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We introduce a new sequence-similarity kernel, the spectrum kernel, for use with
support vector machines (SVMs) in a discriminative approach to the protein clas-
sification problem. Our kernel is conceptually simple and efficient to compute and,
in experiments on the SCOP database, performs well in comparison with state-of-
the-art methods for homology detection. Moreover, our method produces an SVM
classifier that allows linear time classification of test sequences. Our experiments
provide evidence that string-based kernels, in conjunction with SVMs, could of-
fer a viable and computationally efficient alternative to other methods of protein
classification and homology detection.

1 Introduction

Many approaches have been presented for the protein classification problem,
including methods based on pairwise similarity of sequences 1,2,3, profiles for
protein families 4, consensus patterns using motifs 5,6 and hidden Markov mod-
els 7,8,9. Most of these methods are generative approaches: the methodology
involves building a model for a single protein family and then evaluating each
candidate sequence to see how well it fits the model. If the “fit” is above some
threshold, then the protein is classified as belonging to the family. Discrimi-

native approaches 10,11,12 take a different point of view: protein sequences are
seen as a set of labeled examples – positive if they are in the family and neg-
ative otherwise – and a learning algorithm attempts to learn the distinction
between the different classes. Both positive and negative examples are used in
training for a discriminative approach, while generative approaches can only
make use of positive training examples.

One of the most successful discriminative approaches to protein classifica-
tion is the work of Jaakkola et al. 10,11 for detection of remote protein homolo-
gies. They begin by training a generative hidden Markov model (HMM) for
a protein family. Then, using the model, they derive for each input sequence,
positive or negative, a vector of features called Fisher scores that are assigned
to the sequence. They then use a discriminative learning algorithm called a
support vector machine (SVM) in conjunction with the feature vectors – in the
form of a kernel function called the Fisher kernel – for protein family classifica-
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tion. A serious drawback of their approach is its computational expense – both
for generating the kernel on the training set and for classifying test sequences –
since the HMM is required for computing feature vectors both for training and
test sequences. Training an HMM, or scoring a sequence with respect to an
HMM, requires a dynamic programming algorithm that is roughly quadratic
in the length of the sequence.

In this paper, we revisit the idea of using a discriminative approach, and
in particular support vector machines, for protein classification. However, in
place of the expensive Fisher kernel, we present a new string kernel (sequence-
similarity kernel), the spectrum kernel, for use in the SVM. The kernel is
designed to be very simple and efficient to compute and does not depend on
any generative model, and we produce an SVM classifier that can classify
test sequences in linear time. Moreover, the method is completely general
in that it can be used for any sequence-based classification problem. In the
experiments reported here, we do not incorporate prior biological information
specific to protein classification, although we plan to use prior information in
future research. We report results for experiments over the SCOP 13 database
and show how our method performs surprisingly well given its generality.

When using a kernel in conjuction with an SVM, input sequences are
implicitly mapped into a high-dimensional vector space where the coordinates
are given by feature values. The SVM produces a linear decision boundary
in this high-dimensional feature space, and test sequences are classified based
on whether they map to the positive or negative side of the boundary. The
features used by our spectrum kernel are the set of all possible subsequences
of amino acids of a fixed length k. If two protein sequences contain many of
the same k-length subsequences, their “inner product” under the k-spectrum
kernel will be large. The notion of the spectrum of a biological sequence –
that is, the k-length subsequence content of the sequence – has been used for
applications such as sequencing by hybridization 14 and is conceptually related
to Fourier-based sequence analysis techniques 15.

We note that recently, Chris Watkins 16 and David Haussler 17 have de-
fined a set of kernel functions over strings, and one of these string kernels has
been implemented for a text classification problem 18. However, the cost of
computing each kernel entry is O(n2) in the length of the input sequences,
making them too slow for most biological applications. Our spectrum ker-
nel, with complexity O(kn) to compute each k-spectrum kernel entry, is both
conceptually simpler and computationally more efficient.
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2 Overview of Support Vector Machines

Support Vector Machines (SVMs) are a class of supervised learning algorithms
first introduced by Vapnik 19. Given a set of labelled training vectors (posi-
tive and negative input examples), SVMs learn a linear decision boundary to
discriminate between the two classes. The result is a linear classification rule
that can be used to classify new test examples. SVMs have exhibited excellent
generalization performance (accuracy on test sets) in practice and have strong
theoretical motivation in statistical learning theory 19.

