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Technological advances are making large-scale measurements of microbial communities commonplace. 
These newly acquired datasets are allowing researchers to ask and answer questions about the composition of 
microbial communities, the roles of members in these communities, and how genes and molecular pathways 
are regulated in individual community members and communities as a whole to effectively respond to 
diverse and changing environments. In addition to providing a more comprehensive survey of the microbial 
world, this new information allows for the development of computational approaches to model the processes 
underlying microbial systems. We anticipate that the field of computational microbiology will continue to 
grow rapidly in the coming years. In this manuscript we highlight both areas of particular interest in 
microbiology as well as computational approaches that begin to address these challenges.  
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1.  Introduction 

Microbes, including viruses, bacteria, and fungi are the most numerous organisms on earth. 
Bacteria alone are estimated to equal the biomass of plants on earth.1Moreover, they are the key 
drivers of life on earth by controlling the majority of Earth’s biogeochemical fluxes.2 

Microbial communities also play key roles in human health and disease.3,4 While the role of 
microbes underlying certain illnesses has been widely recognized, we are also recognizing their 
role in normal physiology, and the role that they can play to restore normal physiology. For 
example, a diet of non-digestible but fermentable carbohydrates given to children affected by the 
Prader-Willi syndrome has been shown to lead to changes in the gut microbiome structure, 
contributing to reduction in weight, regardless of the continued presence of the primary driving 
forces.5 In a more directed experiment, transplants of fecal microbiota has been used to alleviate 
chronic Clostridium difficile infections.6,7  

Microbial communities were historically relatively difficult to survey and characterize. The 
development of fast and inexpensive sequencing methods has dramatically aided in this analysis.8 
We can now readily evaluate and describe communities that we could not easily catalog with other 
approaches.9,10 These new experimental platforms are providing the basis of in depth surveys of 
the microbial components of our world. For example, the human microbiome project (HMP) was 
designed to catalog human-associated microbial communities,11 producing an extensive bacterial 
catalog of over 200 adults.12 

Many other studies are working towards identifying microbiome features that are important for 
health or disease. For example, a series of studies have characterized the microbiome in lungs of 
individuals with conditions such as cystic fibrosis (CF),13–16 chronic obstructive pulmonary 
disease (COPD),17 asthma,3,18 and in the intestinal tract of individuals with CF19, and diabetes.4,20 
In some cases it has been possible to identify pathogens and/or the expression of particular genes 
that are associated with positive or negative outcomes.19,21 It is the hope that  knowledge of the 
microbiome and gene expression can be leveraged to develop more targeted interventions and 
preventative treatments. 

The wealth of microbial data is generating new challenges as well as new opportunities for 
computational microbiology. Some predict that genomic data will become the foremost example 
of big data, outpacing astronomy and other data-intensive fields within the next ten years.22 
Algorithms that address this challenge will transform microbiology, but to do so they will need to 
be accurate, scalable, and wrapped in software accessible to and usable by biologists. 

2.  Challenges in Microbiology and Computational Approaches 

We discuss existing challenges in microbiology, and highlight computational approaches that 
address these challenges. We focus primarily on those areas that have been transformed by the 
wealth of sequencing data now available. 

2.1.  Gene molecular function and process prediction 

While DNA and RNA sequencing has become substantially easier and less costly, the process of 
understanding the function of genes remains difficult. This process of functional determination has 
been facilitated by computational algorithms that aim to automatically annotate functions based 
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on: the gene’s nucleic acid sequence; the similarity of the gene’s sequence to those with annotated 
functions;23 how the gene is expressed;24 the gene’s interaction partners;25,26 and other features.27 

While there are many approaches for prediction, there are also many approaches for 
assessment, and the need for commonly accepted benchmarks has been highlighted as an area of 
need.28 Recently, the Critical Assessment of Function Annotation (CAFA) was conducted to 
address this need.29 While CAFA represents an important first step, the need for benchmark 
datasets, particularly those with comprehensive experimental validation and standardized 
assessment, remains high. This is particularly true in bacterial systems, which have not been well 
covered by CAFA challenges to date.29 Ideally microbiologists will be able to both retrieve a best 
estimate for any gene of interest in an organism, and also receive a well-calibrated confidence 
score for that prediction. 

