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Recent technological developments allow gathering single-cell measurements across different 

domains (genomic, transcriptomics, proteomics, imaging etc). Sophisticated computational algorithms 

are required in order to harness the power of single-cell data. This session is dedicated to 

computational methods for single-cell analysis in various biological domains, modelling of population 

heterogeneity, as well as translational applications of single cell data. 
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1.  Introduction 

Inferring the molecular mechanism of cell behavior and linking it to function and dysfunction is 

one of the ultimate goals of quantitative biology and medicine. Until recently, most measures to 

classify and characterize cellular behavior have been performed on the ‘bulk samples’, whereby a 

large number of cells were physically homogenized and then assayed. Bulk measurements erase the 

information about the potentially complex heterogeneity of cellular states within the samples. The 

problem with such approaches becomes obvious from a simple example: whenever researchers 

observe a difference in average values of a single parameter between samples, it is quite impossible 

to differentiate between a scenario where there was a homogenous change of a variable in all cells 

versus a shift in compositional ratios between a  differentially expressing populations Besides, the 

measurements derived from pooled populations of cells lack the specificity to capture outlier cell 

behavior that might explain cell differentiation and transitions from normal to disease cellular states. 

The noise, or variance, between the molecular states of different cells -- even among cells assumed 

to be homogenous – can be correlated with protein expression and function 1 as well as cell 

morphology and interaction with neighbors2. Emergence of cell heterogeneity might be sporadic 

(e.g., cell-to-cell variation in cell culture3), programmed (e.g., cell differentiation4  or immune 

receptor recombination5), or a result of adaptive evolution and semi-heritable phenotypic plasticity6. 

The ability to quantify molecular events with single cell resolution is intrinsically linked to 

analytical advances.  Unfortunately, many of those variations could not be systematically studied 

by traditional molecular biology methods, such as PCR, Western Blotting, IP, genome sequencing, 

microarrays and RNA-seq, because they lack the sensitivity and the throughput that are required for 

single cell analysis. One notable exception is immunology, which has enormously benefitted from 

early adoption of the single-cell analysis by flow cytometry and FACS. Flow cytometry has been 

pivotal to detailed characterization of various immunological processes, such as blood cell 

development and activation and has enabled systematic mapping of the roles of various immune cell 

populations in healthy and disease states. Driven by a need to distinguish multiple cell populations, 

cytometry placed emphasis on multiparametric analysis whereby the cell populations were defined 

by increasingly complex combinations of protein markers. More recently, the importance of 

multiparametric analysis has increased with advent of mass cytometry7. Many excellent 

computational tools have been developed for handling cytometry data, including specialized 

clustering algorithms for automated mapping of cell population8, machine learning tools that find 

cell populations that are correlated to clinical outcome9, data visualization tools that trace cell 

differentiation trajectories10,11, a specialized ontology of cell types12, algorithms for causal inference 

of signaling networks by leveraging huge training sets of single-cell data 13, data-driven reference 

maps of immune cell populations14 and many others. 

For many years the single-cell analysis has been associated with flow cytometry and was limited 

to measuring protein concentrations using tagged antibodies. Recent advances in experimental 
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techniques and automation have greatly expanded the scope of single-cell analysis and introduced 

completely novel readouts and modalities. Examples include: 

1. Genomic sequencing in single cells 15 

2. Single cell RNA-seq 16  

3. Single molecule RNA sequencing in situ 17   

4. Gene expression profiling by flow cytometry  18 19 

5. Histo-cytometry 20 

6. Multiplexed ion beam imaging 21 

7. Mapping of chromatin state in single cells 22 

8. Cell morphology and motility analysis in cell cultures 2 

9. Single cell western blotting23 

These emerging technologies provide an unprecedented opportunity to capture new biological 

processes and mechanisms at the single cell level. Given the list of analytical methods with a single 

cell resolving power now available, a wealth of new information, including: protein abundance, 

methylation patterns, promoter structure, gene expression, copy number variations, gene function 

and essentiality, DNA structure, evolutionary plasticity, and selective advantage can now be created 

for integration. Synthesis and interpretation of various modalities of single cell-level data now 

depends on novel computational approaches that aim to uncover and model the biological principles 

behind the cell heterogeneity. Data fusion methods that leverage prior biological knowledge for 

automated cell type annotation. Most importantly, computational methods are needed to provide a 

system-level view of the interplay of diverse, fluctuating biological components and identify 

clinically relevant and actionable modules within the biological system. In this session we feature 

excellent pieces of original research that broadly cover various aspects of single-cell analysis and 

modelling of cellular heterogeneity. 

