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Abstract

The accelerated growth of the molecular sequencing data has generated a pressing
need for advanced sequence annotation tools.  This paper reports a new method,
termed MOTIFIND (Motif Identification Neural Design), for rapid and sensitive
protein family identification.  The method is extended from our previous gene
classification artificial neural system and employs two new designs to enhance the
detection of distant relationships.  These include an n-gram term weighting algorithm
for extracting local motif patterns, and integrated neural networks for combining
global and local sequence information.  The system has been tested with three protein
families of electron transferases, namely cytochrome c, cytochrome b and
flavodoxin, with a 100% sensitivity and more than 99.6% specificity.  The accuracy
of MOTIFIND is comparable to the BLAST database search method, but its speed is
more than 20 times faster.  The system is much more robust than the PROSITE
search which is based on simple signature patterns.  MOTIFIND also compares
favorably with the BLIMPS search of BLOCKS in detecting fragmentary sequences
lacking complete motif regions.  The method has the potential to become a full-scale
database search and sequence analysis tool.

Introduction

As technology improves and molecular sequencing data accumulate nearly
exponentially, progress in the Human Genome Project will depend increasingly on
the development of advanced computational tools for rapid and accurate annotation of
genomic sequences.  Currently, a database search for sequence similarities is the
most direct computational means of deciphering codes that connect molecular
sequences with protein structure and function [Doolittle, 1990].  There are good
algorithms and mature software for database search and sequence analysis [Gribskov
& Devereux, 1991], which may be based on pair-wise comparisons between the



query sequence and sequences in the molecular database.  These methods range from
the most sensitive, but computationally intensive, algorithms of dynamic
programming [Needleman & Wunsch, 1970; Smith & Waterman, 1981] to relatively
rapid, but less sensitive, methods, such as FASTA [Pearson & Lipman, 1988] and
BLAST [Altschul et al., 1990].  Alternatively, a database search may be based on
information derived from a family of related proteins.  This includes methods that
screen for motif patterns such as those cataloged in the PROSITE database [Bairoch
& Bucher, 1994], the Profile method [Gribskov et al., 1987], the hidden Markov
model [Krogh et al., 1994], and the neural network classification method [Wu et al.,
1992; Wu, 1995].

As a database search tool, the family-based (classification) approach has two
major advantages over the pair-wise comparison methods [Wu, 1993]: (1) speed,
because the search time grows linearly with the number of sequence families, instead
of the number of sequence entries; and (2) sensitivity, because the search is based on
information of a homologous family, instead of any sequence alone.  In addition, the
classification approach provides automated family assignment and help organizing
second generation databases from which related information can be readily extracted. 
With the accelerating growth of the molecular sequence databases, it is widely
recognized that, database searching against gene/protein families or motifs is an
important strategy for efficient similarity searching [Altschul et al., 1994].  This is
evidenced by the growing efforts in recent years for building second generation (or
secondary value-added) databases that contain domains, motifs or patterns.  Some
examples include the SBASE protein domain library [Pongor et al., 1994], the
BLOCKS database of aligned sequence segments [Henikoff & Henikoff, 1991], the
PRINTS database of protein motif fingerprints [Attwood et al., 1994], and the
ProDom protein domain database [Sonnhammer & Kahn, 1994].  While several
domain/motif databases are being compiled, it is important to develop database search
methods that fully utilize the conserved structural and functional information
embedded in those databases to enhance search sensitivity.  In this paper we report a
new method, termed MOTIFIND (Motif Identification Neural Design), for rapid and
sensitive protein family identification, and compare it to the current state-of-the-art
methods of the BLAST database search, the PROSITE pattern search, and the
BLIMPS search of BLOCKS [Wallace & Henikoff, 1992].

MOTIFIND Design Principals

There are two basic design concepts underlying the new search method: (i) a fast one -
step family identification that replaces pair-wise sequence comparisons of high
computational  cost;  and   (ii)  the  combination  of  global  sequence  similarity  with 
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Figure 1.  MOTIFIND for rapid and sensitive protein family identification.  The sequence strings are

converted into input vectors of real numbers (i.e., global and motif vectors) using an n-gram method

to encode global sequence similarity and a term weighting method to extract motif information.  The

neural network then maps the vectors to appropriate output classes according to information

embedded in the neural interconnections after network training.  Each protein family uses an

individual three-layered, feed-forward, back-propagation network.

conserved family information embedded in local motif patterns to improve search
accuracy.  While we used the first design concept in our previous gene classification
artificial neural system (GenCANS) [reviewed in Wu, 1995], we introduced two
new designs to implement the second concept, an n-gram term weighting algorithm
for extracting local motif patterns, and integrated neural networks for combining
global (full-length) and local (motif) sequence information.