Suppose our training set S consists of labelled input vectors (xi, yi), i =
1 . . .m, where xi ∈ R

n and yi ∈ {±1}. We can specify a linear classification
rule f by a pair (w, b), where w ∈ R

n and b ∈ R, via

f(x) = 〈w,x〉 + b

where a point x is classified as positive (negative) if f(x) > 0 (f(x) < 0).
Geometrically, the decision boundary is the hyperplane

{x ∈ R
n : 〈w,x〉 + b = 0}

where w is a normal vector to the hyperplane and b is the bias. If we further
require that |w| = 1, then the geometric margin of the classifier with respect
to S is

m
g
S(f) = Min{xi∈S}yif(xi).

In the case where the training data are linearly separable and a classifier f

correctly classifies the training set, then m
g
S(f) is simply the distance from the

decision hyperplane to the nearest training point(s).
The simplest kind of SVM is the maximal margin (or hard margin) classi-

fier, which solves an optimization problem to find the linear rule f with max-
imal geometric margin. Thus, in the linearly separable case, the hard margin
SVM finds the hyperplane that correctly separates the data and maximizes the
distance to the nearest training points.

In pratice, training sets are usually not linearly separable, and we must
modify the SVM optimization problem to incorporate a trade-off between max-
imizing geometric margin and minimizing some measure of classification error
on the training set. See 20 for a precise formulation of various soft margin
approaches.

3 Kernels in SVMs

A key feature of any SVM optimization problem is that it is equivalent to
solving a dual quadratic programming problem. For example, in the linearly
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separable case, the maximal margin classifier is found by solving for the optimal
“weights” αi, i = 1 . . .m, in the dual problem:

Maximize
∑

i

αi −
1

2

∑

i

∑

j

αiαjyiyj〈xi,xj〉

on the region: αi ≥ 0 for all i

The parameters (w, b) of the classifier are then determined by the optimal
αi (and the training data). The dual optimization problems for various soft
margin SVMs are similar.

The dual problem not only makes SVMs amenable to various efficient
optimization algorithms, but also, since the dual problem depends only on the
inner products 〈xi,xj〉, allows for the introduction of kernel techniques.

To introduce a kernel, we now suppose that our training data are simply
labelled examples (xi, yi), where the xi belong to an input space X which could
be a vector space or a space of discrete structures like sequences of characters
from an alphabet or trees. Given any feature map Φ from X into a (possibly
high-dimensional) vector space called the feature space

Φ : X → R
N ,

we obtain a kernel K on X ×X defined by

K(x , y) = 〈Φ(x ), Φ(y)〉.

By replacing 〈xi,xj〉 by K(xi, xj) in the dual problem, we can use SVMs in
feature space. Moreover, if we can directly compute the kernel values K(x , y)
without explicitly calculating the feature vectors, we gain tremendous compu-
tational advantage for high-dimensional feature spaces.

4 The Spectrum Kernel

For our application to protein classification, we introduce a simple string kernel,
which we call the spectrum kernel, on the input space X of all finite length
sequences of characters from an alphabet A, |A| = l.

Recall that, given a number k ≥ 1, the k-spectrum of an input sequence
is the set of all the k-length (contiguous) subsequences that it contains. Our
feature map is indexed by all possible subsequences a of length k from alphabet

A. We define a feature map from X to R
lk by

Φk(x ) = (φa (x ))
a∈Ak
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where

φa(x ) = number of times a occurs in x

Thus the image of a sequence x under the feature map is a weighted represen-
tation of its k-spectrum. The k-spectrum kernel is then

Kk(x , y) = 〈Φk(x ), Φk(y)〉.

For another variant of the kernel, we can assign to the a-th coordinate a binary
value of 0 if a does not occur in x , 1 if it does occur.

Note that while the feature space is large even for fairly small k, the
feature vectors are sparse: the number of non-zero coordinates is bounded
by length(x ) − k + 1. This property allows various efficient approaches for
computing kernel values.