 

2.  Session contributions 

2.1.  Data normalization and quality control 

Quality control is a cornerstone of quantitative data analysis: rigorous filtering of noisy and 

spurious signals and correction of systematic variability is lays the solid foundation which ensures 

that the downstream data analysis captures true biological effects. 

Aevermann et al. present a quality control pipeline for single-cell analysis which pioneers the 

use of objective criteria and machine learning for QC of single-nuclei sequencing data. While many 

researchers today still rely on subjective assessment of data quality, Aevermann and colleagues 

designed and trained a classifier that implements a random-forest approach with 79 features per 
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sample to stratify samples into 3 quality classes: 1 pass and 2 types of fails. Analysis of 2272 single-

nuclei samples successfully screened out 21% low quality data points. Authors demonstrated that 

removing the low-quality samples had a marked effect on the quality of the results in the downstream 

multidimensional manifold embedding analysis. 

Fread et al. devised an elegant advance for the quality control and filtering of barcoded mass 

cytometry (CyTOF) data. They are introducing a concept of per-sample filtering of data following 

the debarcoding, which allows for proper handling of potentially very significant sample-to-sample 

variations in barcode intensity. Authors are also pioneering the idea of combining multiple cellular 

features into semi-artificial filtering parameters and writing them into the FCS files, which gives the 

human analyst an opportunity to set filtering gates using gating software and adjust the positioning 

of such gates on as sample-by-sample basis, dynamically monitoring the data quality based on 

biaxial scatterplots for other parameters. This simple yet elegant improvement dramatically 

streamlines the process of filtering spurious single-cell events and their publicly available software 

can be expected to be of a great utility to the CyTOF community. 

2.2.  Manifold embedding and tracing with single-cell datasets 

One of the most exciting opportunities in the age of single-cell data is the ability to map the 

complex processes of cell differentiation by tracing the manifold shapes of single-cell distributions 

and discovering the local trajectories of cell changes in the marker space. This analysis is 

complicated by the unpredictable nature of manifolds in the data, high dimensionality of feature 

space and the instability of the local covariance matrix. 

Cordero et al. introduce an approach for linear trajectory tracing in single cell RNA-seq data 

called SCIMITAR that implements morphing Gaussian model and performs simultaneous 

estimation of the mean expression levels along the trajectory and the local covariance matrix. The 

authors introduce a new statistical test to select relevant genes based on correlation of gene 

expression to the trajectory. They convincingly demonstrate that this test is more sensitive and 

specific that a conventional group-based comparison, picking up more biologically significant genes 

than the ANOVA-based statistical test in the original paper24. While the SCIMITAR algorithm is 

currently limited by the assumption of a single curvilinear trajectory, the authors anticipate further 

extension of this approach that would allow capturing more complex manifolds. 

Kim et al. present a new scalable algorithm for fast embedding of multidimensional data based 

on LargeVis algorithm25. Unlike most embedding methods, the algorithm works in linear time, 

which it very useful given the ever-growing datasets. Authors validate the algorithm on CyTOF data 

from mouse bone marrow and show that the quality of embedding is superior to the slower tSNE 

algorithm that is currently popular in the single-cell analysis community. 

2.3.  Cross-species alignment of single-cell expression patterns 

Traditionally, comparative cytology and histology relied on qualitative descriptions of tissue 

architectures and cell functions across different organisms. The availability of single-cell data opens 

a possibility to quantitatively align differentiation trajectories and cell types between species based 
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on their expression profiles and other quantitative functional features. Such mapping could help us 

understand better the development and evolution of multicellular organisms and also facilitate the 

transfer of pre-clinical results from model organisms to human. 

Johnsons et al. harness the single-cell RNA-seq data from neural precursors in human and 

mouse for building the cross-species map of neural cell populations. They take a two-step approach, 

which starts with defining the list of genes which show concordant expression patterns across major 

neuronal precursor populations in both species. In the second step, the authors co-cluster neuronal 

cell distributions of the two species based on the concordant gene subset, thus constructing a cross-

species map of cell populations. Despite the lack of a perfect overlap, which is expected due to 

systematic differences in cell distributions between species, the authors show that the obtained 

cross-species map can be utilized for transferring the functional annotations of cells subsets between 

the corresponding population of the two species.  

