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Natural language processing (NLP) is a high throughput technology because it can process 
vast quantities of text within a reasonable time period. It has the potential to substantially 
facilitate biomedical research by extracting, linking, and organizing massive amounts of 
information that occur in biomedical journal articles as well as in textual fields of biological 
databases. Until recently, much of the work in biological NLP and text mining has revolved 
around recognizing the occurrence of biomolecular entities in articles, and in extracting 
particular relationships among the entities. Now, researchers have recognized a need to link 
the extracted information to ontologies or knowledge bases, which is a more difficult task. 
One such knowledge base is Gene Ontology annotations (GOA), which significantly increases 
semantic computations over the function, cellular components and processes of genes. For 
multicellular organisms, these annotations can be refined with phenotypic context, such as the 
cell type, tissue, and organ because establishing phenotypic contexts in which a gene is 
expressed is a crucial step for understanding the development and the molecular underpinning 
of the pathophysiology of diseases. In this paper, we propose a system, PhenoGO, which 
automatically augments annotations in GOA with additional context. PhenoGO utilizes an 
existing NLP system, called BioMedLEE, an existing knowledge-based phenotype organizer 
system (PhenOS) in conjunction with MeSH indexing and established biomedical ontologies. 
More specifically, PhenoGO adds phenotypic contextual information to existing associations 
between gene products and GO terms as specified in GOA. The system also maps the context 
to identifiers that are associated with different biomedical ontologies, including the UMLS, 
Cell Ontology, Mouse Anatomy, NCBI taxonomy, GO, and Mammalian Phenotype Ontology. 
In addition, PhenoGO was evaluated for coding of anatomical and cellular information and 
assigning the coded phenotypes to the correct GOA; results obtained show that PhenoGO has 
a precision of 91% and recall of 92%, demonstrating that the PhenoGO NLP system can 
accurately encode a large number of anatomical and cellular ontologies to GO annotations. 
The PhenoGO Database may be accessed at the following URL: http://www.phenoGO.org 

1 Introduction, Related Work and Background  

In recent years, there has been a growing interest in automatic methods that annota-
te biomedical journals. Several methods that use Medline Abstracts in order to an-
notate genes to Gene Ontology (GO) terms1 have been proposed and have yielded 
up to 10% to 20% recall and 61-99% precision2,3. However, to our knowledge, no 
method is available to automatically process text in order to map contextual pheno-
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types to Gene Ontology Annotations. Establishing phenotypic contexts in which a 
gene is expressed is a crucial step for understanding the molecular underpinning of 
the pathophysiology of diseases. Since complete genomes of multicellular 
organisms are increasingly annotated in GO, phenotypic context  annotations of 
these genes could serve as a basis for large scale comparative analyses of gene 
phenotype interactions (phenomics). For example, the specific cell type(s) in which 
a gene is expressed are very useful to establish the functional molecular networks of 
differentiated cells (e.g. “CD4+ T Lymphocytes”, but not “CD8+”, are responsible 
for murine “interleukin-2-deficient” colitis resembling ulcerative colitis in humans4 
[MGI: 96548 Il2 interleukin 2, GO:0005134 interleukin-2 receptor binding]). More 
particularly, bioinformatics methods in systems biology are based on the analysis of 
datasets relating multiple scales of biology together. In this paper we describe an 
automated system, PhenoGO, which combines NLP and knowledge-based methods 
to infer the anatomical and cellular context of existing associations between gene 
products and GO terms as specified in GOA5. GOA databases comprise gene-GO 
associations according to a reference (usually a Pubmed identification: PMID) and 
the curation process in GOA has a precision of 91%-100% and a recall of 72%2. In 
addition, we performed an evaluation of PhenoGO over the Mouse Genome 
Database (MGI) annotations of GO, and report on the results, which show high 
precision and recall. 

1.1 Related Work 

A key step for understanding the phenomes is to provide phenotype and genotype 
information. While GO provides some phenotypic information, other “orthogonal” 
ontologies have been developed such as Cell Ontology (CO)6, the Adult Mouse 
Anatomy (MA)7 and the Mammalian Phenotype Ontology (MP)8. In addition, more 
traditional ontologies and terminologies can be filtered to yield other 
complementary phenotypes, such as the Unified Medical Language System 
(UMLS)9 and the NCBI Taxonomy10.  

