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We propose a novel method to detect 5' splice sites of eukaryotic mRNA. We

have grouped the 5' splice splice sites into various classes. The clustered sites are
represented by a set of PWMs. The clustering algorithm is similar to k-means

clustering algorithm but the distance de�nition and the training score function
were arranged. The clustered PWMs were applied to 5' splice site detection. The
results showed an improvement in comparison with traditional single PWM. The

result of the clusters suggests there are new motifs of 5' splice sites.

1 Introduction

Biological signals on DNA sequences such as TATA box, GC box, CAAT
box, the Shine-Dalgarno sequence in the promoter regions, and splice sites
(donor/acceptor sites) in eukaryotic mRNA are of considerable interest be-
cause they play numerous crucial roles in binding with proteins, or RNAs.
Such signal sequences are widely known, but it is still di�cult to detect these
sites correctly from genomic DNA data alone 1;2;3, because such signals are
vaguely de�ned. And though similar sequences are ubiquitous, only a part of
them are actually recognized and work in vivo or in vitro. Such signal sequences
are traditionally characterized by positional weight matrix (PWM) introduce
by Staden 4. The PWM method was extended to weight array matrix (WAM)
by M. Q. Zhan 5 and S. L. Salzberg 3. WAM model is based on di-nucleotide
positional statistics while the PWM is based on single-nucleotide positional
statistics. There are other approaches to the recognition of splice sites with a
large size window, such as linear discriminant analysis 6 and neural networks
7;8. In recognizing splicing site of eukaryotic mRNA, coding/non-coding poten-
tial (content analysis) is often used simultaneously in either an explicit or an
implicit way and has succeeded to some extent. In biological systems, however,
coding biases are unlikely to be used in recognition of splice sites, especially
5' splice sites. Thus, studying arti�cial recognition without content analysis is
important to understanding biological systems. Recently C. Burge has intro-
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duced the maximal dependence decomposition (MDD) model for detection of
5' splice sites, which does not consider the coding biases 9. The MDD model
was used with coding biases in the gene �nding system GENSCAN. This work
suggested that there are strong correlations between some speci�c two or three
positions with base constraints. For instance, there is a compensation relation
between +5:G and -1:G in 5' splice sites. Here, (+5:G) represents a base G in
the position +5. This suggests that the 5' splice site recognition is performed
in vivo through a combination of several rules which are still unknown. The
current study is not su�cient to elucidate the actual recognition mechanisms.
Complete recognition of the splice site from a DNA/mRNA sequence has not
been accomplished. Provided that there are some di�erent recognition rules in
a recognition mechanism, development of elucidation methods are needed.

There was an approach to divide the data set for parameter estimation
of PWMs in Tsunoda's recent work 10. However, they estimated the cut-o�
values of PWMs for transcription factor binding sites, not the weights of the
PWMs. Moreover, they used a single PWM for each binding site, while we set
the weights of several PWMs for the speci�c DNA sequence signal.

In this work, we have grouped the 5' splice splice site of eukaryotic mRNA
into various classes. The clustered sites are represented by a set of PWM.
The clustered results suggest that there are other motifs of the 5' splice sites.
Furthermore, the clustered PWM are applied to 5' splice site recognition. The
accuracy was better than the traditional method using single PWM, and com-
parable to WAM model, but inferior to MDD model.

2 Data and Methods

2.1 Data

The data we used was obtained from GENSCAN training/test sets collected
for the gene-�nding system as described in the references 9;11. The data sets
were arranged versions of other data sets, which were collected by D. Kulp
(University of California at Santa Cruz) and M.G. Reese (LBNL, USA) from
GenBank (Release 89, August, 1995) [ftp://ftp.cse.ucsc.edu/pub/dna/genes]
and (GenBank Rel. 95, June, 1996) [ftp://www-hgc.lbl.gov/inf/genesets.html].
In the original data set, some sequences in the test set which were similar to
ones in the training set were discarded from the test set by C. Burge.

