
MODELING REGULATORY NETWORKS WITH WEIGHT
MATRICES

D.C. WEAVER
Genomica Corporation, 4001 Discovery Rd., Suite 130

Boulder, CO 80303 (weaver@genomica.com)

C.T. WORKMAN, G.D. STORMO
University of Colorado, Molecular Cellular and Developmental Biology
Boulder, CO 80309 (workmanc@colorado.edu, stormo@colorado.edu)

Abstract

Systematic gene expression analyses provide comprehensive information about the
transcriptional response to different environmental and developmental conditions. With
enough gene expression data points, computational biologists may eventually generate
predictive computer models of transcription regulation. Such models will require
computational methodologies consistent with the behavior of known biological systems that
remain tractable. We represent regulatory relationships between genes as linear coefficients or
weights, with the “net” regulation influence on a gene’s expression being the mathematical
summation of the independent regulatory inputs. Test regulatory networks generated with this
approach display stable and cyclically stable gene expression levels, consistent with known
biological systems. We include variables to model the effect of environmental conditions on
transcription regulation and observed various alterations in gene expression patterns in
response to environmental input. Finally, we use a derivation of this model system to predict
the regulatory network from simulated input/output data sets and find that it accurately predicts
all components of the model, even with noisy expression data.

1 Introduction

The information derived from genome sequencing projects allow for systemic
analyses of gene expression. As these expression analysis technologies mature,
biologists will be presented with accumulated data sets detailing the transcriptional
response of a cell, tissue, or organism to many environmental, genetic, and
developmental stimuli. In addition to elucidating the cellular response to such
stimuli, these experimental results provide an opportunity to understand the
regulatory pathways that underlie the observed gene expression patterns. While our
ability to predict such regulatory pathways will remain rudimentary with limited
data, as more data points are collected, we will be able to define ever more accurate
predictions of the transcriptional regulatory apparati.

Transcriptional regulation is conferred through the combinatorial action of gene
products on sequence elements proximal to each gene’s transcriptional start site.
These “transcription factors” bind directly to DNA and influence gene expression
by altering the binding or activity of the basal transcription machinery.
Transcription factor activity is controlled in turn by other gene products via post-

Pacific Symposium on Biocomputing 4:112-123 (1999)

translational mechanisms1. Thus, one can argue that the transcription of any gene is
the result of integrating the cell’s biochemical state rather than the action of any
single gene product. Once an expressed gene is translated into a functional gene
product, it affects the state of the cell and may directly or indirectly influence its
own expression or the expression of other genes. In this way, the expression state
of the cell is regulated; one set of expressed genes (i.e. one expression state)
regulates the transcription of the cell’s genes, leading to a new state, and so on.

Most previous attempts to model transcriptional regulatory networks simplify a
gene’s expression as being either completely on or completely off2,3,4,5. The
response of a model gene to some set of expressed genes is dictated by a Boolean
rules table (with rules like: “if gene A is expressed AND NOT (genes B OR C),
then this gene is expressed). As the system progresses from one state (or timepoint)
to the next, the input pattern of expressed genes is cross-referenced with the rules
table to determine if the genes they control will be expressed at the next state or
time step. Boolean networks converge to terminal states via a series of state
transitions, where these different terminal states are analogous to terminal
differentiation states in biology4. If the terminal condition of a regulatory network
is a single unchanging state then it is termed a “point attractor” while if it is a series
of states it is called a “dynamic attractor” or “limit cycle”2.

While being good starting points to gain understanding about the behavior of
large dynamic regulatory networks, these “Random Boolean Networks” depend on
simplifying assumptions about biological systems. For example, by treating gene
expression as either completely on or off, these systems ignore those genes that
have different biological regulatory effects at expression levels intermediate
between their basal and their maximal expression levels (lin-146, lin-37, and bicoid8,
for example). Furthermore, these networks cannot address those regulatory genes
that influence the transcription of various genes to differing degrees. Finally, many
of these regulatory networks are designed such that all genes have a fixed maximum
number of regulatory inputs. In biology, some genes are known to have many
regulatory inputs, while others are not known to have more than a few. While this
may reflect our limited knowledge of the complexity of gene regulation, it seems
likely that there will be variance in the number of regulatory inputs to many genes.