2.2.  Microbes’ molecular functionality and classification 

The overall sum of molecular functionality encoded in the genomes of microbes is representative 
of both their morphology and physiology – key features in bacterial taxonomic classification. Our 
interest in microbes is often focused on specific parts of their molecular abilities – their 
pathogenicity, toxicity and antibiotic resistance (to us and other species, e.g. for bio-pesticide 
purposes), as well as their ability to survive and thrive in extreme environments or with specific or 
limited nutrient sources (bioremediation and green energy). Thus, classification of microbes that 
implies similar treatment of similar organisms is important for industrial and clinical applications. 

Current taxonomy is guided by evolutionary relationships,30 which, however, ignores 
horizontal gene transfer (HGT) and, often, plasmid contributions and, therefore, does not 
guarantee functional similarity. Recent work31 has shown the advantages of using microbial 
genome-guided predictions as proxies for functional comparisons. Microbial functional 
comparisons, informed by individual organisms’ environmental preferences, highlight specific 
genes and functions responsible for particular environmental adaptations (e.g. functional studies of 
cyanobacteria clades identify sigma factors potentially responsible for salt tolerance).31 However, 
despite significant recent efforts32,33, only a third of the microbial genes (for which sequences are 
available) are explicitly functionally annotated,31 and high-throughput experiments exploring 
temporal relationships between gene expressions are missing for the vast majority of (already fully 
sequenced) microorganisms, and annotations of molecular pathways are limited. Additionally, any 
available experimental tests only reflect a portion of overall bacterial functionality, with nearly 
three hundred tests only accessing 5–20% of the total functional potential.30 Thus, significant 
further research is necessary to properly identify, describe, and use microbial functional abilities 
on a large scale. Within the confines of the current state and speed of the experimental art, 
computational approaches remain the sole, most significant means for producing new knowledge 
from existing data (e.g. computational studies on co-occurrence of specific functions encoded 
across genomes of organisms occupying similar environments could inform the necessary 
molecular pathways). 

Microbial molecular functional abilities accurately reflect the environmental challenges faced 
by the individual subpopulations of microbes (ecotypes). In fact, the environment often has a more 
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pronounced effect on the microbial genomes than does vertical descent. We further expect that a 
function-based approach at exploring environmental impact will be even more relevant to the 
study of entire microbial communities in light of their emergent functionalities (i.e. functions that 
are available to the diversity of microorganisms together occupying a single niche, but not to each 
individual organism within that niche). 

2.3.  Microbes’ responses to their environment 

Microbes must respond to their environment to adapt to changing conditions such as nutrient 
availability, changes in a host, new members of their microbial community and many other 
factors.34 Sequencing-based methods allow the transcriptomes of organisms to be measured 
without the potentially time consuming and costly array-design process that was required in the 
past.35 This has allowed for assays of a diverse array of organisms, including many microbes. 
Such assays readily allow for differential expression analyses, in which genes are ordered by the 
extent to which they differ between conditions, isolates, or environments. While differential 
expression analyses play an important role, being able to integrate newly performed experiments 
into the context of existing data provides a key opportunity. 

There are now more than 1.8 million genome-wide assays freely available in repositories such 
as ArrayExpress32 and NCBI’s Gene Expression Omnibus33 (GEO). In total, these repositories 
contain experiments for more than 2000 different organisms (Fig. 1A). More than 150 species had 
more than 500 assays publicly available as of July 1, 2015 (Fig 1B). We anticipate that the number 
of organisms with large amounts of transcriptomic data will continue to grow. The transcriptomes 
of nearly 45,000 single cells were recently sequenced in one experiment,36,37 surpassing the 
number of transcriptomes available for many organisms. While such techniques cannot yet be 
readily applied to bacteria, we expect that new approaches will become available and rapidly 
expand the diversity and scale of available transcriptomic datasets for microbiological systems. 
 
