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Metagenomics is the study of environmental samples. Because few tools exist for metagenomic analysis, a natural step has been to 

utilize the popular homology tool, BLAST, to search for sequence similarity between sample fragments and an administered database. 

Most biologists use this method today without knowing BLAST’s accuracy, especially when a particular taxonomic class is under-

represented in the database. The aim of this paper is to benchmark the performance of BLAST for taxonomic classification of 

metagenomic datasets in a supervised setting; meaning that the database contains microbes of the same class as the ‘unknown’ query 

fragments. We examine well- and under-represented genera and phyla in order to study their effect on the accuracy of BLAST. We 

conclude that on fine-resolution classes, such as genera, the accuracy of BLAST does not degrade very much with under-

representation, but in a highly variant class, such as phyla, performance degrades significantly. Our analysis includes five-fold cross 

validation to substantiate our findings. 

 
1.  Introduction 

 

The relatively new field of metagenomics has been rapidly expanding over the past several years [1, 2]. This field 

focuses on DNA obtained from an environmental sample rather than from pure cultures in a laboratory. This 

markedly substantial difference from conventional microbial genomics poses a unique set of problems that are now 

gaining attention. Instead of asking the question “How does one organism work?” we are now interested in “Who is 

here in this sample and what are they doing?”. Since greater than 99% of microbes cannot be cultivated in isolation 

[3], metagenomics is a necessity if we wish to understand the microbial diversity of our planet. 

 Examples of metagenomic applications include human health, soil fertility and forensics. The National Institute 

of Health has created an initiative called The Human Microbiome Project to examine microbes associated with 

health in several areas of the human body [2]. For example it is hypothesized that the human gastrointestinal tract 

contains microbes that outnumber human cells 10 to 1 [2]. Many of these microbes are believed to be involved with 

the digestive process. Most of these microbes cannot be isolated in the laboratory. Therefore they cannot be cultured 

for abundance so that their DNA can be extracted and amplified for genomic analysis. Instead we turn to 

metagenomics where we obtain the DNA of the environmental sample, extract and amplify the DNA, sequence the 

samples, assemble the samples and finally attempt to annotate the sequences. Annotation is certainly an elusive task 

since we do not know which microbes are in the sample to begin with. So we turn to sequence alignment tools such 

as BLAST [4, 5] which aid us in answering a fundamental question in metagenomics, namely “Who is here?”. 

Before we can fully trust the results of BLAST for taxonomic classification, we seek to benchmark how database 

representation affects its performance. 

 
2.  Background on Taxonomy 
 

Answering the question “Who is here?” is an issue of taxonomy. Taxonomy refers to the science of naming and 

classifying organisms. The National Center for Biotechnology Information (NCBI) maintains a taxonomy database 

which is considered a well respected source by the scientific community for taxonomic information [4]. The 

standard hierarchy of the taxonomy used in this paper is Phyla, Order, Family, Genus, Species, Strains as 

recommended by the NCBI.  As of September 2009 there are over 339,500 taxa represented in the database. Of 

these taxa 968 are completely sequenced genomes of microbial organisms. Clearly, this is only a small fraction of 

the microbes inhabiting our planet today, however, the databases are expanding rapidly and as the field of 

metagenomics becomes more pervasive we shall see substantial increases in the number of taxa maintained in these 

databases. 

 When an organism’s DNA or metagenomic sample has been sequenced it is a natural step to compare this new 

sequence to existing, annotated sequences in the databases for similarity [6, 7]. BLAST (Basic Local Alignment 

Search Tool) is both a web based and standalone tool developed by the NCBI for comparing sequence similarity 
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between two nucleotide or protein sequences [5]. The most popular way researchers use the tool is to input a 

sequence as a query against the public sequence databases which include NCBI Taxonomy 

(http://www.ncbi.nlm.nih.gov/Taxonomy/). BLAST returns sequences that are similar to the input query. BLAST 

will attempt to align the query with the sequences in the databases and then issue a statistical report to provide a 

level of confidence in the alignment. BLAST is actively maintained by the NCBI and can be found here 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi).  

 The first alignment in the report returned by BLAST is supposedly the sequence in the database with the 

greatest similarity to the query sequence. When the query sequence is small (e.g. < 500bp), BLAST tends to produce 

multiple ambiguous top-hits. It has been found that the closest BLAST hit is often not the nearest-neighbor [8]. 

