must first explain how we generate

artificial chain conformations.
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Figure 1. Measuring the size of a table by randomly placing plates on it such that

the plate centers are not covered.

2.2: Discrete Cosine Transform

Suppose we sample a signal N times at uniform intervals, resulting in a se-

quence of values x0, ..., xN -1. Then the cosine transformcoefficientsare calculated

[20] by

N-1

[

)
]

A 2q (2j + 1 br
Xk = N Lxi cos for k = 0,..., N - 1. 2N

}=o (2)

from which one can return to the precise original signal sample points via the
inverse transform

N-1

[ ]

A (2j + l)k1r .
Xj = L qxk cos 2N for J = 0, . . . , N - 1

k=O

where for both transforms

(3)

{

1/V2, k=O
Ck=

1, otherwise
(4)

Note that the x j and the x k are all real numbers. We represent a path in space

by three signals representing the x, y, and z coordinates of a chain of m points,

where we choose some m < nr. All such combinations of three signals produce

all possible three-dimensional paths, just as all combinations of three real numbers

correspond to all possible points in three dimensions. Then to get nr interpolated
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Figure 2. Discrete cosine transform filtering of high frequency components of the

cO:'atom x coordinates of protein 1ctf (L 71L12 50S ribosomal protein, 68 residues).

points along the smooth curve, we first determine the DCT coefficients Xk, 'Uk,and

Zk from equation (2) with N = m. Then we backtransform by equation (3) with

"zero-filling", that is, Xk = 0 for k = m, ..., nT - 1 and N = nT. The effect is a

high frequency filter, as illustrated in Fig. 2 on a real protein structure. Since we

are considering extremely different structures.according to a metric that focuses on

overall shape,it is not important that our chain representationsblur helices into rods.

It turns out that a number of useful features of these artificial structures can be

controlled by their DCT coefficients, so we generate them in the transform space
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for some small number of terms N and then backtransform them with zero-filling

to Cartesian coordinates of the nr points representing the chain. For example, to

get structures having their centroids at the origin, one must set

Xo= Yo= Zo= 0 . (5)

To get a particular radius of gyration R for the final coordinates, requires

R2 1 ~ (
,,2 + ,,2 + "2

)= - L...Jxi Yi zi .2 .
t

(6)

The RMS deviation in coordinates after optimal rotation is simply proportional to

the RMS deviation in transform coefficients after optimal rotation (for nr = N):

D(A, B) = (N/2)1/2 b (A, 13) . (7)

Unfortunately, there is not such a simple relation on the coefficients to ensure the

structures are self-avoiding.

To generate an exhaustive set of representative artificial structures for compar-

ison with nT-residue proteins, we choose independently with uniform distribution

random Xk, Yk, Zk E [-1, +1] for k = 1, ..., N - 1, and then scale the coefficients

to give the desired radius of gyration. Based on our empirical observation [13] that

the most compact globular proteins have radii of gyration

Rmin (nr) = -1.26 + 2.79n~/3 (8)

in A, we use this Rmin. The first random structure is the first representative, and

a subsequent random structure is added to the growing set of representatives only

if it is sufficiently different (p > Pc) from all the representatives found so far.

The typical progress of such a search is shown in Fig. 3, where the total number

of structures found increases roughly linearly with loglo t, where t is the number

of random tries. Curiously, this rate of accumulation is slower than what one

would expect if there were simply nc total representatives that were being chosen

at random with equal probability and subsequent replacement.
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Figure 3. Semi-log plot of the number of representatives found, nc, vs. the number

of tries, t, in the initial random search for N = 4 and Pc =0.5.

In our experience, the random search for representatives rapidly finds about

70% of them, even when there are many variables, until it becomes unproductive

around t = 106 to 107 iterations.

The second stage of the search is a systematic perturbation of the representatives

found by the random search. For each current representative, make a variant by

repeatedly incrementing and decrementing each of the 3N - 3 nonzero coefficients

by 0.1, retaining any changes that increase p between the variant and the nearest

representative. Add the variant to the set of representatives once this p > Pc.

Otherwise, discard the variant when no perturbation improves the minimal p. Quit

when no successful variant can be produced from any representative.

The third stage converts the relatively exhaustive set of representatives to self-

avoiding representatives. We take as our definition of self-avoiding that the long-

range distances between Ca points dij > 4.0 A for Ii - jl > 8 for the radius
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of gyration scaling corresponding to nr = 100. Starting with zero self-avoiding

representatives, perturb the coefficients of each non-self-avoiding ocr, keeping

any change that improves the score of the corresponding structure. The score is

the sum of the worst long-range contact violation plus the P < Pc violations for

previously determined self-avoiding representatives. Perturbation stops when no

score reduction can be achieved and the structure is rejected, or when the score

reaches zero and the structure is added to the list of self-avoidingrepresentatives.

