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Three operations involved in the genome evolution namely, inversion, transposition

and duplication, are considered as operations on strings and languages. We show

that, for any pair of these operations, there is a language family which is closed

under one of the operations and not closed under the second one, however, under

some mild conditions the closure of a language family under one of the operations

implies that it also closed with respect to another one.

1 Introduction and de�nitions

The genomes of complex organisms are organized into chromosomes which

contain genes arranged in linear order. Much of the current data for genomes

is in the form of maps which are now becoming available and permits the study

of the evolution of such organisms at the scale of genome for the �rst time 3.

It is rather commonly asserted that DNA is a language for specifying the

structures and processes of life. Despite this opinion biological sequences has

not been investigated very vivid so far by methodes developed in the �eld of

formal language theory. A pioneer's work has been reported in 1 where very

simple genes were described by means of regular grammars. Since then most

investigations on the topic have used grammar formalism 4; 2; 15.

In the course of its evolution, the genome of an organism mutates by di�er-

ent processes. At the level of individual genes the evolution proceeds by local

operations (point mutations) which substitute, insert and delete nucleotides of

the DNA sequence. Evolutionary and functional relationships between genes

can be captured by taking into considerations only local mutations 14. These

operations viewed as operations on strings and languages have been considered

from di�erent points of view 15 and the references thereof.

However, the analysis of the genomes of some viruses (Epstein-Barr and

Herpes simplex viruses, see for instance 6; 9) have revealed that the evolution
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of these viruses involved a number of large-scale rearrangements in one evolu-

tionary event. This non-local rearrangements include: inversion, transposition,

duplication and splicing.

� Inversion replaces a segment of a chromosome with its reverse DNA se-

quence.

� Transposition moves a segment to a new location in the genome.

� Duplication copies a segment to a new location.

� Splicing results in recombination of genes in a pair of homologous chromo-

somes by exchanging segments between parental chromatides. Splicing

can be modelled as a process that exchanges segments at the end of two

chromosomes.

The splicing operation was introduced as a language theoretic operation in 7

and then vividly investigated in a series of papers e.g. 11; 12; 5; 10. A survey

can be found in 8.

The other aforementioned operations appear very attractive to us, too.

Consequently, in the present paper we shall investigate the other operations

from the formal language theory point of view.

It is worth mentioning here that these operations on languages have been

considerated in 15 as well. The operations investigated in the present paper

are generalizations of the operations studied in 15. Furthermore, the iterated

versions of operations in debate are also considered.

We now recall some notation from formal language theory and formalize

the operations mentioned above.

We denote by V � the free monoid generated by V under catenation, by �

the empty string and by V + the free semigroup generated by V , i.e. V + =

V � n f�g. The length of the string x is denoted by jxj whilst the number of

occurrences of the letter a 2 V in x is denoted by jxja.

Further we de�ne the mirror image mi(x) of a word x = a1a2 : : : an, ai 2 V

for 1 � i � n, by

mi(a1a2 : : : an) = anan�1 : : : a1

and, for a word x 2 V �, let

Perm(x) = fy j jyja = jxja for a 2 V g;

be the set of all words over V which are permutations of x.



Moreover, we recall that a family F of languages is called a trio, if F is

closed under (�-free) homomorphisms, inverse homomorphisms and intersec-

tions with regular sets. It is well-known that any trio is closed under restricted

homomorphisms, too 13.

For further details in formal language theory we refer to 13.

De�nition 1 An inversion scheme is a pair I = (V; I 0), where V is an alpha-

bet and I 0 is a �nite subset of V �.

For a given inversion scheme I = (V; I 0) and a string x 2 V �, we de�ne

InvI(x) = fx1mi(x2)x3 j x = x1x2x3; x2 2 I 0g

De�nition 2 A transposition scheme is a pair T = (V; T 0), where V is an

alphabet and T 0 is a �nite subset of (V �)3.

For a given transposition scheme T = (V; T 0) and a string x 2 V � we

de�ne

TrT (x) =

�
x1x3x4x2x5x6 for x = x1x2x3x4x5x6; (x2; x4; x5) 2 T 0

x1x2x5x3x4x6 for x = x1x2x3x4x5x6; (x5; x2; x3) 2 T 0
:

Obviously, if (u; �; �) 2 T 0, then u can be shifted to every place in the given

word x.

