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Our previous methodology for ab initio prediction of protein structure is extended here to treat 
multiple-chain proteins.  This involved modification of our united-residue (UNRES) force 
field and our Conformational Space Annealing (CSA) Global Optimization procedure.  Good 
results have been obtained for both a four-and a three-helix protein from the CASP3 exercise. 

1  Introduction 

Ever since Anfinsen’s formulation of the thermodynamic hypothesis for protein 
folding1, attempts have been made to compute the structure of a native globular 
protein as the global minimun of its free energy.  These include knowledge-based 
approaches [such as homology modeling2-7, threading3,6,8, and combinations of these 
together with secondary-structure prediction9], and ab initio methods10,11.  The latter 
are based only on energy, without the aid of knowledge-based information; the 
purpose of the ab initio approach is to provide an understanding of how pairwise 
and multibody (cooperative) interactions lead to the folded structure. 

In the ab initio approach, it is computationally impossible at present to predict 
the 3D structure of an all-atom protein by energy minimization, Monte Carlo, or 
molecular dynamics procedures.  However, by breaking the problem into its 
component parts, it is possible to achieve the realization of this computational goal.  
Therefore, a hierarchical approach to the computation of protein structure has been 
developed in our laboratory10-14.  This hierarchy involves the following six steps, the 
key stage of which is the global optimization of an off-lattice simplified chain: 

1. Using a virtual-bond representation of the polypeptide chain, described by 
a united-residue potential (UNRES)13,15-17, and an efficient procedure 
(Conformational Space Annealing, CSA)18,19 to search the conformational 
space of this virtual-bond chain rapidly, we obtain a family of low-energy 
UNRES structures.  The combination of UNRES and CSA narrows the 
region of conformational space in which the global minimum is likely to 
lie, which can be achieved at this stage with the simplified virtual-bond 
model but not with an all-atom model.   

2. Next, this very restricted part of conformational space is searched by first 
converting the virtual-bond chains of the low-energy structures obtained in 
the united-residue calculations to an all-atom representation, using our 
dipole-path method20. 
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3. The backbone conformation is then optimized, subject to C
�

- C
�

 distance 
constraints from the parent united-residue structure, by using the 
Electrostatically Driven Monte Carlo (EDMC) method21, which 
incorporates elements of our Monte Carlo-plus-Minimization (MCM)22,23 
and Self-Consistent Electric Field (SCEF)24 procedures. 

4. All-atom side chains are then attached subject to the condition of non-
overlap. 

5. Loops and disulfide bonds are treated with the empirical loop-closing 
potential of ECEPP25, or with an exact procedure26,27. 

6. Final energy refinement is carried out with the ECEPP/3 all-atom force 
field25, plus the SRFOPT surface-hydration model28, with gradual reduction 
of the C

�

- C
�

 distance constraints of the parent united-residue structure 
(until they vanish at the end of the procedure).   

For the success of the hierarchical algorithm outlined above, the united-residue 
force field must be able to capture the essential features of the interactions in 
proteins at a coarse-grain level.  However, it is equally important to have a reliable 
all-atom force field that can reproduce the fine details of the all-atom chain in stage 
6.  Recently, we began to use our algorithms for the global optimization of crystal 
structures as tools to refine the parameters of all-atom potentials (so that the global 
minimum of the potential energy function is close to the experimental structure, and 
its energy is close to the experimental enthalpy of sublimation).  These global-
optimization algorithms were originally based on the deformation of the potential 
energy surface, and include the Diffusion Equation Method (DEM)29, the Distance 
Scaling Method (DSM)30 and its improved descendant, the Self-Consistent-Basin-to-
Deformed-Basin Mapping (SCBDBM) method31 which involves back-and-forth 
deformations and reversals, until self-consistency, with perturbations at each stage 
of reversal.  More recently, we use the Conformation-Family Monte Carlo (CFMC) 
method32 for crystal structure calculations. 

Our methodology, and other types of approaches such as those of Skolnick and 
Baker9,33 (and references cited therein), have had partial success in the CASP3 and 
CASP4 exercises. 