Connectionist models for gene regulation in the form of recurrent Hopfield9

networks have been proposed by Mjolsness et.al.10 and Reinitz and Sharp11.
Thomas et.al.12 describe regulatory networks as directed graphs or matrices of
interactions without restrictions on connectivity. The continuous time networks of
(10, 11) model interphase expression of a cell based on interaction weights that are
free to take positive and negative real values. Networks of this type can be trained
for the goal of function approximation with supervised training (data fitting)
provided there are plenty of data points. Unfortunately, current sampling times of

Pacific Symposium on Biocomputing 4:112-123 (1999)

expression data are so large that continuous time models could only be based on
theoretical data. This is the motivation for the discrete time model proposed here.

We describe herein an algorithm, TReMM (Transcription Regulation Modeled
with Matrices), to modeling gene regulatory pathways with a linear weight matrix.
Each gene can be expressed at any level from complete repression to maximal
expression. Furthermore, the regulatory interactions between genes are allowed to
take on any value along a continuum from highly activating to highly repressing as
in the models of (10, 11). In addition, we show that this modeling system allows for
the facile inclusion of environmental or state-specific variables and allows for the
reverse engineering of regulatory networks with only 2-3 more data points than
there are genes in the system. Finally, these models use and generate simulated data
sets with the same units for expression that are coming out of expression studies.
Thus, this model system may lend itself readily to application on real biological
data, once enough expression data are available.

2. Methods

2.1 Conceptual definition of the TReMM modeling methodology

For computational tractability, we model transcription regulation as discrete state
transitions, such that the expression levels of all genes are updated simultaneously.
This assumption is convenient because expression data represent discrete
“snapshots” of gene expression at various timepoints and environmental conditions.
The expression state of a transcriptional regulatory network containing n genes is
represented by a vector u(t) in n-dimensional space. Each element of u(t)
corresponds to the expression of one gene at time or state t. Next, we model all the
regulative interactions between the genes of our model with a weight matrix, W,
where each row of W represents all the regulatory inputs for one gene. The net
regulatory effect, of gene j on gene i at some state t is simply the expression level of
j, uj(t), times its regulatory influence on i, wi,j. The total regulatory input to i, ri(t), is
derived by summing across all the genes in the system (Eq. 1).

 (Eq. 1)

A positive value for wi,j models gene j stimulating the expression of gene i.
Similarly a negative value models repression, while a value of zero indicates that
gene j does not influence the transcription of gene i. In this way, each gene in the
organism can have multiple inputs, both positive and negative, of differing strength.
Thus, given the input levels of all genes at time or state t, we can calculate the “net”
regulation state of each gene, expressed as an n-dimensional vector r(t). This
matrix formulation of regulation is similar to previously described methods10,11. By

 ri(t)= wi,j uj(t)Σ
j

Pacific Symposium on Biocomputing 4:112-123 (1999)

modeling regulatory interactions with a weight matrix we can use extant matrix
mathematical approaches found in linear algebra and neural networks for
subsequent analyses of the resultant models.

Figure 1. How the α and β constants adjust the dose-response function. The curve
becomes more steeply sloped (becoming more like a step function) as α approaches
infinity and it is shifted to the left when β is positive. Decreasing these constants has
the opposite effect, making the curve more linear as α approaches 0 and shifting the
curve to the right as β becomes negative.

Having derived the net regulatory state of each gene, we model the response of
each gene to that regulatory input. The transcription response of gene i to ri(t) is
calculated with a dose-response or "squashing" function.