Generally speaking, microbiologists rely on the BLAST results without question [9, 10, 11]. Researchers have now 

begun to analyze and compare the performance of BLAST for metagenomic datasets. The findings are indicating 

that classifying genome sequence fragments based on the best BLAST hit only yield reliable results if there are close 

relatives represented in database for comparison [12, 13].    

 
3.  Method 
 

A total of 635 distinct microbial strains downloaded in 2008 from the NCBI Genbank database were considered for 

our experiments. We have found that each of the 635 strains in our database can be classified to one of 19 different 

phyla and 272 different genera. In order to partition the database for our experiments we decided to focus on two 

well-represented and two under-represented classes each for the levels of phyla and genus. Thus two separate 

experiments were performed; one for the level of phyla and the other for genus. Table 1 shows the composition of 

each class for each experiment. 

 
Table 1. The class composition for the phyla and genus five-fold cross validation experiments are provided below. A total of 463 strains were 

included in the phyla experiment. We chose to use two phyla having well-representation and two having under-representation in the database. For 

example, Proteobacteria (well) accounted for 315 (68%) of the 463 strains included in the experiment. These strains were partitioned into five 

groups each containing 63 strains. The remaining three classes were partitioned in the same manner ensuring that approximately 20% of the 

strains belonging to the class were in each group. The first group from all four classes was combined and BLAST against the remaining four 

groups. This procedure was repeated five times so that each group was used for query once. An identical procedure was used at for the genus 

experiment.   

 

Phyla 

Total Strains – 463 Database (80%) – 370 Query (20%) – 93 

Well-Represented Under-Represented 

Class # of Strains # Queries Sampled Class # of Strains # Queries Sampled 

Proteobacteria (well1) 315 (68%) 63 Crenarchaeota (under1) 15 (3%) 3 

Fermicutes (well2) 116 (25%) 23 Tenericutes (under2) 17 (4%) 4 

Genus 

Total Strains – 64 Database (80%) – 51 Query (20%) – 13 

Well-Represented Under-Represented 

Class # of Strains # Queries Sampled Class # of Strains # Queries Sampled 

Steptococcus (well1) 26 (40%) 5 Yersinia (under1) 10 (16%) 2 

Staphylococcus (well2) 18 (28%) 4 Synechococcus (under2) 10 (16%) 2 

 

 The two well-represented classes were chosen to be the two classes at each level that contained the greatest 

amount of microbial strains. For example, the phyla class Proteobacteria contained 315 strains out of the 635 strains 

in the overall database. The two under-represented classes were chosen arbitrarily so that they each contain no more 

than 20 strains. Many classes in the database contained only 1 strain; however the five-fold cross validation 

statistical measure necessarily requires that we have a minimum of 5 strains. We chose under-represented classes 

containing 10 to 17 strains as shown in Table 1.  

 The five-fold cross validation experiments proceeded as the following for phyla using 500bp query fragments. 

The identical procedure was followed for the level of genus thus yielding two separate experiments. The distribution 
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of the classes for the experiments can be found in Table 1. To measure the possible effect of class bias, we also 

performed an equal class representation experiment at the phyla level as discussed in the results section.  

 Since we have chosen five-fold cross validation, we randomly partitioned the strains from each class into five 

groups. The first group from each class was combined to create a set of query strains. To simulate a metagenomics 

dataset obtained using the next generation of 454 pyrosequencing technology [14], each query strain’s genome was 

randomly sampled extracting 100 fragments each 500bp in length. Each fragment was annotated with its 

membership class so that we could determine if BLAST correctly matched the fragment. These sampled fragments 

were used as queries for BLAST sequence alignment. The whole-genomes of the remaining strains were used to 

construct the BLAST training database in which BLAST would attempt to align against the query sequences. For 

example, in the phyla experiment, 93x100 (20%) query fragments were BLAST against a database of 370 (80%) 

whole-genomes comprised of the remaining strains belonging to the 4 phyla. The percent accuracy is calculated as 

the number of query fragments correctly identified by BLAST over the total number of query fragments. This 

procedure was repeated a total of five repetitions so that each strain was in the query test set once. The results from 

the five partitions were averaged and the standard deviation was calculated. A survey of cross validation methods 

can be found from these sources [15, 16, 17]. 

 BLAST may potentially return multiple ambiguous hits meaning that all of the top scores returned have the 

same statistical expect value (e-value). In these instances all of the aligned sequences must be from the true 

taxonomic class otherwise the BLAST result was marked incorrect for the corresponding query sequence. 

