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We introduce test tube systems 1;2;3;9 based on operations that are closely related

to the splicing operation8, i.e. we consider the operations of cutting a string at a
speci�c site into two pieces with marking them at the cut ends and of recombining

two strings with speci�cly marked endings7. Whereas in the splicing of two strings
these strings are cut at speci�c sites and the cut pieces are recombined immediately

in a crosswise way, in CR(cutting/recombination)-schemes cutting can happen
independently from recombining the cut pieces. Test tube systems based on these
operationsof cutting and recombinationturn out to havemaximal generativepower

even if only very restricted types of input �lters for the test tubes are used for
the redistribution of the contents of the test tubes after a period of cuttings and

recombinations in the test tubes.

1 Introduction

Test tube systems were introduced as biological computer systems based on

DNA molecules1;2;3;9, the practical solution of NP problems with such systems

was described, and the theoretical features of test tube systems based on the

splicing operation were investigated4. In this paper we are going to explore test

tube systems based on the operations of cutting and recombination 7 and with

input �lters which only allow speci�c parts of the contents of the other test

tubes to pass (such �lters, for example, are conceivable for DNA molecules by

combining the principles of a�nity chromatography and in-situ-hybridization).

As we shall show even very restricted kinds of such �lters testing for the ex-

istence respectively non-existence of speci�c markings allow for reaching the

generative power to generate any recursively enumerable language.



The computational universality of speci�c variants of H systems 5;10 and

for test tube systems based on the splicing operation4 has been proved recently.

In this paper we shall show that universal test tube systems based on cutting

and recombination rules exist for di�erent variants of input �lters.

In the second section of this paper we de�ne the notions from formal

language theory needed in this paper and introduce the formal de�nitions of

cutting/recombination schemes (CR-schemes). In the third section of this pa-

per we introduce test tube systems with cutting/recombination rules (CRTTS)

and we prove that CRTTS can generate every recursively enumerable language.

This result also implies the existence of universal CRTTS. A short summary

of the results obtained in this paper and an overview of future research topics

conclude the paper.

2 De�nitions and Examples

In this section we only de�ne some notions from formal language theory that

we shall need in this paper. Moreover we recall the de�nitions for CR-schemes7

and give some explanatory examples.

The free monoid generated by the alphabet V is denoted by V �, its ele-

ments are called strings or words over V ; � is the empty string, V + = V ��f�g.
The length of a string w in V � is written as jwj :

A grammar scheme  is a triple (VN ; VT ; P ) ; where VN is a (�nite) set

of symbols, i.e. the alphabet of non-terminal symbols; VT is a (�nite) set

of symbols with VN \ VT = ;; i.e. the alphabet of terminal symbols; P is

a (�nite) set of productions of the form (�; �) ; where � 2 (VN [ VT )
+
and

� 2 (VN [ VT )
�
: For two words x; y 2 (VN [ VT )

�
; the derivation relation `

is de�ned if and only if x = u�v and y = u�v for some production (�; �) 2 P

and two strings u; v 2 (VN [ VT )
�
; we then also write x ` y: The reexive

and transitive closure of the relation ` is denoted by `� :
A grammar G is a quadruple (VN ; VT ; P; S) ; where  = (VN ; VT ; P ) is

a grammar scheme and S 2 VN ; in a more general way, we can also take

S 2 (VN [ VT )
+
. The �-free language generated by G is

L (G) =
�
w 2 V +

T j S `� w
	
: (1)

A subset L of V +
T is called recursively enumerable if and only if there

exists a grammar G that generates L; i.e. L (G) = L: Moreover, L is called

recursive if and only if both L and its complement, V +
T n L; are recursively

enumerable. The family of (�-free) recursively enumerable languages and the

family of (�-free) recursive languages over the alphabet VT shall be denoted

by ENUM (VT ) and REC (VT ) ; respectively.



A grammar scheme U with U = (VN ; VT ; P ) is called universal (for VT ) if
for every L 2 ENUM (VT ) there exists a word AL such that the grammar GL

with GL = (VN ; VT ; P;AL) generates L: One of the important results of formal

language theory is that for every VT such a universal grammar U exists.

