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Protein domain boundary prediction is usually an early step to understand protein function and

structure. Most of the current computational domain boundary prediction methods suffer from low

accuracy and limitation in handling multi-domain types, or even cannot be applied on certain targets

such as proteins with discontinuous domain. We developed an ab-initio protein domain predictor

using a stacked bidirectional LSTM model in deep learning. Our model is trained by a large amount

of protein sequences without using feature engineering such as sequence profiles. Hence, the

predictions using our method is much faster than others, and the trained model can be applied to

any type of target proteins without constraint. We evaluated DeepDom by a 10-fold cross validation

and also by applying it on targets in different categories from CASP 8 and CASP 9. The comparison

with other methods has shown that DeepDom outperforms most of the current ab-initio methods

and even achieves better results than the top-level template-based method in certain cases. The code

of DeepDom and the test data we used in CASP 8, 9 can be accessed through GitHub at

https://github.com/yuexujiang/DeepDom.
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1. Introduction 

Protein domains are conserved parts on protein sequences and structures that can evolve, function, 

and exist independently of the rest of the protein chain. While some proteins have only one 

domain, many proteins contain more than one domain. Molecular evolution uses domains as 

building blocks and these may be recombined in different arrangements to create proteins with 

different functions[1]. Thus, accurate identification of protein domains is crucial to understanding 

protein function and evolutionary mechanisms. Currently, the most reliable characterization of 

protein domain is through experimental methods. However, due to the large amount of data being 

generated by high-throughput technologies nowadays, it is impossible to manually identify 

domains for these proteins, not to mention that the experimental methods are time consuming and 

costly. Thus, computational domain prediction methods are in highly demand. 

A variety of computational methods for protein domain prediction have been developed, and 

they can be roughly categorized as either template-based methods or ab-initio methods. The 

principle of most template-based methods is to find homologous sequences that have known 

domain information by sequence alignments and then map the domain information from these 

sequences to the query protein sequence. The methods belonging to this category are Pfam[2], 

CHOP[3], FIEFDOM[4], and ThreaDom[5]. A variation of template-based methods is to use 3D 

structural models to assist protein domain prediction, e.g. SnapDRAGON[6] and RosettaDom[7]. 

These methods first construct a tertiary structure model of the target using structural templates. 
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Domains are then assigned by domain parser tools from the constructed 3D model. The template-

based methods can have a high prediction accuracy when close templates are found; however, their 

prediction performance may drop dramatically if there is no highly similar sequence in domain 

databases. 

Ab-initio methods are more widely used than template-based methods, since these template-

free methods can be applied to any protein. They are mainly statistical and machine learning 

algorithms that train models using the known protein domain boundary information stored in 

databases such as CATH[8] and SCOP[9]. Some of the representative methods in this category are 

PPRODO[10], DOMPro[11], PRODOM[12], DomCut[13], ADDA[14], DomNet[15], DROP[16], 

DOBO[17], and EVEREST[18]. Compared with the template-based approaches, the prediction 

accuracy of the ab-initio methods is low. This is mainly because these methods suffer from the 

weak domain boundary information in sequence, even after a deliberate but tedious process of 

feature extraction. 

Deep learning is currently the most attractive area in machine learning. Among the various 

architectures of deep learning, Long Short Term Memory (LSTM)[19]  has been successfully 

applied to problems such as speech recognition, language modeling, translation, image 

captioning[20-22]. Essential to these successes is its chain-like structure that can capture the 

sequential information, and its repeating module designed to avoid the vanishing gradient problem 

that the original Recurrent Neural Network (RNN) suffers[23]. Here, we consider protein 

sequences as strings of information just like language. Thus, in this paper we propose a new ab-

initio protein domain boundary prediction method using LSTM. We assume that the signal pattern 

from a domain boundary region is different from the signals generated from other regions. So, we 

made each LSTM layer in our deep learning architecture bidirectional to capture the sequential 

information not just from the N-terminal side of the domain boundary region but also from the C-

terminal side. Then we stack multiple such layers together to fit a high-order non-linear function 

in order to predict the complex domain boundary signal pattern. Instead of paying much effort in 

feature engineering on a small dataset, which is what traditional machine learning methods do, we 

train our LSTM model on a big dataset to learn data representations automatically. To the best of 

our knowledge, this is the first deep learning method applied on the protein domain boundary 

prediction problem. 

