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Next-generation sequencing has provided rapid collection and quantification of ‘big’
biological data. In particular, multi-omics and integration of different molecular data such
as miRNA and mRNA can provide important insights to disease classification and processes.
There is a need for computational methods that can correctly model and interpret these
relationships, and handle the difficulties of large-scale data. In this study, we develop a novel
method of representing miRNA-mRNA interactions to classify cancer. Specifically, graphs
are designed to account for the interactions and biological communication between miRNAs
and mRNAs, using message-passing and attention mechanisms. Patient-matched miRNA
and mRNA expression data is obtained from The Cancer Genome Atlas for 12 cancers,
and targeting information is incorporated from TargetScan. A Graph Transformer Network
(GTN) is selected to provide high interpretability of classification through self-attention
mechanisms. The GTN is able to classify the 12 different cancers with an accuracy of
93.56% and is compared to a Graph Convolutional Network, Random Forest, Support Vector
Machine, and Multilayer Perceptron. While the GTN does not outperform all of the other
classifiers in terms of accuracy, it allows high interpretation of results. Multi-omics models
are compared and generally outperform their respective single-omics performance. Extensive
analysis of attention identifies important targeting pathways and molecular biomarkers
based on integrated miRNA and mRNA expression.

Keywords: Graph Neural Networks; miRNA; mRNA; Cancer Classification

1. Introduction

Cancer detection and classification is currently based on histopathological analysis and addi-
tional ancillary testing. However, histopathologic classification can be subject to interobserver
variability, and cancer classification is regularly revised by the World Health Organization and
other panels of international experts based on novel technologies and findings.? In particular,
integrated morphology-based and molecular analyses are becoming increasingly important for
classification.? Next-generation sequencing has allowed the rapid acquisition of ‘big’ biological
data, which may improve the current subjectivity of cancer classification and further under-
standing of cancer including interactions between biological molecules. There is, therefore, a
need for improved development and application of computational methods that are capable
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of handling large-scale data. Machine learning approaches, and more recently deep learning
architectures have been developed to manage the requirements of big data.? However, the
majority of these techniques do not directly encode discrete relationships between input data,
and there remains a lack of interpretability on how predictions are made. Graph neural net-
works are a field of deep learning in which inputs are represented structurally as a set of nodes
(objects) and edges (relationships between nodes), and numerically through data correspond-
ing to nodes or edges (features). For example, biological molecules and their expression from
next-generation sequencing can be modelled as nodes and node features respectively, with
interactions between them included as edges. Graph neural networks allow modelling and ex-
traction of features from interacting biological molecules. In particular, graph neural networks
use message-passing between connected nodes to update node features based on neighbouring
information. A novel graph neural network architecture, Graph Transformer Network (GTN),*
was recently introduced that in addition to modeling interactions between data, provides in-
terpretability through self-attention mechanisms which identify important parts of the graphs
for prediction. They are, therefore, particularly well-suited for analysis and understanding of
large biological networks.

microRNAs (miRNAs) are small (~22 nt), non-coding RNA molecules that negatively
regulate protein-coding messenger RNAs (mRNAs).> The dysregulation of both miRNA and
mRNA expression has previously been associated with the presence and/or type of cancer.
These molecules are particularly well-suited as cancer biomarkers since their expression can
be specific to cell-type and disease-stage, and they can act as oncomiRs/oncogenes (promoting
cancer growth) or tumour suppressors.®® miRNAs target mRNAs through a 2-8 nt seed se-
quence, with the complementary pairing on the mRNA.? Targeting pathways are particularly
complex due to the high number of targets per miRNA and the shared targets between miR-
NAs. miRNA targeting is additive, meaning the combined power of multiple miRNAs with the
same target can repress the expression of a single mRNA. In addition, the expression of mR-
NAs is largely reliant on miRNAs. For example, the upregulation of a miRNA can lead to the
increased targeting of a mRNA, resulting in downregulated mRNA expression. This creates a
large network of molecules with dependent expression, which suggests that biomarkers should
be considered as targeting pathways instead of single molecules. Although the relationship
between miRNAs and mRNAs is well-suited for analysis with graph neural networks, there is
currently a lack of studies in this area.