Heretofore, these methods have been applied primarily to single-chain proteins.  
Recently, we have started to develop methods to treat multiple-chain proteins.  Since 
these methods extend the above single-chain approaches, we begin by summarizing 
our treatment of single-chain proteins, and then will describe our methodology to 
treat multiple-chain proteins. 
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2.  Summary of the UNRES Force Field 

2.1  UNRES Geometry 

UNRES employs a simplified representation of polypeptide chains in which 
backbone peptide groups and entire side chains are represented by united atoms.  
The polypeptide backbone is modeled as a sequence of �-carbon atoms linked by 
virtual bonds 3.8 Å in length (corresponding to trans peptide groups), with a united 
peptide group located at the midpoint of each virtual bond.  Attached to each 
backbone �-carbon is a united side-chain ellipsoid whose size and distance from the 
backbone are determined by the amino acid identity of the side chain.  Each united 
residue has four degrees of freedom; the angle between successive backbone virtual 
bonds (�) and the dihedral angle about each virtual-bond (�) determine the backbone 
conformation, and two angles � and � determine the orientation of the side chain 
relative to the backbone.  The united peptide groups and side chains serve as 
interaction sites for the force field, while the �-carbons are present only to define the 
geometry of the chain. 

2.2  UNRES Force Field 

The UNRES force field is derived as a restricted free energy (RFE) function, which 
corresponds to averaging the energy over the degrees of freedom that are neglected 
in the united-residue model.  It is expressed by eq. (1): 

 
 

(1) 
 
 
 

where 
jiSCSCU  is the interaction energy between side chains, 

ji pSCU  is an 
excluded-volume potential between side chains and peptide groups, 

ji ppU  is the 
energy of average electrostatic interaction between peptide groups, torU  is the 
intrinsic energy of rotation about the virtual C

�

- C
�

 bonds, bU  and rotU  are the 
bending energy of the virtual-bond angles and the energy of different rotameric 
states of the side chains, respectively, and corrU  is the multibody or correlation 
energy arising from the loss of degrees of freedom when computing the restricted 
free energy. 

The terms 
jiSCSCU , bU , and rotU  were parameterized based on distributions 

within a set of 195 non-homologous structures from the Protein Data Bank.  The 
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excluded-volume term 
ji pSCU  was parameterized to reproduce the correct 

backbone geometry in short model helices and sheets.  The form of 
ji ppU  was 

obtained by averaging the electrostatic interactions of the peptide groups, and it was 
parameterized by fitting the average restricted free energy surface of two interacting 
peptide groups, calculated with the all-atom ECEPP/325 force field.  The expression 
for the torsional potential torU  results from the cluster expansion of the RFE, and it 
has been parameterized by fitting to ECEPP/325 RFE surfaces. 

Because UNRES is a coarse-grain force field, in which the interactions between 
the united side chains and peptide groups are mean-field potentials, multibody terms 
( corrU ) that capture the underlying physics of the hidden degrees of freedom are 
required for successful ab initio structure prediction.  The RFE is 

 
 

                          
(2) 

 
 

where );(E YX  is the all-atom ECEPP/3 energy function, X  is the set of UNRES 
degrees of freedom, Y  is the set of degrees of freedom over which the average is 
computed (e.g. the positions and orientations of solvent molecules, the side-chain 
dihedral angles, etc.), R is the gas constant, T is the absolute temperature, Y�  is 
the region of the Y  subspace over which the integration is carried out, and YV  is 
the volume of this region.  It can be expressed as a sum of cluster cumulant 
functions34, which correspond to increasing order of correlations between 
component energy terms.  The most significant correlation terms are those for 
electrostatic-local interaction correlations.  By expanding these functions into a 
generalized cumulant series, approximate analytical expressions can be obtained; the 
lowest order cumulants are sufficient to capture the essential features of the 
cumulant functions.  The multibody term corrU  is thus a set of electrostatic-local 
correlations of up to sixth order, the forms of which were derived from the cumulant 
expansion, and the parameters of which were found by fitting to appropriate 
ECEPP/3 RFE surfaces. 