De�nition 1. A cutting/recombination scheme (or a CR-scheme) is a quadru-
ple � = (V;M;C;R) ; where V is a �nite alphabet;M is a �nite set ofmarkings;
V and M are disjoint sets; C is a set of cutting rules of the form u#l$m#v;

where u 2 V � [MV �; v 2 V � [ V �M; and m; l 2 M; and #; $ are special

symbols not in V [M ; R �M �M is the recombination relation representing

the recombination rules.
Cutting and recombination rules are applied to objects from O (V;M ) ;

where we de�ne

O (V;M ) = V + [MV � [ V �M [MV �M; (2)

i.e., as the empty word has no meaningful representation in nature, � is not

considered to be an object we have to deal with.

For x; y; z 2 O (V;M ) and a cutting rule c = u#l$m#v we de�ne x `c
(y; z) if and only if for some � 2 V � [MV � and � 2 V � [ V �M we have

x = �uv� and y = �ul; z = mv�: For x; y; z 2 O (V;M ) and a recombination

rule r = (l;m) fromRwe de�ne (x; y) `r z if and only if for some � 2 V �[MV �

and � 2 V � [ V �M we have x = �l; y = m�; and z = ��: For a CR-scheme

� = (V;M;C;R) and any language L � O (V;M ) we write

� (L) = fy j x `c (y; z) or x `c (z; y) for some x 2 L; c 2 Cg[

fz j (x; y) `r z for some x; y 2 L; r 2 Rg ;
(3)

and we de�ne ��(L) =
S

i�0 �
i(L); where �0 (L) = L and �i+1 (L) = �i (L) [

�
�
�i (L)

�
for all i � 0: 2

Thus �(L) contains all objects obtained by applying one cutting or one

recombination rule to objects from L; ��(L) is the smallest subset of O (V;M )

that contains L and is closed under the cutting and recombination rules of �:

There is a close relationship between CR schemes and splicing schemes (H
schemes): For short, a splicing rule u1#v1$u2#v2 being applied to two strings

x1u1v1y1 and x2u2v2y2 yields the two strings x1u1v2y2 and x2u2v1y1 which

corresponds to cutting the strings x1u1v1y1 and x2u2v2y2 into the strings

x1u1 [m]
+
; [m]

�
v1y1 and x2u2 [m]

+
; [m]

�
v2y2 by using the cutting rules

u1#[m]
+
$ [m]

�
#v1 and u2#[m]

+
$ [m]

�
#v2 and recombining them imme-

diately by applying the recombination rule
�
[m]

+
; [m]

�
�
in a crosswise way.



In the following we shall restrict ourselves to cutting rules of the form

u#[m]
+
$ [m]

�
v; i.e. the markings generated by the cutting rule are the

positive
�
[m]

+
�
and the negative

�
[m]

�
�
version of [m] : In this case the

derivation of the two parts xu [m]
+
; [m]

�
vy from the object xuvy by the

cutting rule u#[m]
+
$ [m]

�
#v; i.e. the derivation xuvy `u#[m]+$[m]�#v�

xu [m]
+
; [m]

�
vy
�
in a more depictive way can be expressed by xu j

[m]

vy `

�
xu [m]

+
; [m]

�
vy
�
:

The following example shows the chemical background of the notations

introduced above, i.e. the markings [m]
+
and [m]

�
, respectively, correspond

to the positive and negative charges of ions:

Example 1. Consider the salt molecule NaCl; which in water dissipates to

the ions Na+ and Cl�. This reaction corresponds to applying the formal

cutting rule Na#[m]
+
$ [m]

�
#Cl to the molecule string NaCl; which yields

the formal derivation step Na j
[m]

Cl `
�
Na [m]

+
; [m]

�
Cl
�
: Obviously the

two parts Na [m]
+
; [m]

�
Cl can be recombined to NaCl by the recombination

rule
�
[m]

+
; [m]

�
�
; i.e.

�
Na [m]

+
; [m]

�
Cl
�
` NaCl: 2

3 CR Test Tube Systems

In this section we introduce test tube systems 1;2;3;9 that are based on the for-

mal operations of cutting and recombination rules as introduced in the previ-

ous section. The idea of test tube systems is to describe computational devices

where the computations in each test tube are based on speci�c operations and

any computation is done in a distributed way. As a communication step the

resulting contents of the test tubes then is redistributed according to speci�c

constraints, i.e. the contents of each test tube is distributed to all test tubes

according to speci�c input �lters again, whereas the rest remains in the test

tube. These ideas have already been formalized for the splicing operation 4; in

the following we de�ne test tube systems where the operations that can take

place in one test tube are cuttings and recombinations and investigate the

generative power of these systems with the operations of cuttings and recom-

binations. We shall show that every recursively enumerable language can be

generated by such a test tube system which only needs a very special restricted

kind of input �lters. Moreover, this result also guarantees the existence of a

universal test tube system with cuttings and recombinations.

