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As we enter an age in which genomics and bioinformatics make possible the discovery of
new knowledge about the biological characteristics of an organism, it is critical that we
attempt to report newly discovered “significant” phenotypes only when they are actually of
significance.  With the relative youth of genome-scale gene expression technologies, how to
make such distinctions has yet to be better defined.  We present a “mask technology” by
which to filter out those levels of gene expression that fall within the noise of the
experimental techniques being employed.  Conversely, our technique can lend validation to
significant fold differences in expression level even when the fold value may appear quite
small (e.g. 1.3).  Given array-organized expression level results from a pair of identical
experiments, our ID Mask Tool enables the automated creation of a two-dimensional “region
of insignificance” that can then be used with subsequent data analyses.  Fundamentally, this
should enable researchers to report on findings that are more likely to be in nature truly
meaningful.  Moreover, this can prevent major investments of time, energy, and biological
resources into the pursuit of candidate genes that represent false positives.

1   Introduction

As we enter one of the most exciting times in the history of science, in which
genomics and bioinformatics are coming together to make possible the discovery of
new knowledge about living organisms at their molecular level, it is imperative that
we avoid discovery of “truths” that are not so.  While the temptation to plunge into
tracing out metabolic pathways, cellular interactions, or genetic regulatory circuits—
especially now that we have technologies allowing genome-wide study of RNA
expression—is very strong, we must pause long enough to consider how best to
report our results such that they may be meaningful.  Specifically, for microarray-
based expression technologies, whether they are glass microarrays, nylon
membranes, or other formats, we need to better understand how to distinguish
significant fold difference values from those that fall within the noise level of the
experiment at hand.
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Francis Collins rightfully speculates about the large impact that microarray
technology is likely to have, yet reminds us of the “many critically important
questions about this new field that are yet unaddressed” [1].    Some have criticized
array-based methods for not being model-based, or hypothesis-driven, while others
support that the exploratory nature can lead to new hypotheses that then can be
tested in the laboratory [2].  Especially because such hypothesis testing of candidate
genes, cell-cell interactions, or pathways requires a major investment of time,
energy, and biological resources, an important challenge is understanding how to
better recognize false-positive results.

We present a “mask technology” by which to filter out those levels of gene
expression that fall within the noise of the experimental techniques being employed.
Conversely, our technique can lend validation to the significance of fold differences
in expression level even when the fold value may appear quite small.  Our work is
based on the notion that gene expression measurements ought to be repeatable.  Fold
differences for each corresponding pair of genes in a pair of “identical” experiments
should therefore be equal to unity.  Identical experiments are ones in which the
operating conditions, cell lines, culture media, incubation time, and so forth are
controlled to be the same.  We first explore whether this is the case by examining
several pairs of identical experiments.  We then develop the ID Mask Tool, which
enables the automated creation of a two-dimensional “region of insignificance” that
can be used with subsequent data analyses.

2   Materials and Methods

2.1  Data Collection

The data for this study were collected to evaluate the use of microarray technology
for detection of ESE-1 target genes after transient transfection into different cell
lines. We hypothesized that a transfection efficiency of greater than 70-80% should
be sufficient to detect differences in gene expression between two samples. We first
determined the transfection efficiency of various cell lines using a green fluorescent
protein (GFP) expression vector. Four of the cell lines tested (HT1080, 293, MCF-7,
and MG-63) conformed to the criteria set by us. Total RNA was isolated from MCF-
7 human breast cancer cells and MG-63 human osteosarcoma cells transiently
transfected with an ESE-1 expression vector 20 and 24 hours after transfection.
Experiments were performed in duplicates in order to distinguish, from gene
expression, differences due to “biological noise.” Specifically, six pairs of these
duplicated experiments served as the source of the data that we subsequently used to
develop the identity mask methodology.  The ESE-1 expression vector also
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expressed GFP, which enabled us to confirm transfection efficiencies for each
experiment. 32P-labeled cDNA probes reverse-transcribed from these RNAs were
hybridized to the Atlas Human cDNA Expression Arrays from Clontech (Clontech
Laboratories, Inc., Palo Alto, CA) [3].  Each of these Atlas Arrays (Human 1.2 I,
Human Cancer) is a nylon membrane on which approximately 1200 human cDNAs
have been immobilized. The hybridization results were analyzed with the software
provided by Clontech by normalizing to the signals obtained from housekeeping
gene controls on the same array as well as by global normalization.  The microarray
experiments were validated by RT/PCR using the same RNAs.