 

 
 

Fig. 1.  The number of organisms with (A) genome wide data available and (B) those with more than 500 publicly 
available genome-wide expression assays. Counts for 2015 include assays from January through July. 

 

We now have the opportunity to integrate and analyze these data to understand how the 
response to the environment in a specific or newly performed experiment relates to the response 
observed by others in past experiments. In well-characterized systems, data have been integrated 
using supervised methodologies that leverage extensively curated knowledgebases.38,39 For many 
microbial systems, these knowledge-bases are limited or unavailable. To address this challenge we 
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need to develop unsupervised algorithms capable of integrating data with diverse information, 
ideally across multiple platforms. Such algorithms are now being developed,40 but significant 
work remains to be done to apply these to large-scale microbial data compendia. 

2.4.  Host-microbe and microbe-microbe interactions 

While adaptive immune responses in the host and evasion strategies of the microbe have been 
extensively studied, we are still discovering new mechanisms of host-microbe interactions. For 
example, Lee et al. identified genetic variants in a specific bitter taste receptor that were associated 
with susceptibility to respiratory infections, and that these receptors could be activated by 
compounds produced by Pseudomonas aeruginosa.41 Subsequent studies have continued to reveal 
roles for taste receptors in the innate immune response.42,43 Similar sensing of microbe-produced 
compounds have been reported in plants.44 Computational techniques that facilitate the analysis of 
host genetics in combination with the composition and metagenomic characteristics of microbial 
communities may continue to identify additional novel mechanisms of host-microbe interactions. 

2.5.  Membership in microbial communities 

Microbial communities have now been extensively profiled.10,45–47 For communities on human 
hosts, the HMP has provided a large-scale survey across many available surfaces.12 In addition to 
this large-scale assessment, numerous surveys have been made of microbial communities in a 
multitude of specific sites.48–51 Such analyses have been performed in both healthy individuals and 
those experiencing a variety of conditions.52–57 

2.5.1.  Heterogeneity across microbial communities 

Analysis of datasets from the HMP and others has raised numerous questions. For example, the 
abundance of microbial taxa varies substantially between individuals and body sites, but the 
relative abundance of metabolic modules within the communities remains consistent.12,58 Studies 
of twins have revealed differences in similarity between monozygotic and dizygotic twins, 
suggesting that an individual’s genetics affect his or her microbial communities.59,60 This 
observation raises the question: what are the drivers of these differences, and what are their 
implications for both the community and the host? 

2.5.2.  Heterogeneity within microbial populations 

Prior to the advent of large-scale inexpensive sequencing, microbial communities were assessed 
through sequencing of portions of the 16S ribosomal subunit that provided a family, genus, or 
species level of resolution.61 Metagenomic analysis of both mixed species communities and single 
species populations provides the opportunity to identify genetic heterogeneity at the sub-species 
level within microbial communities. Such genomic diversification is rapid and common in 
biofilms62,63 and chronic disease64 and needs to be incorporated into our models for microbial 
communities. For example, traditional microbiological analyses have found that P. aeruginosa 
mutants with increased alginate production or the loss of quorum sensing regulation are commonly 
selected for in the lungs of individuals with CF, and the appearance of these mutants is associated 
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alterations in pathways known to be associated with host interactions65 and have been associated 
with worse disease outcome66. The ability to associate genomic, transcriptomic, and phenotype or 
outcomes data will position us to understand which environmental factors drive the selection for 
certain variants and how these variants change the course of host-microbe and microbe-microbe 
interactions.  

3.  Conclusions 

This is an exciting time in computational microbiology. Both the questions being asked and the 
experimental methodologies available to answer them are expanding in scope and diversity. We 
have highlighted a number of areas where we see particular opportunities for computational 
approaches. We anticipate that addressing these questions will require expertise in microbiology 
and the development, evaluation, and application of computational systems. The goal of our 
workshop is to provide a venue that brings these constituencies together. 
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