De�nition 2. A test tube system with cuttings and recombinations (a CRTTS



for short) � is a quintuple (V;M;A; n; �; I) ; where

1. V is a (�nite) set of symbols;

2. M is a (�nite) set of markings; M and V are disjoint sets;

3. A is a (�nite) set of axioms, which are elements from O (V;M ) ;

4. n; n � 1; is the number of test tubes;

5. � is a (�nite) sequence (�1; :::; �n) ; where �i = (Ci; Ri) is a �nite set of

test tube operations of cuttings and recombinations, respectively, in the

test tube Ti; i.e. Ci is a (�nite) set of cutting rules over (V;M ) and Ri

is a (�nite) set of recombination rules over (V;M ) ; �i = (V;M;Ci; Ri) is

the corresponding CR-scheme;

6. I = (I1; :::; In) ; where Ii � O (V;M ) is the input �lter for the test tube
Ti; 1 � i � n:

The computations in the system � run as follows: At the beginning of

the computation the axioms are distributed over the n test tubes Ti according

to the corresponding input �lters Ii, i.e. Ti starts with A \ Ii: Now let Li

be the contents of Ti at the beginning of a derivation step. Then in each

test tube the CR-scheme �i operates on Li; i.e. we obtain ��i (Li) : The next

substep is the redistribution of ��i (Li) over all test tubes according to the

corresponding input �lters. From ��i (Li) only the part �
�
i (Li)\ Ij that passes

the input �lter Ij is distributed to the test tubes Tj ; 1 � j � n; whereas the

rest ��i (Li) n
�S

1�j�n (�
�

i (Li) \ Ij)
�
remains in Ti: The �nal result of the

computations in � consists of all strings from V + that can be extracted from

the �nal test tube T1:
More formally, an instantaneous description (ID for short) of the system

� is an n-tuple (L1; :::; Ln) with Li � O (V;M ) ; 1 � i � n; where Li describes

the contents of test tube Ti at the beginning of a derivation step. The initial ID

is (A \ I1; :::; A\ In) ; i.e. at time t = 0 the test tubes Ti contain the axioms

A\ Ii: Let (L1 (t) ; :::; Ln (t)) denote the ID at time t; then one derivation step

with the system � yields the ID (L1 (t+ 1) ; :::; Ln (t+ 1)) ; where

Li (t+ 1) =
�S

1�j�n

�
��j (Lj (t)) \ Ii

��
[�

��i (Li (t)) n
�S

1�j�n (�
�

i (Li (t)) \ Ij)
��

=
��S

1�j�n�
�

j (Lj (t))
�
\ Ii

�
[�

��i (Li (t)) n
�
��i (Li (t)) \

S
1�j�n Ij

��
:

(4)



We also write (L1 (t) ; :::; Ln (t)) `� (L1 (t+ 1) ; :::; Ln (t+ 1)) : The language

generated by �; L (�) ; is de�ned by L (�) =
S
1

t=0 (L1 (t) \ V +) : 2

A minimal requirement on the feasability of the input �lters Ii is their

recursiveness, i.e. we demand that it is decidable whether a string can pass

the �lter or not. Yet in order to obtain more interesting results we have to put

restrictions on the input �lters:

De�nition 3. A subset of O (V;M ) is called a simple (V;M )2-�lter if it equals

1. V + or

2. fmgV � for some m 2M or

3. V � fmg for some m 2M or

4. fmgV � fng for some m;n 2M:

A simple (V;M )2-�lter is called a simple (V;M )1-�lter, if it is not of the
form fmgV � fng :Any �nite union of simple (V;M )i-�lters, i 2 f1; 2g ; is called
a (V;M )i-�lter. 2

In the following example we show how the language
�
a2

n

j n � 1
	
can be

generated by a CRTTS with (V;M )1-�lters:

Example 2. Let � = (V;M;A; 8; �; I) be the CRTTS with

V = fa;B; F;X; Y g ; M =
n
[x]

+
; [x]

�
j x 2 fb; c; d; e; f; l; n; r; s; tg

o
;

A = fXaaBY;XaaY;XBY; Fg ;
� = (�1; �2; �3; �4; �5; �6; �7; �8) ; I = (I1; I2; I3; I4; I5; I6; I7; I8) ;

�1 =
�
;;
n�

[s]
+
; [e]

�
�o�

;

�2 =
�n

X#[e]
+
$ [e]

�
#aa;#[s]

+
$ [s]

�
#F

o
;
n�

[f ]
+
; [t]

�
�o�

;

�3 =
�n

aa#[f ]
+
$ [f ]

�
#BY;F#[t]

+
$ [t]

�
#
o
; ;
�
;

�4 =
�n

aa#[b]
+
$ [b]

�
#BY;XB#[c]

+
$ [c]

�
#Y

o
; ;
�
;

�5 =

0
@
n
X#[d]

+
$ [d]

�
#aaa;X#[d]

+
$ [d]

�
#aaY

o
;n�

[b]
+
; [c]

�
�
;
�
[c]

+
; [d]

�
�o

1
A ;

�6 =

0
@
n
w#[r]

+
$ [r]

�
#aY j w 2 faa; aB;Bag

o
[n

Xaa#[n]
+
$ [n]

�
#Y

o
; ;

1
A ;

�7 =
�n

X#[l]
+
$ [l]

�
#v j v 2 faaa; aaB;BaY g

o
;
n�

[r]
+
; [n]

�
�o�

;



�8 =
�
;;
n�

[n]
+
; [l]

�
�o�

;

I1 = V �
n
[s]

+
o
[
n
[e]
�
o
V �; I2 = V �

n
[f ]

+
o
[
n
[t]
�
o
V � [ V �

n
[t]

+
o
;

I3 = I4 = I6 = V +; I5 = V �
n
[b]

+
o
[ V �

n
[c]

+
o
[
n
[c]
�

o
V �;

I7 = V �
n
[r]

+
o
[
n
[n]

�
o
V �; I8 = V �

n
[n]

+
o
[
n
[l]
�
o
V �:

The generation of the words a2
n

in this CR test tube system briey can

be described in the following way:

In general, let us assume we have already obtained the word Xa2
n

BY

for some n � 1 in test tube T4 (originally we start with the axiom

XaaBY ), where the following cuttings can take place: Xa2
n

j
[b]

BY `

�
Xa2

n

[b]
+
; [b]

�
BY

�
andXB j

[c]

Y `
�
XB [c]

+
; [c]

�
Y
�
: In T5 we then obtain

�
Xa2

n

[b]
+
; [c]

�
Y
�
` Xa2

n

Y by the recombination rule
�
[b]

+
; [c]

�
�
; and by

cutting with one of the rules X#[d]
+
$ [d]

�
#aaa;X#[d]

+
$ [d]

�
#aaY we get

X j
[d]

a2
n

Y `
�
X [d]

+
; [d]

�
a2

n

Y
�
: The recombination rule

�
[c]

+
; [d]

�
�
then

yields
�
XB [c]

+
; [d]

�
a2

n

Y
�
` XBa2

n

Y: In sum, we have rotated the symbol

B from the end to the beginning of the block of symbols a:

The rules in the test tubes T6; T7 and T8 have the e�ect that a sym-

bol a at the end of the word to the left of the symbol Y is eliminated, yet

instead two symbols a are added at the beginning, i.e. from XakBamY we

obtain Xak+2Bam�1Y: A full cycle of rotations therefore doubles the number

of symbols a; i.e. from XBa2
n

Y we obtain Xa2
n+1

BY:

The test tubes T3; T2; and T1 �nally allow us to obtain the terminal

strings a2
n

: In T3 we get Xa2
n

j
[f ]

BY `
�
Xa2

n

[f ]
+
; [f ]

�
BY

�
and

F j
[t]

F [t]
+
; [t]

�
: The objects Xa2

n

[f ]
+
; F [t]

+
; and [t]

�
are passed to T2;

where we have
�
Xa2

n

[f ]
+
; [t]

�
�
` Xa2

n

; X j
[e]

a2
n

`
�
X [e]