Natural Language Processing (NLP). Since 1998 there has been an increasing 
amount of language processing research that involves extraction and mining of 
biomolecular information in journal articles. Some systems recognize and/or 
identify biomolecular entities, some detect relations among biomolecular entities, 
and some discover new knowledge by piecing together information from 
heterogeneous resources11. Krauthammer and Nenadic provide a review of entity 
recognition systems12, Cohen and Hersh, and Hirschman and colleagues each 
provide an overview of relation extraction and text mining systems13,14. Until 
recently biological language processing systems generally extracted terms and 



 

  

relations, but did not map them to concepts in an established ontology. In the 
biological domain, it has recently been recognized that to achieve interoperability 
and improved comprehension, it is critical for text processing systems to map 
extracted information to ontological concepts. A number of researchers have 
developed systems mapping genes to GO codes2,3,14,15,16. Work in the medical 
domain involving the mapping of text to UMLS concepts has also been explored. 
For example, Aronson developed MetaMap, which consists of a mixture of statistics 
and linguistic methods17, Nadkarni and colleagues18 use a string matching approach, 
and Friedman and colleagues19use an NLP system called MedLEE. MedLEE differs 
from the other NLP coding systems in that the codes are shown with modifier 
relations so that concepts may be associated with temporal, negation, uncertainty, 
degree, and descriptive information, which affect the underlying meaning and are 
critical for accurate retrieval of subsequent medical applications. The PhenoGO 
system discussed in this paper utilizes an adaptation of the MedLEE engine, as 
discussed in the methods. While bioinformatics techniques have been developed to 
infer phenotypes from biological databases20 (e.g. microarray experiments), to our 
knowledge, none have used NLP techniques over the literature to extract relations 
that associate anatomical or cellular phenotypes to genes and GO terms together.  

Knowledge Management, MeSH Indexing and NLP. The Medical Subject 
Headings terminology (MeSH) is the National Library of Medicine controlled vo-
cabulary thesaurus21 and covers all biomedical concepts classes, including phenoty-
pes. To index the main concepts in the Medline paper, MeSH headings are created 
manually by experts who read the entire Medline paper and then assign MeSH 
headers to relevant PMIDs. Of relevance to the proposed methods, MeSH terms 
have been mapped to other terminologies and organized in a semantic network in 
the UMLS. Recently, phenomic systems have been developed by Bodenreider and 
Lussier to relate phenotypes and genes relying exclusively on computational 
terminology methods22. The PhenoGO system reuses the knowledge of MeSH 
indexes and GOA to infer the phenotypic context of genes mapped to GO terms. 

1.2   Background 

BioMedLEE NLP System. The NLP component of PhenoGO utilizes an existing 
NLP system, called BioMedLEE, which is under development by the Friedman 
language processing group. BioMedLEE extracts and encodes genotype-phenotype 
relations from information in text. An early version is described in Chen and 
colleagues23, but differs substantially from the current one in that it extracted 
phenotypic information only, and did not map textual terms to codes. The 
BioMedLEE system is based on an adaptation of the MedLEE system19, which  



 

  

<genefunc v = "regulation" code = "GO:0050789^regulation of biological process"> 
<process v = "proliferation"><arg v = "target"></arg> 
<cell v = "progenitor cell" code = "UMLS:C0038250^stem cell"></cell></process> 
<gene_gproduct v = "MGI:98958^Wnt5a"><arg v = "agent"></arg></gene_gproduct> </genefunc> 

Figure 1. XML output of BioMedLEE for “Wnt5A regulates proliferation of progenitor cells.”  

extracts and encodes clinical information in patient reports. An important feature of 
MedLEE/BioMedLEE for PhenoGO is the flexible infrastructure for mapping tex-
tual terms to codes and is described in more detail by Friedman elsewhere19. 

