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CORRELATING STRUCTURE-DEPENDENT MUTATION
MATRICES WITH PHYSICAL-CHEMICAL PROPERTIES

J. M. KOSHI* and R. A. GOLDSTEIN*t
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We have investigated how structure-dependent mutation matrices derived in pre-
vious work correlate with various physical-chemical properties of the 20 naturally
occurring amino acids. Among the properties we investigated were IJ.G of transfer
from water to octanol and cyclohexane, alpha helical and beta sheet propensity,
size, and charge. We found that the IJ.G of transfer to octanol had a high correla-
tion with matrices for all categories of residues, especially the matrices for buried
and exposed positions. This result suggests that octanol is a good model for un-
derstanding both the changes in stability resulting from substitutions of buried
residues and changes in foldability resulting from varying exposed residues. We
also found the correlations of the matrices with -size and cbarge varied with the
local environment, and that neither alpha helical nor beta sheet propensity had
high correlations with most matrices. Thus, conservation of size and charge appear
to be important in specific environments, and conservation of alpha helix and beta
sheet propensity do not seem to be key factors.

1 Introduction

Current biochemical techniques have gathered a wide variety of information
about the 20 amino acids commonly found in proteins. Parameters such as size
and charge have been known for many years. More recently !J..G of transfer
from water to solvents such as octanol and cyclohexanel,2 and alpha helical and
beta sheet propensity have been measured 3-5. We still do not know, however,
exactly how important each of these quantities are in determining the fitness of
one amino acid over another in various local environments of protein structures,
or more fundamentally, what attribute of the protein - foldability, stability,
catalytic efficiency, etc. - is driving this local optimization 6,7. Complicating
this fact is that residues with few constraints may be evolving by random
fixation of neutral or nearly neutral mutations 8,9.

Until recently, the most prevalent approach used to study the effects of
specific mutations has been the creation of site mutations in various proteins,
examining how alteration of one of the amino acids changes a specific property
of the protein, such as stability or biochemical efficiencyll-17. Such studies,
however, are fraught with pitfalls. First, one must be careful to look only at
mutations which do not significantly alter the native protein structure, prefer-
ably as verified by NMR or crystallography. It is also difficult to insure that
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the property of interest is the only relevant one being altered, and that other
factors, such as steric clashes, are not being introduced.

In order to reduce extraneous factors, several groups have looked at cor-
relations between the change in b..G of transfer from water to various sol-
vents and mutations within a subset of amino acids - mainly the hydrophobic
residues. The generality of these results is limited, however, as the number
of mutations catalogued is only a small subset of all possible mutations. For
instance, a study by Pielak et ai. 10, analyzed data from 87 mutant proteins,
but these mutants represented only 11 of the 380 possible amino acid sub-
stitutions. If one also wanted to differentiate between mutations in different

secondary structures and surface accessibilities, the available data set becomes
even more sparse. Thus, one must take care in extrapolating the conclusions
found in studies like that of Pielak et al. beyond the specific questions they
were addressing.

The limited number of site mutations that can be attempted and analyzed
in the laboratory may also have significant affects on the results observed. Of-
ten, proteins can adapt to particular mutations, either through readjustments
in the protein conformation, or through compensatory mutations 12,13,18,19.
With time, natural evolution may be able to opportunistically take advantage
of compensable site mutations that the necessarily anecdotal approach of di-
rected site mutagenesis might miss. In addition, directed site mutations are
chosen based on some a priori biochemical intuition, and other possible inter-
esting mutations may not be even attempted. Finally, it is not obvious how
the changed behavior of the mutations will affect the proteins' performance in
an in vivo context.

In contrast to the site mutation approach, we use the database provided by
natural evolution. Such an approach must contend with all the random noise
inherent in such a system, but it also has several advantages. First, we are
not restricted to looking at only a single quantity like stability or function in
our experiment: many parameters, like function, stability, or foldability, may
constrain evolutionary changes, and our approach will encompass all of them.
The database created through evolution is also vast, and we are certain that
all our data is viable in real, in vivo systems.

Specifically, we incorporate evolutionary information with the use of opti-
mal, structure-dependent mutations matrices derived in earlier work 20. These
matrices were created using phylogenetic trees by optimizing the probability
that a given matrix fit the evolutionary transitions observed. And since the
secondary structure of the proteins in the data set was known, we were able to
create specific data sets for each local structure and derive mutation matrices
optimized for each local environment 20. In addition to enabling us to include
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information found in local structure, use of these matrices allows us to look
at all possible transitions. Thus, by using these structure-dependent mutation
matrices, we hope to better understand the relationship between local struc-
ture and the constraints evolution places on mutations. To this end we have
studied the applicability of various parameters, such as the de of transfer
from water to octanol and cyclohexane, size, charge, and secondary structure
propensity, to model the tendencies seen in the mutation matrices for each
local structure.