+
; [e]

�
a2

n

�
; as

well as j
[s]

F [t]
+
`
�
[s]

+
; [s]

�
F [t]

+
�
: Passing the objects [e]

�
a2

n

and [s]
+
to

T1; we �nally obtain the terminal word a2
n

by
�
[s]

+
; [e]

�
a2

n

�
` a2

n

: 2

Remark 1. In general, the formal de�nitions allow an in�nite number of

objects to be generated in one derivation step, which is an unnatural situation

for practical implementations. A more practical assumption would be that



instead of ��i (Li) any arbitrary (�nite) subset of ��i (Li) can evolve in the test

tube Ti during a computation period. Then only this subset is distributed to

all test tubes according to the input �lters. In fact, for all examples and all

constructions in the proofs of this paper such an interpretation of the compu-

tations in the test tubes still would allow us to generate all desired objects,

although it would never be clear, when these objects would evolve. In a practi-

cal environment the number and the size of objects that can be generated also

depends on the amount of original material of axioms we take at the beginning.

Moreover, if parts of (the subset of) ��i (Li) are to be redistributed over di�er-

ent test tubes it is only necessary to assume that any allowed distribution of

the whole material will possibly happen; in practical implementations of test

tube systems an intermediate ampli�cation 2;9 of the material may already

guarantee that enough material is distributed to all the possible test tubes.

Similar ideas as for the construction of the CRTTS in the preceding ex-

ample can be used for proving the general result established in the following

theorem:

Theorem 1. For every recursively enumerable language L; L � V +
T ; we can

construct a CRTTS �L with (V;M )1-�lters which generates L:

Proof. Let L be given by a grammar G0L = (V 0N ; VT ; P
0; S0) ; i.e. L (G0L) = L:

Without loss of generality we can consider the language L fhg instead of L;

where h =2 (V 0N [ VT ) is a new symbol; let GL = (VN ; VT ; P; S) be a grammar

such that L (GL) = L fhg and moreover for each derivation of any word wh 2
L fhg the symbol h is generated in the last step of this derivation and does not

occur in another sentential form of this derivation. The e�ective construction

of GL from G0L is obvious by using common proof techniques from the theory

of formal languages and therefore omitted. Moreover, for each (�; �) 2 P

without loss of generality we can assume 1 � j�j � 2 and 0 � j�j � 2: Now

let P0 = P [ f(U;U ) j U 2 (VN [ VT )g = f(�i; �i) j 1 � i � mg and �L be the

CRTTS �L = (V;M;A; 3m+ 5; �; I) with

V = VN [ VT [ fhg [ fB;F;X; Y g ;

M =
n
[x]

+
; [x]

�
j x 2 fb; c; d; e; f; h; s; tg[ fil ; in; ir j 1 � i � mg

o
;

A = fXSBY; F;XBY g [ fX�iY j 1 � i � mg ;
� = (�1; �2; �3; �4; �5; �6; �7; :::; �3m+4; �3m+5) ;

�1 =
�
;;
n�

[s]
+
; [e]

�
�o�

;

�2 =

0
@
n
X#[e]

+
$ [e]

�
#a j a 2 V

o
[
n
#[s]

+
$ [s]

�
#F

o
;n�

[f ]
+
; [t]

�
�o

1
A ;

�3 =
�n

a#[f ]
+
$ [f ]

�
#hBY j a 2 V

o
[
n
F#[t]

+
$ [t]

�
#
o
; ;
�
;



�4 =

0
@
n
w#[ b]

+
$[ b]

�
#BY j w 2 V 2 [ fXgV

o
[n

XB#[c]
+
$ [c]

�
#Y

o
; ;

1
A ;

�5 =

0
@
n
X#[d]

+
$ [d]

�
#v j v 2 V 3 [ V 2 fY g [ V fY g

o
;n�

[b]
+
; [c]

�
�
;
�
[c]

+
; [d]

�
�o

1
A ;

I1 = V �
n
[s]

+
o
[
n
[e]
�
o
V �; I2 = V �

n
[f ]

+
o
[
n
[t]
�
o
V � [ V �

n
[t]

+
o
;

I3 = I4 = V +; I5 = V �
n
[b]

+
o
[ V �

n
[c]

+
o
[
n
[c]
�
o
V �;

and for all i with 1 � i � m;