2.2  Data Analysis and Mask Creation

We developed the ID Mask Tool, a custom-designed computer program written in
the C language, to perform mask creation.  The ID Mask Tool takes as input two
spreadsheet files corresponding to two identical experiments, along with two user
customizable parameters to be discussed below.  It returns as output an “identity
mask,” or ID Mask, specifically for those two experiments.

Each spreadsheet contains the names of several hundred genes and their
corresponding brightness intensity levels (as assessed by hybridization of the probe
of interest).  Only genes present in both files are further considered.  For each of
these genes, we calculate a “fold difference,” the ratio of the intensity in file 2 to the
intensity in file 1 for a given gene.  All fold values are then sorted based on the
corresponding intensity values of the set of genes in the first spreadsheet file.  Two
parameters are used for creation of each identity mask: intensity range (or sliding
window) size, plus either scale value or number of standard deviations.  These are
used to calculate the ID Mask borders and can be experimented with for better
results.

Two methods are then explored for creating identity masks.  Method 1 relies on
segmental calculation of standard deviations.  A “data point” refers to an (x, y)
pairing in which x is an intensity value from the first spreadsheet file and y is its
corresponding fold difference value (calculated as above).  Using all data points in a
given sliding window of intensity values (e.g., from intensity level 1001 to 2000),
the standard deviation of the fold values is calculated.  The average of the intensity
values within that window is then paired with a fold value equal to the average fold
value within that window plus the number of standard deviations specified by the
user.  This new pair becomes a candidate “upper mask border” point.  Similarly, a
candidate “lower mask border” point is created by pairing the average intensity
value of that window with the average fold value minus the number of standard
deviations specified by the user.  Each successive group of data points in each
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sliding window of intensity values (e.g., all points from 2001 to 3000, then all points
from 3001 to 4000, etc.) likewise gives rise to candidate mask border points.

The set of (intensity value, fold value) pairs comprising the candidate upper mask
border points is then fit to a line using least-squares linear regression.  This line
defines the upper mask border.  Similarly, linear regression is used to find the lower
mask border from the set of calculated candidate lower mask border points.  If one
of the derived mask borders fits poorly (based upon relationship to original data
points), the “reciprocal reflection” of the other mask border can serve in its place.
This simply means that each (x, y) point on the good-fit (linear) border gives rise to
a point (x, 1/y) to create the reciprocal reflection border.  (See Figures 1 through 6
for examples of mask borders.  Figures 2—5 show ID Masks each consisting of one
linear regression border and one border derived by taking the reciprocal values of
that linear regression border.)  The region between these borders represents the
“identity” region of insignificant fold differences (i.e., noise).

Figure 1: Identity mask for Experiment A.  Method 2 with parameters 9000 for
intensity sliding window size and 0.975 for scale resulted in the lowest percentage of
original data points lying outside of the mask region (0.7%).

Method 2 for creating an identity mask is similar to Method 1 except that candidate
mask border points are derived from maximal (and minimal) points in each intensity
window rather than from standard deviation calculations.  Specifically, amongst all
data points in a given window of intensity values, the point with the greatest fold
value is chosen.  This is repeated for each successive window of intensity values.
These fold values can also be scaled before use in linear regression to find the upper
mask border.  The lower mask border is analogously derived from the smallest fold
values.
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Once the ID Mask has been derived, all original data points are checked for
inclusion or exclusion in the identity mask region.  The percentage of data points
lying outside of the mask region is reported.

Figure 2: Identity mask for Experiment B.  Method 1 with parameters 9000 for
intensity window size and standard deviation of 3 resulted in the lowest percentage
of original data points lying outside of the mask region (1.7%).

Table 1: Numbers of genes present in each of the experiment pairs, along with the
number of genes common to both files in each pair.

# Genes
in 1st File

# Genes
in 2nd File

# Genes
in Both

Expt A 563 559 550
Expt B 292 516 291
Expt C 244 401 244
Expt D 339 518 326
Expt E 365 397 344
Expt F 233 226 180

3   Results

Six pairs of experiments were performed with Clontech nylon membrane filters and
tumor cell lines as described in the Methods section, resulting in twelve spreadsheet
files of genes and their corresponding expression intensity values.  The ID Mask
Tool was used to perform all mask creation experiments as well as basic data
analysis.  Table 1 displays the number of genes present in each of the file pairs,
along with the number of genes common to both files in each pair.
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Figure 3: Identity mask for Experiment C.  Method 1 with parameters 9000 for
intensity window size and standard deviation of 3 resulted in the lowest percentage
of original data points lying outside of the mask region (2.0%).