(Eq. 2)

where ri(t) is the net regulatory state of gene i, and αi and βi are two gene specific
constants that define the shape of the dose-response curve for gene i. This assumes
that each gene has a static dose-dependent response to activating and repressing
regulatory influences. The α constant can be any positive real-number value and
defines the slope of the curve at its inflection point (50% maximal expression).
Genes with a large corresponding αi will shift rapidly from near zero expression to
near maximal expression when the activating inputs surpass some gene specific
threshold, while those with a small αi will have a nearly linear response to over the
biologically relevant range of regulatory inputs. The βi constant can be any real
number and defines the curve’s y-intercept, where the positive and negative
regulatory inputs are equal. This point corresponds conceptually to the gene’s basal
level of expression. Positive βi represents genes with high basal levels of
transcription, while negative βi represent genes with low levels of basal
transcription. When modeling a regulatory network, the net regulatory state of each
gene is input into an appropriate squashing function with its gene-specific constants
the output of which is xi(t+1), the relative expression level for that gene at time or
state t+1.

xi(t+1) = 1
 1 + e -(αi ri(t) + βi)

α = 1, β = -2
ri

xi

α = 1, β = 0

α = 3, β = 0
increasing α

decreasing β

-10 100

1

0

1

0

1

0
-10 100

-10 100

Pacific Symposium on Biocomputing 4:112-123 (1999)

Figure 2. A flow chart detailing the steps of this modeling method. (a) A vector, u(t),
representing the input expression levels of all the genes (and bias term u0(t)=1) in the
regulatory network is mapped to a new vector, s(t), by weight matrix Z. Vector s(t)
represents the net regulation state of all genes. (b) The relative expression response of
each gene is calculated by inputting each element of s(t) into a gene specific dose-
response function (Eq. 2). A relative expression level of 0 represents complete
repression, while 1 represents maximal expression. (c) The relative expression levels
are converted to "real" expression levels by multiplying by the empirically determined
maximal expression level for each gene.

Because this relative expression level is a value between 0 and 1, with 0
representing complete transcriptional repression and 1 representing maximal
expression, we must convert these relative levels into “real” units of expression. In
addition, we want to allow the genes in our models to have different levels of
maximal expression. To this end, we multiply the calculated relative gene
expression level, xi, by the maximal expression level for gene i, mi, to get the “real”
expression output for i, ui(t+1). In our simulations, mi was randomly assigned
values in a predetermined range set in each experiment. When applied to “real”
biological data, mi will have to be empirically determined (from the maximal
observed expression level, for example) or defined for each gene .

By borrowing a page from recurrent neural networks12, we can incorporate the
α and β constants into the weight matrix and simplify our system of equations. We
begin by replacing the original weight matrix W with a new matrix Z such that
zi,j=αiwi,j. In addition, we can define a new column of weights in Z, such that zi,0=βi

and a new input value u0(t)=1. Thus, the vector of net regulation states, r(t),
becomes a new vector s(t) such that

(Eq. 3)

and

(Eq. 4)

 si(t)= uj (t)zi,jΣ
j=0

n

xi(t+1)= 1
 1 + e -si(t)

si

xi

Input gene
expression levels

(ui > 0)

Zu(t) = s(t)

Z =

2
64

z1;0 � � � z1;n+p

.

.

.

.
.
.

.

.

.

zn;0 � � � zn;n+p

3
75

Matrix of zi,j that represent the effect
of gene i on gene j (zi,j > 0 is

activating, zi,j < 0 is repressing)

(a)
x(t) • m = u(t+1)

(c)

Net regulation state
(si is any real number)

s(t)
Dose response outputs

(0 < xi < 1)

x(t)
Predicted

expression output
(0 < ui)

u(t+1)

g(s(t)) = x(t)

(b)

m

Maximal expression level for each
gene (observed or user provided)

u(t)

0

1

Pacific Symposium on Biocomputing 4:112-123 (1999)

When these changes are compiled, we can formulate a new single equation that
summarizes the whole model system:

(Eq. 5)