2 Theory

The goal of this study is to correlate changes in various parameters with our
mutation matrices. To achieve this, it is necessary to define exactly how to
compute the "distance" between the fitness of two amino acids, as measured
by our mutation matrices, and how that value will correlate with changes in
various physical-chemical parameters. In order to uncover these correlations,
we have investigated two theoretical models for evolutionary transitions, one
simple, and one more complex.

In the simple case, we need to make several major assumptions. The first is
that the mutational matrix distance between two amino acids is only correlated
with the parameter of interest, or alternatively that the effects of the other pa-
rameters average out to zero. The second is the use of Metropolis algorithm to
describe how evolutionary transitions occur. The third, and largest assumption
is that the fitness function, f( ad, where ai corresponds to one of the 20 amino
acids, is a simple linear function of the parameter (f( ai) = mqi + p, where
qi is the parameter value associated with amino acid ai), and is the same for
all possible residue positions where we find that mutation. We recognize the
simplicity of this model, but using our structure-dependent mutation matrices,
this may be a plausible model, as all residues of a particular type have similar
behavior in each local environment. We can show that the parameter differ-
ence should be correlated with log(Mala2Ma2aJ, where Mala2 corresponds to
the mutation matrix entry for a transition from amino acid al, with parameter
value ql to amino acid a2, with parameter value q2. Assuming f(al) > f(a2),
the Metropolis algorithm states:

peal ~ a2) = KP(ad exp (-mldql/d) (1)

where P( al ~ a2) is the probability of a transition from an amino acid al
with parameter value ql to an amino acid a2 with parameter value q2, K is
the intrinsic rate of mutations, P( ad is the probability of finding amino acid
(l.1, l.6.ql is the absolute value of the difference in parameter value between ql
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and q2, and d is some "mutational temperature". P(a2 --+ad is simply equal
to KP(a2), as this mutation results in an increase in fitness, and, given the
chance, will always occur. Thus,

peal --+a2)P(a2 --+ad = K2P(adP(a2) exp (-ml~ql/d) (2)

I~ql = -d log (
p(al --+a2)P(a2 --+al)

)m K2P(al)P(a2)
(3)

But since by definition:

P( al --+a2)

Mala2 = P(ad
(4)

This implies:

-d
I~ql = - (lOg(Mala2Ma2al) - 2logK)m

(5)

The model just described made the assumption that all residue positions
under consideration had the same linear fitness function. While this may be a

reasonable first approximation, it is probably a bad model for parameters like
size, where mutations to overly large or small residues will both be destabiliz-
ing. The optimal value of the parameter, qopt, will vary with different residue
positions, and we must explicitly consider a distribution of qopt values.

To this end, we chose a Gaussian dependence of q for the fitness func-
tion, and for the distribution of qopt values. With these choices, we can
show that the parameter difference, l~qL should correlate with the quantity
log(Mala2Ma2al/[P(al)P(a2)]K), where K ranges from 1 to 2, as follows:

For an individual position within the data set we wish to know the proba-
bility that we will find a transition from amino acid al. to a2, with a parameter
change of ql to q2. We model this probability, peal --+a2), as proportional to
both the intrinsic mutation rate K, and to the probabilities of finding amino

acids al and a2: peal --+a2) = KP(adP(a2)' Now, averaging over all residue
positions, and assuming the intrinsic mutation rate is constant over all sites,
we get:

peal --+a2) = KP(al)P(a2) (6)

Using the definition of Mala2 in Eqn. 4,

f P(qllqopt)P(q2Iqopt)P(qopt)dqoPt

Mala2 = K f P(qllqopt)P(qopt)dqoPt
(7)
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where we are explicitly modeling P(ad and P(a2) as functions of qopt by writ-
ing them as conditional probabilities: P( q1lqopt) is the probability of finding an
amino acid with parameter value q1, given that the optimum point of the dis-
tribution is qopt. Note that qopt is being allowed to vary over residue positions
(thus the integral over qopt). Considering the numerator of this fraction:

J P( q11qopt )P( q21qopt )P( qopt )dqoPt

-

J d
(

-(q1 - qopt)2 - -(q2 - qopt)2 - q;pt

)- qoptexp 2r2 2r2 2,2

C (-r2(qi + q~) _,2(ql - q2)2)- exp 2r2(r2 + 2,2)

(8)

