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Neural network predictors of protein disorder using primary sequence information were
developed and applied to the Swiss Protein Database.  More than 15,000 proteins were
predicted to contain disordered regions of at least 40 consecutive amino acids, with more than
1,000 having especially high scores indicating disorder.  These results support proposals that
consideration of structure-activity relationships in proteins need to be broadened to include
unfolded or disordered protein.

1. Introduction

Calcineurin (CaN) is a calcium / calmodulin (CaM) regulated serine / threonine
phosphatase1.  Using x-ray diffraction, two of us (CRK and JEV) along with
additional collaborators determined the structure of human CaN2.  This protein
contains three unobserved or disordered3 regions, the longest of which spanned 95
consecutive amino acids2.  This longest disordered region contains the CaM
binding site. This site had previously been shown to be disordered by its sensitivity
to protease and to become resistant to protease upon CaM binding4.  Given the
central importance of the CaM binding site as the nexus between the calcium and
phosphorylation / dephosphorylation signaling pathways, we wondered whether
other proteins exhibited functional regions that were disordered.

Literature searches revealed many reports of x-ray diffraction experiments,
some about 20 years old,  describing disordered regions that become involved in
binding.  Selected examples include triose phosphate isomerase binding with triose
phosphate5, avidin with biotin6, the S-peptide with RNAse S7, myosin with actin8,
tobacco mosaic virus (TMV) coat protein with its RNA9, tyrosyl tRNA synthetase
with its tRNA10, and the trp repressor11, the lac repressor12 and Bam H113 with
their respective DNAs.



NMR has also been used to characterize disordered proteins.  Involvement of
disorder in the flagella-assembly related FlgM protein binding to the transcriptional
activator, σ28 (14) and cyclin-dependent kinase (Cdk) inhibitor,
p21Waf1/Cip1/Sdi1, binding to Cdk15 are two especially interesting examples16.

Given these many examples of functional disordered proteins, we have initiated
studies on the relationship between sequence and disorder by testing whether neural
network predictors (NNPs) can identify putative regions of disorder in proteins
from their amino acid sequences17.  Two further applications of these NNPs are
presented here: (1) our overall predictions on a protein sequence database to
estimate the commonness of disordered regions; and (2) the identification of a
relatively small number of proteins that have especially strong predictions of
disorder.

2. Materials and Methods

The databases used in these studies were SwissProtein (SW)18, Nrl_3D19, and the
Protein Data Bank (PDB)20. The NNPs are described in more detail elsewhere17.
To develop a training set of amino acids, 7 long disordered regions (LDRs) ranging
in length from about 48 to about 100 were identified in the PDB entries.  These 7
LDRs came from DNA topoisomerase II , elongation factor G, lactose operon
repressor, tomato bushy stunt virus coat, tyrosyl-tRNA synthetase, apoptosis
regulator Bcl-X, and calcineurin.  The total number of amino acids in this training
set was 930, half of them disordered. Another training set was developed using
sequence data from a group of 13 homologous CaN molecules. Although the 3D
structure of the 12 homologous CaN molecules was not known, the fact that highly
similar proteins have similar 3D structures led to the assumption that those CaN
molecules have the same disordered regions as the original CaN studied. To locate
the disordered regions on the new CaN sequences, a multiple sequence alignment
was performed using GCG21, and all residues that aligned with disordered positions
in the original CaN sequence were considered disordered. This procedure generated
enough data (3,332 residues) for the training of a neural network-based, CaN-
specific LDR predictor.

A feature selection process identified the 10 best attributes (or features) to be
used as inputs to the predictor, as follows: information from statistical comparisons
of ordered and disordered regions was used to pre-select 15 sequence-dependent
attributes out of 22 considered. These attributes were then used as inputs for a
modified17 sequential forward search feature selection technique. A quadratic
Gaussian classifier using different covariance matrices for ordered and disordered
amino acids was used to calculate the minimal error probability during the search.
Starting with a null set, features were selected incrementally, with the (i + 1)th



feature being the one that most improved the discrimination between ordered and
disordered amino acids when added to the i previously selected features.  The 10
selected features include contents of W, Y, C, S, D, E, H, and K,  a flexibility index,
and hydropathy. This feature set was used in the development of neural network
predictors (NNPs) for both the original LDR and the CaN-specific LDR data sets.