2. METHODS 

2.1 Data Set Preparation 

We collected 456,128 proteins with domain boundary annotations in the CATH database (version 

4.2). All the sequences of corresponding proteins were downloaded from the Uniprot database[24]. 

Then we used CD-HIT[25] to cluster similar proteins into clusters that meet our pre-defined 

similarity threshold (40%). The representative sequence in each cluster was extracted to form a 

non-redundant dataset in which every pair of proteins has sequence identity less than 40%[26]. 

This threshold instead of a lower number makes sure enough data were remained for deep learning. 

We further excluded proteins with sequence length less than 40 residues, since it needs at least 40 

residues for a domain boundary signal to be significant according to Ref. [17]. The final dataset 
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contains 57,887 proteins. We used 10-fold cross validation to evaluate our model. In each fold, 

90% proteins were used to train a model, the remaining 10% proteins were used for testing.  

2.2 Input Encoding 

Before using our data to train the model, we need to understand the distribution of the data. Figure 

1 shows some statistics of our data, which let us believe that encoding the entire sequence for each 

protein was probably not a good idea. The first reason is that it introduces bias. When there is only 

one domain on a protein, the boundaries of the only domain are always near the protein’s two 

termini. As shown in Figure 1(A), proteins with one domain represent the majority of the data, and 

this would make our model over-memorize this pattern and favor the prediction as one domain, 

which results in poor performance for multi-domain cases. The second reason is as illustrated in 

Figure 1(B), that proteins with different number of domains have different length distributions. 

When encoding the entire protein sequence using a dynamic length, we cannot train the model in 

batch, which is much faster to handle big data set. So, we decided to use a sliding window strategy 

independent of the protein length to encode an input sequence into equal-length fragments. And 

we use symbol “-” for padding when the last fragment is shorter than window size. After 

experiments, we determined the best combination of window size and stride is 200 residues and 

80 residues.   

Next, we need to encode each residue in every fragment. According to the work of 

Venkatarajan and Braun[27], a comprehensive list of 237 physical-chemical properties for each 

amino acid was compiled from the public databases. Their study showed that the number of 

properties could be reduced while retaining approximately the same distribution of amino acids in 

the feature space. Particularly, the correlation coefficient between the original and regenerated 

distances is more than 99% when using the first five eigenvectors. Thus, we used five numerical 

descriptors to represent each amino acid for computational efficiency while maintaining almost all 

the information at the same time. We also added the sixth encoding dimension as the padding 

indicator. For all the 20 types of amino acids, their sixth code is zero. The symbol “-”, as the sixth 

 

Figure 1. (A) The distribution of proteins with different numbers of domains. (B) The 

distribution of protein sequence lengths in different categories. 
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code with value 1, indicates a padding residue, and its first five codes are all zeros. Thus, for each 

input fragment, its coding dimension is 200 by 6. 

For model training, we also need to encode the label for each residue. We derive the protein 

domain boundary annotation from the CATH database, and follow the convention that considers 

a residue as positive if it is within ±20 residues of the true boundary. Thus, the coding dimension 

for output labels is 200 by 3. The three values represent the probability of a residue being a positive 

(within the true boundary), negative (outside the true boundary), and padding residue, respectively. 

2.3 Model Architecture 

Our deep learning architecture is shown in Figure 2. The bidirectional design in each middle layer 

captures the information from residues before and after a protein domain boundary. We stacked 

four such layers to capture the high order non-linear features that can detect complex boundary 

patterns or weak signals. Each neuron in the hidden layers is an LSTM unit.   