The w ’s are constant weights that balance the contributions of the different 
kinds of interactions.  They are determined by simultaneous Z-score-and-gap 
optimization35, 36 on multiple targets.  This procedure produces a set of weights that 
maximize both the ratio of the difference in energy between the native structure and 
the mean energy of non-native structures to the standard deviation of the energy 
distribution of the non-native structures, and also the difference in energy between 
the native structure and the lowest energy non-native structure.  The native structure 
is actually a set of UNRES structures within a certain rmsd cutoff of the 
experimental structure, and the non-native structures are generated through a global 
conformational search. 
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3.  Summary of CSA 

Conformational Space Annealing is a powerful global optimization method that has 
been used successfully with UNRES in the CASP blind structure prediction 
exercises.  It is a variation on a genetic algorithm in that it maintains a population of 
structures and combines portions of the conformations of existing “parent” 
structures to generate new “offspring” structures, which then replace conformations 
in the population if they have lower energy. 

CSA is distinguished from other optimization methods, however, in its use of a 
cutoff distance that decreases over the course of a search.  Also, conformations are 
always locally minimized in energy using Gay’s Secant-type Unconstrained 
Minimization Solver (SUMSL)37.  A distance measure is defined which measures 
the similarity between two conformations; for UNRES, this distance is defined as 
the average angular difference between two conformations for all backbone dihedral 
angles in the chain.  If a new structure is produced that is within the cutoff distance 
of an existing structure, the new one either replaces the old similar structure, if the 
new one has lower energy, or it is rejected.  The effect of this cutoff distance is that, 
at the beginning of a search, when the cutoff distance is large, CSA will maintain a 
population that is sparse in the conformation space; i.e. the search will be global.  As 
the cutoff distance decreases, a higher degree of similarity will be allowed between 
structures in the population, which effectively searches smaller regions for low-
energy conformations.  CSA thus begins as a global search for potential fold 
families, and ends as a more local search for the lowest-energy representatives of the 
best fold families. 

4.  Performance of Hierarchy in CASP3 and CASP4 

The foregoing methodology has been tested in the CASP310,13,14 and CASP411 
exercises.  In their evaluation of our performance in CASP3, Orengo et al.38 cited 
our predicted submission for HDEA (target 61) as “most impressive…., using more 
classical ab initio methods….(which use) no information from sequence alignments, 
secondary structure prediction, or threading”.   

Our predictions in CASP3 were all submitted for largely �-helical targets 
because we could not predict � structures at that time, i.e. in 1998.  Since then, we 
have improved our UNRES force field with additional terms in the cumulant 
expansion of the free energy, and have achieved partial success in predicting � 
structures11 in CASP4, i.e., we were able to predict part of the � structure in � and 
��� proteins.  Work is now in progress to extend our heirachical procedure (with 
improvements in our cumulant-based UNRES force field, in our global optimization 
procedures, and in our all-atom potential function) to try to extend our current 
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predictions for 100-residue � proteins with an rmsd of 4-6Å to 250-residue �, �, and 
��� proteins with an rmsd of 2-3Å.  

5.  Extensions to multiple-chain Proteins 

5.1  Extensions to UNRES 

To apply the UNRES force field to multiple-chain proteins, new energy terms had to 
be added to represent the interactions between separate chains.  The forms, 
parameters, and weights of these interchain terms are the same as the single chain 
terms because the physical bases of the intra- and interchain interactions are the 
same.  However, the purely local interactions (i.e. bU , rotU , and torU ) have no 
interchain counterparts.  The single-chain multibody term corrU  includes 
correlations for residues that are both adjacent (e.g. electrostatic-local correlations 
������ � �-turn) and separated in sequence (e.g. electrostatic-local correlations 
�	
�		� �-sheet strands).  The multiple-chain corrU  term includes nonadjacent 
electrostatic-local correlations between chains.   The new UNRES energy function 
is: 

 
 
 
 
 
 
 
 

(3) 
 
 
 
 
 
 
 
 
 
 

where the indices k  and l  denote chains, the indices i  and j  denote residues, and 
the nonadjcorrU ,  term represents the components of corrU  corresponding to 
correlations between nonadjacent residues.   In addition to the angles that define the 
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internal conformation of a chain, a set of Euler angles and a translational vector are 
required for each chain to specify the packing arrangement of the multiple-chain 
protein. 