The data sets were derived so that they met the following criteria 11. Only
sequences from homo sapiens were used in this analysis. There are no alter-
native splicing features. All splice sites of coding sequence (CDS) obey the
GT-AG rule (intron start with GT and end with AG). The CDS starts with a
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start codon and ends with a in-frame stop codon. Database entries with an-
notations of alternative splicing, partial or putative CDS or ORF designation,
viral or mitochondrial origin, were discarded. Furthermore, no two sequences
in the data sets are substantially similar (BLAST score � 100) to each other.
The number of entries (genes) are 380 for the training set, and 65 entries for
test set. The training set also includes some single-exon genes (i.e. intron-less
genes).

We extracted both authentic and pseudo 5' splice sites from the data with
the GT-AG rule (most of the intron start with GT and end with AG). Negative
data of 5' splice sites were extracted from the sequences in such a way that
each subsequence has a GT conservative dinucleotides at the starting point of
intron (+1,+2), and has a su�cient base-length to be analyzed (3 bases for
5'-side, 6 bases for 3'-side).

We also took the 5' splice sites on 5' untranslated region (UTR) or 3'
UTR that satisfy with GT nucleotide according to annotation of mRNA in the
training data set. On the other hand, as for the test data set, we took the
5' splice sites only in CDS, so that we could compare our method with other
methods described in the above paper 11 in terms of recognition accuracy.

2.2 Clustering using Positional Weight Matrix

Biological signal sequences are traditionally characterized by the PWM intro-
duce by Staden 4. In this method, given a uncharacterized short sequence
X = x1; x2; :::; xn, the PWM score Sp(X) under positive model is calculated
by the formula:

Sp(X) =
X

i=1:::n;xi2A;C;G;T

log(P (i; xi)); (1)

where P (i; xi) is the probability of generating the nucleotide xi at position i

of the positive model of the signal. Here, a positional weight matrix (PWM)
is de�ned as a matrix which is constructed from P (i; xi) for all i; xi. Similarly,
a score Sn(X) for a negative model of the signal is de�ned using pseudo site
samples, and the relative score of positive model against the negative model is
often used as the e�ective score de�ned as:

R(X) = Sp(X)� Sn(X): (2)

We clustered actual 5' splice sites using the PWM. Fig. 1 shows the
overview of the clustering process, which is also the training process of several
PWMs. The process is similar to the k-means clustering algorithm 12;13. The
main di�erences are 1) a training data sample is represented as a sequence,
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Figure 1: Overview of the process for the classi�cation and PWM training.

Pacific Symposium on Biocomputing 4:171-181 (1999) 



not a point in a multi-dimensional space, and 2) a 'centroid' is not a vector
but a PWM, and 3) the distance between the training data sample and the
centroid is de�ned by the score (the probability of the sequence generated
from the PWM). The training procedure is comprised of four phases. At the
�rst phase, two PWM were constructed from the training data for both the
positive data (subsequences around the actual 5' splice sites) and the pseudo
sites (subsequences with 'GT' dinucleotides but not annotated as 5' splice sites
in the database). The constructed PWM are called PWM-1 and PWM-2. In
addition, some other PWM were created by random numbers. As the result, k
PWMs are created in total. The random matrices are trained in the following
phases.

The procedures from phase 2 to phase 4 are iterated until a convergence
condition (described below) is satis�ed. At phase 2, all positive subsequences
are distributed to one of the PWM in such a way that the distributed PWM
gives the highest score to the sequence. This score (generating probability)
corresponds to the distance of famous k-means clustering algorithm.

The phase 3 creates new PWMs using assigned training sequences for
each class. These new PWM are called PWM-3a, PWM-4a, and PWM-ka.
These PWM become new goals for PWM-3, PWM-4, and PWM-k, respec-
tively. PWM-1a and PWM-2a are not created because both existing models
are already concrete models. PWM-1 corresponds to a pseudo model, and
PWM-2 corresponds to a positive model which represents the overall features
of the 5' splice sites. One of our aims is to extract new motifs (base biases) by
producing some PWMs which are di�erent from the consensus sequence and
embedded in a single PWM. Therefore PWM-1 and PWM-2 are necessary as
references in phase 2. Each P l(i; j) in PWM-l is updated at phase 4 by

P l(i; j) P l(i; j)(1� �) + P l
mod(i; j) � �; (3)

where P l(i; j) is the probability of the matrix PWM-l (l=3,4,..., k), P l
mod(i; j)

is the probability of the matrix PWM-la (l=3,4,..., k), and � is a small real
constant. After the modi�cation (equation 3) is applied,