The key to LSTM is the cell state C that runs through the entire chain. An LSTM unit has the 

ability to remove or add information to the cell state by a regulation structure called gate. Firstly, 

an LSTM unit uses its “forget gate” to decide what information to discard from the cell state. It 

takes the output ℎ𝑡−1 from the previous unit and the current input 𝑥𝑡 as the input of a sigmoid 

function to produce a number between 0 and 1 for each number in the cell state. A 1 means 

completely keeping the value while a 0 means completely removing it. The formulas for the forget 

gate is shown as Eq. (1). 

 

Figure 2. The stacked bidirectional LSTM model. Green boxes represents the input layer. Red boxes 

represents the output layer. Each box represents a residue. Blue dots form the bi-directional hidden 

layers. Signals from left to right are represented by solid arcs, while dashed arcs represent signals 

from the reverse direction. Each dot represents an LSTM unit. A magnified LSTM unit is shown. Its 

different gates are highlighted with different colors. At the end of the model, a Softmax layer is 

added to scale the output value with a sum of 1 so that they can be interpreted as probabilities. 
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𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                   (1) 

where 𝑊𝑓 and 𝑏𝑓 are the weight matrix and bias for the forget gate layer. Next, a tanh layer creates 

a new candidate input vector. It will be performed a pointwise product with a sigmoid layer called 

the “input gate” to decide which values to add to the cell state. The formula for candidate input 

creation and the input gate are shown as Eq. (2) and Eq. (3), respectively. 

𝐶̃𝑡 = tanh⁡(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)                                              (2) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                                   (3) 

where 𝑊𝐶 and 𝑊𝑖 are weight matrix for the tanh layer and the input gate layer, respectively. 𝑏𝐶 

and 𝑏𝑖 are bias for the tanh layer and the input gate layer, respectively. Then the LSTM unit can 

update the old cell state 𝐶𝑡−1 into the new cell state 𝐶𝑡 by Eq. (4). 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡                                                            (4) 

Finally, the cell state goes through a tanh layer to scale the values between -1 and 1. The scaled 

cell state will be filtered by a sigmoid layer called “output gate” to decide which values to output. 

The formulas for output gate definition and the current output are shown as Eq. (5) and Eq. (6), 

respectively. 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡]+ 𝑏𝑜)                                                  (5) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh⁡(𝐶𝑡)                                                        (6) 

The ability of avoiding vanishing gradient is mainly owing to the design of forget gate in 

LSTM. Thus, if a protein domain boundary prediction depends on some signals from remote 

residues, our model can be trained to set those forget gates’ values as 1 on informative positions 

and let the far, weak but informative signal propagate far without significant loss.  

2.4 Evaluation criteria 

We used prediction precision, recall and Matthew’s correlation coefficient (MCC) to evaluate our 

method and compare with others’. The definitions of precision, recall, MCC are listed in Eq. (7), 

Eq. (8) and Eq. (9), respectively: 

Precision = ⁡
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                        (7) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                           (8) 

𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝐹𝑃+𝑇𝑁)(𝑇𝑁+𝐹𝑁)
                                       (9) 

where TP, FP, TN, FN are true positive, false positive, true negative and false negative prediction, 

respectively. When a residue has a predicted probability of being within a domain boundary region 

higher than a cutoff, we checked its surrounding ±20 residues to see if there is a recorded domain 

boundary in the CATH database for the protein. If yes, then we have a true positive, otherwise it 

is a false positive. On the contrary, when there is a residue our model predicted it being outside of 

domain boundary regions, we checked its surrounding ±20 residues to see if there is a recorded 
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domain boundary in the CATH database for the protein. If yes, then we have a false negative; 

otherwise it is a true negative.   