(9)

where we have explicitly written P(q1Iqopt), P(q2Iqopt), and P(qopt) as Gaus-
sian probability distributions, and C is simply a constant in the equation, with
a value of: C = r( ,v'1r)/(r2 + 2,2)1/2 The denominator of the fraction from
equation 7 is:

(
2

)
, -q1

P(a1) = C exp 2(r2 + ,2) (10)

where C' is equal to: C' = (r,V(21r))/(r2 +,2)1/2 The product of the two
transition probabilities is then:

- 2 ( )
2

Mala2Ma2al - K P(adP(a2) / P(ad P(a2) (11)

This implies:

b:..q= C "log (
Mala2Ma2al

where C" = c' (?(a,)?( a2»K - 21og,,

)
c /2, and ,

(12)

y - .2(1 + ..\2)
\ - 1 + 2..\2

2

if ..\is defined as: ..\= ~. As ..\ can vary from 0 to 00, this implies !{ can vary
from 1 to 2.

Thus, if the Gaussian distribution for qopt is broader (as reflected in a
larger value of ,) than that of q, the above equations predict a K value near
1. On the other hand, if q has a broader distribution, then one would expect
a K value of 2.

(13)
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3 Methods and Results

As discussed above, we have used in this study optimal structure dependent
mutation matrices, which were derived in earlier work 20. These matrices were
derived using a data set of 82 proteins, using phylogenetic trees, and employing
a Bayesian methodology to optimize the probability that a given matrix fit all
the mutations seen within a given data set. Some of the data sets used were
also secondary structure and surface accessibility specific, allowing us to gen-
erate optimal mutation matrices for all 15 separate cases: 8 matrices, one for
each secondary structure/surface accessibility class; 4 matrices, one for each
secondary structure regardless of surface accessibility; 2, one for exposed and
one for buried residues, and 1 for all residues. We have correlated these 15
matrices and the Dayhoff PAM250 matrix 21, normalized to a similar evolu-
tionary distance, with various physical-chemical parameters: !::"Gof transfer
from water to octanol and cyclohexane 2, alpha helical and beta sheet propen-
sities 3, size, and charge. In order to correlate these quantities, we considered
the absolute difference of the values of a given parameter for two amino acids
'us. the value of log(MabMba/(P(a1)P(a2»K) with K ranging from 0 to 10, as
described in the theory section.

In addition to the correlation coefficients, for each of the cases listed above,
we also calculated the probability that a random, uncorrelated sample would
give that correlation coefficient or higher. As the number of data points differs
for each case, it is this probability which is actually the more important value
for determining which correlations are significant. (i. e. for a large data set, a
smaller correlation coefficient is often more unlikely than a substantially higher
correlation coefficient for a smaller data set.)

The optimal K values (kopt), correlation coefficients (r), and probabilities
of a random distribution matching or exceeding that correlation coefficient
(P,.), are shown for some cases in Table 1. Figures 1a through If shows the
actual distribution of data points for various parameters correlated against our
matrix for all residues. For each plot, the best fit line is plotted.

4 Discussion

Using structure-dependent mutation matrices, the best correlation coefficients
found against the structure-dependent matrices are higher than those against
the Dayhoff matrix in all cases, usually by a factor of 1.5 or more. Clearly, sim-
ply gathering statistics on pairs of highly similar sequences does not encompass
the greater complexities seen in evolution.

When comparing our results to those of the study by Pielak et al. we find
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Figure 1: a: Scatter plot of the f::1f::1Gof transfer to octanol2 vs. the matrix for all residues,
with the best fit line drawn. Matrix distances are in arbitrary units. The correlation coeffi-
cient, r, and probability that r arises from uncorrelated data, Pr, are also given. b: same
plot for the f::1f::1Gof transfer to cydohexane2. c: for f::1size. d: for f::1charge. e: for f::1

alpha helical propensity3. f: for f::1beta sheet propensity3.
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Table 1: Optimal K values, correlation coefficients (r), and probability that a similar distri-
bution could arise from uncorrelated data (Pr) are given for the AAG of transfer to odanol

and cyclohexane, A size, and A charge vs. the various mutation matrices listed above.

several similarities. Pielak et at. found the !:::t..!:::t..Gof transfer to odanol to
be a good indication of changes in stability for most amino acid substitutions
in the protein core 10, and correspondingly we find it has a high correlation
against our matrix for buried residues. The most likely explanations for this
high correlation is that the !:::t..Gof octanol serves as a good model for moving
residues from the aqueous environment to the hydrophobic core during folding.
This interpretation is supported by Pielak's observation that mutation matrices
are highly correlated with changes in stability for these substitutions 10.