Figure 4: Identity mask for Experiment D.  Method 1 with parameters 9000 for
intensity window size and standard deviation of 3 resulted in the lowest percentage
of original data points lying outside of the mask region (1.5%).

For both Methods 1 and 2 of ID Mask creation, sliding windows of size 1000, 5000,
and 9000 on the intensity value axis were chosen for experimentation.  Only when
calculations were not possible with one of these window sizes (e.g., due to division
by zero) was an alternative window size chosen.  For Method 1, the number of
standard deviations (for calculation of candidate mask border points) was chosen to
be 2.5 and 3.  For Method 2, the scale factor was chosen to be 0.975 and 1.0.
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Figure 5: Identity mask for Experiment E.  Method 1 with parameters 5000 for
intensity window size and standard deviation of 3 resulted in the lowest percentage
of original data points lying outside of the mask region (0.9%).

Figure 6: Identity mask for Experiment F.  Method 1 with parameters 9000 for
intensity window size and standard deviation of 3 resulted in the lowest percentage
of original data points lying outside of the mask region (1.7%).

Twelve candidate identity masks were created for each pair of experiments (2
Methods, times 3 intensity window sizes, times 2 scale or standard deviation
factors).  For each pair of experiments, the ID Mask Tool selected the mask with the
lowest percentage of original data points lying outside of the mask region.  Figures 1
through 6 show each selected identity mask along with a scatter plot of the original
(intensity value, fold value) data points for each pair of experiments.  Tables 2 and 3
list the percentages of original data points lying outside of the mask region for each
of the 12 candidate masks derived for each experiment pair.
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Table 2: Each pair of identical experiments gave rise to 12 candidate ID Masks.  Six
of these twelve were derived by Method 1 (three with standard deviation of 3 and
three with standard deviation of 2.5).  The other six were derived by Method 2 (three
with scale 1.00 and three with scale 0.975).  Shown are the percentages of original
data points lying outside of the mask region for each of the 12 candidate ID Masks
derived for each of Experiments A—C.  [σ = standard deviation; intensity range
(window) size of 2000 instead of 1000 is used in Experiments B and C for the
Method 1 trials.]

Expt
A A A

Expt
B B B

Expt
C C C

range
size

1000 5000 9000 2000;
1000

5000 9000 2000;
1000

5000 9000

σ =
3

3.1 2.7 2.2 93.2 80.5 1.7 99.6 100.0 2.0

σ =  2
.5

11.1 3.8 3.3 97.3 97.6 2.7 100.0 100.0 2.4

Scale
1.00

19.2 6.2 0.7 100.0 99.0 2.4 100.0 100.0 2.4

Scale
0.975

19.2 6.2 0.7 100.0 99.3 2.4 100.0 100.0 2.9

Table 3: Percentages of original data points lying outside of the mask region for
each of the 12 candidate ID Masks derived for Experiments D—F.  (See caption in
Table 2 for further details.)  [σ = standard deviation; intensity range (window) size
of 3000 instead of 1000 is used in Experiment D for Method 1 trials, while range
(window) size of 2000 instead of 1000 is used in Experiment F for Method 1 trials.]

Expt
D D D

Expt
E E E

Expt
F F F

range
size

3000;
1000

5000 9000 1000 5000 9000 2000;
1000

5000 9000

σ =
3

17.1 88.4 1.5 0.9 0.9 0.9 5.5 6.1 1.7

σ =  2
.5

24.5 99.4 1.5 2.6 2.0 2.9 7.2 6.6 2.8

Scale
1.00

100.0 99.7 2.4 43.8 18.6 19.7 53.0 9.9 10.5

Scale
0.975

100.0 99.7 3.4 44.3 20.0 20.0 54.7 9.9 11.6
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4   Discussion

DNA microarrays clearly are making a large impact on the way we approach
problems in molecular biology and genomics.   These devices are enabling the
genome-wide study of expression in Escherichia coli K-12, for example [4].  Others
are using DNA microarrays in the study of B-cell lymphomas [5], growth control
genes [6], and aging [7].  Some researchers are focusing on developing new [8] or
using existing [9] clustering techniques to facilitate the analysis of all the data made
available by this relatively new technology.  Few, however, have focused
specifically on studying the properties of these array data to better understand how
to distinguish significant from insignificant “findings.”