P
j=A;C;G;T P l(i; j) =

1 is kept, because
P

j=A;C;G;T P l
mod(i; j) = 1. The convergence condition is

that the di�erences between PWM-l and PWM-la in terms of all probabilities
are less than a threshold value �. When we set � to 0.01, then all the matrices
were observed to converge within a few dozens iterations. Equation 3 realizes
the maximization of the score function T :

T =
Pk

l=2

PN

m=1
�l;mSp(Xm)

=
Pk

l=2

PN

m=1

Pn

i=1;j2A;C;G;T �l;m log(P l(i; j));
(4)
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with the constraints
P

j=A;C;G;T P (i; j) = 1 for all position i. Xm is a sequence
of the training data, �l;m is the delta function:

�l;m =

�
1 if Xm belongs to the class l
0 otherwise:

(5)

Here P 1(i; j) were not taken into account because it is a negative model con-
structed from the pseudo sites.

2.3 Detection of 5' splice sites with k-PWMs

We describe how a sequence is scored by this method using k-PWMs. Let
Sp(Xjl) be a score of PWM-l calculated as described above. The sequence is
classi�ed to a class which gives the best score to the sequence, and the class l
is de�ned by a speci�c PWM-l. We de�ne here a score Spath(X) as:

Spath(X) = �k
l=2Sp(X jl)P (l) (6)

where P (l) is a prior probability that a sequence is generated from class l

PWM. Therefore Spath(X) is interpreted as a sum of probabilities throughout
all the positive classes. The �nal score of a sequence was de�ned as:

R(X) = Spath(X)� Sp(Xj1); (7)

where Sp(X j1) was a score calculated by the negative model. We tested for
various k ranging from 3 (the least relevant value for this method) to 6. If
k = 2, it is the same model as the single PWM model with the training of
negative data. Five tests were performed for each k. The best set of k-PWMs
will be shown in the next section.

3 Results and Discussion

3.1 PWM and motifs

Table 1 shows the PWM of each class extracted by this method. Class 1 is the
same as the traditional PWM. The consensus sequence is a/cAG-GTa/gAGt.
In the expression, the characters are typed in upper case if the probability is
more than 50%. If the probability is more than 35%, they are typed in lower
case. The '-' indicates the exon-intron boundary. The standard consensus is
visualized in Fig 2 using sequence logo14.

C. Burge indicated in the MDDmodel that there is a compensation relation
between +5:G and -1:G in 5' splice sites 9. This e�ect was seen in classes 2, 3,
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Table 1: The extracted PWM by the k-PWMs method (k=6). The PWM-1 corresponds
to a pseudo site model and are not shown. PWM-2 (class 1) corresponds to the traditional

PWM. Class 2 to class 5 are trained and produced. Each cell shows the percentage of the
base for the position.

position A C G T position A C G T

class 1 class 2
-3 31.4 37.6 18.7 12.3 -3 24.4 31.3 27.8 16.6
-2 60.4 13.0 13.8 12.8 -2 31.2 52.4 16.3 0.1
-1 8.2 3.5 81.1 7.1 -1 30.8 10.8 24.5 33.9
1 0.0 0.0 100.0 0.0 1 0.0 0.0 100.0 0.0
2 0.0 0.0 0.0 100.0 2 0.0 0.0 0.0 100.0
3 49.0 3.0 45.1 2.9 3 42.6 1.4 56.0 0.0
4 71.3 7.7 12.4 8.6 4 96.9 0.5 1.8 0.9
5 6.4 4.9 84.1 4.6 5 0.0 0.0 100.0 0.0
6 16.0 17.7 20.0 46.4 6 0.3 16.4 1.3 82.0

class 3 class 4
-3 36.9 41.3 15.1 6.8 -3 32.6 29.4 0.0 38.0
-2 80.9 2.8 10.6 5.7 -2 0.5 0.0 40.9 58.6
-1 1.9 0.0 97.2 1.0 -1 0.0 4.4 90.7 4.8
1 0.0 0.0 100.0 0.0 1 0.0 0.0 100.0 0.0
2 0.0 0.0 0.0 100.0 2 0.0 0.0 0.0 100.0
3 73.9 3.5 15.1 7.5 3 48.5 0.0 50.3 1.2
4 9.7 0.1 0.0 90.2 4 87.7 1.5 7.9 2.9
5 3.8 6.3 69.8 20.1 5 0.0 1.8 98.2 0.0
6 14.2 14.1 13.9 57.7 6 12.5 17.6 12.4 57.5