Single-omics analysis has been previously studied and shown to yield high classification
performance and insight into cancer biomarkers. For example, Ramirez et al. (2020) classified
data from 33 cancer types and a ‘normal’ group using graph convolutional neural networks,
with an accuracy of 94.7%.% They use data from the The Cancer Genome Atlas (TCGA)!©
where each patient is modelled as a graph, with nodes representing mRNAs and edges ei-
ther protein-protein interactions or co-expression of molecules. Multi-omics methods in the
literature have used early-,'11? late-,'3 or intermediate-fusion'>' of data, referring to imme-
diate concatenation of data types, individual data analysis followed by combining of results,
or concatenation of information at some point between raw data and results, respectively. A
particularly relevant study by Wang et al. (2021) uses multi-omic data from TCGA for clas-
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sification tasks, including identification of breast cancer subtypes and grading of gliomas.'6

Three individual graph convolutional networks are used to analyze miRNA, mRNA, and DNA
methylation data followed by integration of results for final classification. While a few studies
include constraints based on targeting to influence feature selection or model training, the ma-
jority do not use targeting information or molecular interactions explicitly in computational
model creation or analysis. In addition to machine learning approaches, multi-omic interac-
tions have also been studied through disease networks. Wang et al. (2015) created a network of
interacting miRNAs, genes, phenotypes, and other clinical data which can be used to identify
molecules associated with disease.!” However, the majority of disease networks do not incorpo-
rate molecular measurements at individual patient level but capture population trends to find
associations or to perform classification. There exists a lack of studies that computationally
encode targeting pathways and patient-specific molecular expressions for multi-omic cancer
classification and interpretation.

In this paper, we present a new approach to directly incorporate the interaction and
dependent-expression between miRNAs and mRNAs to perform cancer classification. We de-
velop a novel way of forming graphs that model the biological interactions and targeting
between miRNAs and mRNAs. Specifically, the biological communication between miRNAs
and mRNAs can be modelled with our design through direct message-passing in graph neural
networks. Data from TCGA!® are used to create graphs based on miRNA-mRNA targeting
pathways from TargetScan.!® Graph Transformer Networks (GTNs)?* are specifically selected
for their highly interpretable self-attention mechanisms, used to analyze miRNA-mRNA in-
teractions of our designed graphs. We contrast our approach with several baseline methods
including Graph Convolutional Network (GCN), Random Forest (RF), Support Vector Ma-
chine (SVM), and Multilayer Perceptron (MLP). Single-omic models are also implemented
for comparison to multi-omic performance. In addition to classification, we perform exten-
sive interpretation of the network attention to both edges and nodes of the GTN. Pathways
(edges) between miRNAs and mRNAs reveal important targeting relationships, while multi-
omic biomarkers (nodes) are discovered using the relationship between interacting molecules.

2. Materials and Methods

The schematics of our proposed approach is shown in Fig. 1. Briefly, we obtain patient-matched
miRNA and mRNA data for 12 cancer classes from TCGA. Data is preprocessed and each
patient sample (of both miRNA and mRNA expressions) is mapped as a bipartite graph using
targeting relationships obtained from TargetScan. Since the proposed graph creation approach
incorporates the expressions of miRNA and mRNA as node features, it is important to dis-
tinguish and identify one node from another. This is performed through positional encoding,
where nodes are assigned additional features to describe their relative position in the graph
and differentiate nodes.* Our architecture includes an initial linear layer that increases the
dimensionality of node features, followed by two Graph Transformer Layers (GTLs) for node
update, and a Multilayer Perceptron (MLP) network for classification. Each GTL consists of
self-attention mechanisms that update node features (miRNA/mRNA expressions) based on
expressions of neighbouring nodes, thus providing contextual information from connected
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Fig. 1: Overview of our proposed multi-omic Graph Transformer Network. Preprocessed patient-
matched miRNA and mRNA data from TCGA are formatted into bipartite graphs (one per patient)
where each node represents a molecule, edges are based on miRNA-mRNA targeting, and node
features are the expression of the respective molecule in that patient. The network consists of a
linear layer, followed by two Graph Transformer Layers for message-passing between neighbouring
node features, and a three-layer MLP for graph (patient) classification.

