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Abstract

A methodology for predicting coiled coil quaternary structure and for the
dissection of the interactions responsible for the global fold is described.
Application is made to the equilibrium between different oligomeric species of the
wild type GCN4 leucine zipper and seven of its mutants that were studied by
Harbury et al. Over the entire experimental concentration range, agreement with
experiment is found in five cases, while in two other cases, agreement is found
over a portion of the concentration range. These simulations suggest that the
degree of chain association is determined by the balance between specific side
chain packing preferences and the entropy reduction associated with side chain
burial in higher order multimers.

1: Introduction

Due to their biological importance and inherent structural simplicity,
coiled coils are the object of increasing attention. Among their many biological
functions, they comprise a key motif of DNA 1,2 and RNA 3,4 binding proteins.
Coiled coils exhibit a characteristic seven residue repeat (abcdefg )nS,6 which
produces a native structure formed by two or more helices wrapped around each
other with a left handed, helical supertwist 7. Positions a and d, which form the
helical interface, are mostly occupied by hydrophobic residues. Positions b, c, e,
f, g are hydrophilic4,S. Residues occupying the g and e positions tend to be
charged and are believed to playa role in defining the mutual orientation of the
helices. Furthermore, since coiled coils constitute the simplest quaternary
structure, they represent a very useful model system for exploring the factors
responsible for the stability and specificity of oligomeric proteins. In this context,
Harbury et al.8 simultaneously substituted the four a residues of the GCN4
Leucine Zipper (VaI9, Asn16, Va123, Va130) and the four d residues (Leu5,
Leu12, Leu19, Leu26) by Leu, lIe and Val. The modified peptides were named
according to the identity of the residues in the a and d positions (e.g., LI stands
for the mutant with Leu (lIe) in all four of the a (d) positions) and are more than
90% helical. The IL mutant and the wild type populate dimeric species; II, LL,
LV are trimeric, and LI is tetrameric. The VL mutant populates both dimeric and
trimeric species, and the VI mutant populates multiple species.

This paper extends our previous predictions of the folding pathway and
structure of the wild type GCN4 Leucine Zipper9 to the calculation of the
equilibrium constant between different oligomeric species. Because of practical
limitations on the direct simulation to predict the state of association of a
collection of chains, we have developed a methodology that assumes a spectrum
of parallel and antiparallel oligomers and attempts to estimate the equilibrium
constants within the set of assumed species (schematically shown in Figure 1).
The methodology is based on a new application of the classical Mayer and Mayer
statistical mechanical approach 10, but where we use a computer simulation to
obtain the necessary variables for the statistical mechanical treatment. Most
importantly, in the context of the model, the method allows for identification of
the dominant interactions responsible for coiled coil quaternary structure.



Figure 1

Figure2
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Schematic drawing of the interhelical orientations studied. 2 represents parallel dimers,
2a antiparallel dimers, 3 parallel trimers, 3a antiparallel trimers, 4 parallel tetramers. 41a,
43a and 44a represent possible antiparallel tetramers studied in this work.
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For each mutant, every oligomer is generated and subjected to unrestrained, isothermal
Monte Carlo simulations under conditions (energy function, temperature) identical to
those for which the wild type GCN4 Leucine Zipper was refined 9. Then, the partition
functions for each mutant in every oligomeric state are calculated, and the most populated
species are assigned for the relevant chain concentration.
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2: Method

An overview of the entire simulation methodology is presented in Figure
2. The lattice model used to estimate the equilibrium constants is based on an <l-
carbon representation of the protein backbone and a multiple rotamer, single ball
representation of the side chains and is described elsewhere 11,12. The entire
potential energy parameter set is available by anonymous ftp13 and includes
potentials that reflect intrinsic secondary structural preferences, hydrogen bonds,
the preference of amino acids to be buried or exposed, side chain pair interactions,
and terms that reflect cooperative side chain packing in proteins.

3: Protocol for extracting the equilibrium constant from a simulation

In order to compare with experiment, we have to calculate the equilibrium
constants associated with the dimer, D, trimer, T, and tetramer, R, species.