3. RESULTS AND DISCUSSION 

3.1 Parameter configuration experiments on test data 

We have done a series of experiments with different window sizes and stride values to determine 

the best combination of these two parameters. The prediction performance of each experiment 

design is listed in Table 1. And we presented the results separately based on the number of domains 

that a protein has. Each value is the result after the 10-fold cross validation. Note that in 

Table 1. Prediction performance in different experiment designs 

Window size 80 100 200 

Stride 20 40 80 20 40 80 20 40 80 

Experiment ID 1 2 3 4 5 6 7 8 9 

Precision_d1 0.572 0.625 0.626 0.609 0.622 0.588 0.465 0.547 0.618 

Recall_d1 0.493 0.498 0.447 0.486 0.513 0.529 0.602 0.582 0.584 

MCC_d1 0.442 0.478 0.450 0.462 0.485 0.472 0.415 0.471 0.520 

Precision_d2 0.608 0.655 0.650 0.652 0.653 0.623 0.496 0.576 0.654 

Recall_d2 0.361 0.338 0.291 0.346 0.366 0.365 0.473 0.443 0.426 

MCC_d2 0.361 0.374 0.341 0.377 0.391 0.372 0.341 0.386 0.426 

Precision_d3+ 0.639 0.670 0.661 0.675 0.668 0.629 0.543 0.598 0.669 

Recall_d3+ 0.357 0.297 0.245 0.315 0.330 0.310 0.453 0.418 0.381 

MCC_d3+ 0.360 0.340 0.301 0.354 0.360 0.326 0.343 0.367 0.391 

Precision_ALL 0.601 0.644 0.641 0.637 0.643 0.607 0.496 0.570 0.641 

Recall_ALL 0.409 0.382 0.332 0.386 0.407 0.406 0.513 0.486 0.468 

MCC_ALL 0.392 0.402 0.369 0.401 0.416 0.394 0.370 0.412 0.450 

 

 

Figure 3. Illustration of the prediction precision, recall 

and MCC as a function of the decision threshold when the 

window size=200 and stride=80. The results are based on 

a 10-fold cross validation.  
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Experiment 3, we considered the situation that there is no overlap between windows. Under each 

experiment design (one column) in Table 1, we only presented the result that had the highest MCC-

ALL at a certain threshold. We also conducted experiments using sliding window of 300 residues. 

However, the improvement for MCC-ALL is not significant (around 0.01) compared with cases 

when window size is 200 residues. So, we believe 200 is enough. As shown in Table 1, the highest 

MCC-ALL, also the overall best prediction performance is achieved when the sliding window size 

equals to 200 residues and the stride value equals to 80 residues. Figure 3 illustrates a plot of the 

precision, recall and MCC as functions of the decision threshold when using the optimum window 

size and stride value. The threshold at which the highest MCC-ALL reached is 0.42, and hence we 

used this value as the default threshold.  

3.2 Comparison with Other Domain Boundary Predictors   

To perform a fair comparison with other methods on a benchmark dataset, we tested our method 

on the proteins in the Critical Assessment of Techniques for Protein Structure Prediction (CASP). 

The definitions of domain boundaries on target proteins are provided by the CASP protein domain 

prediction contest sessions. Based on the categories those target proteins belong to, we conducted 

several experiments accordingly. In each experiment, the proteins that have a 40% or higher 

identity with any target protein were excluded from our training dataset.  

3.2.1 Free modeling targets from CASP 9 

Free modeling (FM) targets are proteins without any homologous templates. These targets are 

often regarded as “hard cases”, since their predictions usually had poor performance. We selected 

all the 22 FM targets in CASP 9 and applied different methods to predict their domain boundaries. 

By comparing the results in the two categories in Table 2, we found most template-based methods 

suffered a significant decrease in both precision and recall for FM targets. ThreaDom is currently 

the top 1 templated-based method using multiple threading alignments to extract protein domain 

boundary information. For FM targets, ThreaDom identifies multiple alignments or super-

secondary structure segments from weakly homologous templates, then a domain conservation 

score profile extracts consensus information between the domain structure and alignment gaps. 