A detailed description of the BioMedLEE system is being submitted as a sepa-
rate publication. In this paper, we summarize the components critical to PhenoGO: 
1) the first one, prepares the articles for processing by extracting relevant textual 
sections, and by handling parenthetical expressions, 2) the entity tagging compo-
nent performs semantic tagging of certain entities, such as biomolecular entities 3) 
the next component identifies section and sentence boundaries, and performs lexical 
lookup using a lexicon that specifies the semantic and syntactic categories of terms 
that were not previously tagged. Many of the lexical entries were automatically gen-
erated using GO, MA, MP, cell ontology, and the UMLS, 4) the parser structures 
the sentence according to grammar rules which specify the relations among the con-
cepts. A parse of the complete sentence is attempted first, and then, if unsuccessful, 
large segments are attempted in an effort to maximize the capture of relations, 5) 
the last stage performs encoding using a coding table and the structured output from 
the previous parsing stage to find the most specific codes, and to generate XML 
output. Codes in the table are represented as triples consisting of a prefix that iden-
tifies the specific ontology, an identifier within the ontology, and the name of the 
concept (e.g. GO:00507899^regulation of biological process). Figure 1 illustrates a 
simplified form of the output that was generated by processing Wnt5A regulates 
proliferation of progenitor cells.  The molecular function genefunc with a value at-
tribute regulation is the main output structure; it has a code GO:0050789 followed 
by the name of the concept. The function is associated with two arguments where 
one has a cellular modifier. One argument is a process, which has the value proli-
feration, but does not have a code. Process is the target of regulation, and thus, it 
has an arg tag with a value target. The cell tag with the value progenitor cell and 
code UMLS:C0038250 modifies process.The other argument, the agent of regula-
tion, is a gene whose code is MGI:98958.  What is significant about the above out-
put is that the MGI-GO-cell triplet is contained within one structure genefunc, sig-
nifying that BioMedLEE found a relation between the 3. In other relevant senten-
ces, BioMedLEE may find a relation between the phenotype and only one of the 
MGI-GO pair, or may just find the context without any relation to MGI or GO. 



 

  

Phenotype Organizer System (PhenOS) Knowledge Management and 
Computational Terminology System. As the focus is on NLP, and the knowledge 
management, and computational terminology methods have been published earlier 
in related papers, we provided a summary of PhenOS. PhenOS is a system under 
development by the Lussier research group with purpose of bridging the gap 
between heterogeneous biomedical terminologies. The system produces a directed 
acyclic graph from the UMLS, provides lexico-semantic and model theoretic 
methods that automatically map an ontology to another one independently of the 
UMLS and organizes and structures phenotypes across heterogeneous datasets 
22,24,25. Specific methods of PhenOS used in the current study were the integration of 
phenomic knowledge structures via structured terminology.25,24 

2 Methods 

The method for assigning phenotypic context to GOA was implemented as a system 
called PhenoGO. An overview of the overall components is illustrated in Figure 2. 
First, Medline abstracts and their gene-GO annotations are identified from GOA, 
and then obtained. Two distinct and independent processes extract phenotypic 
context from the abstracts. The design is such that PhenoGO can function with 
either or both of the processes. Component 1a consists of the BioMedLEE NLP 
system, which processes the title and abstract and generates structured output, 
which in this study identifies genes, GO codes, coded phenotypes (UMLS, CO, 
MA, MP), along with gene-GO-context relations. Process 1b simply obtains 
relevant phenotypic MeSH headings from the Medline abstracts. Component 2, the 
PhenOS knowledge management system completes the contextual assignment of  
contextual phenotypes to GOA gene-GO terms pairs related to the same PMIDs. 

2.1 Phenotypic Context Determination and Encoding Components  

Process 1a- Determining Context using NLP (BioMedLEE). Abstracts are parsed by 
the NLP system BioMedLEE (which was not adapted for PhenoGO) according to 2 
different abstract sections: (i) titles and (ii) body. BioMedLEE can extract about 50 
distinct semantic types from biological text as well as generate codes from multiple 
ontologies, but this study focuses by design on the following 6 coding systems, 4 
types of entities, and their associations: 1) MGI:genes, 2) GO: terms, 3) Cells coded 
in CO or UMLS and 4) anatomies above the cellular level coded in MA, MP, and 
UMLS. Two training sets of 50 PMIDs were selected, parsed by BioMedLEE and 
analyzed thoroughly. Consequently, ten UMLS encodings observed ambiguous in  
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Figure 2: Diagram of the PhenoGO System showing Software and Database Components Involved in the 
Assignment of Phenotypic Context to Gene Ontology Annotations.  

the training set or meaningless for our aims are filtered out (e.g. back, helix, tissue). 
Process 1b- Determining Context using Curated Knowledge (MeSH and 

PhenOS). MeSH terms considered useless in PhenoGO were filtered out during trai-
ning (e.g. “cell”, etc.), while the MeSH headings subsumed by the following con-
cepts of the UMLS semantic networks (TUI) were selected: Anatomical Structure, 
Embryonic Structures, Body Part, Organ, Tissue, Body Substance, and Systems.  