2.2 Analysis of the behavior of this modeling methodology

We implemented TReMM in MATLAB 5.0 to test the validity of these models and
to investigate their behavior. We generated random model regulatory networks
ranging in size from 10 genes to 200 genes through the following 4 steps. (1) A
maximal expression level was randomly assigned to each gene within a preset range
that varied from experiment to experiment. (2) The α and β constants were set
with a statistically normal distribution around a set base value. The specific base
value and the breadth of the distribution varied from experiment to experiment. (3)
Weight matrices were calculated with parameters defining the average percent of
non-zero weights throughout the matrix, the maximum allowed weight absolute
value, and the minimum allowed weight absolute value. Each gene was required to
have at least one positive and one negative input, though different numbers of
positive and negative inputs were allowed. The weight maximum and minimum
were set for each gene such that the maximal activation or repression input to a gene
would not exceed a set multiplicative factor (usually 2x) of that required to give
maximal expression (set in (1)) or complete repression (i.e. xI<10-10). (4) Finally,
the α’s and β’s were incorporated as described above to give the final weight matrix,
Z. Step 3 assumes that no gene will have much more total potential regulative input
than the amount of regulative input required to achieve the maximal transcriptional
rate. Without this limitation on the weights (or with a large multiplier), the genes
frequently display boolean-like behavior, oscillating between maximal expression
and complete repression. Whether these assumptions are consistent with biological
behavior and what constitutes a "good" linear simulation of biological regulation are
questions beyond the scope of this work (for discussion see Thomas12, Mjosness10,
and S. Kauffman5). For this work, we take these assumptions as a starting point for
analyzing our algorithms.

We ran simulated time course experiments with these randomly generated
models where the output from one state transition was used as the input vector for
the next. These model networks were allowed to iterate until they reached a stable
terminal state. In all models examined, the regulatory networks converged to an
unchanging condition of gene expression or cyclical set of gene expression states,
not unlike those observed in Boolean networks13. The number of time steps
required for the network to reach a terminal state depended on the initial expression
state of the network, the number of genes in the system, and the overall percentage
of non-zero values in the weight matrix. Figure 3 displays an example of the
behaviors observed from a single model system. Not surprisingly, larger networks

1 + e-Σzi,juj(t)
ui(t+1) = mixi(t+1) =

mi

Pacific Symposium on Biocomputing 4:112-123 (1999)

required more time steps to arrive at a terminal state, regardless of the percent of
non-zero weights in the system.

2.3 Inclusion of environmental variables in a model system

Modeling transcriptional regulatory networks in this manner facilitates introduction
of environmental variables into the modeling scheme. The experimental values of p
environmental variables can be added to an input vector of n genes to generate a
complete genetic and environmental input vector of size n+p. The regulative effect
of these environmental inputs are modeled by adding p weights to each row of the
weight matrix, expanding it from size n x n, to size n x (n+p). These weights
represent the activating and repressing influence of environmental factors on each
gene’s expression as conveyed through the cell’s regulatory apparatus.

Random regulatory networks were constructed including up to 5 environmental
variables and simulated timecourse experiments performed (though these scripts can
track any number of environmental variables). In these experiments, the input
values representing the environmental conditions were altered independently over
the course of 100 timesteps.

 Five different general behaviors were observed in response to these simulated
environmental changes. Figure 4 shows a sampling of 5 genes from different 40
gene regulatory networks. (1) Some genes displayed a roughly linear dose-response
to changing simulated environmental conditions, incrementing or decrementing
smoothly to some stable “basal” level of expression (Fig.4, 1). (2) Other genes
underwent an abrupt expression level transition, jumping rapidly from one relatively
stable expression level to another (Fig.4, 2). (3) Genes expressed periodically under
the initial environmental conditions transitioned to stable expression levels (Fig.4,
3). (4) Conversely, genes stably expressed initially transitioned to highly periodic
expression (Fig.4, 4). (5) Finally, many genes were unaffected by changes to the
environmental conditions (Fig.4, 5). Because the definition of this modeling

Figure 3. Three different terminal expression patterns from a single model system. These
graphs plot the expression levels of 4 genes out of a 40 gene regulatory network. The
weight matrix was the same in each simulated timecourse, but the initial starting conditions
were different. In the terminal state, (a) the genes cycled through a set series of expression
states (i.e., a dynamic attractor), or were expressed at a constant levels (b and c).

a b c

ex
pr

. l
ev

el

time time time

Pacific Symposium on Biocomputing 4:112-123 (1999)

scheme precludes testing all starting conditions, we do not know the frequency of
each of these responses, or the commonalties amongst each model response.

