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Hidden Markov Models (HMMs) provide a flexible method for representing protein
sequence data.  Highly divergent data require a more complex approach to HMM generation
than previously demonstrated.  We describe a strategy of motif anchoring and sub-class
modeling that aids in the construction of more informative HMMs as determined by a new
algorithm called a stability measure.

1   Introduction

The genomes of RNA-based life-forms (e.g., HIV, Ebola and Measles) exist as
quasi-species, with accompanying mutant clouds, due to the rapid rate at which
RNA genomes can replicate and accumulate errors.  [Domingo and Holland, 1997]
These mutated RNA genomes provide us with a highly divergent set of co-linear
genes encoding a variety of enzymatic and structural proteins.  Many of the
relationships among these protein sequences fail statistical criteria for homology,
although all biological and biochemical data support common ancestry.  We define
such proteins as functionally equivalent “relatives “ in contrast to those members of
the set which are clearly homologous (usually greater than 25% identical).  When
proteins are this highly divergent, the regions of common residues, the    o   rdered-
   s   eries-of-    m    otifs (OSM), are those that contribute to the function or structural
integrity of the protein.  [McClure, 1991]

The correct identification of these strings of common sub-sequences or OSM
among a set of protein sequences is the first step in multiple sequence alignment.
[McClure, et al., 1994] The second step requires the alignment of regions between
the functionally selected OSM.  The     m    otif-   i   ntervening-   r   egions (MIRs) are less
constrained by the functional selection operating on the OSM.  The MIRs, however,
can be constrained by selection pressures specific to sub-classes of the sequence set
and often change more rapidly relative to the OSM.  MIRs can vary widely in size,
and amino acid composition.

To access the maximum information contained in primary structure data both
the OSM and MIRs must be aligned as precisely as possible.  The OSM defines a
pattern among the sequences that allows the possibility of common function and
ancestry.  These patterns populate motif databases.  The MIRs can define sub-class
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functional specificities and additional sub-class motifs. These regions contain
information important to the reconstruction of the phylogenetic history of the
protein sequences.   All positions in the alignment provide data that can be used to
test a wide variety of evolutionary hypotheses regarding gene and genome
construction.  Automated generation of a multiple alignment of large numbers of
highly divergent homologous and functionally equivalent protein sequences  remains
a challenge in the field of bioinformatics.

In the studies initiated here we explore a method of incorporating the OSM
information, a priori, using the Hidden Markov (HMM) approach [Rabiner, 1989] to
model highly divergent protein sequence data.  [Baldi, et al., 1994, Fujiwara, et al.,
1994, Krogh, et al., 1994, Eddy, 1995, Hughey and Krogh, 1996]  An HMM is
essentially a stochastic production model consisting of a linear series of nodes.
Each node contains the observation probabilities for match and insert states, and the
transition probabilities between match, insert and delete states.  The SAM 2.0
HMM method, used in this study, implements the full Baum-Welch expectation
maximization algorithm with the injection of noise to avoid local optima.  The
Baum-Welch algorithm guarantees the likelihood of the model will increase with
each training iteration.  [Krogh, et al., 1994]  Sequences are then aligned to the
model using the SAM implementation of the Viterbi algorithm.  [Rabiner, 1989]
The advantages of the HMM approach are: 1) knowledge of the phylogenetic history
or pairwise ordering is not required, 2) indel penalties are variable and position
dependent, 3) the model can provide information regarding stochastic and selected
features of a protein family, 4) information can be incorporated into the model a
priori, and 5) the computation cost of aligning a set of sequences to an HMM is
linearly proportional to the number of sequences to be aligned.