2.2 Phenotype Organizer System (PhenOS) Contextual Assignment 

The PhenOS system (Component 2, Figure 2) performs the contextual assignment, 
and uses a different process depending on whether the coded phenotype came from 
processes 1a or 1b (Figure 2).  First, component 2 obtains the gene-GO pair that 
was associated with the specific article in the GOA database. If the coded 
phenotype originated as a MeSH header that was selected by PhenOS, it is assigned 
as a contextual phenotype augmenting the gene-GO pair. Our hypothesis is that 
when the MeSH header lists a contextual phenotype, it is relevant not only to the 
article but also to the gene-GO pair associated with the Medline article in GOA.  

If the coded phenotype was generated by the NLP system, a more complex 
procedure is followed. The assumption in this case is that context may be 
mentioned incidentally and picked up by the NLP system, but may not be related to 
the gene-GO pair. In order to achieve high precision, we hypothesize that if there is 
a relation between the codes in a gene-GO-phenotype triple and the gene and GO 
codes match the corresponding ones in GOA, then the phenotype is highly likely to 
be related to the matched pair, and thus is likely to be the correct context. The other 
extreme is that if the context does not match any gene or GO code in the pair asso- 
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Figure 3. Descriptive Statistics of the NLP Component: Coded Phenotypes according to the Method 
1a. The analysis was performed on data captured downstream of the the BioMedLEE NLP component (1a, 
Fig. 2) and upstream (before) the PhenOS component (2, Fig. 2) that uses the types of NLP relations 
provided by the NLP to match the cellular and anatomical phenotypes with specific GO annotations. 

ciated with the article, it is more likely that the phenotype may not be related to the 
pair. Thus, to help analyze the type of relations based on NLP processing that affect 
performance of PhenoGO, we record the types of relations and matches (i.e. GO-
gene-phenotype, gene-phenotype, phenotype-GO, no match). If a GO code is 
extracted that does not match the database GO code, it may also be because the 
NLP system obtained a more specific code than the one in GOA.  PhenOS is then 
used to determine whether an ancestor of the extracted GO code matches the code 
in GOA; in that case this GO code is considered matched. For example, codes are 
considered to be matching if the extracted code corresponds to ‘negative regulation 
of biological process’ and the curated code to ‘regulation of biological process’.  

2.3 Evaluation 

Medline Abstracts, Sampling and Gold Standard. We have focused the experiment 
on 3,705 PMIDs of the GOA of the Mouse Genome Database (MGI), which 
contains 2,327 distinct GO terms, 4,269 distinct MGI genes and 12,220 GO-gene 
pairs. Random samples of PMIDs were selected for creating the Gold Standard 
(GS) as described below. For evaluating recall, a sample of 50 PMIDs was 
randomly selected from the 3,705 MGI PMIDs. In this sample, each occurrence of 
anatomical and cellular phenotypes as well as their relevance to their respective 
MGI GO annotations were manually curated by one curator and confirmed by 
another. Samples for calculating precision were randomly selected from the set of 
coded results applicable to our study for evaluating, respectively, the cellular and 
the anatomical phenotypic contexts assigned by PhenoGO. The precision GS 
comprised a total of 575 curated phenotypes associated with genes and GO terms. 

Accuracy Measures. We measured the precision and recall of the assignment of 
coded anatomies and cell types based on the individual and combined NLP and the  
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Figure 4. Precision and recall of the assignment of coded phenotypes to gene-GO term pairs by 
PhenoGO and by its NLP and MeSH components separately (refer to Fig.2, components 1a & 1b). 
Confidence intervals are based on the binomial distribution. 

knowledge components of PhenoGO. Recall was calculated as the ratio of the 
number of distinct [GO-MGI gene-phenotype] triplets that were identified by the 
mapping method (Figure 2) that matched those in the GS, divided by the total 
number of triplets in the GS, (TP)/(TP+FN). Precision was measured as the same 
numerator as recall divided by the total number of triplets predicted by the mapping 
method (NLP&PhenOS, MeSH&PhenOS, PhenoGO), TP/(TP+FP). Thus, in this 
evaluation, in order to count a true positive score, the PhenoGO system must 
accurately encode a phenotype and also relate it with its gene-GO term pair.  