A very efficient method for computing Kk(x , y) is to build a suffix tree for
the collection of k-length subsequences of x and y , obtained by moving a k-
length sliding window across each of x and y . At each depth-k leaf node of the
suffix tree, store two counts, one representing the number of times a k-length
subsequence of x ends at the leaf, the other representing a similar count for y .
Note that this suffix tree has O(kn) nodes. Using a linear time construction
algorithm for the suffix tree 21, we can build and annotate the suffix tree in
O(kn) time. Now we calculate the kernel value by traversing the suffix tree and
computing the sum of the products of the counts stored at the depth-k nodes.
The overall cost of calculating Kk(x , y) is thus O(kn). One can use a similar
idea to build a suffix tree for all the input sequences at once and to compute
all the kernel values in one traversal of the tree. This is essentially the method
we use to compute our kernel matrices for our experiments, though we use a
recursive function rather than explicitly constructing the suffix tree.

There is an alternative method for computing kernel values that is less
efficient but very easy to implement. For simplicity of notation, we describe
the binary-valued version of the feature map, though the count-valued version
is similar. For each sequence x , collect the set of k-length subseqences into an
array Ax and sort them. Now the inner product Kk(x , y) can be computed in
linear time as a function of length(x ) + length(y). Thus the overall complexity
of computing the kernel value is O(n log(n)) in the length of the input sequences
using this method.

5 Linear Time Prediction

The output of the SVM is a set of weights αi that solve the dual optimization
problem, where i = 1 . . .m for a set of m training vectors. Training vectors
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xi for which the corresponding weight αi is non-zero are called support vec-
tors. The parameters (w, b) of the classifier are determined by the weights and
support vectors. Specifically, we have

w =
∑

support vectors xi

αiyiΦ(xi),

and in general there is also an expression for b, though in our experiments, we
use a version of the SVM algorithm for which b = 0. Thus, in the case b = 0,
test examples are classified by the sign of the expression

f(x) = Φ(x) · w =
∑

support vectors xi

αiyiK(x,xi).

For our spectrum kernel Kk, the normal vector w is given by

w =

(

∑

support vectors xi

αiyiφa(xi)

)

a∈Ak

.

Note that typically the number of support vectors is much smaller that m, so
that the number of non-zero coefficients in the expression for w is much smaller
that mn. We store these non-zero coefficients in a look-up table, associating
to each contributing k-length subsequence a its coefficient in w:

a →
∑

support vectors xi

αiyi{# times a occurs in xi}.

Now to classify a test sequence x in linear time, move a k-length sliding window
across x , look up the current k-length subsequence in the look-up table, and
increment the classifier value f(x ) by the associated coefficient.

6 Experiments: Protein Classification

We test the spectrum SVM method using an experimental design by Jaakkola
et al. 10 for the remote homology detection problem. In this test, remote
homology is simulated by holding out all members of a target SCOP 13 family
from a given superfamily. Positive training examples are chosen from the
remaining families in the same superfamily, and negative test and training
examples are chosen from outside the target family’s fold. The held-out family
members serve as positive test examples. Details of the data sets are available
at www.cse.ucsc.edu/research/compbio/discriminative.
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Because the test sets are designed for remote homology detection, we use
small values of k in our k-spectrum kernel. We tested k = 3 and k = 4, both
for the unnormalized kernel Kk and for the normalized kernel given by

KNorm
k (x , y) =

Kk(x , y)
√

Kk(x , x )
√

Kk(y , y)
.

Our results show that a normalized kernel with k = 3 yields the best perfor-
mance, although the differences among the four kernels are not large (data not
shown).

We use a publicly available SVM software implemenation (www.cs.
columbia.edu/compbio/svm), which implements the soft margin optimization
algorithm described in 10. Note that for this variant of the SVM optimization
problem, the bias term b is fixed to 0. We did not attempt any fine-tuning of
the soft margin SVM parameters.

We use ROC50 scores to compare the performance of different homology
detection between methods. The ROC50 score is the area under the receiver
operating characteristic curve – the plot of true positives as a function of false
positives – up to the first 50 false positives 22. A score of 1 indicates perfect
separation of positives from negatives, whereas a score of 0 indicates that none
of the top 50 sequences selected by the algorithm were positives.