In earlier studies we explored some of the parameters involved in building
HMMs for distantly related protein sequences.  [McClure and Raman, 1995,
McClure, et al., 1996]  It was demonstrated that HMM approaches perform as well
as or better than traditional dynamic programming algorithms in identifying the
OSM in four benchmark protein families.  Not even the HMM approaches,
however, can correctly identify the complete OSM in the most distantly related
members in two of the protein families.  [compare data from McClure, et al., 1994
with McClure, et al., 1996]  The correct identification of the OSM that defines
membership in a specific protein family or class is the first criterion for
constructing a meaningful HMM representing the sequence data.  [see paper by
Hudak and McClure submitted to this proceedings]

We are interested in the construction of HMMs that adequately reflect the
evolutionary relationship for the entire length of all sequences of a given protein
class.  In our attempts to construct a HMM representing over 500 unique reverse
transcriptase (RT) sequences found in the retroid family, we developed a strategy of
HMM construction based on OSM-anchoring and sub-class modeling.  These studies
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generated multiple alignments from numerous HMMs requiring an automated
scoring method to assess the ability of this strategy in robust model construction.
This paper describes a multiple alignment scoring method and the results of our
studies on HMM generation for distantly related protein sequences.

2   Material and Methods

2.1  Platforms and Software

All analyses were conducted on SUN Ultras (1/140 and 1/170) or SPARCstations
(4, 5 or 10/514MP) running SunOS Release 5.5 or 5.6.  Version 2.0 of Sequence
Alignment and Modeling (SAM) was used for all studies.  [Krogh, et al., 1994,
Hughey and Krogh, 1996]

2.2  Data sets

Two types of sequence relationship distributions were used in these studies: 1) low-
to-high sequence identity with high similarity; and 2) low identity, low similarity
(LILS).  Sequence identity is based on the number of common amino acid residues,
while sequence similarity is based on the conservative substitution of amino acids.

In the studies presented here we tested various ranges (80-99%, 60-99%, 40-
95% and 20-95%) of low-to-high sequence identity with high similarity
relationships found among the RT proteins of the retroviruses.  The LILS
relationships ranged from 7-48% identity and included representatives from
retrovirus, retrotransposon, retroposon and retrointron RT sequences.  [McClure,
1993]  The LILS data set includes an even distribution of RT sequences from the
following groups: retroviruses (HT13, NVV0, SFV1, HERVC); gypsy-
retrotransposons (GMG1, GM17, MDG1, MORG); copia-retrotransposons (CAT1,
CMC1, CST4, C1095); retroposons (NDM0, NL13, NLOA, NTC0); and group II
introns (ICD0, IAG0, ICS0, IPL0).  GenBank accession number are L36905,
M60610, X54482, M10976, M77661, X01472, X59545, Z27119, X53975,
X02599, M94164, M22874, L19088, X60177, M62862, X98606, U41288,
X71404, Z48620, with the exception of the copia agent which is from the
Saccharomyces Genome Database.

2.3  Types of Models

Two types of models were tested.  A    de       novo              model    is generated by training on each
data set with internal sequence weighting to correct for sampling bias as provided by
SAM.  Then all twenty sequences are aligned to this model.  A    set       of       sub-class
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    models    are generated when the sequences are differentially weighted as sub-classes
based on the clustering of their pair-wise similarity scores. The LILS data set
contains five sub-classes.  The five sub-class models were generated by differentially
weighting all sequences within one sub-class (4 sequences, 75% of total weight),
relative to the other four sub-classes (16 sequences, 25% of total weight) during the
training session.  These weights are scaled to produce a sum of 20 which is equal to
the sequence weight sum used in the de novo models.  The end result is a set of sub-
class models with amino acid probabilities at each node representing both the OSM
and MIRs (figure 1).  The four sequences belonging to each sub-class are aligned to
their respective models.  These alignments are then stacked together using an in-
house program to create the final multiple alignment.

De novo and sub-class models were run: 1) with and without model surgery; and
2) with and without a priori knowledge of motif identity or location. Model surgery
is a feature of the SAM that allows for the conversion of one state to another, or the
addition or deletion of states after training based on number of sequences that invoke
a particular state.  A priori knowledge of motif identity and location is provided by
the anchoring of the OSM within models, (figure 1).