Note that the final number of self-avoidingrepresentatives, na, is a function of

two parameters: Pcand N. In effect, N controls the flexibilityof the artificialchain

paths, since N = 2 permits only the straight line segment, N = 3 allows at most

one bend, etc. For great similarity to the natural structures, they should be flexible

enough to form a-helices, for example, but not so flexible that the interpolated

points are scattered at random about the origin. Hao et al. [8] have observed that

the polypeptidechain of helicalproteins often reverses direction after 2 residues, but

,B-sheetproteinstend to reversedirectionin about 10residues. When Pc ~ 1, the

conformational similarity measure essentially views helices and extended strands

as vaguely straight rods, so that N=10 is appropriate for nr = 100.

3: Results

To summarize our recent studies [16], we have ,enumerated sets of artificial

representative structures for several choices of N and Pc. Consider first some

extreme cases. Obviously when Pc=2, all structures are similar to one another,

and the number of conformers, na, in the set of representatives is just 1. Which

conformer it is, is completely irrelevant. At the other extreme, na -+ 00 as Pc -+ 0,

so long as there can be any conformational variation (N > 2). When N = 1, all

conformers are a point at the origin, a case too trivial to consider further. N = 2

allows straight line segments running through the origin in various orientations,

their lengths set by the desired R. For all pairs of these structures, p = 0 so that

na = 1, regardless of pc. ,
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Table 1 The numbers of representative self-avoiding conformers, na,

founda for N points in the DCf and differing by at least P > pc.

a The number of random trials in the search was 107 for (N, Pc) = (10, 1.0),

2 X 106 for (8, 1.0), and 106 for all the rest.

For N > 2 and o < Pc < 2, we have to rely on our Monte Carlo estimations.

Clearly na increases as Pc decreases, and increases as N increases, just as smoothing

the Cly trace over a narrower window increases the perceived differences between

structures. Table 1 shows the number of self-avoiding conformers, na, as a function

of N and Pc. For N > 3, a least-squares fit consistently gives

[

0.564(N - 3)1.085(2 - pc)1.651

]na ~ exp p~.969 (9)

with standard deviation of 32.7, independent of the starting values of the four

parameters. in the curve fitting procedure. The functional form was chosen to

enforce the boundary conditions discussed above. If we assume the Monte Carlo
. ..

[
0628(N-3)1.040(2- )1.646

]estImates are all low by 10%, the revIsed fit IS na ~ exp' p~.86S pc .
If {3proteins tend to have a chain reversal about every 10 residues [8], then

even a low-resolution approximation to the backbone of such a l00-residue protein

would require N ~ 10. We have observed that Pc=O.4corresponds to obvious

pc
1.2 1.0 0.9 0.8 0.7 0.6 0.5 0.4

0 0 0 0 0 0 03 0

41 1 1
'
1 1 1 1 2

5 3 5 6 12 25 41

6 3 8

7 6 17

8 8 32

9 10 57

10 11 84

11 13 128

12 17
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Figure 4. The number of significantly different artificial conformations as a

function of the p cutoff, Pc, and the number of cosine transform terms used, N.

Table 2 The estimated number of significantly different protein folds, na, for

single chain globular proteins having nr residues, as calculated from equation (9),

assuming pc = 0.4 and N = nr /10.

visually recognizable similarity, independent of chain length. Then in order to

include all-,8 proteins, we must have N = nr/10, so that equation (9) gives us

the estimates shown in Table 2 for the number of protein folds as a function of

chain length.

We tested the degree of overlap between real protein structures and our sets

of artificial representatives by comparing the 128 self-avoiding artificials for Pc =
1.0 and N = 11 to 1993 PDB entries. These are all the files of the April 1994

nr na

50 600

100 lOll

200 1028

300 1046
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release of PDB that contain protein structures having backbone and at least cf3

atomic coordinates, no major breaks in the middle of chains, and were otherwise

machine readable. These entries contain a total of 1473 polypeptide chains that

have 11 < nr < 170 and were compact enough that their radius of gyration

R < 1.3Rmin from equation (8). Of course such a set of chains does not evenly

sample all experimentally observed structures due to the numerous sets of close

homologs. However, our goal here is not to discuss the statistical distribution

of structures, but rather to find the full range of our experimental knowledge and

compare it to the range of artificial structures. As explained in the Methods section,

each one of the artificials is actually a template DCT from which we can produce

chain paths having any number of residues and any radius of gyration. In order to

compare an artificial representative with an experimental protein structure having

an nT-residue chain, we backtransform the DCT with zero-filling to produce a path

of nr points, and then scale the artificial path to match the protein's radius of

gyration. That way, p is always calculated between two sets of nr points.