Balanced sets of the 10 dimensional feature values corresponding to ordered
and disordered amino acids were used to carry out backpropagation-based
supervised training22 of feedforward neural networks having 10 inputs, one hidden
layer with 6 units and a single output unit. The outputs of these NNPs were real
numbers normalized to fall between 0 and 1, with values below a certain prediction
threshold (q) indicating order and values above it indicating disorder17.  Thus, a
prediction threshold q of, say,  0.5 would mean that an NNP’s output  greater or
equal to 0.5 corresponds to a prediction of disorder, and, conversely, an output
smaller than 0.5 indicates order. For predicting regions of disorder, the amino acid
residues are first predicted one-by-one to be ordered or disordered.  Next, these
predictions {� �, , , ,p p pi i i− +1 1 } are smoothed by averaging over a window of nine
to obtain {� �, , , ,s s si i i− +1 1 } where s p pi i i= + +− +( ) /4 4 9� .  A region of length
m is predicted to be disordered if m consecutive smoothed predictions exceed the
specified prediction threshold, q, which was 0.5 in our initial work17.  So, the
region defined by sequence positions i+1 to i+m is predicted to be disordered if
s qj >   for  i j i m< ≤ + .

3. Results

3.1. Predicting Disorder from Sequence Using Neural Networks

If a protein structure has evolved to have a functional disordered state then a
propensity for disorder might be predictable from its amino acid sequence and
composition. To test this, we developed labeled data sets of disordered regions and
used these to carry out supervised training of neural network predictors (NNPs).
The 0 and 1 labels were used during the training to inform the NNPs which
sequence positions belong to ordered and which to disordered regions.

The LDR NNP used here gave a cross-validated, out-of-sample, residue-by-
residue prediction accuracy of 73 ± 4%, as described in more detail previously17;
with exactly the same procedures, the CaN-based NNP exhibited an accuracy of 72
± 5%. These results are comparable to those for predicting secondary structure23,
although we need to mention that our predictions are for two states –order or
disorder– whereas the secondary structure predictions are for three states –helix,
sheet, or other. On the other hand, our current NNPs are signficantly better than



secondary structure prediction methods that use only single sequence information.
Adding multiple sequence alignment information as inputs to our NNPs will
probably lead to a significant improvement just as for secondary structure
prediction23. A further comparison between secondary structure and disorder
prediction is that disordered regions can be much longer, and such LDRs should be
easier to predict than the shorter segments of secondary structure. For this reason,
we are initially focusing on those LDRs17.

3.2. Estimating the Commonness of Long Disordered Regions.

To obtain an overall estimate of the commonness of LDRs in nature, one would
apply the predictor to a sequence database, subtract an estimate of false positive
error (e.g. prediction of disordered where the structure is actually ordered) and add
an estimate of the false negative error (e.g. prediction of order where the structure
is actually disordered).  A summary of the LDR predictions on the  SwissProtein18

(SW) database, along with estimates of the false positive error rates, are shown in
Table 1.

Table 1:  Estimated Numbers of Proteins with Long Disordered Regions.  The databases studied
were Swiss Protein (SW) and the Naval Research Laboratory database, NRL_3D.  The percentages of
sequences estimated to have at least one prediction of a disordered segment of 40 or longer using the
two different indicated predictors, with the prediction threshold q set at 0.5, is given in column 4,
labeled as “% > 40”.  The predictor labeled “CaN or LDR NNP” accepts a protein as having a long
disordered region if either the LDR NNP or the CaN NNP indicate it. The predictions on NRL_3D were
taken to be measures of the false positive error rates for the two predictors, which were therefore
subtracted from the corresponding estimates to give the net percentages of sequences predicted to
contain long disordered regions as indicated in column 5, labeled as “Net”.  Finally, an estimate of the
number of sequences in SW with disordered regions of 40 or longer were estimated by multiplying the
net fractions times the total number of sequences. 