A preliminary model, for use in the anchoring strategy, is created using the
SAM program modelfromalign and the initial OSM alignment.  The SAM
modeling software also allows for designation of a number of special node types
within the model.  These special nodes are immune to model surgery.  Two types of
the special nodes  are used in the studies presented here to anchor the OSM within a
model. Type A nodes are invariant and cannot undergo further training.  Type K
nodes undergo transition training but not match or insert training.  The core amino
acid residues of the motif are assigned Type A nodes, while the amino and carboxyl
residues of the motif are designated Type K.  This designation allows for the
transition training into and out of the Type A nodes representing the OSM.

In all of the initial models OSM anchoring is performed by designation of Type
A and K nodes at the same positions in each model. Generic nodes are then added to
represent the MIR equal to the largest number of amino acid residues present in each
region in the sequence data set.  The generic nodes are then trained by the SAM
buildmodel program.

Each model type was trained on the data set with two different prior libraries: 1)
the amino acid frequency of the training set, and 2) a 20-component Dirichlet
mixture as provided in the SAM package.
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Figure 1. Schematic representation of OSM anchoring and sub-class modeling strategy.
A) Identification of the OSM in each sequence.  B) The OSM is anchored by designation as special
nodes at the same position in each model.  C) The number of generic nodes added to all sub-class
models between the OSM equals the largest number of residues in each of the MIRs.  D) HMM
modeling within and between sub-classes to align the MIRs.  E) Sub-class models with amino acid
probabilities at each node for the OSM and the MIRs aligned across sub-classes.  F) Multiple alignment
of the OSM and the MIRs.  Roman numerals represent the OSM, and periods represent amino acid
residues in the MIRs. Asterisks represent generic nodes. Dashes represent gaps.
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2.4  Model parameter settings

All models were run with the same random seeds and at the default parameter
settings except: Nmodels = 5, Nsurgery = 5, del_jump_conf = 50, match_jump_conf
=50, ins_jump_conf = 50 and insconf = 100000. In the de novo models the
internal_weight is 2.  In the sub-classification models this parameter is set to zero
so that our differential weighing is not modified.  Inclusion of the external weights
file is done using the sequence_weights parameter.  The Dirichelet library is
specified with the prior_library = recode2.20comp setting.

2.5  Methods for scoring HMM generated alignments

We have created an algorithm to score the multiple alignments generated  by the test
models.  Algorithms that have used a column entropy measure to find conserved
regions have proved successful.  [Shenkin, et al., 1991]  Since entropy calculations
experience the smallest change in the OSM and the greatest change in the MIRs
columns they are unsuitable for averaging over the entire alignment to generate a
single score.  Our algorithm is based on a column stability function similar to an
entropy calculation that is averaged over the entire alignment length.  All match,
insert and delete states are included in the calculation.  The stability measure
algorithm is given by:

                                n
S = ( ∑  - ( Li / T)( log( 1.0 + c - (Li / T) ) ) ) / n

                               i=1

Where S is the alignment score, n is the alignment length, L i is the count of the
largest group found at column i, T is the total number of sequences in the
alignment, c is a constant currently set to 0.05, log is the logarithm base 2.  The
constant, c, can be any value greater than zero.  It prevents the stability function
from having a value of infinity with a full column count.  It also allows for scaling
of the stability values.  At the current setting the column scores vary over the range
from 0.003 for a 0% column count to 3.0 for a 100% column count.  The current
implementation of the algorithm produces three scores, M, M1, and M2, based on
the largest group count of each column. The amino acid counts are currently based
on three sets based on two levels of Dayhoff matrix conservative substitution: 1) the
amino acid identities, (M); 2) ILMV, AG, ST, DE, NQ, C, FY, W, RK, H, P,
(M1); and 3) ILMV, AGPST, DENQ, FYW, RKH, C, (M2).  Each member of a
group receives a count of one.  This scoring method, that we call a stability
measure, was designed to reflect the types of changes made by an expert in refining a
multiple alignment.  Expert refinements are introduced when obvious regions of
identify or similarity are not detected by the alignment method or when alternative
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positioning of insertions/deletions would either increase the similarity among the
MIRs or minimize mutational events necessary to align one sequence to another.
Our scoring method shows a positive correlation with the OSM count scoring used
in our previous HMM construction studies.  [unpublished data]