2.4 Reverse Engineering of Genetic pathways from expression data points

Another goal of this work is to predict the genetic pathways that underlie observed
gene expression data. Given only input/output data sets we wanted to identify
values for the weight matrix elements that define the regulatory network that relate
an observed input to its corresponding output. The hope is that if our modeling
scheme is a reasonable approximation of true biological networks, we may use it to
predict genetic pathways from experimentally derived expression data.

Because our models treat the regulation of each gene as an independent event,
the problem simplifies to calculating the weight matrix row for one gene at a time.
Solving for these values on real biological data sets requires that we have a training
data set with which we predict the weight matrix and a test data set consisting of at
least 1 data point. This employs the assumption that there is a single weight matrix
that describes all regulatory relationships in a biological system.

We divide each element of each output data point by the maximal expression
level associated with that gene to get the relative expression level, xi (a value
between 0 and 1, see above). We are, again, assuming that the maximal expression
levels of each gene can be provided through empirical observation. Next, we
“desquash” this relative expression to obtain si, the net regulative state of that gene.

Eq. 6

Finally, we calculate a weight matrix row that relates the inputs to the net regulation
state that we have obtained from “desquashing” our training outputs. Given a
known matrix M (in our case, all the inputs from our data points), an unknown
vector a (a transpose of the weight matrix row corresponding to our gene of

Figure 4. A sample of gene expression
responses to environmental inputs.
These five plots were compiled from 5
different 40-gene regulatory networks
that included 1 environmental variable
each. Genes displayed (1) linear
response, (2) abrupt expression level
transition, (3) transition from periodic to
stable expression, (4) transition from
stable to periodic expression, or (5) no
response to changing simulated
environmental conditions.

si = -ln(-1)1
xi

(1)

(2)

(3)

(4)

(5)

ex
pr

. l
ev

el

time

Pacific Symposium on Biocomputing 4:112-123 (1999)

interest), and a known vector b (in which each element corresponds to the relative
expression level of our gene of interest at a state transition), such that Ma=b, we
need to calculate a. If we have as many input data points as there are genes in the
regulation network, then the problem is “fully determined”, and algebraically easy
to solve. If we have fewer data points than genes, then the problem is "under-
determined" and there are many equally good solutions to a in the equation a=M-1b,
including the "correct" one that is equal to the original weight matrix row. Thus the
problem becomes solving for the "correct" inverse of the input matrix M. We tested
both singular value decomposition17 and the Moore-Penrose "pseudo-inverse" to
calculate the matrix inverse. By applying the test input data points to the derived
weight row, we get the corresponding predicted outputs, and the difference between
the predicted output and the real test output is expressed as a euclidean error.

Next, we employ the assumption that most of the weight matrix values should
be zero. Weights that are zero in the original weight row will frequently have small
values in the predicted weight row. Therefore, we look at the predicted weights,
identify the smallest weight absolute value, and set the corresponding column of the
input matrix M to zero. M-1 is recalculated to get a new prediction of the weight
matrix row. In this fashion, we iteratively remove additional input matrix positions,
calculating the euclidean error after each step. The weight row prediction that
produces the smallest error is kept. This process is repeated for all genes in the
regulatory network. The final output is a weight matrix relating the regulative effect
of all genes on all other genes in the system.