Additionally, BLAST may not return a report for a query sequence that it has determined to be a low-complexity 

region. In these few instances we marked the query as incorrect. While this filter may be turned off we’ve found that 

BLAST consumes significantly more resources; therefore we’ve chosen to leave it in the default setting.  

 

4. Results 
 

4.1 Well/Under Representation Experiments 
 

The results of the two cross-validation experiments with well/under representation are summarized in Table 2. Each 

experiment had four classes; two classes that were well-represented by strains in the dataset and two classes that 

were under-represented. The percent accuracy is the number of strain fragments that BLAST matched with the 

correct class over the total number of fragments. The average score reported is the average of all five repetitions of 

the cross validation experiment. The standard deviation is calculated in a similar manner. Individual scores for each 

repetition, for all experiments are provided in Appendix A.1. 

 In addition to the percent accuracy of BLAST across all strains for each experiment, Table 2 lists the accuracy 

of BLAST on the four individual classes as well as the accuracy on the combined well and under represented 

classes. Each of these combined groups contains two classes.  

 
Table 2. The percent accuracy scores of BLAST for the genus and phyla experiments are provided below. BLAST was marked correct if it 

matched the query fragment to the correct class and incorrect otherwise. It was also marked incorrect if it provided multiple ambiguous hits 

whereupon these hits belonged to two or more different classes. The percent accuracy for each cross validation repetition is the number of correct 

matches over the total number of query fragments. The percent accuracy scores over all five repetitions were average and are provided below 

along with the standard deviation of scores. 

 

Percent Accuracy All Well Well 1 Well 2 Under Under 1 Under 2 

500bp Genus 
AVG 95.87 96.60 95.65 97.87 94.15 96.90 91.40 

STD 2.10 3.10 4.91 3.03 3.57 4.56 8.51 

500bp Phyla 
AVG 87.21 90.06 92.67 83.01 48.74 36.80 59.38 

STD 2.29 2.30 0.79 7.80 9.64 16.43 14.52 

 

Pacific Symposium on Biocomputing 15:10-20(2010)



   

  

5-Fold CV Performance vs Experiment

 (Well/Under-Representation)

0

10

20

30

40

50

60

70

80

90

100

500bp Genus 500bp Phyla

A
v
e
ra
g
e
 P
e
rc
e
n
t 
C
o
rr
e
c
t

All

Well Combined

Well 1

Well 2

Under Combined

Under 1

Under 2

 
 
Figure 1. This bar graph illustrates the data provided in Table 2. All four classes in the genus experiment exhibited similar percent accuracy 

scores. However, there is a clear difference in percent accuracy between the well- and under-represented classes in the phyla experiment. We’ve 

found that this is due in part to the genus level having less diversity than the phyla level. 

 

 All seven different scores for percent accuracy are plotted against the two experiments in Figure 1. The trend 

across the two experiments indicates that accuracy increasingly diminishes moving from 500bp genus to 500bp 

phyla. It is evident from Figure 1 that the percent accuracy of all strains for each experiment is highly dependent on 

the accuracy of BLAST correctly identifying the fragments belonging to strains having membership in the under-

represented classes. This is evident from the disparity between the under-represented scores for genus and phyla. 

Genus under-represented has an accuracy nearly 40% higher than the phyla under-represented group. Predictably, 

genus percent accuracy for all strains is nearly 10% higher than phyla.  

 
4.1.1 Phyla 
 

There were a total of 463 strains considered in the phyla experiments. Each cross-validation repetition consisted of 

93 (20%) strains chosen at random without replacement to BLAST against the remaining 370 (80%) strains in the 

dataset (see Table 1). Accordingly, every strain in the dataset was used as a test strain once. Each test strain was 

sampled randomly 100 times; each sample consisted of a fragment 500bp in length. These 100 fragments were used 

in place of the test strain. The phyla experiment shows that well-represented strains scored approximately 40% 

higher than under-represented strains.  

 Strains belonging to the under-represented class Crenarchaeota were misclassified 78% on average. These 

misclassified fragments were frequently matched with strains belonging to the well-represented phyla. For example, 

BLAST classified 74% of fragments belonging to Pyrobaculum aerophilum to Proteobacteria (well) rather than 

Crenarchaeota (under) as expected.  