2.4.  Modelling of cell heterogeneity in cancer   

While single-cell readouts provide excellent snapshots of population heterogeneity, creating 

comprehensive mathematical models of cell interactions, somatic transdifferentiation and clonal 

evolution is key to attaining detailed understanding of dynamic processes that underpin the 

population heterogeneity in cancer. By identifying the causal chains of events and iterating through 

various scenarios, mathematical models of cancer cell populations can yield clinically actionable 

predictions and assist in optimizing treatment strategies. 

Kanigel Winner and Costello present a novel modeling technique to model the treatment 

regimens for people with metastatic bladder cancer. This form of cancer metastasized to the lung 

has not been previously modeled and hence is an important and realistic problem since overall 

survival for this disease has not improved in the past three decades. The authors created a 

computational model to simulate tumor environment by carefully incorporating quantitative data 

about cell division rates, in vivo drug concentrations, in vitro IC50 curves for cancer cell lines and 

vascularization patterns of tumor microenvironment. This model was used to analyze different 

chemotherapeutic regimens much faster than getting in-vivo data. Authors strikingly demonstrated 

that the standard-of-care chemotherapeutic regimen that alternates gemcitabine and cisplatin 

inevitably leads to quick emergence of resistant clones, which goes in line with the abysmal 5-year 

survival rate (6.8%) for this type of cancer following the aforementioned treatment. Authors also 

found that any conceivable regimen combining the two drugs will eventually lead to resistance 

because of randomly surviving cancer cell clones. Key factors that contribute to this resistance is 

the inhomogeneity of drug distribution in the tissue and the ‘dilution effect’ whereby rapidly 

dividing cells effectively drop the drug concentration by splitting it between daughter cells. With 

further refinement, this model could help design novel therapeutic regimens that would hopefully 

lead to disease eradication. 
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PRODUCTION OF A PRELIMINARY QUALITY CONTROL PIPELINE FOR SINGLE 
NUCLEI RNA-SEQ AND ITS APPLICATION IN THE ANALYSIS OF CELL TYPE 

DIVERSITY OF POST-MORTEM HUMAN BRAIN NEOCORTEX* 

BRIAN AEVERMANN1#, JAMISON MCCORRISON1#, PRATAP VENEPALLY1#, REBECCA HODGE2, 
TRYGVE BAKKEN2, JEREMY MILLER2, MARK NOVOTNY1, DANNY N. TRAN1, FRANCISCO DIEZ-

FUERTES1,3, LENA CHRISTIANSEN4, FAN ZHANG4, FRANK STEEMERS4, ROGER S. LASKEN1, ED LEIN2, 
NICHOLAS SCHORK1, RICHARD H. SCHEUERMANN1,5,6 † 

1J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA, 2Allen Institute for Brain Science, 615 
Westlake Avenue North, Seattle, WA 98103, USA, 3Centro Nacional de Microbiología, Instituto de Salud Carlos III, 

Madrid, Spain, 4Illumina, Inc.,5200 Illumina Way, San Diego, CA 02122, USA, 5Department of Pathology, University 
of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA, 6Division of Vaccine Discovery, La Jolla 

Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA 

Next generation sequencing of the RNA content of single cells or single nuclei (sc/nRNA-seq) has become a 
powerful approach to understand the cellular complexity and diversity of multicellular organisms and 
environmental ecosystems.  However, the fact that the procedure begins with a relatively small amount of 
starting material, thereby pushing the limits of the laboratory procedures required, dictates that careful 
approaches for sample quality control (QC) are essential to reduce the impact of technical noise and sample 
bias in downstream analysis applications.  Here we present a preliminary framework for sample level quality 
control that is based on the collection of a series of quantitative laboratory and data metrics that are used as 
features for the construction of QC classification models using random forest machine learning approaches.  
We’ve applied this initial framework to a dataset comprised of 2272 single nuclei RNA-seq results and 
determined that ~79% of samples were of high quality.  Removal of the poor quality samples from 
downstream analysis was found to improve the cell type clustering results.  In addition, this approach 
identified quantitative features related to the proportion of unique or duplicate reads and the proportion of 
reads remaining after quality trimming as useful features for pass/fail classification.  The construction and 
use of classification models for the identification of poor quality samples provides for an objective and 
scalable approach to sc/nRNA-seq quality control. 
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