One way we might be able to better discern meaningful discoveries from the rest is
by applying an identity mask technology, such as the one we have presented.   Our
experiments show that greater amounts of biological noise are present at lower gene
expression levels.  Thus, there is no magical absolute cut-off for a meaningful fold
value.  There does appear to exist, however, a “mask of insignificant values,”
outside of which the fold values are more likely to represent true significance.  In
Figure 6, for example, a fold difference of 1.5 may be meaningful at an intensity
level of 60,000, while a fold difference of 2.5 may be insignificant at an intensity
level of 20,000.  This result is in stark contrast to a study by Incyte Pharmaceuticals
[11], in which they conclude: “any elements with observed ratios greater than or
equal to 1.8 should be deemed differentially expressed.”  A brief glance at the
microarray-related literature will quickly confirm that others are also reporting
particular fold difference values, such as 1.8, as significant [7].  We argue, however,
that the significance of a fold change depends upon the intensity value; genes that
are expressed at low levels and hence have weak intensity signals need to show a
much greater fold difference than highly expressed genes.

Some have proposed simple statistical tests to determine whether fold differences
are significant; t-tests, for example, are included in the GeneSpring software
package (Silicon Genetics, San Carlos, CA).  Lee et al. propose a statistical method
using normal distributions and posterior probabilities to determine the likelihood that
a gene is truly expressed in a tissue sample [12].  Methods like these are no doubt
important; used alone, however, they may under-emphasize the correlation between
fold values and intensity values.  Future efforts might explore how to best use
statistical validation techniques in conjunction with the identity mask method.

While our study used Clontech filters, the general techniques presented for
understanding identity masks of insignificance apply to all different types of
expression arrays.  Both nylon membrane and glass slide array techniques have their
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individual advantages.  Nylon membrane arrays have sensitive detection using
hybridized 32P probes.  Glass microarrays have high-resolution fluorescent detection,
dual labeling for hybridizing two probes on a single array, and ease in automated
handling of slides [3].  Richmond et al. compared hybridization of radioactive
cDNAs to spot blots on nylon membranes with fluorescence-based hybridization to
glass microarrays; they found both methods to be reliable and reproducible [4].
Chen describes a colorimetry detection system for use with nylon membranes [13].

Regardless of the specific array format employed, it seems clear that a custom-
derived identity mask is one method that could help improve appropriate reporting
of fold difference results.  Future work should include an exploration of fitting
curves rather than lines for the mask borders.  The upper mask border in Figure 2,
for example, may benefit from a fitted curve, or at least a piecewise linear model.

An alternative method for mask creation might be to always calculate fold
differences greater than 1 by simply swapping the order of individual intensity
values whenever the fold value is less than 1.  Only the upper mask border would
then need to be created.  (The lower mask border would be the unity fold difference
line.)

It is not clear why there were some large differences between the numbers of genes
detected in the experiment pairs of Experiments B, C, and D.  These may have been
due to experimental error or biological noise.  Interestingly, the identity masks for
these three also do not fit as nicely as those for Experiments A, E, and F.

While we have selected from amongst the candidate identity masks those with the
lowest percentages of points outside the mask region, future work might consider
refining the mask fit to purposely exclude approximately 5% of the data points.  This
could be likened to p < 0.05, in which 5% of the time, we may inadvertently report a
result as significant even though it is not.  A potential benefit is a closer overall
mask fit and therefore less likelihood to call a significant finding insignificant.

In only one out of the six pairs of experiments did Method 2 (scaling values)
perform better than Method 1 (standard deviations).  This is possibly due to the
mathematical basis upon which standard deviations are calculated, making them in
general more robust and accurate.  One way in which scaling actual data points can
fail is when there exist outliers.  Another is with the choice of too small an intensity
window size.  This can lead to a sort of “overfitting” problem; our group of
candidate “maximum” points from which to derive the upper mask border may  then
contain several non-maximum values.  In Tables 2 and 3, there is a definite trend of
worsening mask fit as one decreases the intensity range (window) size from 9000 to
1000.  It is likely that in most applications, Method 1 may be more suitable.
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Our aim has been to provide a foundation for evaluating fold values.  The ultimate
goal is to find truly significant fold differences when performing “treatment versus
control” comparisons. Analyses of those types of comparisons will likely further our
understanding of the masking technique as well.  Especially because we recognize
the use of DNA microarrays as a method by which to explore the genome in a
model-independent fashion [10], it is imperative that we have a basis for judging
exploratory findings as being important or simply “in the noise.”  Candidate genes
found through exploration can lead to investment of significant resources; we need
to avoid such pursuits of false positive findings.
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