As depicted in Figure 1, the MOTIFIND search involves two steps, a sequence
encoding step to convert protein sequences into neural network input vectors, and a
neural network classification step to map input vectors to appropriate protein
families.  The sequence encoding schema involves an n-gram hashing function that
extracts and counts the occurrences of patterns (terms) of n consecutive residues



(i.e., a sliding window of size n) from a sequence string [Wu, 1993].  Unlike the
FastA method, which also uses n-grams (k-tuples), our search method uses the
counts, not positions, of the n-gram terms along the sequence.  Therefore, our
method is length-invariant, provides certain insertion/deletion invariance, and does
not require the laborious sequence alignments of many other database search
methods.  In the encoding, each unit of the neural input vector represents an n-gram
term, thus, the size of the input vector is mn, where m is the size of the alphabet and
n is the length of the n-gram.  The original sequence string can be represented by
different alphabet sets in the encoding, including the 20-letter amino acids and the six -
letter exchange groups derived from the PAM (accepted point mutation) matrix. 
Different exchange groups can also be defined for different protein families to
emphasize the conservative replacement unique for the family.

N-gram term weighting.  A new n-gram term weighting method is used to
extract conserved family information from motif sequences by multiplying each n -
gram term with its weight factor.  The weight factor is calculated by dividing the total
n-gram counts in all motif sequences (term frequency) with total n-gram counts in all
full-length sequences of the training set (inverse set frequency), as in:

Wk   =   ∑Mik   /   ∑Fik                                                                                (1)

                          i               i      

where Wk is the weight factor for the k-th n-gram term in the input vector, and Fik

and Mik are total counts of the k-th n-gram term in the i-th sequence of the full-length
sequence set and motif set, respectively.  The equation illustrates that the n-gram
terms of high weights are both conserved (present in all training sequences) with
high term frequency, and unique (present in motif regions only) with high inverse set
frequency.

Integrated neural networks.  The neural network classification employs three -
layered, feed-forward, back-propagation networks [Wu et al., 1992].  As a technique
for computational analysis, neural network technology has been applied to many
studies involving sequence data analysis [Hirst & Sternberg, 1992], such as protein
structure prediction, identification of protein-coding sequences, and prediction of
promoter sequences.  In this study, we use an integrated neural network design in
which each protein family is represented by an individual neural network with
multiple output units, one for each classification parameter.  The size of the input
layer is determined by the encoding method.  The particular n-gram method used
concatenated bi-grams of amino acids and tetra-grams of exchange groups, and
resulted to a vector size of 1696 (i.e., 202 + 64).  Two vectors were generated from



each sequence, a global vector and a motif vector (Figure 1).  The global vector
contained counts of the n-gram terms from the full-length sequence, scaled between 0
and 1; whereas the motif vector had counts multiplied with weight factors before
scaling.  The output layer had four units, representing two parameters (global and
motif) for two classes (positive and negative sets).  Other network parameters, which
were derived from preliminary studies, included: a hidden layer size of 20, random
weights of -0.3 to 0.3, a learning factor of 0.3, a momentum term of 0.2, a constant
bias term of -1.0, and an error threshold of 0.01.  The final neural network
architecture was 1696 x 20 x 4, and had 34,000 (i.e., 20 x (1696 + 4)) neural
interconnections.  Accepted statistical techniques and current trends in neural
networks favor minimal architecture (with fewer neurons and interconnections) for
its better generalization capability [Le Cun et al. 1990].  Due to the large number of
parameters (i.e., weights for the interconnections) to be determined relative to the
small number of training patterns for each network (i.e., tens to hundreds), the
architecture may not be optimal for generalization.  The algorithm we developed for
GenCANS to reduce the number of neurons [Wu et al., 1995] will be evaluated for
its suitability to MOTIFIND.  Meanwhile, because of the large number of input units,
instead of using bias units and their additional trained weights, a constant bias term
was used.