3   Results

All studies were conducted as described in the Material and Methods regarding
parameter settings and prior libraries.  In all studies the use of a 20-component
Dirichlet mixture produced better alignments as assessed by the stability measure.
[unpublished data and table 1]  These results were expected due to the small size of
the training set (20 sequences).  [Brown, et al., 1993, Sjolander, et al., 1996]  The
OSM was found in the de novo HMM generated multiple alignments for the range
tests of sequences with 80-99%, 60-99%, 40-95%, and 20-95% identity.  The MIRs
were also aligned in these alignments.  [data not shown]  No further analysis was
conducted on these data.

table 1

de novo, + surgery,
-OSM anchor

de novo, + surgery,
+ OSM anchor

M M1 M2 M M1 M2
aa freq 0.052 0.109 0.150 0.073 0.129 0.175

D 0.050 0.099 0.138 0.090 0.163 0.221

sub-class, + surgery,
- OSM anchor

sub-class, + surgery,
+ OSM anchor

M M1 M2 M M1 M2
aa freq 0.052 0.108 0.150 0.030 0.064 0.094

D 0.049 0.097 0.133 0.030 0.062 0.092

sub-class, - surgery,
- OSM anchor

sub-class, - surgery,
+ OSM anchor

M M1 M2 M M1 M2
aa freq 0.052 0.108 0.150 0.089 0.153 0.202

D 0.049 0.097 0.133 0.106 0.192 0.245
expert refined alignment

M M1 M2
0.127 0.216 0.274

Definitions: aa freq = amino acid frequency of training set as calculated by SAM and D is
a 20-component Dirichlet mixture provided in the SAM package. All other abbreviations
are defined within the text
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The LILS data (7-48% identity) provides a more challenging test of HMM
construction.  The generation of de novo models for the LILS data with and without
OSM anchoring clearly indicates that by constraining the model in this manner
more sequence relationship is found (table 1).

The second test of LILS data divided the training set into five sub-classes as
described in the Material and Methods.  Sub-class models were generated that
allowed surgery, with and without OSM anchoring.  These results indicate that
allowing surgery in the MIRs defeats the keep node designation and shifts the
location of various motifs within the OSM between sub-class models thereby
lowering the stability measure on the final alignment (table 1).

The third study on the sub-classed LILS data did not allow surgery.  As
indicated in table 1 this approach provided the highest stability measure and reflects
a better multiple alignment.

4   Conclusions and future studies

The motivation for these studies is the development of an automated method for the
alignment of large numbers of highly divergent protein sequences that share
common function and perhaps common ancestry.  If the data used to train HMMs
are not low identity and low similarity sequences then current HMM
implementations work well.  For LILS sequences, however, a more complex
approach to HMM construction is necessary.  Earlier work described the
identification of the OSM as the first requirement for multiple alignment.
[McClure, et al., 1994]  We have devised and tested a strategy of HMM generation
based on the anchoring of the OSM and sub-classification of the sequences.  In these
studies sub-models are built to represent the sub-classes.  The sub-class alignments
from these models are combined into a single multiple alignment.  The goal of this
approach is to maximize the alignment representation of the additional information
contained in the MIRs.

Although in previous work we assessed the quality of HMM generated multiple
alignments by the correct identification of the OSM, in these studies an independent
scoring criterion, the stability measure, was designed to compare the multiple
alignments. The stability measure incorporates the importance of the OSM and the
MIRs in much the same way as a human expert.

By comparing the stability measures from the alignments generated by HMMs
constructed under various constraints it is evident that OSM anchoring and sub-class
modeling produces more informative multiple alignments than de novo models.
This is due to increased alignment in the sub-class MIRs.  The best multiple
alignment generated in all these studies, however, was not as good as the alignment
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refined by a human expert , (table 1) where alignment of the MIRs is maximized for
all sequences .

Future studies will focus on improving the stability measure, further refinement
of the OSM anchoring and sub-class model strategy to improve the alignment of the
MIRs.  Once we have determined a robust approach for modeling the MIRs, we
hope to collaborate in the extension of current HMM implementations to
incorporate this method.
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