5.2  Symmetry optimizations 

Many multiple-chain proteins contain symmetries in the spatial arrangements of the 
individual chains.  The presence of such symmetries allows optimizations that can 
greatly increase the speed of energy evaluation, gradient calculation, and local 
minimization of the energy39.  For example, in a tetramer of identical chains with 
four-fold rotational symmetry, the intrachain energy of only a single chain need be 
computed because each chain has the same internal conformation.  Although there 
are six possible interchain interaction energies between four chains, in this 
symmetric case only two are unique.  Likewise, fewer gradient calculations have to 
be carried out because some contributions to the gradient can be computed simply 
by rotating the gradients from other symmetry-related interchain interactions.  For 
identical chains with symmetric packing, the number of independent variables is 
greatly reduced, and the topology of the energy surface is simplified, which 
decreases the number of energy evaluations required for local minimization of the 
energy. 

The types of symmetry considered here are rotational, screw, one-chain affine, 
and two-chain affine symmetries39.  The packing variables in these symmetries 
consist of the orientation of the symmetry axis, the displacement of the axis from the 
origin, the radial distance of the first chain in the group from the axis, the rotation 
angle to the first chain in the axial frame, the axial shift to the first chain, the Euler 
angles of the first chain, the axial shift between chains, the axial rotation between 
chains, and, for two-chain affine symmetry, the Euler angles and position in the axial 
frame of the second chain.  A protein may consist of several independent groups of 
chains, each with its own symmetry.  Also, two or more of these groups can be 
constrained to share a symmetry axis. 

5.3  Extensions to CSA 

New ways of generating conformations have been added for the purpose of 
exploring the space of packing arrangements.  The initial, random bank of non-
clashing structures is generated with random packing as well as random internal 
chain conformations.  In the stage of CSA when new “offspring” conformations are 
created by combining the variables of existing conformations, several methods are 
used to generate new chain packings.  A new packing is initially copied from a seed 
conformation and then perturbed by taking packing variables from another 

Pacific Symposium on Biocomputing 7:601-612 (2002) 



  

conformation.  The perturbations can be implemented in several sub-sets of the 
packing variables.   

In this study, the distance between conformations for multiple chains was the 
same as that defined for single chains, viz., the average angular difference between 
two conformations for all backbone dihedral angles.  The primary goal was to 
determine the folded structure of a monomer (in its oligomeric state), and this 
measure reveals the backbone similarity of monomer conformations even in systems 
with different packings.  Also, in the work reported here, the packing variables were 
highly coupled to the internal conformations being packed; thus, structures with 
differing internal conformations generally adopted different packing arrangements. 

6.  Results 

Multiple-chain UNRES has been tested successfully on two homo-oligomeric 
systems that were targets in the CASP3 exercise.  In both cases, the search for the 
native fold was carried out only at the united-residue level, without conversion to an 
all-atom representation. 

6.1  Retro-GCN4 Leucine Zipper 

The retro-GCN4 leucine zipper40 (target 84 in CASP3) is an �-helical tetramer with 
37 residues per chain.  Two independent runs were carried out on both the tetramer 
and the monomer by itself.  For the tetramer, four-fold rotational symmetry was 
assumed for both runs.  The experimental structure shows that the native tetramer is 
very nearly, but not quite, rotationally symmetric, and consists of two slightly 
different monomer conformations. 