MOTIFIND Implementation

Program structure.  The system has been coded with C programs and
implemented on the Cray supercomputer of the University of Texas System and a
DEC alpha workstation, using a program structure similar to GenCANS [Wu, 1995]. 
The system software has three components: a preprocessor to create the training and
prediction patterns from input sequence files, a neural network program to classify
input patterns, and a postprocessor to perform statistical analysis and summarize
classification results.

Data sets.  Three protein families of electron transferases, the cytochrome c,
cytochrome b and flavodoxin, were used to test the system (Table 1).  The positive
set consisted of all sequences of the protein family studied, including those cataloged
in the PROSITE database (Release 12.2, February 1995, compiled based on
SwissProt database Release 29.0) as well as new sequences selected directly from
the SwissProt database (Release 31.0, February 1995) [Bairoch & Boeckmann,
1994] by combinations of database sequence search, signature pattern search and
manual examination of sequence annotations.  The negative set contained all
sequences in the SwissProt database that were non-members of the protein family



Table 1. Data sets used for neural network training and prediction. 
___________________________________________________________________

Protein       Prosite       Motif          Training Set             Prediction Set 
Family       Number       Length1    #Positive#Negative  #Positive#Negative
___________________________________________________________________

Cytochrome C      PS00190       15              149         298            237          43,233 
Cytochrome B      PS00192       41                86         172            151          43,319 
Flavodoxin       PS00201       19                14           28              23          43,447 
___________________________________________________________________

1 The motif patterns, adopted from PROSITE signatures, are: x(8)-C-{CPWHF} -
{CPWR}-C-H-{CFYW}-x (Cytochrome C); x(9)-[DENQ]-x(3)-G-[FYWM]-x -
[LIVMF]-R-x(2)-H-x(13)-H-x(6) (Cytochrome B); and x-(2)-[LIV]-[LIVFY]-[FY] -
x-[ST]-x(2)-[AG]-x-T-x(3)-A-x(2)-[LIV] (Flavodoxin).

studied.  The training set for the neural network consisted of both positive (members
of the protein family) and negative (non-members) patterns at a ratio of 1 to 2.  The
ratio was chosen arbitrarily, since the number of negative patterns had little effect on
the predictive accuracy as found in preliminary studies where ratios ranging from 1:1
to 1:10 were tested.  Approximately two-thirds of the "T" sequences cataloged in
PROSITE were chosen randomly as the positive training set ("T" sequences are those
containing PROSITE signature patterns).  The negative training set were selected
randomly from all non-members.  The total prediction set is the entire SwissProt
database (Release 31.0), containing 43,470 sequences.

In MOTIFIND, the neural network training uses both full-length and motif
sequences to obtain global and local information.  The full-length sequences were
directly taken from the SwissProt database.  The motif sequences used to compute
the n-gram weight factors were compiled by using our own string pattern-matching
program to search for PROSITE signatures (Table 1) and retrieve substrings in the
BLOCKS format [Henikoff & Henikoff, 1991].

MOTIFIND Evaluation Mechanism

Evaluation mechanism.  The system performance was evaluated based on speed
(CPU time) and predictive accuracy.  Accuracy was measured in terms of both
sensitivity (ability to detect true positives) and specificity (ability to avoid false



positives) at different threshold values.  Two types of scores were given to each
query sequence after network prediction, the neural network score and the probability
(P) score.  The P score was computed using a logistic regression function,

  log (Phit/(1-Phit)) = α + ß1 O1 + ß2 O2 + ß3 O3 + ß4 O4                                   (2)

where Phit is the probability of hit, α, ß1 to ß4 are the regression parameters, and O1,

O2, O3 and O4 are full-length and motif neural network outputs for positive and
negative classes, respectively (i.e., +F, +M, -F and -M scores, Figure 1).  The
logistic regression model is equivalent to a two-layered neural network (i.e.,
perceptron) with a logistic activation function [Sarle, 1994].  We implemented the
two-layer perceptron by adopting the same feed-forward and back-propagation
functions [Wu et al., 1992].