 In general, when BLAST misclassified fragments, 5% of the misclassifications belonged to a strain in the 

under-represented classes. Of the remaining 95% misclassified fragments, approximately 72% of the 

misclassifications went to strains belonging Proteobacteria (well) alone. This is similar to chance since the database 

is comprised of 93.3% well-represented strains. Furthermore, Proteobacteria (well) makes up for about 73% of the 

combined well-represented classes. Generally speaking, BLAST frequently confused under-represented fragments 

with well-represented phyla. 
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4.1.2 Genus 
 

There were a total of 64 strains considered in the genus experiments. Each cross-validation repetition consisted of 13 

(20%) strains chosen at random without replacement to BLAST against the remaining 51 (80%) strains in the dataset 

(see Table 1). Accordingly, every strain in the dataset was used as a test strain once. Each test strain was sampled 

randomly 100 times; each sample consisted of a fragment 500bp in length. The genus experiment shows that well-

represented strains scored marginally higher than under-represented strains. 

 BLAST misclassified 25% of Synechococcus CC9311 (under) 500bp fragments with strains belonging to the 

other three genera. 76% of these misclassifications went to a well-represented genus. When BLAST misclassified a 

fragment 21% of the misclassifications belonged to strains in the under-represented classes. Of the remaining 79% 

misclassified fragments, 48% went to strains belonging to the well-represented to Staphylococcus (well) alone. 

Generally speaking, BLAST frequently confused under-represented fragments with well-represented genus. 

 
4.2 Equal Representation Experiments 
 

The result of the phyla cross validation experiment with equal class representation is presented in Table 3. A dataset 

consisting of 60 strains was constructed to have equal representation among the four phyla classes. 15 strains were 

randomly sampled from each class from our original phyla dataset of 463 strains. Each cross-validation repetition 

consisted of 12 (20%) strains chosen at random without replacement to BLAST against the remaining 48 (80%) 

strains in the dataset (see Appendix A.2). Accordingly, every strain in the dataset was used as a test strain once. 

Each test strain was sampled randomly 100 times; each sample consisted of a fragment 500bp in length. These 100 

fragments were used in place of the test strain. 

 
Table 3. The result of the equal-representation cross validation experiment is provided below. The first score column is the percent accuracy of 

BLAST for all four classes while the four columns to the right, labeled with the phyla’s abbreviated name, refer to the individual scores for each 

class considered in this experiment. These are the same four phyla considered in the well/under represented experiment except now we have 

selected 15 strains from each class for this experiment so that each repetition will have equal-representation among the four classes in the 

database. The cross validation procedure used here is identical to the one used for the well/under experiments. 

 

Percentages All Prot Firm Cren Ten 

500bp Phyla 
AVG 63.75 73.33 61.53 53.46 66.67 

STD 8.23 13.88 10.35 10.78 13.44 
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Figure 2. This bar graph illustrates the data provided in Table 3. The four classes in the equal-representation experiment have percent accuracy 

performance much more similar to one another than in the well/under representation experiment. This finding indicates that class composition in 

the database affects the performance of BLAST with well-represented classes having higher accuracy than under-represented classes. 
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 The average percent accuracy for the experiment is shown in Figure 2. The overall percent accuracy decreased 

by ~25% from the well/under represented phyla experiment while the standard deviation increased from ~2.5% to 

~8%. The percent accuracy decrease is mostly contributed to the decrease in accuracy (~29%) of Proteobacteria. The 

increase in standard deviation is also most significantly affected by Proteobacteria whose standard deviation 

increased by ~14%. This increase was expected since Proteobacteria was considered a well-represented class in the 

previous experiments and we’ve found that variance decreases with increasing representation. 

 
5. Discussion  
 

It is clear from our experiments that the accuracy of BLAST is highly dependent on the composition of the training 

database. The well/under phyla experiment confirmed that the well-represented classes have nearly 40% higher 

accuracy than the under-represented classes. Still BLAST is performing much better than chance on all classes. For 

phyla (500bp) we see that Proteobacteria (well) scored 92.67%. With a database composition of 252/370 we confirm 

that this score is much higher than chance which would be about 68%. This can also be verified for under-

represented classes. For instance BLAST scored 59.38% for Tenericutes (under). Given its database composition we 

would expect a percent accuracy of 14/370 or 3.7% by chance.  

 Upon further examination of the database’s composition we observe the ratio of well to under-represented 

strains in the phyla database is nearly 14:1 (Figure 3). Incidentally, by chance, if we rolled a die we would expect 

BLAST to classify a strain to a well-represented class 14/15 or 93.3% percent of the time. While we found through 

our experiments that BLAST is able to classify much better than chance, the allocation of BLAST misclassifications 

follows a different trend. For example, in the phyla experiments when BLAST misclassified a fragment ~ 95% 

(nearly chance) of the fragments were assigned to a well-represented class.  