De�nition 3 A duplication scheme is a pair D = (V;D0), where V is an

alphabet and D0 is a �nite subset of (V �)3.

For a given duplication scheme D = (V;D0) and a string x 2 V � we de�ne

DuplD(x) =

�
x1x2x3x4x2x5x6 for x = x1x2x3x4x5x6; (x2; x4; x5) 2 D0

x1x2x5x3x4x5x6 for x = x1x2x3x4x5x6; (x5; x2; x3) 2 D0 :

If the applied scheme is obvious from the context, we write Inv, Tr and Dupl

instead of InvI , TrT and DuplD, respectively.

For all S 2 fmi; Perm; Inv; T ransp;Duplg, the operation can naturally

be extended to languages by

S(L) =
[
x2L

S(x):

The iterated versions of the above operations are naturally de�ned as fol-

lows. For S 2 fInv; T ransp;Duplg we set

S0(L) = L;

Si+1(L) = S(Si(L));

S�(L) =
[
i�0

Si(L):



2 Relations between the operations

The inversion operation looks similar to the mirror image operation mi. It

consists in the application of mi to a subword. However, the two operations

are quite di�erent as shown in the following proposition.

Proposition 1 There are families of languages closed under mi but not closed

under inversions and vice versa.

Proof. It is known that the family of D0L languages is closed under mi.

Consider the D0L language L = fa2
n

b2
n

j n � 0g and the inversion scheme

I = (fa; bg; fabg): The language

InvI(L) = fa2
n�1bab2

n�1 j n � 0g

cannot be generated by a D0L system. Indeed, let us suppose that there

exists a D0L system G = (fa; bg; w; h) such that L(G) = InvI(L). Since

h(a2
n�1bab2

n�1) 2 InvI(L), for some n � 2, it follows that jh(a)jb = jh(b)ja =

0. Therefore, h(a) = ak and h(b) = bp for some k; p � 1.

If k = p = 1, then L(G) is �nite, which contradicts the in�nity of InvI(L) =

L(G).

If k > 1 or p > 1, then h(a2
n�1bab2

n�1) contains a substring of the form

bpak, which contradicts the form of the words in InvI(L) = L(G).

Now, we shall provide a family of languages closed under inversions but

not closed under the mirror image. To this end, take the language L0 = fanbn j

n � 1g and construct recursively the following sequence of language classes:

F0 = fL0g;

Fk+1 = fInvI(L) j L 2 Fk ; I is an inversion schemeg:

The family

F =
[
k�0

Fk

is obviously closed under inversions.

The following fact is essential in our proof.

Fact. For every language L 2 F and any n � 1 there exists a �nite

set A(L; n) � L such that every string x in L n A(L; n) can be expressed as

x = apybq with p; q � n and y 2 fa; bg�.

If L = L0 2 F0, then the assertion is trivially true.

Assume that the assertion is true for any language L0 2 Fk and take

L 2 Fk+1. Then there exists an inversion scheme Inv = (fa; bg; I) such that

L = InvI(L
0). Let n � 1 be a given integer and m = maxfjxj j x 2 Ig. By the



induction hypothesis it follows that L0 = A(L0; n+m)[ �L, where A(L0; n+m)

is a �nite set and every string x in �L can be written as x = apybq; p; q � n+m.

Consequently,

L = InvI(L
0) = InvI(A(L

0; n+m)) [ InvI(�L):

Note that InvI(A(L
0; n +m)) is a �nite set and any string w in InvI(�L) can

be decomposed as w = arzbs with r; s � n and z 2 fa; bg�, which completes

the proof of the fact.

Now it is clear that the mirror image of any language in F cannot be in

F because it does not satisfy the requirements of the aforementioned fact. 2

We now prove that the three operations introduced above also di�er in

that sense that the closure under one operation do not imply the closure with

respect to another one.

Theorem 2 For any pair (X;Y ) with x; y 2 fInv; T r;Duplg, x 6= Y , there is

a language family L such that L is closed under X and is not closed under Y .

Proof. First we consider the family F de�ned in the second part of the proof

of Proposition 1. By construction F is closed under inversion. On the other

hand, if we apply the transposition scheme

T = (fa; bg; f(aa; b; b)g)

to the language L0 2 F we obtain a language, which contains the set of all

words an�2bn�1aab with n � 2. This contradicts the fact shown in the proof

of Proposition 1. Therefore F is not closed under transposition.