�3i+3 =

0
@
n
w#[ir ]

+
$ [ir]

�
#�iY j w 2 fXBg [ V 2[

fuB;Bu j u 2 V gg [
n
X�i#[in]

+
$ [in]

�
#Y

o
; ;;

1
A

�3i+4 =

0
B@
�

X#[il]
+
$ [il]

�
#v j v 2 V 3 [ V 2 fBg [ V fBgV [

fBgV 2 [ V fBY g [ fBgV fY g [ fBY g

�
;n�

[ir ]
+
; [in]

�
�o

1
CA ;

�3i+5 =
�
;;
n�

[in]
+
; [il]

�
�o�

;

I3i+3 = V +; I3i+4 = V �
n
[ir ]

+
o
[
n
[in]

�

o
V �;

I3i+5 = V �
n
[in]

+
o
[
n
[il]

�

o
V �:

Any sentential form w occuring in a derivation in GL is represented by

a rotated version of the form XvBuY; where w = uv; in �L; the symbol B

marking the beginning of the word w in its rotated version in XvBuY can

be rotated in the test tubes T4 and T5 as it was already explained in the

previous example. The �nal extraction of the terminal words in Lh is done

in the test tubes T3; T2; and T1 in a similar way as in the previous exam-

ple. In the test tubes T3i+3; T3i+4; and T3i+5 the application of a production

(�i; �i) is simulated in that way that �i is eliminated at the right end and

�i is inserted at the left end, i.e. from XvBu�iY we obtain X�ivBuY : By

the cutting rules in T3i+3 we obtain Xz j
[ir]

�iY `
�
Xz [ir ]

+
; [ir ]

�
�iY

�
and

X�i j
[in]

Y `
�
X�i [in]

+
; [in]

�
Y
�
; in T3i+4 the cutting and recombination

rules yield
�
Xz [ir ]

+
; [in]

�
Y
�
` XzY; X j

[il]

zY `
�
X [il ]

+
; [il]

�
zY
�
; and in

T3i+5 we obtain
�
X�i [in]

+
; [il]

�
zY
�
` X�izY: By simulating the additional

unit productions (U;U ) ; every symbol U 2 (VN [ VT ) can be rotated, i.e. from



XvBuUY we obtain XUvBuY: In this way we can rotate the sentential form

u�v represented by a string of the form as Xv2Bu�v1Y; v = v1v2; until the

position where we want to apply a production (�; �) is just at the left of the

symbol Y; i.e. until we have obtained XvBu�Y: 2

When using (V;M )2-�lters, all the test tubes T3i+3; T3i+4 and T3i+5; 1 �
i � m; as well as T4 and T5 constructed in the proof of Theorem 1 can be

merged into only two test tubes T 02 and T 03; respectively:

Theorem 2. For every recursively enumerable language L; L � V +
T ; we can

construct a CRTTS �0L with (V;M )2-�lters and only three test tubes which
generates L:

Proof. Let L be given by the grammar GL and let P0 be de�ned as in the

proof of Theorem 1.

We now consider the CRTTS �0L = (V;M;A; 3; (�01; �
0

2; �
0

3) ; (I
0

1; I
0

2; I
0

3)) ;

where M;A are de�ned as in the proof of Theorem 1 and

�01 =
�
;;
n�

[s]
+
; [e]

�
�
;
�
[f ]

+
; [t]

�
�o�

;

�02 =
�n

X#[il]
+
$ [il]

�
#v j v 2 V 3 [ V 2 fBg [ V fBgV [ fBgV 2[

V fBY g [ fBgV fY g ; 1 � i � mg [
n
w#[ir ]

+
$ [ir ]

�
#�iY j�

w 2 fBg [ fBu j u 2 V g [ V 2; 1 � i � m
		

[n
X�i#[in]

+
$ [in]

�
#Y j 1 � i � m

o
[
n
#[s]

+
$ [s]

�
#F

o
[n

X#[d]
+
$ [d]

�
#v j v 2 V 3 [ V 2 fBg [ V fBY g

o
[n

w#[b]
+
$ [b]

�
#BY j w 2 V

o
[
n
XB#[c]

+
$ [c]

�
#Y

o
[n

X#[e]
+
$ [e]

�
#w j w 2 V 3 [ V 2 fhg [ V fhBg

o
[n

a#[f ]
+
$ [f ]