For comparison, we include results from three other methods. These in-
clude the original experimental results from Jaakkola et al. for two methods:
the SAM-T98 iterative HMM, and the Fisher-SVM method. We also test PSI-
BLAST3 on the same data. To approximate a family-based homology detection
method, PSI-BLAST is run using a randomly selected training set sequence
for one iteration, with the positive training set as a database and a very low
E-value inclusion threshold. The resulting matrix is then used to search the
test set for a maximum of 20 iterations using the default E-value inclusion
threshold. The BLOSUM80 substitution matrix is used with PSI-BLAST.

The results for all 33 SCOP families are summarized in Figure 1. Each
series corresponds to one homology detection method. Qualitatively, the SAM-
T98 and Fisher-SVM methods perform slightly better than PSI-BLAST and
the spectrum SVM. However, if we evaluate the statistical significance of these
differences using a two-tailed signed rank test 23,24 (including a Bonferroni ad-
justment for multiple comparisons), only the SVM-Fisher method does better
than any other method: SVM-Fisher’s performance is better than that of PSI-
BLAST with a p-value of 0.000045 and is better than that of the spectrum
SVM with a p-value of 0.042. These results suggest that the spectrum SVM
performs comparably with some state-of-the-art homology detection methods.
In particular, the signed-rank comparison of PSI-BLAST and the spectrum
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Figure 1: Comparison of four homology detection methods. The graph plots the
total number of families for which a given method exceeds an ROC50 score threshold. Each
series corresponds to one of the homology detection methods described in the text.

SVM gives a slight (though not significant) preference to the latter (unad-
justed p-value of 0.16).

Figure 2 gives a more detailed view of the performance of the spectrum
SVM with the Fisher-SVM method. Here we see clearly the optimization of
the Fisher-SVM method for remote homology detection. For relatively easy-
to-recognize families (i.e., families with high ROC50 scores), the two methods
perform comparably; however, as the families become harder to recognize, the
difference between the two methods becomes more extreme. Similar results are
apparent in a comparison of Fisher-SVM and SAM-T98 (not shown), where
SAM-T98 significantly out-performs Fisher-SVM for many of the easier families
and vice versa.

7 Conclusions and Future Work

We have presented a conceptually simple, computationally efficient and very
general approach to sequence-based classification problems. For the remote ho-
mology detection problem, we are encouraged that our discriminative approach
– combining support vector machines with the spectrum kernel – performed
remarkably well in the SCOP experiments when compared with state-of-the-
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Figure 2: Family-by-family comparison of the spectrum SVM and Fisher-SVM

methods. The coordinates of each point in the plot are the ROC50 scores for one SCOP
family, obtained using the spectrum SVM and Fisher-SVM methods.
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art methods, even though we used no prior biological knowledge specific to
protein classication in our kernel. We believe that our experiments provide
evidence that string-based kernels, in conjunction with SVMs, could offer a
simple, effective and computationally efficient alternative to other methods of
protein classification and homology detection.

There are several directions we plan to take this work. For improved per-
formance in remote homology detection as well as for other discrimination
problems – for example, classification problems involving DNA sequences – it
should be advantageous to use larger values of k (longer subsequences) and
incorporate some notion of mismatching. That is, we might want to change
our kernel so that two k-length subsequences that are the same except for a
small number of mismatched characters will, when mapped into feature space,
have non-zero inner product. For protein classification, we would likely incor-
porate BLOSUM matrix information 25 into our mismatch kernel. We plan to
implement an efficient data structure to enable us to calculate kernel values
for a spectrum kernel that incorporates mismatching.

Secondly, in certain biological applications, the k-length subsequence fea-
tures that are “most significant” for discrimination can themselves be of bio-
logical interest. For such problems, it would be interesting to perform feature
selection on the set of k-spectrum features, so that we identify a feature subset
that both allows for accurate discrimination and gives biologically interesting
information about the spectrum differences between positive and negative ex-
amples. We are studying feature selection techniques in the context of SVMs,
and we hope eventually to apply such techniques to the k-spectrum features.
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