(interacting) nodes. This occurs through message-passing,
where information from one node is used to update an-
other. Message-passing of node features through graph
edges can be used to (i) classify cancer using relationships
between interacting molecules with dependent expression,
and (i) identify important targeting pathways based on
this dependent expression. The features from the output of
the last GTL are averaged as inputs to a 3-layer MLP and
finally, graph classification is performed to categorize each
patient to a cancer class. The attention of the trained GTN
is then used to identify significant molecules and pathways
for classification of different cancers.

2.1. Data and preprocessing

We use miRNA and mRNA TCGA data of 12 cancer
types from the Broad Institute GDAC Firehose.'® miRNA
-5p and -3p expression counts are extracted from the
miRNA isoform expression files, while mRNA data are
from the RSEM normalized files (upper quartile normal-
ized). miRNA and mRNA data are preprocessed separately
through an established pipeline.'® Figure 2 shows the dis-
tribution of samples for each cancer type after preprocess-
ing (average number of samples per cancer is 475 (range
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301-750)). Final data from all cancers are aggregated and yield a total of 1,256 miRNAs and
20,502 mRNAs. miRNA and mRNA data are patient-matched based on the first 15 digits of
the TCGA barcode, corresponding to the patient ID and sample ID. Only one sample per
patient is included in the study. This yields 5,743 patient samples, 50% of which are used for
training, 10% for validation, and 40% as test. Data is stratified by cancer type and patient (i.e.,
training, validation, and test sets are mutually exclusive and do not contain any overlapping
patients while they have similar composition of cancer samples). miRNA and mRNA filtering
is then performed based on samples in the training and validation sets. First molecules
with expression of zero in over 75% of samples are removed. Subsequently, miRNA and
mRNA are filtered such that only the top 25% of molecules with the largest variance across
samples are kept.

2.2. Graph creation

We create graphs based on the inherent targeting relationship between miRNAs and mRNAs.
Each patient sample is represented by one graph, where each miRNA and mRNA represent a
node, and node features are the respective expression of the molecule in that patient. Edges
are formed between nodes based on miRNA-mRNA targeting. This forms a bipartite graph
with edges only between different molecules, as shown in Fig. 1 (Graph Creation). Edges
are bidirectional between miRNAs and mRNAs and pass information in both directions (i.e.,
a highly expressed mRNA influences the attention on the miRNA it’s targeted by and vice
versa). miRNA targets and context scores are acquired from TargetScan.'® We keep the size of
the graph limited by only selecting the top 10 targets per miRNA, using the highest TargetScan
context scores. All graphs have identical structures in terms of the number of nodes and
edges; the only differences are the node features. Following graph creation, nodes with one
edge are pruned iteratively until all nodes have a minimum of two edges. The final graphs
feature 168 miRNAs and 379 mRNAs for 5,743 patients (samples). Once final molecules are
identified through graph pruning, miRNA and mRNA data are separately rank normalized
to a similar scale for interaction in the GTN. Since each node represents a specific molecule
and its corresponding expression, it is important to add the information about the location of
nodes with respect to the whole graph to differentiate between them. To do so, the position of
nodes can be embedded as additional node features that are specific to graph structure. For
this study, Laplacian positional encoding is applied to all graphs before classification.*

2.3. Network structure

The network structure consists of a node-level linear layer, two Graph Transformer Layers,
and a three-layer MLP. The dimensionality of node features (molecular and positional) is
first increased in the node-level linear layer. The GTL layers preserve the structure of the
graph while updating individual node features through message-passing. The update is based
on an attention mechanism that incorporates information from neighbouring nodes that are
connected by edges as presented in Eq. 1 and 2 below.
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Here, node features are represented by hl and hé», where ¢ indicates the current node, 7
indicates the neighbouring nodes of i, and [ represents the current layer. Each GTL uses
H=8 parallel attention mechanisms or “heads” with different initializations to increase the
stability and generalizability of the training process. The k** attention w i ! that determines the
importance of the neighbour node j to node i, is calculated through the linear transformation
of node features i.e. dot-product of learnable weights (@, K), normalized by dimensionality of
node features. Attentions of neighbour nodes are then used as weights for their corresponding
node features (transformed with learnable weight matrix V). The weighted summation over
the whole neighborhood is calculated for each attention head, and concatenated over all H
heads (Eq. 2). The result is passed through an additional linear transformation (O), and later
through a two-layer feedforward network with residual layers to generate the updated node
features. After the last GTL, the graph is converted to a single feature vector by dismissing the
edges and averaging all the nodes, and passed through a three-layer MLP for final classification.