Database Number  of
Sequences

Predictor  % > 40 Net Number
Disordered

SW 59,021 LDR NNP

CaN  NNP

CaN or LDR NNP

32%

14%

34%

25%

12%

26%

14,760

  7,080

15,350

NRL 3D 6,063 LDR NNP

CaN  NNP

CaN or LDR NNP

  7%

  2%

  8%

 —

 —

 —

  —

  —

  —



To estimate the false positive error rates, LDR NNP and CaN-based NNP were
applied to the Naval Research Laboratory NRL_3D database19, which contains
only the ordered regions from a set of proteins of known 3D structure. These
regions of ordered structure were taken from proteins in the PDB20. Because all the
sequences in NRL_3D are ordered, any prediction of disorder on this database is
probably a false positive. It should be kept in mind, however, that the process of
crystallization itself has been shown to induce order; for example, a disordered
region of the ras protein becomes ordered in some crystals when it is involved in
crystal contacts, but not in other crystals and probably not in solution24. If such
behavior is common, our current false positive error estimates may be too high.

We have not made estimates of false negative error rates so far.  Omission of
such errors means that the actual number of disordered proteins is even larger than
the estimates given in Table 1.

The LDR NNP was trained using disordered regions from 7 different proteins
whereas the CaN-based NNP used only calcineurin-type proteins.  Thus, the CaN
NNP would be expected to be biased for recognizing disordered regions more like
those in CaN and so should find a smaller fraction of the disordered regions as
compared to the NNP predictor, which is consistent with the data in Table 1.

3.3. Making a Few Strong Predictions

Note that the rates of false positive prediction can be made arbitrarily small by
elevating  the prediction threshold q. In addition, since false positive prediction for
a region of length m  requires misclassification of m consecutive residues,  it is easy
to see that this error decreases when the region length m  is increased. So, to find

Figure 1: Number of False Positive Predictions Versus Length for Several Thresholds.  The

previously described LDR NNP17 was repeatedly applied to NRL_3D with successively higher
prediction thresholds each time as indicated. The false positive error rate is observed to drop as the
prediction length, m, increases or as the prediction threshold, q, is elevated.



the strongest predictions with especially low false positive error rates, we studied
the relationships among prediction threshold, predicted disordered region length
and false positive prediction error rate (Figure 1).

For the prediction threshold q set at 0.85, not one sequence of 40 amino acids
or longer in NRL_3D gave a false positive error using the LDR NNP and only 4
false positives were observed for the CaN-based predictor. Now, for a database with
i total amino acids and j segments, the total number of prediction regions of length
m is given by i - j(k+m), where k is the number of sequence positions that are not
assigned predictions on each segment. Our predictions use a windowing procedure
that does not assign a prediction to the first and last 14 amino acids, for a total of k
= 28 unpredicted positions per segment. Now, our version of NRL_3D has j = 6,063
segments and i = 1,030,628 amino acids; thus, the total number of predictions for m
= 40 is equal to (1,030,628 - [6,063] x [40 + 28]) = 618,344.

Since our NNP predicts on 618,314 regions of length 40 on NRL_3D, for the
LDR NNP with q set at 0.85, the false positive error rate is less than 1 out of
618,314. For the CaN-based NNP, the false positive error rate is 76 out of 618,314.
Applying these error estimates to predictions on SW assumes that the identified
sequence features of the structured protein in NRL_3D represents an unbiased
sampling of the sequence features for the structured protein in SW.