class 5
-3 34.2 47.5 16.4 1.8
-2 98.4 0.2 1.4 0.0
-1 0.4 0.0 99.6 0.0
1 0.0 0.0 100.0 0.0
2 0.0 0.0 0.0 100.0
3 81.3 6.7 12.0 0.0
4 57.8 21.0 21.2 0.0
5 23.3 13.8 54.7 8.2
6 34.1 22.2 36.1 7.6
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Table 2: Consensus sequences of extracted PWMs. PWM-2 (class 1) corresponds to the

traditional PWM. Class 2 to class 5 are trained and produced. The characters are typed in
upper case if the probability is more than 50%. If the probability is more than 35%, they

are typed in lower case. D indicates A,G,or T. '|' indicates exon-intron boundary.

class -3 -2 -1 | +1 +2 +3 +4 +5 +6
C1 a/c A G | G T a/g A G t
C2 c C a/t | G T a/G A G T
C3 A A G | G T A A G T
C4 D g/T G | G T a/G A G T
C5 c A G | G T A A G a/g

There are other approaches, such as neural networks 7;8 or linear discriminant
analysis 6. However we do not compare our method with them, because they
need a large window size to discriminate true sites from false sites and deal
with content information of coding/non-coding regions. Therefore they cannot
be compared with our methods directly. In this study, we focus on the 5' splice
site information itself, not the content information. From Table 3, the total
accuracy of this method is better than the results when PWM only was used,
although it did not reached the accuracy of MDD. In the model `All', the
current method treats every class equally.

Since almost all classes have a high speci�city at low sensitivity level (i.e.
20%) except for class 2 (whose sample size is relatively small), core deviations
of the class from the consensus sequence were extracted successfully and the
extracted motifs are presumed relevant.

Since each class has di�erent speci�city and di�erent sample populations,
there is still room to improve the speci�city for this method. For instance,
classes 2, 4, and 5 show higher speci�city than the other models especially at
20% sensitivity level. If these classes are speci�ed, we could detect more true
sites more e�ectively. Most classes contained a su�cient amount of data. In
the cases where there is a small amount of data in some classes, the statistics
are less reliable and this can lead to failure of both motif extraction and site
detection. To avoid this event, one approach would be to underestimate or
ignore some classes which have small sample sizes.

4 Conclusion

We have proposed a method to classify biological signal sequences and applied
it to 5' splice sites classi�cation. The classes were represented as a set of PWMs
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Table 3: Speci�city for di�erent sensitivity levels for the test set (k=6). The model 'ALL'

represents the results using class 1 (C1) to class 5 (C5). The model PWM indicates the
result when only traditional PWM is used. The results of weight array matrix (WAM) and

maximal dependence decomposition (MDD) is referred from Burge's results.

training test true Sensitivity level
Model true set (%) set (%) 95% 90% 50% 20%

C1 33 33 2.5 6.6 40.5 49.0
C2 18 22 20.0 21.0 47.5 59.3
C3 9 6 3.8 3.8 17.2 17.2
C4 17 16 8.2 10.8 33.7 57.1
C5 23 22 8.6 9.3 19.9 57.1

ALL 100 100 7.6 10.7 30.3 51.5

PWM { 100 7.1 9.4 32.0 50.0
WAM { 100 7.2 12.4 33.0 49.6
MDD { 100 8.7 13.4 36.0 54.3

and they were applied to 5' splice site detection. The detection results of k-
PWMs model proved better than that of the traditional single PWM model.
The k-PWMs model seems comparable to WAMmodel, but is less speci�c than
the MDD model in terms of site detection. However this approach can extract
new motifs as shown in Table 1. This method is applicable to other type of
biological signal sequences, such as transcriptional factor binding sites with
variations (TATA box, GC box, and Shine-Dalgarno sequence), translation
initiation and positional speci�c motifs in amino acid sequences.
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