A positive sequence is considered to be accurately predicted (i.e., true positive) if
both the P score and the average neural network score (i.e., the average of the +F
and +M scores) are higher than certain pre-determined threshold values.  Conversely,
a negative (non-member) sequence is accurately predicted (i.e., true negative) if
either score is lower than the threshold.  Note that both neural network score and P
score range between 0.0 (no match) and 1.0 (perfect match).  The SSEARCH
program (version 1.7A, July 1994) [Smith & Waterman, 1981; Pearson, 1991] was
used to determine the overall sequence similarity of a query sequence to the neural
network training sequences.

Comparative studies.  The MOTIFIND results were compared to those obtained
by the PROSITE, BLAST and BLIMPS search methods.  Different cut-off scores
were selected for every method in order to optimize the sensitivity and specificity of
each given method.  As mentioned above, the prediction set is the entire SwissProt
database, containing 43,470 sequences.  The PROSITE search was performed by
using our own string pattern-matching program to search for PROSITE signatures. 
The results obtained with our pattern-matching program using the SwissProt
database Release 29.0, were identical to those cataloged in the PROSITE database
(Release 12.2).  In PROSITE, the sequences are categorized as "T" (true positive
containing signature), "N" (false negative containing degenerated motif not detectable
by signature), "P" (false negative lacking motif region, mostly fragmentary), and "F"
(false positive containing signature).

The BLAST search was performed using the improved version (version 1.4,
October 1994) that adopted Sum statistics [Karlin & Altschul, 1993].  The program
was obtained from the NCBI FTP server (ncbi.nlm.nih.gov) and implemented on



our DEC alpha workstation running on OSF/1 operating system.  The same training
set (containing both positive and negative sequences) and prediction set used in
MOTIFIND (Table 1) were used as BLAST database and query sequences.  The
negative set was included as database entries for BLAST search because it provided
much better class separation for BLAST (results not shown).  The program was run
using all default parameters.  The result reported was based on the probability score
of the first-hit pattern.

The BLIMPS search involved BLOCKS building and search.  To obtain the
BLOCKS, the training sets (containing only positive sequences) were sent directly to
the BLOCKMAKER E-Mail server (blockmaker@howards.fhcrc.org) (version 1.11,
June 1994) [Henikoff et al., 1995].  The individual BLOCKS were then used to
search the prediction set with BLIMPS (version 2.2 A, May 1994) obtained from the
NCBI server, using default amino acid frequency.  The results presented were
obtained by using the Gibb BLOCKS of 10 amino acids (aa), 53 aa and 20 aa,
respectively, for the cytochrome c, cytochrome b and flavodoxin families.

Results

Table 2 shows that MOTIFIND achieved 100% sensitivity and more than 99.6%
specificity in a full-scale SwissProt database search for all three protein families
studied.  There are several factors that may affect the predictive accuracy of a given
sequence: (1) the degree of overall sequence similarity, (2) the sequence length, (3)
the prevalence of the sequence in the family, and (4) the existence of motif region. 
MOTIFIND is capable of identifying not only full-length, closely related sequences,
but also distantly related sequences, fragmentary sequences, and sequences of under -
represented groups within the family.  Close inspection of sequence patterns reveals
that MOTIFIND can detect with high scores the distantly related sequence that has a
low degree of overall sequence similarity, but a conserved motif region.  Examples
include CYC4_PSEAE (31.8% identity in 85 aa overlap), CYCL_PARDE (26.5% in
68 aa overlap) and CYB_TRYBB (28.0% identity in 346 aa overlap), all of which
have a P score of 0.99.  MOTIFIND is robust in identifying fragmentary sequences
containing motif regions, such as FLAV_NOSSM (35 aa long, with a P score of
0.99).  The method can also find fragmentary sequences that contain partial or no
motif regions, such as CYC_TRYBB, CYB_RABIT, CYB_RANCA, and
FLAW_AZOCH.  Sequences belonging to under-represented subgroups can also be
readily detected, as seen in many cytochrome c entries such as CY2_RHOGE,
CYCP_RHOGE and CY4C_PSEPU.