Winnowing the sequences in the SW database with the LDR NNP having the
prediction threshold set at 0.85 left 1,069 proteins strongly predicted to contain
disordered regions of 40 or longer; with the CaN-based NNP, 635 sequences
remained (Figure 2).  From the false positive error rate and the SW database
characteristics, the expected number of false positives should be less than 30

Figure 2:  Sequences Strongly Predicted to Contain LDRs.  The LDR and CaN-based NNPs were
applied to the Swiss Protein (SW) database with the prediction threshold q set at 0.85.  The
cumulative number of sequences predicted to contain at least one disordered region of length m or
longer is plotted versus m.  A total of 1,069 sequences for the LDR NNP and 635 for the CaN-based
NNP are strongly predicted to contain at least one disordered region of 40 or longer.



regions for the LDR NNP and on the order of 2,280 for the CaN-based NNP. Given
that a prediction of disorder with a length, m,  greater than 40 contains
m− 40 predictions of length 40, the 1,069 and 635 sequences predicted by the LDR
and CaN-based NNPs contain large numbers of predictions of length 40; indeed, the
length distribution of the predicted LDRs was used to determine that the former set
contains 22,595 predictions of length 40 and the latter set 16,007.   Thus, the
numbers of predicted disordered regions of length 40 are substantially greater than
the expected number of false positive predictions.

Table 2:  Examples of Proteins Predicted to Contain Long Disordered Regions:  The 20 longest
and/or strongest predictions of disorder for apparently nonhomologous proteins are presented here.

No SW ID Description Seq.
length

Max.
LDR

Location Ave.
Strength

1 SANT_PLAFW s-antigen - plasmodium 640 576 51-627    0.99
2 SANT-PLAF7 s-antigen - plasmodium 593 490 68-557    0.93
3 VG48_HSVSA hypothetical gene 48 protein

from herpes virus saimiri
797 308 413-720    0.96

4 MLH_TETTH micronuclear linker histone poly
protein from tetrahymena

633 278 173-450    0.96

5 CYCLI_HUMAN human cyclin (fragment) 598 255 238-492    0.98
6 NFH_MOUSE neurofilament triplet h protein 1087 239 523-761    0.92
7 RTOA_DICDI slime mold rtoa protein 400 227 77-303    0.96
8 SR75_HUMAN human pre-mRNA splicing

factor, srp75
494 225 186-410    0.96

9 RPB1_CRIGR chinese hamster DNA-directed
RNA polymerase: largest subunit

1970 221 1610-
1830

   0.98

10 LSTP_STAST staphylococcus staphyloyticus
lysostaphin precursor

480 168 56-223    0.92

11 YHFI_SALTY salmonella typhimurium,
hypothetical protein (orf3)

416 154 57-210    0.99

12 T2FA_DROME drosophila melanogaster
transcription factor iif, α subunit

577 153 246-398    0.97

13 H1_PEA garden pea histone H1 265 152 100-252    0.97
14 110K_PLAKN plasmodium knowlesi, 110 kd

antigen (fragment)
296 148 135-283    0.91

15 XYNA_RUMFL bifunctionall endo-1,4 β-
xylanase precursor from
ruminoccus flavefaciens

954 129 248-376    0.90

16 VIT2_CHICK vitellogenin ii precursor from
chick

1850 125 1142-
1266

   0.96

17 SNWA_DICDI snwa protein from slime mold 685 124 398-521    0.97
18 FHL1_YEAST pre-RNA processing protein fhl1

from baker's yeast
936 123 800-923    0.95

19 HYR1_CANAL hyphally regulated protein from
candida albicans (yeast)

937 121 621-741    0.93

20 ANKB_HUMAN ankyrin, brain variant 1 from
human

3924 120 1778-
1897

   0.94



These 1,069 sequences from the LDR NNP were sorted by prediction length
and average value of the prediction strength.  The top 20 proteins from this sorting
are listed in Table 2. For the full list of predictions see our website at
www.eecs.wsu.edu/~zoran/html/disorder.html.