To test this reverse engineering approach, we generated algorithms in
MATLAB that implemented the methodology laid out above. We call this script
package REM (Reverse Engineering of Matrices). We generated random regulatory
networks as described in section 2.2, and used those random networks to generate n
+ 2 input/output data points for each regulatory system. We then applied REM,
using n training data points and 2 test data points and compared the resulting
predicted model system to the known model system. REM's prediction accuracy
was dependent on the number of non-zero weights in known model system (i.e. the
number of regulatory inputs to a gene). Weight matrix rows with few weights were
predicted with higher sensitivity than rows with many non-zero weights.

To test this approach in a more realistic situation, we generated data sets, into
which normally distributed noise had been inserted into the outputs. The noise was
constrained to be less than 10% of the true “signal”. REM was then applied to those
“noisy” input/output data sets and the resulting predicted model systems compared
with the known model system used to generate the data. The sensitivity of our
derived models improved as more "training" data points were used (Figure 5).
Further examination of the false positive weights, reveals that they are roughly 10-
fold smaller than true positive weights when the model system is derived from

Pacific Symposium on Biocomputing 4:112-123 (1999)

nearly as many data points as there are genes. This suggests that simple weight
filtering could be employed, but this idea has not been tested.

Figure 5. The general sensitivity surface of our weight matrix predictions as a
function of the number of input data points and the number of non-zero weights per
row. We randomly generated model regulatory networks and attempted to predict
the weights of the model system using REM. Each data point represents the results
from 100 weight matrix rows in a 20-gene (A) or 50-gene (B) network respectively
with 2, 3, 4, 5, 6, 7, 10, 15, and 20 non-zero weights per row (also 30 and 40 non-
zero weight for the 50-gene networks. Sn=TP/(TP+FP), where TP is true positives
(correctly predicted non-zero weights) and FP is false positives (a weight that is
zero, but was predicted to be non-zero).

3. Limitations of this approach

Like boolean models, these models make assumptions about the behavior of
regulatory systems that are known to be untrue. For example, the assumption that
all genetic interactions can be treated as independent events is contradicted by
known transcriptional regulators that have different activities depending on their
protein partners14,15. Also like boolean networks, we treat the control of
transcription as a discrete time system. This assumption is necessary to make the
problem computationally tractable. The most significant limitation of our modeling
methodology comes from the biological processes being simplified by the weight
matrix. Specifically, each weight attempts to relate a gene’s expression level to that
gene product’s regulatory effect. Thus, the weights minimally assume a linear
relationship between the number of copies of a gene’s mRNA and the amount of
resultant active gene product present in the cell. As systematic protein
concentration data becomes available, we may be able to incorporate such data into
our models to remove this linear assumption. These weights also encompass to
some degree the contribution of each gene on each other gene’s mRNA stability or
rate of degradation. Each weight effectively represents the summation of all the
positive and negative influences on a gene’s final expression level, though this

0

5

10

15

20
5

10
15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

10

20

30

40
5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

se
ns

iti
vi

ty

0

1

(A) (B)

w
eights per row

training data sets

se
ns

iti
vi

ty

w
eights per row

training data sets

Pacific Symposium on Biocomputing 4:112-123 (1999)

assumes that each gene will respond to all the positive and negative influences with
the same sigmoidal curve.

Another significant limitation of any attempt to reverse engineer regulatory
pathways from expression data (simulated or real) comes from the loss of
information that occurs when a gene is being expressed at nearly maximal levels or
is nearly completely repressed. As a gene’s expression level asymptotically
approaches 0 or maximal expression, it becomes impossible to "desquash" the
output levels to any useful predictions of input regulatory state. Furthermore, the
deleterious effects of noisy data are exacerbated near these limits, as small
inaccuracies in expression level detection results in progressively larger errors in
regulatory state calculation. Finally, it is worth reiterating that this system relies on
the assumption that a gene’s maximal expression level can be determined
empirically, probably from the maximal observed level.