 

 

 
Figure 3. The pie charts above show the class composition for both the phyla and genus well/under experiments. The well-represented classes in 
the phyla experiment had nearly 40% higher percent accuracy scores than the under-represented classes. The difference in percent accuracy 

scores between the classes in the genus experiment was marginal. 

 

 These trends are also reflected in the genus experiments. For example for genus (500bp) we find that 

Streptococcus (well) scored 96.6%. By chance we would observe 21/51 or 41.1% accuracy. For Yersinia (under) 

BLAST scored 91.4% while a score by chance would be 8/51 or 15.6%. As shown in Figure 3 the genus database 

composition is about 2.2:1 predicting that BLAST would classify a strain to a well-represented class about 69% of 

the time by chance. This is reflected in the allocation of BLAST misclassifications where about 76% of the BLAST 

misclassified fragments went to a well-represented class. 

 The chart in Figure 1 indicates that the genus experiment outperformed the phyla experiment. We hypothesized 

that this was due to the difference in the well/under database composition (Figure 3) between the sets of 

experiments. Since the phyla under-represented composition is only 7% of the entire database as opposed to 31% for 
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the genus experiments, we wanted to find out if phyla overall percent accuracy score would approach the scores for 

the genus experiments if we increased the percent composition of phyla’s under-represented classes.  

 We conducted the equal-representation experiment among the four classes at the phyla level to further test for 

compositional bias. The results show that the scores for the two under-represented classes increased while the scores 

for the two well-represented classes decreased substantially resulting in similar performance for all 4 phyla classes. 

Therefore we find that class composition size affects performance; improvement for the well-represented classes and 

degraded accuracy for under-represented classes. Proteobacteria’s (well1) percent accuracy decreased 29% while 

Firmicutes (well2) decreased 22%. We infer that strains belonging to the genus level have less diversity than at the 

phyla level since there was such a substantial decrease in scores at the phyla level when the dataset was reduced to 

the size of the under-represented genus classes. There is proof to show that 16s rRNA sequences have 6% 

divergence at the genus level and 3% for species so we infer that this percentage is higher at the phyla level [18]. 

 The standard deviation for classes in the phyla well/under represented experiment is shown in Figure 4. It is 

clear that class size has a significant effect on the standard deviation of percent accuracy scores. Proteobacteria with 

252 strains had a standard deviation of 0.79% while Crenarchaeota with 12 strains had a standard deviation of 

16.43%. The overall standard deviation for phyla increased from 2.29% to 8.23% moving from the well/under 

represented to the equally represented experiment.  Database composition remains an important consideration in 

BLAST experiments in addition to the certainly of class labels. 
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Figure 4. The bar graph above shows the standard deviations of BLAST’s percent accuracy for each class over all five repetitions in the phyla 
well/under represented experiment. This graph clearly shows that for phyla the standard deviation of percent accuracy scores reported from 

BLAST decreases with increasing examples in the database. 

 
6.  Conclusion  
 

Several five-fold cross validation experiments were examined in this study. Our analysis has shown that database 

composition contributes substantially to the accuracy of the BLAST algorithm. Overall we’ve found that the 

standard deviation of percent accuracy scores decreases with increasing class representation in the database. We’ve 

also demonstrated that BLAST performs much better than chance even when representation in the database is much 

smaller than the majority as shown in the phyla experiments. However, when BLAST misclassifies a fragment, it 

appears to assign the fragment by chance. 

 As shown in Figure 1 the genus experiment scored higher than the phyla experiment. We’ve shown through our 

equal-representation phyla experiment that this marked difference is most likely attributed to the genus level having 

better definition and less diversity than the phyla level. The study demonstrates the intuitive result that a user of 

BLAST would want to build a database having as much representation as possible to increase accuracy and decrease 

the standard deviation of scores. As the numbers from the experiments show, the output of BLAST is clearly not 

always the correct match and we suggest the use of additional, external information to form a consensus of matches. 
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Appendix 

A.1 CV Results - Well/Under Representations 
 

Table 4. Results of the well/under cross validation experiment at the genus level, 500bp fragments 

 

Genus Results – 500bp 

Overall Dataset 

 Repetition Training Test % Correct 

1 51 13 97.15 

2 51 13 93.23 

3 51 13 98.62 

4 52 12 94.67 

5 51 13 95.69 

    AVG 95.87 

    STD 2.10 

 