2.4. Implementation and ablation studies

All implementation is in Google Colaboratory?® using the Deep Graph Library.?! The param-
eters of the network include training for 400 iterations with a batch size of 16, batch and layer
normalization after each GTL, and dynamic learning rate of 0.001 reduced by a scale of 0.8
and a patience of 12. The model with the lowest validation loss is kept for final evaluation.

Extensive ablation studies are performed to choose the optimal hyperparameters for cancer
classification. Specifically, the number of GTLs (1-5), attention heads (2-20, in steps of 2) and
hidden features per attention head (1-15), type of normalization after each GTL (layer, batch,
layer+batch), and the effect of positional encoding (implemented or not) are tested. For each
parameter, five trials with different seeds are run, and the mean and standard deviation
of the validation set performance are compared. The parameters that result in the highest
performance are used in all subsequent analysis. The network with chosen parameters is run
for 30 iterations with different seeds, and final performance is averaged across all models.

2.5. FEvaluation

Comparison to baseline methods: The performance of the GTN is compared to GCN,
RF, SVM, and MLP. The GCN is implemented using the Deep Graph Library with the same
input graphs and parameters as the GTN, with the exception of an initial learning rate of
0.005. The RF, SVM, and MLP are implemented through Scikit-Learn?? in Python with base
parameters. The miRNA and mRNA expressions used in the GTN are directly used as inputs
to the models. The GCN, RF and MLP run for thirty iterations using the same seeds as the
GTN. The SVM is only run once (as performance does not change with different seeds).

Comparison to single-omics: We compare the performance of our approach for each model
(GTN, GCN, RF, SVM, MLP) using single-omics of either miRNA or mRNA molecules. For
the GTN and GCN, miRNA graphs are created with each node representing one miRNA,
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and edges between nodes based on miRNAs targeting the same mRNA. Similarly, for mRNA
graphs, all nodes represent a mRNA with edges based on being targeted by the same miRNA.
These graphs use the same miRNA or mRNA nodes as the multi-omic graphs, but have a
higher number of edges. The miRNA graphs feature 168 nodes and 4,162 edges, and the
mRNA graphs have 379 nodes and 8,992 edges. All parameters are identical to the multi-omic
networks. The single-omic RF, SVM, and MLP use miRNAs or mRNAs as inputs.
Attention: To interpret the attention of the GTN, the weights w;; (Eq. 1) of the final GTL
are used as the significance of each edge in the graph. After training, the attention of test
samples is obtained and combined for each of the 30 models to yield a final attention value
for all edges in the network. The attention to individual nodes is determined by the sum of
the attention of all input edges to a node, normalized by the number of edges. All attention
(both to edge and node) for a specific cancer class is summed and averaged by the number of
samples in that class. The edge attention of the network identifies important miRNA-mRNA
targeting pathways, while node attention determines significant miRNAs or mRNAs.

3. Results
3.1. Ablation studies

The final parameters found to optimize the classification performance are two GTLs, eight
attention heads, six hidden features, layer and batch normalization, and implementing po-
sitional encoding. In addition to resulting in the highest performance, two GTLs will cause
each node to incorporate features from other nodes a maximum of two edges away. Due to the
bipartite graph structure, this means miRNAs will receive information from their immediate
mRNA targets, and other miRNAs with the same targets (or vice versa). This mimics the
true interaction of biological molecules; any connections past this point are not as important,
biologically. Increasing the number of attention heads and hidden features improves perfor-
mance until the chosen parameters above; after this point, the performance decreases. The
normalization approach, and positional encoding do not influence the performance noticeably.