In two runs of the monomer, totaling 76,000 minimizations, the lowest energy 
structure found (–174.2 kcal/mol) has a C

� coordinate rmsd for residues 2–37 (the 
first residue is not resolved in the experimental structure) of 13.4 Å from the native 
monomer structure.  Of the 100 structures resulting from the two runs, none are 
closer to the native monomer conformation than 11.6 Å.  The native monomer is a 
single, long helix, and in all cases the single-chain force field breaks the helix into 
multiple segments. 

Two runs of the tetramer, totaling 177,000 minimizations, resulted in a lowest 
energy structure of –777.3 kcal/mol.  This lowest energy structure has an rmsd of  
only 2.34 Å from the native tetramer (Fig. 1).  A tetramer slightly closer to native 
(1.98 Å) is found as the ninth lowest energy, ~8 kcal/mol higher than the lowest.  
Comparing the lowest-energy tetramer results with the experimental results at the 
monomer level yields a monomer rmsd of 2.23 Å or 2.29 Å, depending on the 
experimental monomer used in the comparison.  The monomer of the structure 
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closest to the native tetramer has an rmsd of 1.80 Å or 1.92 Å with the experimental 
monomers. 

While the lowest energy structure from the monomer runs has an energy of 
–174.2 kcal/mol, the intrachain energy per chain for the lowest-energy tetramer is 
–149.7 kcal/mol.  However, the packing energy due to interchain contacts decreases 
the total energy per chain in the tetramer to –194.3 kcal/mol, illustrating that the 
presence of additional chains results in a structure with monomers that are 
individually less stable than the isolated monomer conformation, but are packed 
such that favorable interchain contacts more than offset that loss in energy. 

 
 

Fig. 1. Stereo view of computed structure of retro-GCN4 leucine zipper superposed on the x-ray 

structure40. 

6.2  Synthetic Domain-Swapped Dimer 

Target 73 from CASP3 was a synthetic domain-swapped dimer, a designed �-helical 
dimer of  48 residues per chain that forms a three-helix bundle41.  Two independent 
runs were carried out on both the dimer and the monomer by itself.  Two-fold 
rotational symmetry was assumed for both dimer runs. 
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In two runs of the monomer, totaling 134,000 minimizations, the lowest energy 
structure found (–245.1 kcal/mol) has an rmsd from the native of 11.1 Å.  A 
minimal-tree clustering of the 150 resulting structures at 3 Å yields 41 
conformational families.  The native family was found as the eighth lowest of the 41 
family clusters.  The lowest energy representative of this family, at –237.1 kcal/mol, 
is the closest to the native, with an rmsd of 2.79 Å.  As was the case with the retro-
GCN4 leucine zipper, the single-chain force field tends to break long helices to 
achieve better packing of the chain against itself in the absence of interchain 
contacts from the second monomer. 

Two runs of the dimer, totaling 190,000 minimizations, found a lowest energy 
structure of –526.32 kcal/mol.  This lowest-energy structure is a member of the 
native family, at 5.65 Å from the experimental dimer.  Comparing only monomers of 
the lowest-energy structure and the native gives an rmsd of 3.33 Å. Within this same 
family, another structure at –517.99 kcal/mol is found that has an rmsd of only 3.16 
Å from the native dimer.  The closest monomer to the native belongs to another 
member of the native family, with an energy of –520.2 kcal/mol; the monomer rmsd 
for this structure is 2.19 Å. 

The intrachain energy per chain in the lowest-energy structure is –224.08 
kcal/mol, compared to the –245.1 kcal/mol lowest-energy isolated monomer.  
However, the total energy per chain is –263.16 kcal/mol, again demonstrating the 
importance of interchain interactions in stabilizing the native monomer 
conformation. 

7.  Summary and Conclusions 

Without considering the interchain interactions, it is not possible to obtain a correct 
prediction of a multiple-chain protein.  By extending our UNRES and CSA 
algorithms to take these interchain interactions into account, it is now possible to 
obtain reasonably accurate predictions of the structures of multiple-chain proteins, 
as illustrated here for the retro-GCN4 leucine zipper and a synthetic domain-
swapped dimer. 
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