The accuracy of MOTIFIND is comparable to that of BLAST, but at a
significantly faster speed (Table 2).  On the workstation,  the complete SwissProt



Table 2. Comparisons of the MOTIFIND and other search methods.
___________________________________________________________________

Protein      Search CPU   Sensitivity2 Specificity2

Family      Method Time1    (%)      True+ (%)      False+
___________________________________________________________________

Cytochrome C      MOTIFIND 984 100.00    237 99.61  167
     BLAST        35,116 100.00    237 99.08  396
     ProSite   27   97.67    231 99.46  233
     BLIMPS 172   99.58    236 98.49  653

Cytochrome B      MOTIFIND         1,452 100.00    151 99.95    23
     BLAST        24,597 100.00    151 99.99      3
     ProSite   33   96.69    146           100.00      1
     BLIMPS 756   98.68    149 99.86    60

Flavodoxin      MOTIFIND         1,019 100.00      23 99.99      5
     BLAST        21,411 100.00      23 99.95    23
     ProSite   34   91.30      21 99.99      5
     BLIMPS 265 100.00      23 99.99      6

___________________________________________________________________

1 The time shown is the total CPU seconds required on a DEC alpha workstation to
process the entire prediction set of 43,470 sequences.
2 The sensitivity is the percentage of true positives (True+) over the total number of
positive patterns in the prediction set (Column 6, Table 1).  The specificity is 1 - the
percentage of false positives (False+) over the total number of negative patterns in the
prediction set (Column 7, Table 1).

database search by BLAST took between six to ten CPU hours, depending on the
number of database sequences (training sequences).   But it took less than 25 minutes
(including preprocessing and postprocessing time) on the same machine with
MOTIFIND, an average speed up of 20 times.  MOTIFIND is better than BLAST for
identifying short fragmentary sequences containing specific motifs, or distantly
related sequences that bear little overall sequence similarity other than the motif
regions.  The latter is seen in the case for cytochrome c family.

MOTIFIND is much more sensitive than the PROSITE search, which is based on



simple signature patterns to detect family members and runs very fast (Table 2). 
PROSITE search fails to identify motif sequences that are not completely conserved,
as defined by the PROSITE signature patterns (i.e., "N" patterns); whereas our
neural network system is noise tolerant and excellent in handling ambiguous motif
patterns.  The PROSITE search also fails to detect partial sequences that do not
contain specific motifs (i.e., "P" patterns); but the detection is possible in
MOTIFIND with the incorporation of global information.

The BLIMPS search of BLOCKS also runs fast and is sensitive in detecting
family members containing conserved motifs.  The method, however, fails to
recognize all fragmentary sequences that lack motif regions, including
CYC_TRYBB, CYB_RABIT and CYB_RANCA, as one would expect. 
Furthermore, like PROSITE search, the number of false positives increases when the
BLOCKS/motif length is short, as found in the cytochrome c family.  Many false
positives returned by PROSITE search ("F" patterns) are also seen in the BLIMPS
search result.

Discussion

In this paper, we report a new search method, MOTIFIND, for rapid and sensitive
protein family identification.  As a family identification tool, MOTIFIND networks
can be easily built and custom-tailored for specific families.  Due to the small neural
network size for each protein family, it is feasible to use MOTIFIND for both on-line
training and prediction of any protein families of interest.  Both the sequence
encoding and neural network designs are general, which allows easy expansion and
extension.  To enhance predictive accuracy, the encoding method can be refined to
reflect different motif patterns and to extract long-range correlations of sequence
residues by using n-gram terms of different lengths, alphabet sets, distances and their
combinations.  Furthermore, the neural network can be expanded to incorporate
different sequence discrimination criteria and salient functional/structural patterns.

Although still in its early development, MOTIFIND has the potential to become a
full-scale DNA/RNA/protein database search and sequence analysis tool.  Since more
sequences are being generated daily, its speed advantage becomes increasingly
significant.  In contrast to the database search method that involves pair-wise
sequence comparisons and whose search time grows with the number of sequence
entries (database size), the search time of MOTIFIND and other family-based search
methods only increase with the number of gene families.  The current system can be
extended into a full-scale protein search tool by adopting the modular neural network
design of our protein classification system [Wu et al., 1995].  It can also be extended
to work on nucleic acid sequences, as demonstrated by our RNA phylogenetic



classification system [Wu & Shivakumar, 1994].  More studies are needed,
however, especially to identify the limits of the protein family size, if there is any.  A
full-scale family identification tool would be especially important to help organize the
ever-growing molecular sequence databases according to family relationship.
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