4. Discussion

A continuous stream of experiments, some about 20 years old, have suggested that
disordered regions of proteins are involved in protein function via disorder-to-order
transitions upon complex formation. As shown above, examples include enzyme
binding with substrate, receptor with ligand, protein with protein, protein with RNA
and protein with DNA.

Despite this long history and wide-spread list of examples, as recently as late
1996 the observation of a disorder-to-order transition for p21Waf1/Cip1/Sdi1 upon
binding to Cdk led to the following statement: “these observations challenge the
generally accepted view that stable secondary and tertiary structure are prerequisites
for biological activity and suggest that a broader view of protein structure should be
considered in the context of structure-activity relationships”15, and the discovery of
a similar result for FlgM / σ28 binding14 led to a News and Views article16 in
Nature.  Evidently, the many particular examples of important disorder-to-order
transitions have failed to register within the molecular biology community as an
important generality.

To determine the generality of functional disorder, it is reasonable to explore
the use of bioinformatic approaches, for example, by the prediction of disorder
from sequence information. Because amino acid sequence determines protein
structure25, it should also determine lack of structure17.  Indeed, theoretical studies
suggest that a very small fraction of sequence space corresponds to sequences that
fold into unique 3D structures26. Furthermore, it is relatively simple to design
sequences that collapse into compact, flexible globules, but so far nobody has
identified novel sequences that fold into unique structures with rigid side chain
packing, either by design27 or by use of random sequence libraries for the
exploration of local, promising regions of sequence space28.

Overall, then, both theory and experiment suggest the notion that sequence
determines lack of structure and that structured sequences comprise a small fraction
of sequence space.

Our modestly successful first generation NNPs of protein disorder demonstrate
that disordered regions share at least some common sequence features over many
proteins and that more than 15,000 proteins in SW are identified as having long
regions of sequence that share these same features. Although much work remains to
determine what fraction of these predictions are actually correct and which of such



disordered regions are involved in function, our results nevertheless argue strongly
that disordered regions deserve to be recognized as a category  of protein structure
every bit as much as a helix or sheet.  Elevating disordered regions to the status of a
category may be a necessary prerequisite to recognizing and understanding their
general importance29.

The biological importance of disorder-to-order transitions upon complex
formation lies in two realms: energy and mechanism. Each of these will be
considered briefly  in turn.

With regard to energetic considerations,  disorder-to-order transitions lead to
low affinity5,30,31 combined with high specificity30. Many biological recognition
processes require high specificity, but they may also need relatively low affinity so
that the binding undergoes reversal when appropriate.  Thus, the combination of
high specificity and low affinity is likely to be common; this is consistent with our
findings that many particular examples have been identified and that predicted
regions of disorder are common.

With regard to mechanism, disorder-to-order transitions have a significant use
in one-to-many signaling processes.  For example, the disorder of CaM allows it to
recognize many different target helices32,33. The importance of disorder for one-
to-many signaling was emphasized again more recently for  p21Waf1/Cip1/Sdi1,
and it was suggested that this activity is a function of critical importance that only
disordered regions of protein structure can provide15.

Another critical function that can be carried out by disordered regions is the
mechanical uncoupling of two domains.  For example, the attachment protein of
filamentous phage is evidently constructed of two domains connected by a flexible
linker; this flexible connection permits the 8,600 Å long phage particle to sway
without disrupting the phage's moorings to the cell surface34 and may also facilitate
phage attachment by allowing a local search of multiple orientations relative to the
very long phage particle.  There are likely to be many additional examples in which
there would be an advantage to mechanically uncouple two domains.

We speculate that disordered regions of proteins or entirely disordered proteins
will be found to have functions in addition to the few suggestions given here.  We
hope that our disorder regions predictors (and especially more accurate, next
generation versions of them) will be helpful as the molecular biology community
broadens its perspective of protein structure-activity relationships to include
disordered proteins.
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