Altogether, 1329 out of 1473 polypeptide chains matched one or more of the

artificial representatives to p < 1.0. (Since there are on the order of 1011 possible

structures with Pc=O.4,it is not surprising that none of the artificials bore an obvious

visual resemblance to any of the natural proteins.) Of the 144 failures, only 69

had optimal matches with p > 1.05, and of these, only 32 chains had optimal

match at a level of 1.1 < P < 1.16: 1spd.A-B, 1sdy.A-D, 1sda.O,Y,B,G, 1cob.A,B,

2sod.O,Y,B,G, 3soo, 1srd.A-D (superoxide dismutases, ca. 150 residues per chain,

8 stranded f3-barrels), 1hlc.A-B, 1s1tA,B (lectins, ca. 130 residues per chain,

11 stranded f3-barrels), 2bfh (human growth factor, 12 strands, all (3), 10pa.A,B,

and 10pb.A-D (retinol binding protein II, 135 residues per chain, 10 stranded 13-

barrels). As explained above, the many long strands and sharp turns of 13proteins

are relatively hard to fit by our sets of artificial structures, even for nr < 171, and

would require artificialS with N > 11. Otherwise, these 128 artificial representatives

can be said to cover the conformation space spanned by nearly all known small

and medium proteins.
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Figure 5. The three most commonly matched self-avoiding artificial structures

from the set of representatives having N = 11 and Pc = 1.0. Computer graphics

by UCSF MidasPlus [7].

On the other hand, only 100 of the 128 self-avoiding artificials came within p <

1.0 of one or more of the 1473 proteins. A few of the artificials matched more than

100 proteins, and the most popular one, shown in the upper right of Fig. 5, matched

136 proteins, primarily the numerous T4lysozyme mutants. The other two matched

123 and 121 proteins, respectively. Even at such a low level of conformational

similarity, they are recognizable as cartoons of real proteins with packed helices.

That leaves 28 artificials that match nothing in FOB, perhaps because they violate
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Figure 6. Eight self-avoiding artificial structures matching no protein. The threaded

loops and complicated entanglement are features unobserved in FOB.

some so far unstated principle of protein folding, or because they correspond to

novel protein folds waiting to be discovered. Figs. 6 and 7 show 15 of these

28 that exhibit distinctly alien threading of the ends through broad loops, even

allowing for some simplification of the chain crossings, given the low resolution

implied by Pc = 1.0. Some time ago [5] the occurrence of such features was

examined in 20 proteins from the FOB. While there were many examples of a part

of the chain penetrating a loop fonned by another part, these were seen only in

polypeptide chains over 200 residues. It would require a fresh survey of the much

larger current POB in order to quantitatively establish whether the entanglements
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Figure 7. Seven more self-avoiding artificial structures that match no protein and

show unnatural entanglements.

seen in these 15 structures are distinctly beyond that observed for chains of 170

residues or fewer. In contrast, the 13 artificial structures shown in Figs. 8 and 9

appear no more snarled than those artificials matching many proteins, yet these 13

match none. It is not unreasonable to hope that some day a novel protein fold will

be discovered that matches some of them.

4: Conclusions

This work is based on a simple geometricview of the counting all the different

protein folds that emphasizes overall spatial similarity and disregards biological
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Figure 8. Seven self-avoiding artificial structures that are matched by no protein,

but appear plausible.

and evolutionary aspects. We are able to use the discrete cosine transform to

conveniently generate sets of artificial chain conformations that span the full range

of possibilities for self-avoiding, globular structures. How many representative

conformers are produced depends on the choice of cutoff between spatial similarity

and dissimilarity, and also on the degree of flexibility allowed to the chain.

Extrapolating from our explicitly enumerated sets of representative for different

levels of flexibility and dissimilarity, we estimate there are 1011 visually distinct

folds for a tOO-residue protein (Table 2).

However, the number of different conformers drops to manageable levels when
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Figure 9. Six more self-avoiding artificial structures that are matched by no protein,

but appear plausible.

great spatial dissimilarity is required, leading to a set of 128 "prototype" structures

that cover every compact, globular protein of 170 residues or fewer, except for a

few ,a-barrels. While 100 artificial structures matched one or more proteins, 28

matched none. Some 15 of these can be regarded as suspect because ~of unusual

entanglement, but the other 13 may represent novel protein folds waiting to be

discovered. In other words, at this very low level of resolution, 90% of the possible

conformational variation has already been seen in PDB, but there are still surprises

waiting to be discovered.
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