3 Results 

Overall, PhenoGO provided phenotypic context for 96% of the 3,705 PubMedIDs. 
The NLP coded a larger percentage of phenotypes than the knowledge-based meth-
od, and the joint NLP-KB method was significantly better for the cellular annota-
tions demonstrating that the combined NLP-KB method yielded 50% more cellular 
annotations (Figure 4). The NLP process provided several times more annotations 
than the knowledge-based one, though the difference was more important in anato-
mies above the cell level than for cellular anatomies (Figure 4). As shown in Fig-
ure 3, the majority of the NLP annotations were related to the genes only (e.g. con-
text and gene in same NLP structure with no GO), followed by relationships to GO 
only; a smaller number were not related to GO or genes (i.e. context not in same 
structure as GO or gene), and finally an even smaller number were related to both 
genes and GO terms (example of this relation is shown in Figure 1). By design, the 
MeSH headings have no mapping to gene or GO before they are received by the 
PhenOS component (Figure 2), thus there is only one type of contextual assign-
ment method for MeSH terms because the phenotypic context is always assumed to 
be related to the gene and GO pair as specified in GOA. In order to provide a sum-
mary of the scales of anatomies mapped by the system, the following are the counts 



 

  

of distinct types of concepts mapped according to their ontologies: MA:345, MP: 
305, CO:148, MeSH: 460 (Embryo:32, Organs and body parts:240, Tissues:42, 
Systems: 22, Cells:124), UMLS: 1,259 (Embryo:97,Organs and body parts: 786, 
Tissues: 100, Systems:37, Cells:239). The PhenoGO precision and recall for cells 
and anatomies combined are 91% and 92% respectively (the accuracy measures the 
combined coding to the ontology and the assignment of the correct gene-GO pair 
with the phenotype). Details of the results are in Figure 4 showing that the “cell” 
recall of the PhenoGO system is substantially better than that of the NLP, while the 
precision remains unchanged. 

4 Discussion 
 

PhenoGO performed well in accuracy scores. Precision, which is the most import-
ant metric, was over 90% for both the MeSH and the NLP methods. Of note, the 
NLP component, which had access to only the title and abstract, was not signifi-
cantly different from the MeSH component which is based on manual curation of 
the complete paper by experts who focus on main concepts of the article. In addi-
tion, the NLP system did not have the expert knowledge of curators, and therefore 
could not discern whether or not the context was incidentally mentioned or signifi-
cant to the paper. It is quite interesting that only 1 error in precision was caused by 
an incorrect association of an anatomical location with a gene-GO pair. Thus, based 
on our evaluation, use of NLP to augment the GO database with phenotypic inform-
ation is very promising. Moreover, recall of the NLP component was much higher 
than that of the MeSH component, possibly because curators do not focus on index-
ing context. It is also striking that the results for the NLP component are associated 
with performance in coding and in assigning these codes to the right GOA, which 
are much more difficult tasks than extraction alone, and thus, the NLP performance 
in extraction precision is likely to be higher. BioMedLEE was not trained for this 
particular task, and it is likely that further revisions will enable it to perform better.  

An analysis of the BioMedLEE errors was performed, and the most frequent 
types of errors are shown in Table 1. Not surprisingly, word sense ambiguity was 
the most frequent cause of error in precision. Often a gene name was also a pheno-
typic entity, and the incorrect sense was chosen. For example, Notch is a gene and 
also an anatomical part according to the UMLS. Another cause of error in precision 
was due to use of the synonym lists associated with the ontologies because they 
often list incomplete terms as synonyms of more complete terms, causing coding 
and word errors. For example band is listed as a synonym of band form neutrophil 
in cell ontology, but it occurred as a different sense in an article. It appears that on 



 

  

Table 1 - Most frequent types of errors in precision and recall are shown along with examples. 

 Reason Example 

Ambiguity Notch was interpreted as anatomy but is gene in defects of notch pathway 

Ontology Band incorrectly mapped to band form neutrophil when it occurred in 50 k-
Da bands since band is listed as a synonym of band form neutrophil in CO 

Term recognition Finger was interpreted as anatomy instead of part of term zinc finger protein 

P
re

ci
si

on
 

Incorrect relation Skeletal defect was associated with gene Lfng in article instead of delta-like 3 
Mapping to ontology Lymphoid & adipose cell not mapped to lymphoid tissue & adipocyte 
Lexicon Epithelia, epididymus not defined in lexicon 
Term recognition Mast cell not captured as anatomy since it is part of term mast cell tryptase 

R
ec

al

Ontology Precursor was incorrectly listed as synonym of blood precursor in UMLS 

tologies make assumptions, which may be applicable within a particular domain, 
but not across broader domains. Other causes of precision errors occurred when a 
biomolecular term was not recognized, but part of the term was. Thus, finger was 
assigned as context when it occurred in the phrase zinc finger protein.  The most 
frequent causes of error in recall were due to failures in coding and to terms that 
were not recognized because they were missing from the lexicon. Coding errors 
were typically caused when a synonym of a term was not listed in any of the onto-
logies. Thus, lymphoid (where the word tissue was omitted) could not be associated 
with a code. Lexical omissions typically occurred when a rare variant form of a 
term occurred in an article.   