3D H2T (la)

IDHR (lb)

The equilibrium constants 10 are:

{T}2

KDT = {D}3
(2a)

K - {R}
DR - {D}2

with {D}, {T} and {R} the concentration of dimer, trimer and tetramer,
respectively. Statistical mechanics relates the equilibrium constants from Eq. 2a,b
to the configurational partition functions as 10,14 :

(2b)

2 (j3VZint,T D

KDT = z,3 D(j~Int,

(3a)

2
VZ (jD{R} - int,R

--- 2 (j
KDR - {D}2 Zint,D R

(3b)

with V the total volume of the system and O'g is the symmetry number (0'=2!, 3!,
4! for homo dimers, trimers and tetramers, respectively). Zint, yare the integrals
corresponding to integration over the internal coordinate degrees of freedom (also
called the internal partition function) for oligomer y, respectively.
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4: Calculation of the internal partition function

Consider a system comprised of 3Ny coordinates. Here, Nycorresponds to
the number of distinct structural elements, i.e., the number of Cas and side chain
centers of mass. The probability of having a conformation (with the first group
fixed in space) inside a 3N-3 dimensional volume element, centered about
r=(r2,r3,r4, ...,I"Ny)is:

Pu(r) = exp( -E(r) I kT)
(

Ny

)Z. ndv i
tnt, Y i=2

(4a)

E(r) denotes the energy of the internal conformational state r, k is Boltzmann's
constant, and T is the temperature. EqAa can be used to precisely calculate the
internal partition function Zint.y provided that the corresponding probabilities can
be obtained (e.g., from a Monte Carlo simulation).

Now, let us concentrate on the calculation of Pu(r). We first fix the origin
at the coordinates of the first Ca 15,16. The coordinates of the second Ca are
expressed in a spherical coordinate system (R2,82,<!>2)whose origin is at the first
Ca. Similarly, the third Ca is expressed in terms of coordinates (R3,83,<I>3)
expressed with respect to an origin located at the second Ca. The configurational
partition function is independent of (R2,82,<!>2),which comprise three Euler angles.
Hence, the probability of seeing a specific value of (R2,82,<!>2),P( 82)P(<l>2)P(<1>3),is
just 1/8n2,15 and:

Pu(r2,rJ'" rN ) = P(e2)p( f{J2)P(f{J3)P(R2,R3,e3...) =r

1
= ---rP(R2,R3, e3...)8n-

(4b)

The probability calculated from the Monte Carlo simulation, Per), has to
be corrected due to the fact that only a portion, Q, of the entire range of Euler
angles is sampled during the course of the simulation. Thus, per) is given by:

1
P (r) =- P( ~, R3, f)3"')

Q
(4c)

Substituting Eq. 4c into Eq 4b gives the probability that the system is free to
assume all possible orientations of (e2,<1>2,<!>3):

Q

Pu(r2,rJ...rNy) =---:rP(r) =QMCP(r). 8n
(4d)

For all of the simulations, we calculate QMC (the correction term for sampling a
limited range of rotations) as the average number of observed two consecutive
Ca-Ca vectors divided by the total number of possible two consecutive Ca-Ca
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vectors. In all cases, this number is close to 1/80, and, for simplicity, we can
assume that our simulations sample a unique orientation of the molecule in space
(that is, QMC~1/81t2).

By calculating the fraction of time a system spends in a given state (r), a
dynamic Monte Carlo method provides P(r). Note that r can be any
conformational state. However, in what follows, because it occurs most
frequently, the most probable state is used. However, for systems having
substantial conformational fluctuations, the probability P( r) cannot be reliably
calculated due to the poor sampling statistics. This requires that a number of
simplifying approximations be made.