Moreover, if we consider T as a duplication scheme we can prove by anal-

ogous arguments that F is not closed under duplication.

Let V be an alphabet. Then we consider the family L consisting of all

languages L such that there is an integer n � 1 with L � V n. Obviously, L is

closed under inversion and transposition since these operations do not change

the length of a word.

On the other hand, applying the duplication scheme

(V; f(a; �; �); (aa; �; �)g);

where a 2 V , to the language fa2g 2 L yields the language fa3; a4g which is

not in L.

Let V = fa; bg. Then let L0 be the family of all languages L over V such

that each word in L can be expressed as x1ax2bx3, i.e. any word of L contains

ab as a scattered subword. Obviously, L0 is closed under duplication, since

duplication adds additional subwords and does not destroy scattered subwords.



On the other hand, the application of the inversion scheme (V; ab) and the

transposition scheme (V; fa; b; �)g) to the language fabg 2 L0 yields fbag =2 L0,

which proves the nonclosure of L0 under inversion and transposition. 2

However, the situation changes if we restrict the families of languages under

consideration.

Theorem 3 Let L be a family of languages which is closed under homomor-

phisms and inverse homomorphisms. Then the following statements hold.

i) L is closed under transpositions i� L is closed under duplications.

ii) The closure of L under transpositions (or duplications, respectively)

implies the closure of L under inversions.

iii) If L is closed under union and inversions, then L is closed under

transpositions and duplications.

Proof. i) First, we shall prove that the closure under transposition implies

the closure under duplication. Let D = (V; f(xi; yi; zi) j 1 � i � ng) be a

duplication scheme. We consider the homomorphisms

h1 : (V [

n[
i=1

fci; dig)
� �! V �;

h1(a) = a for a 2 V; h1(ci) = xi; h1(di) = yizi for 1 � i � n

h2 : (V [

n[
i=1

fci; dig)
� �! (V [

n[
i=1

fci; di; c
0
i
; d0

i
g)�;

h2(a) = a for a 2 V; h2(ci) = cic
0
i
; h2(di) = did

0
i
for 1 � i � n;

h3 : (V [

n[
i=1

fci; qi; q
0
i
; pig)

� �! (V [

n[
i=1

fci; di; c
0
i
; d0

i
g)�;

h3(a) = a for a 2 V;

h3(q
0
i
) = dic

0
i
d0
i
; h3(qi) = cic

0
i
; h3(ci) = ci; h3(pi) = did

0
i
for 1 � i � n;

g : (V [

n[
i=1

fpi; q
0
i
; qi; ci j 1 � i � ng)� �! V �;

g(a) = a for a 2 V;

g(q0
i
) = yixizi; g(qi) = g(ci) = xi; g(pi) = yizi for 1 � i � n

and the transposition scheme

T = (V [

n[
i=1

fci; c
0
i
; di; d

0
i
g; f(c0

i
; di; d

0
i
) j 1 � i � ng):



Every string in the language TrT (h2(h
�1
1
(L))) is either of the form

xciydic
0
i
d0
i
z or xdic

0
i
d0
i
yciz

with

x; y; z 2 (V [

n[
i=1

fcic
0
i
; did

0
i
g)�:

Now, it is easy to see that

DuplD(L) = g(h�1
3
(TrT (h2(h

�1
1
(L)))))

Conversely, for the transposition scheme

T = (V; f(xi; yi; zi) j 1 � i � ng)

we construct the homomorphisms h1 and h2 as above and consider the homo-

morphisms

h0
3
: (V [

n[
i=1

fpi; p
0
i
; qi; q

0
i
g)� �! (V [

n[
i=1

fci; di; c
0
i
; d0

i
g)�;

h0
3
(a) = a for a 2 V;

h03(q
0
i
) = did

0
i
; h03(qi) = cic

0
i
; h03(pi) = cidic

0
i
;

h0
3
(p0

i
) = didic

0
i
d0
i
for 1 � i � n;

g0 : (V [

n[
i=1

fpi; p
0
i
; qi; q

0
i
g)� �! V �;

g0(a) = a for a 2 V;

g0(q0
i
) = yixizi; g

0(qi) = xi; g
0(p0

i
) = yizi; g

0(pi) = � for 1 � i � n

and the duplication schemes

D1 = (V 00; f(di; ci; c
0
i
) j 1 � i � ng);