PhenOS Contextual Assignment Evaluation . We have validated the hypothesis 
that the curated phenotypes found in a MeSH terms pertained to the whole article, 
thus to every GO annotation of that article. Indeed, the evaluation measures both 
the validity of the phenotypic encoding and that of its assigned contextual relation-
ship to a gene-GO term pair. Additionally, the precision of PhenoGO assignments 
based on NLP are 91% and 93% for the anatomies and the cell types respectively 
(Fig. 4). It is likely that some association relations confer higher quality to the 
phenotypic context extracted from the abstract by the NLP. For example, when both 
gene and GO term associations are found related to a phenotype, we predict that the 
average precision would be higher than that of no associations at all.  

There were some limitations to this study. Two students who had a background 
in biology were used to sample the abstracts and results, and create the gold 
standard. Some of the evaluation required reading the entire documents or the 
abstracts, both of which are time-consuming tasks, and therefore a limited number 
of samples were used in the evaluation. An additional limitation is that the study 
was performed using articles selected from GOA also focused on the mouse. 
Results of the NLP component may be different for other organisms.  

Significance of the Integrated PhenoGO System. An integrated system that 
combines existing knowledge with NLP coded information has many advantages. 
First, through GOA, knowledge of the precise gene-GO pair and model organism 



 

  

associated with articles that were annotated is known, providing a fairly accurate 
way to resolve the identity of an ambiguous gene for contextual assignment. Al-
though the name of an ambiguous gene is associated with more than one identifier, 
if one of the identifiers matches the one found in the article, it is highly likely to be 
the correct one. Another very significant advantage is that PhenoGO can be scaled 
up very quickly and can be deployed to automatically create a database of 
substantial size. It is scalable in several dimensions. Using the NLP component, it is 
possible to process huge volumes of journal articles as well as textual database 
fields where there are no MeSH codes. However, the NLP system must be trained 
for phenotypic and genotypic information associated with the organism that cor-
responds to the text. Using the MeSH component it is possible to rapidly determine 
contextual information across organisms, and thus to augment GOA with context.  

Future Work. We are revising PhenoGO to increase performance by improving 
the BioMedLEE NLP system as well as the PhenOS contextual assignment method 
and we are mapping to additional types of phenotypes which are beyond this study, 
such as morphologies and diseases. We are currently using PhenoGO to process 
every PMID associated with GOA for Mus musculus and Homo sapiens, and we 
will perform additional evaluations of the results as we extend to every species in 
GOA. Our ultimate objective is to provide an accurate and regularly update open 
source PhenoGO database of phenotypic and contextual annotations for the 
biological and informatics communities.  

5 Conclusion  

We developed and evaluated an automatic NLP system, PhenoGO, for augmenting 
gene product and GO associations using MeSH headings, the UMLS hierarchy, and 
an existing NLP system that maps terms in text to identifiers in multiple biological 
ontologies. Results demonstrated that the PhenoGO NLP system encodes anatomi-
cal and cellular ontologies to GO annotations with high recall and precision. The 
system is scalable in a number of dimensions: (i) it enables high throughput, (ii) it 
encodes in multiple ontologies and terminologies (GO, CO, MA, MP, UMLS, 
MeSH), (iii) it provides different modifiers for the encoded phenotypes, (iv) it uses 
external knowledge bases when they exist to increase accuracy (e.g. MeSH), (v) it 
can provide other types of context, such as diseases. In addition, the system can also 
map to other species and encode textual data from biological databases (results not 
shown). Of significance, the hypothesis that MeSH anatomical knowledge generally 
applies to every GO annotation assigned to the same PMID has been confirmed, 
which is likely to allow for rapid scalability across GOA of every species. In sum-



 

  

mary, the PhenoGO database is expected, upon completion, to provide valuable 
high throughput resources for biological in silico experiments as one can investigate 
in high throughput the differential expression of gene and their GO annotations 
across different cell types, organs, systems, etc. For example, this tool could be 
used to investigate the role of genes in the cellular differentiation of complex 
organisms using GOA with their phenotypic contexts. 
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