5: Local volume factorization

To enrich the sampling, the probability per) of the entire structure being in
the 3Nr3 dimensional volume element (centered about the most probable
conformational state) is approximated as the product of the Nr 1 independent
probabilities that each group is in a 3 dimensional box centered around its most
probable state. By treating each group separately, the statistics are greatly
enhanced, relative to the case when we require the simultaneous occurrence of s
set of r. That is,

Ny

per) = nPi,max (ri)
i=2

(Sa)

Eq. Sa is referred to as the local volume factorization approximation. Since the
choice of the first bead as the origin of our internal coordinate system is arbitrary,
to remove this arbitrariness, the total probability Per) is better approximated as the
product of Ny independent probabilities divided by their geometric mean:

NynPi max (ri)

(

N

)

l-lINY

P(r)::: i=l' lIN = rt Pi,max (ri)

(

Ny

)

y i=l

gPi,max (ri)

(Sb)

(If Per) were accurately calculated, the results would be independent of the choice
of origin.) The most probable position of the i-th group is computed from the
trajectory as the location of maxim~l frequency of occupation of a given cubic
volume element of length dr=2.6A. Using the local volume factorization
approximation (Eq. Sa), the internal partition function for oligomer y is obtained
from:
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J

1-1I Ny

Zint r =8n2exp(-E(y,r)/ kT)
(

fIdVi~. ( r.)
, N /Pt,max Ir

(5c)

E(y,r) corresponds to the energy of the most probable conformation of oligomer y.
While this approximation is not exact, for test energy functions having a similar
character as those used here, the local volume factorization approximation gives
satisfactory estimates for the partition functions; errors in the equilibrium
constants are on the order of 10-20%.17

6: Results

The method described above was applied to the various oligomeric states
depicted in Figure 1 for the wild type and a number of mutants of the GCN4
Leucine Zipper8. All helical orientations (including three antiparallel orientations
of helices in tetramers) were considered for the LL mutant of the GCN4. Leucine
Zipper. The computed free energies for the antiparallel species are considerable
higher (by -5kT/monomer) than those of the parallel species. This energy
difference is sufficiently great that antiparallel structures of this mutant can be
dismissed. The energy difference mainly arises from unfavorable charge
interactions. The preferential stability of parallel over antiparallel species seems
to hold for all other mutants. However, we ignore the possibility of higher order
aggregates (i.e., pentamers, dimers of trimers etc.) which, in principle, might
occurI3,18.

Employing Eq. 2-6, the partitioning between dimers, trimers and tetramers
has been calculated for each mutant. Due to the limited accuracy of our energy
function, as well as the approximations used in the probability calculations, we
restrict ourselves to the prediction of the dominant species for each mutant at a
given concentration. Thus, the partitioning at low (2JiM) and high (200JlM)
concentration that corresponds to the concentration range studied experimentally
is calculated in Table I. For all cases considered, we find that over the
experimentally measured concentration regime8, the predicted dominant species is
the same. However, because of the law of mass action in the low concentration
regime (about 2 JiM), the population of lower order oligomers increases.

Table 1 compares the predictions with the experimentally determined
degree of chain association. For 4 of the 8 cases, the predictions completely agree
with the experimentally determined dominant species -S. For the LV mutant, while
trimers, in agreement with experiment, are always the dominant species, at low
concentrations, given the uncertainty in the calculation, dimers may be populated.
In the offending case of the IL mutant, trimers and dimers are assigned to be the
dominant species which is in partial contrast to the experiment which indicates
that only dimers are present. This may reflect the inaccuracy of the potential, as
well as an accumulation of errors in the entropy calculation (for this mutant, the
entropy increases with the degree of association). For the VL mutant, dimeric
species negligibly contribute, and over the entire concentration regime, trimers are
assigned to be the dominant species. In contrast, experiment indicates that both
dimers and trimers are populated8. For the VI mutant, trimers are predicted to be
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the only species over the entire concentration regime, whereas experiment shows
that multiple species are populated 8.

Table 1

Comparison of the predicted state of association with experiment

i) Predicted percentage of the dimers, trimers and tetramers, respectively.

The investigation of the individual contributions to the free energy
indicate that the dominant contribution to the effective entropy change (60-90%)
comes from the side chains; the effective entropy change for the backbone is
smaller, but non negligible. The greatest contribution to the entropy (largest
accessible volume) comes from the C-terminal ends of the molecules. This
prediction is consistent with the crystal structures of the wild type dimer and the
LI tetramer. In both cases, the last two C-terminal residues are highly
disordered 2,13.