D2 = (V 00; f(dic
0
i
; di; d

0
i
) j 1 � i � ng)

with

V 00 = V [

n[
i=1

fci; c
0
i
; di; d

0
i
g:

Then we obtain

TrT (L) = g0((h0
3
)�1(DuplD2

(DuplD1
(h2(h

�1
1
(L)))))):



ii) By i) it is su�cient to give a proof for transpositions. Let

I = (V; fx1; x2; : : : ; xng)

be an inversion scheme. Then we construct the homomorphisms h2 and h3
and the transposition scheme T as in the proof of i) and modify h1 and g to

h01 : (V [

n[
i=1

fci; dig)
� �! V �;

h01(x) = x for x 2 V [ fci j 1 � i � ng; h01(di) = � for 1 � i � n;

g00 : (V [

n[
i=1

fpi; q
0
i
; qi; ci j 1 � i � ng)� �! V �;

g00(a) = a for a 2 V;

g00(q0
i
) = �; g00(qi) = xi; g

00(ci) = mi(xi); g
00(pi) = � for 1 � i � n:

Then we obtain

InvI (L) = g00(h�1
3
(TrT (h2((h

0
1)
�1(L))))):

iii) Again, by i) it is su�cient to give a proof for transpositions. Obvously,

if T = (V; ft1; t2; : : : ; tng) is a transposition scheme and Ti = (V; ftig) for

1 � i � n, then

TrT (L) = TrT1(L) [ TrT2(L) [ � � � [ TrTn(L):

By supposition, L is closed under union, and thus it is su�cient to show

that L is closed under applications of transpositions schemes of the form �T =

(V; f(x; y; z)g). We consider the homomorphisms

f1 : (V [ fc; dg)� �! V �;

f1(a) = a for a 2 V; f1(c) = x; f1(d) = yz;

f2 : (V [ fc; dg)� �! (V [ fc; d; c0; d0g)�;

f2(a) = a for a 2 V; f2(c) = cc0; f2(d) = dd0;

f3 : (V [ fq; q0; p; p0g)� �! (V [ fc; d; c0; d0g)�;

f3(a) = a for a 2 V; f3(q) = cc0; f3(q
0) = dd0; f3(p) = c0c; f3(p

0) = d0d;

f : (V [ fp; p0q; q0g)� �! V �;

f(a) = a for a 2 V; f(q0) = yz; f(q) = x; f(p) = �; f(p0) = yxz

and the inversion schemes

I1 = (V [ fc; d; c0; d0g; fcc0g) and I2 = (V [ fc; d; c0; d0g; fdd0g)



and obtain

Tr �T (L) = f(f�1
3

(InvI1 (InvI2(f2(f
�1
1

(L)))))):

2

3 Closure properties of some families

We �rst study the closure under (non-iterated) inversion, duplication, and

transposition.

Theorem 4 Any trio is closed under duplications, transpositions and inver-

sions.

Proof. Let F be a trio and L � V � be a language in F . Further let

D = (V; f(xi; yi; zi) j 1 � i � ng be a duplication scheme. We de�ne the

homomorphisms
h1 : (V [

S
n

i=1
fci; dig)

� �! V �, h1(a) = a for a 2 V ,

h1(ci) = xi for 1 � i � n,

h1(di) = yizi for 1 � i � n,

h2 : (V [
S
n

i=1
fci; dig)

� �! V �, h2(a) = a for a 2 V ,

h2(ci) = xi for 1 � i � n,

h2(di) = yixizi for 1 � i � n
and the regular set

R =

n[
i=1

(V �fcigV
�fdigV

� [ V �fdigV
�fcigV

�):

It is easy to see that

DuplD(L) = h2(h
�1
1
(L) \R)

which proves the closure of F under duplications.

Since the erasing homomorphisms used in the proof of Theorem 3 i) are

1-restricted and trios are closed under restricted homomorphisms (see 13), the

statement follows for transpositions, too.