4. Future directions and perspectives

One limitation of our current analysis is that the infinite state space of these
models is largely unexplored. While a complete analysis, like that performed in
boolean networks is impossible13, a more thorough and systematic analysis might be
informative. Another problem is how to display the expression information across
various simulated time course experiments. The DDLab16 tool accomplishes this
for boolean networks, but is not applicable to this method, again due to the lack of
state space constraints. A possible solution to both problems may be derived from
“binning” all possible expression states for each gene. For example, for those genes
in our system that display highly non-linear responses, we may be able to represent
their expression states with two “bins”: near complete expression and near complete
repression (thus making these genes exactly equivalent to the boolean networks).
Other genes that display highly linear response over the regulatory range of the
model would require more bins. In this way, we can rationally reduce the state
space to a more tractable finite size without throwing out the more complex
intergenic relationships that makes these models useful.

Similarly, our understanding of these models would be enhanced by tools that
would construct regulatory models in which all possible combinations of model
components were allowed to vary. To limit the number of possible weight
combinations, we would again employ a binning approach, allowing the weights to
be set to predetermined values that represented various ranges of regulatory
interactions. Because our models treat the regulation of each gene as an
independent event, we could build our understanding of larger regulatory systems
by first studying how the combinatorial actions of various regulatory genes could
influence a single gene, either with or without environmental inputs. Once various
interesting regulatory single gene models were built and their behavior understood,

Pacific Symposium on Biocomputing 4:112-123 (1999)

higher order models could be built from those single gene model component and the
higher order gene modeling problem investigated.

5. Conclusions

While much work remains before we understand the global behavior of these types
of networks, this work lays a basis for modeling transcriptional regulatory networks
with weight matrices. Though they still include idealizations of known gene
regulation, these networks allow for inclusion of many different regulatory
interactions and responses, like those observed in biological systems. TReMM
provides a framework within which more accurate non-linear modeling components
may be included. These networks allow for the facile inclusion of environmental
variables with which we can describe the external conditions that influence the
internal transcription regulation. Finally, by numerical analysis, this approach lends
itself to predicting regulatory interactions from observed sets of expression data.

Acknowledgements

We thank B. Fornberg and A. Lapedes for stimulating discussions and ideas.

References

1. Berk, A.J. Biochim. Biophys. Acta 1009 103-109 (1989).
2. Liang, S., Fuhrman, S., Somogyi, R., Proc. Pacific Symposium on Biocomputing

3 18-29 (1998).
3. Fuhrman, S., Wen, X., Michaels, G.S., Somogyi, R., Proc. International

Conference on Complex Systems 21-26 (1997).
4. Somogyi, R. and Sniegoski, C.A., Complexity 1(6) 45-63 (1996).
5. Kaufmann, S.A., The Origins of Order, Self-Organization and Selection in

Evolution. Oxford University Press (1993).
6. Ruvkun, G. and J. Guisto. Nature 338 313-319 (1989).
7. Katz,W.S., R.J. Hill, T.R. Clandini, and P.W. Sternberg. Cell 82 297-307 (1995).
8. Kalthoff, K. Analysis of Biological Development. McGraw-Hill:1996. 498-508.
9. Hopfield, J.J., Proc. Nat. Acad. Sci. 79 2554-2558 (1982).
10. Mjolsness, E., Sharp, D.H., Reinitz, J., J. Theor. Biol. 152 429-453 (1991).
11. Reinitz, J., Sharp, D.H., Mechanisms of Development 49 133-158 (1995).
12. Thomas, R., Thieffry, D., Kaufman, M., Bul. Math. Biol. 57(2) 247-276 (1995).
13. Wuenche, A., Proc. Pacific Symposium on Biocomputing 3 (1998).
14. Garrell, J. and S. Campuzano. Bioessays 13 493-498 (1991).
15. Lamb, P. and S.L. McKnight. TIBS 16 417-422 (1991).
16. Wuenche, A., http://www.santefe.edu/~wuenche/ddlab.html (1996).
17. Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical

Recipes in C, 2nd Ed.. Cambridge University Press (1992) pp. 59-70.

Pacific Symposium on Biocomputing 4:112-123 (1999)