One surprising result was that the high correlation observed between the
!:::t..Gof octanol and the mutation matrix for exposed residues. As the environ-
ment of these residues remains very similar during folding, this correlation can
not be explained by the need to stabilize the folded conformation. If we look
at the "reverse hydrophobic effect", however, we can find a likely explanation
for this correlation 22-24. The !:::t..Gof octanol correlates well with the exposed
matrix because it is not the stability, but the foldability of the protein that is
being optimized. One of the major factors in efficient folding of the protein
is the destabilization of incorrect conformations; the polar nature of surface
residues prevents stabilization of states in which these residues are buried.
Thus, it is the patterns of hydrophobicity which are most important in protein
folding 25,26,and the correlation of the !:::t..Gof octanol with our exposed matrix
simply reflects this conservation of hydrophobicity.

Another surprising fact was that we did not observe any significant corre-
lation between the !:::t..Gof cyclohexane and any of our matrices, even for buried
residues. The result of Pielak et at.would suggest that the !:::t..Gof cyclohexane
should have been a good model for the protein core, but the correlations we
observe do not support that conclusion. We even tried correlating the !:::t..Gof

MG octanol MG cyclohexane .1 size .1 charge

matrix
Kopt r Pr Kopt r Pr Kopt r Pr Kopt r Pr

°"P".8d r: .:
0.' -0.4n 2.840-10 4.8 -<1.221 1.1M-03 1.3 -0.185 5.0"-03 4.5 -0.480 &.280-13
0.5 -0.44' 4.140-09 4.5 -0.183 1.as.-03 2.2 -0.240 4.0M-04 5.8 -0.449 3.1341-11

t1lm 0.1 -0.588 1.110-14 3.9 -0.205 3. JS.-03 3.8 -0.295 1.'-05 5.5 -0.511 1.110-14
0011 0.1 -0.53' '.530-12 5.8 -<1.192 5._-03 2.4 -0.254 1.920-04 5.9 -0.401 4.210-09

bur18d r.. .:;
0.3 -0.486 2.9'0-10 9.4 0.085 1. 320-01 1.1 -0.110 '.480-02 1.9 0.211 1.'-03
0.0 -0.419 1.430-09 9.9 0.228 1.2M-03 0.1 -0.241 2 .80.-04 1.9 0.341 '.52.-01

tam 0.0 -0."0 1.23.-09 9.9 0.092 1.130-01 3.4 -0.309 '.31.-0' 0.0 -0.113 5. N.-02
0011 0.0 -0.522 2.10.-11 9.9 0.110 1.450-02 1.9 -0.148 9.850-03 9.9 0.231 '.220-04

.lph. bo11-" 0.9 -0.514 8.94.-14 3.1 -0.108 1.810-02 2.2 -0.193 3. '30-03 '.0 -0.2" 9.-05
bet. .boot 0.0 -0.552 1.10.-12 9.9 0.119 '.01.-02 2.3 -0.281 3.980-05 0.0 -0.084 1.230-01
tam 0.0 -0.543 3.28.-13 2.8 -<1.149 1.32.-02 3.8 -0.311 3.41.-08 1.1 -0.441 3.8"-11
0011 0.0 -0.583 3.34.-14 4.3 -<1.092 1.14.-01 2.9 -0.28' 2.81.-05 4.9 -0.238 4.32.-04
0"P0.8d 0.2 -0.428 1 . 920-11 4.1 -0.213 2.450-03 2.5 -0.303 9.44.-0' 5.3 -0.523 3.180-15
burl8d 0.0 -0.53' 5.930-12 3.1 -0.119 4.530-02 3.3 -0.350 3.2"-01 4.9 -0.393 8.N.-09
.11 rodduo. 0.0 -0.401 3.330-15 5.8 -<1.051 2.500-01 3.' -0.340 1.050-01 1.0 -0.294 1. n.-05
Dayhoff PAIl 0.0 -0.40. 4.41.-01 9.1 -0.043 2.850-01 9.9 -0.230 '.180-04 9.9 -0.221 1. ".-04
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transfer to cyclohexane with only the hydrocarbon amino acids, as suggested
by the results of Pielak et al., but found no significant correlations with any
of our matrices. Specifically, none of the 16 correlations against our matrices
and the Dayhoff matrix had a Pr value of less then 0.06, and only 2 were
under 0.1. This result suggests that the !:::..Gof cyclohexane, which can not
form hydrogen-bonds, might be a good model only for artificial site mutations,
where nature is less able to adjust the surrounding structure to fit the muta-
tion. In evolution, mutations are better modeled by the !:::..Gof hydrogen-bond
forming octanol, because naturally occurring mutations are likely to be those
which can take advantage of possible hydrogen-bond partners.