�
#hBY j a 2 V

o
[
n
F#[t]

+
$ [t]

�
#
o
; ;
�
;

�03 =
�
;;
n�

[in]
+
; [il]

�
�
;
�
[ir ]

+
; [in]

�
�
;
�
[c]

+
; [d]

�
�
;
�
[b]

+
; [c]

�
�o�

;

I01 =
n
[e]
�
o
V �
n
[f ]

+
o
[ V �

n
[s]

+
o
[
n
[t]
�
o
V �; I02 = V +;

I03 =
n
[d]
�
o
V �

n
[b]

+
o
[ V �

n
[c]

+
o
[
n
[c]
�
o
V �[S

1�i�m

�n
[il]

�

o
V �
n
[ir ]

+
o
[ V �

n
[in]

+
o
[
n
[in]

�

o
V �
�
:

By the cutting rules in T 02 we obtain X j
[il]

uBv�iY `
�
X [il]

+
; [il]

�
uBv�iY

�

and [il]
�
uBv j

[ir]

�iY `
�
[il]

�
uBv [ir ]

+
; [ir ]

�
�iY

�
; as well as in addition



X�i j
[in]

Y `
�
X�i [in]

+
; [in]

�
Y
�
; by the recombination rules in T 03 we get

�
X�i [in]

+
; [il]

�
uBv [ir ]

+
�
` X�iuBv [ir ]

+
and

�
X�iuBv [ir ]

+
; [in]

�
Y
�
`

X�iuBvY; i.e. in sum from XuBv�iY we derive X�iuBvY thus simulating

the application of the production (�i; �i) : Rotating the symbol B works in a

similar way, thus yielding XBwY from XwBY; and terminal strings w 2 V +
T

are obtained in T 01 by passing the objects [e]
�
w [f ]

+
as well as [s]

+
and [t]

�

from T 02 to T 01: The use of the (V;M )2-�lters
n
[e]
�
o
V �

n
[f ]

+
o
in I01 as well

as of the (V;M )2-�lters
n
[d]
�
o
V �
n
[b]

+
o
and

n
[il]

�
o
V �
n
[ir]

+
o
; 1 � i � m;

respectively, which are not (V;M )1 -�lters, guarantees that only objects with

corresponding markings on the left-hand side and on the right-hand side can

pass from T 02 to T 01 and T 03; whereas objects with markings that do not �t

together remain in T 02: 2

The existence of universal grammar schemes now implies the existence of

universal CRTTS with (V;M )i-�lters, i 2 f1; 2g :

Corollary 1. For every alphabet VT and every universal grammar scheme U
for VT ; U = (VU ; VT ; PU) ; we can e�ectively construct a universal CRTTS
�U;i; �U;i = (Vi;Mi; Ai; ni; �i; Ii), with (V;M )i-�lters, i 2 f1; 2g ; such that
any L 2 ENUM (VT ) is generated by the CRTTS �L;i with (V;M )i-�lters
with �L;i = (Vi;Mi; Ai [ fXALBY g ; ni; �i; Ii) ; where AL is the axiom for
which the grammar GL = (VN ; VT ; P;AL) generates L; in the case i = 2;

n2 = 3; i.e. �2 consists of only three components.

Proof. We just have to apply the constructions in the proofs of Theorem 1

and Theorem 2, respectively, to the universal grammar scheme U for VT with

the only exception that we do not take XSBY as an axiom in A: Instead of

this, in every special CRTTS �L;i with (V;M )i-�lters the starting axiom AL

is taken. 2

4 Summary and Future Research

The construction of molecular computers based on test tubes has been consid-

ered by using di�erent operations on the test tubes 1;2;3;9. Test tube systems

based on the splicing operation were shown to allow the construction of uni-

versal mechanisms 4. In the preceding section we have shown the (theoretical)

possibility how to obtain universal biologicalmolecular computers based on test

tube systems with cutting and recombination rules. Our de�nitions can easily

be extended in order to cover a large variety of such test tube sytems 6; hence

our results should also be true for various possible practical implementations of



such systems. On the other hand, we only provide a kind of programming lan-

guage for molecular computers; feasible solutions for speci�c problems should

take advantage of the speci�c features of CRTTS without only relying on the

general methods used in the proofs of the results given in this paper.
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