Genus Well-Represented Genus Under-Represented 

Combined  Combined 

Repetition # Training  # Test % Correct Repetition # Training  # Test % Correct 

1 35 9 99.00 1 16 4 93.00 

2 35 9 93.44 2 16 4 92.75 

3 35 9 99.11 3 16 4 97.50 

4 36 8 93.00 4 16 4 98.00 

5 35 9 98.44 5 16 4 89.50 

    AVG 96.60     AVG 94.15 

    STD 3.10     STD 3.57 

Streptococcus Yersinia 

Repetition # Training  # Test % Correct Repetition # Training  # Test % Correct 

1 21 5 100.00 1 8 2 100.00 

2 21 5 88.20 2 8 2 89.00 

3 21 5 99.00 3 8 2 97.50 

4 21 5 93.20 4 8 2 98.00 

5 20 6 97.83 5 8 2 100.00 

    AVG 95.65     AVG 96.90 

    STD 4.91     STD 4.56 

Staphylococcus Synechococcus 

Repetition # Training  # Test % Correct Repetition # Training  # Test % Correct 

1 14 4 97.75 1 8 2 86.00 

2 14 4 100.00 2 8 2 96.50 

3 14 4 99.25 3 8 2 97.50 

4 15 3 92.67 4 8 2 98.00 

5 15 3 99.67 5 8 2 79.00 

    AVG 97.87     AVG 91.40 

    STD 3.03     STD 8.51 
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Table 5. Results of the well/under cross validation experiment at the phyla level, 500bp fragments 

 

Phyla Results – 500bp 

Overall Dataset 

Repetition Training Test % Correct 

1 370 93 88.51 

2 370 93 89.94 

3 371 92 84.05 

4 371 92 87.62 

5 370 93 85.94 

  AVG 87.21 

  STD 2.29 

 

Phyla Well-Represented Phyla Under-Represented 

Combined Combined 

Repetition # Training # Test % Correct Repetition # Training # Test % Correct 

1 345 86 90.98 1 25 7 58.14 

2 345 86 93.47 2 25 7 46.57 

3 345 86 87.50 3 26 6 34.67 

4 345 86 89.72 4 26 6 57.50 

5 344 87 88.63 5 26 6 46.83 

  AVG 90.06   AVG 48.74 

  STD 2.30   STD 9.64 

Proteobacteria Crenarchaeota 

Repetition # Training # Test % Correct Repetition # Training # Test % Correct 

1 252 63 91.94 1 12 3 50.67 

2 252 63 93.29 2 12 3 28.00 

3 252 63 91.71 3 12 3 14.67 

4 252 63 93.44 4 12 3 36.00 

5 252 63 92.97 5 12 3 54.67 

  AVG 92.67   AVG 36.80 

  STD 0.79   STD 16.43 

Firmicutes Tenericutes 

Repetition # Training # Test % Correct Repetition # Training # Test % Correct 

1 93 23 88.35 1 13 4 63.75 

2 93 23 93.96 2 13 4 60.50 

3 93 23 75.96 3 14 3 54.67 

4 93 23 79.52 4 14 3 79.00 

5 92 24 77.25 5 14 3 39.00 

  AVG 83.01   AVG 59.38 

  STD 7.80   STD 14.52 
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A.2 CV Results - Equal Representation 
 

Table 6. Results of the equal-representation cross validation experiment at the phyla level, 500bp fragments 

 

Phyla Results – 500 bp 

Overall Dataset 

Repetition Training Test % Correct 

1 48 12 61.50 

2 48 12 73.50 

3 48 12 69.42 

4 48 12 52.08 

5 48 12 62.25 

    AVG 63.75 

    STD 8.23 

 

Proteobacteria Crenarchaeota 

Repetition # Training  # Test % Correct Repetition # Training  # Test % Correct 

1 12 3 72.00 1 12 3 45.33 

2 12 3 91.33 2 12 3 71.00 

3 12 3 61.67 3 12 3 56.33 

4 12 3 58.67 4 12 3 45.33 

5 12 3 83.00 5 12 3 49.33 

    AVG 73.33     AVG 53.46 

    STD 13.88     STD 10.78 

Firmicutes Tenericutes 

Repetition # Training  # Test % Correct Repetition # Training  # Test % Correct 

1 12 3 57.00 1 12 3 71.67 

2 12 3 56.33 2 12 3 75.33 

3 12 3 80.00 3 12 3 79.67 

4 12 3 58.00 4 12 3 46.33 

5 12 3 56.33 5 12 3 60.33 

    AVG 61.53     AVG 66.67 

    STD 10.35     STD 13.44 
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