This way, ThreaDom maintained a good precision for FM targets. Our ab-initio method DeepDom 

achieved the overall best prediction results for FM targets, with the same precision as ThreaDom 

but higher recall. All the results by different methods are listed in Table 2, where some of them 

were generated from the tools provided and others were collected from Ref. [5] and Ref. [17], 

since they used the same data. 

3.2.2 Multi-domain targets from CASP 9 

We also selected all the 14 multi-domain targets from CASP 9 with the constraint that every 

domain on one protein must be continuous, since most other methods can only handle multi-

domain targets of this kind. For this category, template-based methods generally have better 

results. ThreaDom achieved the overall best prediction performance. But DeepDom is still the best 

among ab-initio methods and also competitive with the template-based methods, as shown in Table 

2.  
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3.2.3 Discontinuous domain target from CASP 8 

Some protein domains consist of several separated segments. The prediction of such discontinuous 

domain is still an unsolved problem. Most mentioned methods above have been explicitly designed 

to handle domains without discontinuous segments, despite the fact that discontinuous domain is 

important in protein structural determination and function annotations. 

Table 2. Comparison results from different methods on two 

category targets in CASP 9 contest 

Category Predictor CASP9 protein boundary prediction 

Precision Recall 

 

 

 

FM 

DeepDom 0.882 0.468 

ThreaDom 0.882 0.455 

Pfam 0.323 0.485 

FIEFDom 0.231 0.182 

DomPro 0.500 0.182 

PPRODO 0.333 0.485 

DROP 0.429 0.182 

 

 

 

Multi-Domain 

DeepDom 0.689 0.441 

ThreaDom 0.764 0.534 

Pfam 0.500 0.548 

FIEFDom 0.340 0.233 

DomPro 0.500 0.140 

PPRODO 0.500 0.520 

DROP 0.679 0.260 

DoBo 0.490 0.700 

 

 

Figure 4. An illustration of discontinuous domain boundary 

prediction using target T0418 from CASP 8. The domain assignment 

is (1-16|83-216) (17-82), where the first domain has two segments. 

The defined domain boundaries are presented by vertical dash lines. 

The threshold of our model is 0.42. 
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To evaluate the ability of DeepDom in predicting discontinuous domain, we selected all the 18 

targets that contain at least one discontinuous domain from CASP 8. The overall discontinuous 

domain boundary prediction precision is 81.2%, the recall is 34.8%, and with MCC of 0.38. 

However, currently we have not found a method to predict whether multiple segments belong to 

the same domain. Figure 4 gives an illustration of one discontinuous domain protein prediction.  

4. CONCLUSION 

In this paper, we designed a novel computational method called “DeepDom” for protein domain 

boundary prediction using deep learning. Our model does not need elaborated feature engineering. 

Instead, it extracts information from a large amount of raw sequence data. The comparison showed 

that DeepDom achieved better results than other ab-initio methods and is competitive with 

template-based methods. As an ab-initio method, DeepDom has the advantage to outperform the 

most successful template-based method when dealing with free modeling targets. Importantly, it 

can run much faster than other methods, all of which use sequence profiles that are time consuming 

to generate. 

There is room for improvement of DeepDom. Ideally, a protein sequence should be encoded 

“globally”, since breaking into fragments excludes the potential long distance dependency. By 

doing several experiments with varying window sizes and strides, an interesting discovery is that 

protein domain boundary prediction seems to depend on the signals from remote residues. 

However, this still requires further experiments to prove and develop a new method to use the 

information. The other limitation is that the prediction performance for template-available targets 

is lower than the best template-based method. We will develop a hybrid method that can take 

advantages of existing methods from both approaches (ab-initio and template-based). We also plan 

to make the hybrid method available as a web server. Most of the existing domain prediction web 

servers only allow users to submit one protein sequence a time. Since DeepDom avoids the time-

consuming sequence profile generation process, the users can predict for a list of proteins in a short 

time. 
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