Now let I = (V; fx1; x2; : : : ; xng) be an inversion scheme. We consider the

homomorphisms
h1 : (V [ fci j 1 � i � ng)� �! V �, h1(a) = a for a 2 V ,

h1(ci) = xi for 1 � i � n,

h2 : (V [ fci j 1 � i � ng)� �! V �, h2(a) = a for a 2 V ,

h2(ci) = mi(xi) for 1 � i � n



and the regular set

R =

n[
i=1

V �fcigV
�

and obtain

InvI(L) = h2(h
�1
1
(L) \R)

which proves the closure of F under inversion. 2

Corollary 5 All families in the Chomsky hierarchy are closed under duplica-

tions, transpositions and inversions.

We now start the study of closure under iterated versions. The following

lemma is a helpful tool.

Lemma 6 Every family of languages closed under iterated inversions or iter-

ated transpositions is closed under permutations.

Proof. For any language L 2 V � let us construct the inversion scheme

I = (V; fab j a; b 2 V; a 6= bg) and the transposition scheme T = (V; f(a; �; b);

(a; b; �) j a; b 2 V g): The relations

Inv�
I
(L) = Tr�

T
(L) = Perm(L)

follow immediate. 2

Theorem 7 The family of regular languages is not closed under iterated in-

versions, iterated transpositions and iterated duplications.

Proof. Since the family of regular languages is not closed under permu-

tations, the nonclosure with respect to iterated inversions and iterated trans-

positions follows by Lemma 6.

In order to prove the non-closure under iterated duplications we consider

the regular language L consisting of the only word abab and the duplication

scheme D = (fa; bg; f(ab; a; b)g): It is easy to see that

Dupl�
D
(L) = fanbnambm j n � 1;m � 1g

which is not a regular language. 2

Theorem 8 The family of context-free languages is closed neither under iter-

ated inversions nor under iterated transpositions.

Proof. Because the family of context-free languages is also not closed

under permutations, the statement follows by Lemma 6, again. 2

It remains as an open problem whether or not the family of context-free

languages is closed under iterated duplications.



Theorem 9 The families of context-sensitive and recursively enumerable lan-

guages are closed under iterated inversions, iterated transpositions and iterated

duplications.

Proof. Let L be a context-sensitive language generated by the context-

sensitive grammar G = (N;T; S; P ) and let (V; I) be an inversion scheme. We

construct the context-sensitive grammar G0 = (N 0; T; S; P 0), where

N 0 = N [ fXa j a 2 Tg;

P 0 = fXa1
Xa2

: : : Xak
�! Xak

: : : Xa2
Xa1

j a1a2 : : : ak 2 Ig

[ fXa �! a j a 2 Tg

[ fh(�) �! h(�) j � �! � 2 P; g

and h : (N [ T )� �! N 0� is the homomorphism given by

h(A) = A for A 2 N and h(a) = Xa for a 2 T:

The equality L(G0) = Inv�(L) can be easily checked.

We are going to prove that Tr�(L) is a context-sensitive language for any

transposition scheme (T; f(xi; yi; zi) j 1 � i � ng), n � 1. To this end, we

construct a phrase-structure grammar �G working in the following way. A string

of the form Xiw, with w 2 L and 1 � i � n is �rstly generated. The symbols

Xi scan the string w from left to right in order to perform a transposition rule

(xi; yi; zi). During this process two situations may occur. In the �rst one, the

substring xi is identi�ed in w, it is erased, and the substring yizi is looked for

further. If this substring is identi�ed, then xi is inserted between yi and zi
and the current scanning symbol becomes Y .

The second situation assumes that the substring yizi is �rstly identi�ed and

then the substring xi. Now the process may be iterated arbitrarily many times,

afterwards the scanning symbols are erased. With the above explanations we

infer that L( �G) = Tr�(L). Since the grammar �G has a linear bounded working

space, it follows that Tr�(L) is a context-sensitive language (see 13).

The closure of the recursively enumerable languages class follows immedi-

ately. By a similar proof one can show the closure under iterated duplications.

2

Finally we remark that in this paper the three operations inversion, trans-

position and duplication have been studied isolated from each other as this was

done in the papers on splicing. However, if we want to model the evolution

it is necessary to consider schemes which contain rules for inversion as well as

for transposition, duplication, splicing and deletion. It remains to investigate

operations based on such schemes. A grammatical approach in this direction

is presented in 4 as well as 15.
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