The optimal ~ values for most matrices for octanol were low, many of
them zero. This suggests that the simple linear model might be the best fit for
odano!. An interesting exception to this, however, is found in the matrices for

alpha helices. The alpha helix matrix had an optimal K value of J{~opt= 0.9,
very close to the lower limit of 1 set by the Gaussian model. The optimal K

value for exposed alpha helices was also higher than the rest (Kopt = 0.6).
Thus, for alpha helices, in which factors such as patterns of hydrophobicity
are important, the simple linear model is not sufficient, and more complicated
models such as the the Gaussian model may be more appropriate.

In addition to the !:::..Gof transfer to octanol and cyclohexane, we also
examined correlations of our matrices against alpha helical and beta sheet
propensity. Pielak et at. found little correlation of alpha helical propensity with
changes in stability, and in a similar fashion, we find little correlation of alpha
helical propensity with the various mutation matrices. (The best Pr values for
correlations with!:::.. alpha helical propensity were on the order of 10-3). This
tells us that helical propensity is not an important factor in deciding what
mutations are allowed. The negligible correlation of the mutation matrices
with alpha helical propensity agrees with the results of Chakrabartty et al.
for instance, that show only alanine is a helix former - leucine and arginine
are indifferent, and all others are helix-breakers 27. It has also been found that

hydrophobic interactions are more important for changes in stability than alpha
helical propensity 25,28,29,and that patterns of hydrophobicity. are sufficient to
induce helix formation 26. Thus, these results suggest that it is really factors
such as patterns of hydrophobicity which matter in the formation of alpha
helices.

Beta sheet propensity showed a higher correlation, with the highest corre-
lation against the matrix for beta-sheet residues (r = -OA88,Pr = 3.44e-13).
This higher correlation is not simply a dependence on physical-chemical prop-
erties such as size or hydrophobicity, as we found no correlation between beta
sheet propensity and these characteristics. We also noted that buried beta
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sheets had a higher correlation than exposed beta sheets (1' = -0.386 VB. l' =
-0.306). This fact suggests that patterns of hydrophobicity are less important
in sheets than in other secondary structures, possibly because beta sheets are
more likely to be buried.

The correlations of size with our matrices showed some very specific results.
We found the best correlation was with the turn matrix, and the second best
with the buried matrix. Those correlations, along with the correlation with
the buried turn matrix, were all significantly higher than the average over all
matrices. This is not surprising, as size is a very important factor in turns,
where steric clashes are the major concern, and in buried positions, where
internal packing plays an important role. In the case of charge, the highest
correlation was with the exposed matrix, and the second highest with the
exposed turn matrix. The correlation with the exposed matrix is not surprising,
as charged amino acids are less likely to be found in the interior of proteins, but
the strong correlation with turns was not expected. As turns often separate
secondary structure elements, perhaps charged residues play more of a role in
stabilizing the ends of secondary structures than is thought.

For the physical-chemical parameters, other than transfer free energies, the
simple linear model does not fit the data well. In the case of size and charge,
the optimal K values for all significant correlations were above 2. For size, all
significant correlations fell between 2 and 4, and for charge, optimal K values
were between 4 and 6. These optimal K values suggest that the Gaussian
model is more nearly correct - i.e. the optimal parameter value is more nearly
a central qopt, than an extreme qopt value, or that the fitness varies over residue
positions, or some combination of both. Clearly the Gaussian model has some

limitations, as theory predicts a maximum value of 2 for K, but this model is
likely more relevant than a simple linear fitness function. One conclusion we

can draw from the large values of K is that the fitness function for size, f(q),
probably has a wide peak. This is not surprising, as one would not expect size
to have a very sharply peaked fitness function - previous studies have shown
that structure can adapt to a range of sizes 6,19,25,3°.

5 Conclusion

There are several major conclusions which our data brings to light. One of these
is that the IlG of transfer from water to octanol is a very good model for evo-
lutionarily constrained mutations. With the octanol model, we also found that
while stability is probably the parameter being optimized for buried residues,
it is likely the foldability which is being optimized in exposed positions. When
using the IlG of transfer from water to cyclohexane, however, we found it to
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be a poor model even for only the hydrocarbon amino acids, a surprising result
considering the conclusions of Pielak et al. A second conclusion is that alpha
helical propensity seems to have little bearing on evolutionary constraints on
mutation, while beta sheet propensity is slightly more important. Finally, size
and charge are important, but their significance varies with local structure.
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