In the case of the wild type GCN4 Leucine Zipper, relative to dimers,
trimers are favored energetically (by about 2 kT/monomer) and disfavored
entropically. In the wild type, trimers are more stable than dimers, but over the
experimental concentration regime only dimers are predicted. Asn 16 in the wild
type destabilizes the trimer (dimer) locally in the vicinity of residues 14-18 by 6.1
kT (4.1 kT) per monomer (plus a constant value that reflects the effect of the
mutation on the unfolded state). Other parts of the wild type trimer playa
stabilizing role; consequently, compensation effects are present. Our calculations

Dominant Predicted Predicted
Mutation species from Populationi Populationi

a d Experiment Simulation 2J.1M 200 J.1M
99.5:0.5:0 95:5:0

wild type 2 2
I L 2 2,3 65:32:0 19:61:19

I I 3 3 0:100:0 0:100:0

L I 4 4 2:23:75 0:9:91

V I ? 3 0:100:0 0:100:0.
L V 3 3 49:51:0 15:85:0

V L (2,3) 3 2:98:0 0.5:99.5:0

L L 3 3 33:67:0 8:92:0
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indicate that the effect of a single point mutation is not local, but propagates for at
least one helical turn. This is in agreement with studies19 on tropomyosin
fragments, where compensation effects are also present. We find that the N 16V
mutation stabilizes trimers more than dimers by roughly 2.8 kT per monomer.

Our calculations also suggest that short range, intrinsic secondary structure
preferences favor lower order oligomers. Furthermore, the reduction in side chain
effective entropy on burial in the core of trimers and tetramers also favors lower
order oligomers. Long range interactions (burial preferences, cooperative side
chain packing interactions, and side chain pairwise interactions, the last being the
most specific) favor higher order oligomers. In higher order multimers, side
chains in the core (a and d residues) are more buried and experience additional
favorable hydrophobic interactions. The competition between short range and
long range interactions and the effective side chain entropy change are the major
factors that determine the dominant species for the mutants studied here.

Harbury et at. 8attribute the different levels of stability of various GCN4
mutants to the preferential relative angular packing of different side chains. In the
known crystal structures, parallel packing occurs at the a positions in tetramers
and d positions in dimers, whereas perpendicular packing occurs at the a positions
in dimers and d positions in tetramers. Acute packing is exhibited by trimers.
Based on the most populated rotamer, Ile and Val side chains prefer to pack in the
perpendicular or acute fashion, and Leu in the parallel fashion. This is perhaps
the reason why LI forms trimers, IL tetramers and II, trimers. In our model,
however, the related term doesn't exhibit such a trend, but this may be partially
due to the to the fuzziness of the simplified side chain representation. Our
explanation of specificity is based on the competitive effects of the pairwise
interactions, side chain packing (long range interactions favor higher order
species) and side chains orientational packing preferences(short range interactions
favor lower order oligomers); together with the loss of configurational entropy
(which favors lower order oligomers). Consequently, on average, we see the
population of the statistically most favorable rotamer in the majority of species,
and there is no selection based on the lowest energy of rotamers.

7: Conclusion

In this paper, a new application of the Mayer and Mayer approach to
calculate the equilibrium constant between dimeric, trimeric, and tetrameric coiled
coils has been described. This approach, combined with a lattice protein model,
successfully predicts the state of association of the majority of different mutants
of the GCN4 leucine zipper. Based on the detailed dissection of the interaction
energy, local interactions were found to stabilize lower order oligomers, whereas
tertiary/quaternary interactions stabilize higher order oligomers. In most cases,
the internal entropy of side chains was found to stabilize low order oligomers.
The main difference in the population of different oligomeric species of various
mutants arises from the interplay between different interaction environments for
the a and d positions in dimers, trimers, and tetramers, differential packing
preferences and the effective entropy change associated with side chain burial.
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