3.2. Classification accuracy

Overall, the GTN achieves a classification accuracy of 93.56%. The confusion matrix depicting
the classification accuracy per class is shown as a heat map in Fig. 3. The diagonal of the
confusion matrix is dark, indicating a high proportion of samples are correctly classified as their
respective cancer. The two lung cancers (LUAD, LUSC, Fig. 3 red square) have a number of
misclassifications between them, as well as squamous cell carcinomas from different anatomic
sites (CESC, HNSC, and LUSC, Fig. 3 marked by *).

The performance of the GTN is next compared to four baseline models: a GCN, RF, SVM,
and MLP. The mean accuracy of 30 trials is displayed in Table 1, with the standard deviation
shown in brackets. The GCN has the lowest perofrmance of all models. The RF, SVM, and
MLP all achieve comparable, slightly higher accuracy than the GTN. However, the GTN
offers in-depth interpretability, which is not possible at the same level of depth with machine
learning models. The performance of the multi-omic GTN and machine learning classifiers are
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.o Table 1: Classification accuracy using Graph Transformer
BRCA Network, Graph Convolutional Network, Random Forest,
CESC & * o8 Support Vector Machine, and Multilayer Perceptron for

BLCA

HNSC
KIPAN

multi-omic and single-omic studies.

,_
(2]
[a]

8 Data miRNA+mRNA miRNA mRNA
fwo ¢ TGTN 93.56 (0.91) 92.66 (0.82) 91.96 (1.09)
pro .  GCN 77.98(12.97) 79.61(12.51) 7L.15 (8.17)
sTes RF 96.29 (0.21)  94.29 (0.23) 94.69 (0.21)
ssgszgzessgs ° SVM 96.52 (0.00) 94.17 (0.00) 95.60 (0.00)
mECEL LERE MLP 97.97 (0.15)  95.90 (0.21) 96.89 (0.12)

Fig. 3: Left: Confusion matrix showing the classification accuracy as a heat map. The dark diagonal
indicates each cancer is classified with high accuracy. Misclassifications are between two lung classes
(LUAD and LUSC, red square), and squamous cell carcinomas (CESC, HNSC, and LUSC, *).

then compared against single-omic models. All multi-omic models outperform respective
single-omic analyses apart from the GCN, shown in Table 1.

3.3. GTN attention

Pathway attention: The attention of the GTN is
analyzed following training to determine important
miRNA-mRNA biomarkers and targeting pathways.
First, the edge attention (Eq. 1) is studied to iden-
tify important targeting pathways between miRNAs
and mRNAs. We choose to analyze the targeting at-
tention using breast cancer as a case study. Fig. 4
displays five of the top 15 targeting pathways (edges)
identified by the GTN. Image (a) shows the ability
of the attention to detect single edges, while image
(b) finds a larger pathway consisting of multiple in-
teracting miRNAs and mRNAs.

Molecule attention: We next analyze attention
by individual molecules. Node attention is found by
summing the attention of each edge leading into
a destination node and normalizing by the num-
ber of edges (i.e., a node with more edges will not
have higher attention automatically). To simplify,
five cancers are chosen to compare (BRCA, LGG,
KIPAN, PRAD, and THCA); these cancers are com-
monly studied and have a high number of test sam-
ples in the dataset, preventing reliance on outliers.
Node attention is averaged per chromosome, shown

in Fig. 5 for miRNAs (a, blue) and mRNAs (b, red).
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Fig. 5: Node attention of the GTN summarized for five cancers across chromosomes for miRNAs (a,
blue) and mRNAs (b, red). Each layer of the sunburst represents one class. Dark squares indicate high
attention to the miRNAs or mRNAs originating from that chromosome. The colour of each square
(chromosome attention) is normalized against all other squares for that cancer. In both images, none
of the final miRNAs or mRNAs originate from chromosome Y. Abbreviations: BRCA (B); LGG (L);
KIPAN (K); PRAD (P); THCA (T).

High attention (darker squares) is seen in all five classes for miRNAs on chromosome 4 and
18 (Fig. 5 (a)). In Fig. 5 (b), mRNAs from chromosome 21 have high attention for all five
classes. No molecules in this study originate from chromosome Y.

4. Discussion

In this study, we develop a Graph Transformer Network capable of discovering important
miRNA-mRNA cancer pathways. The GTN classifies the 12 cancer types with an accuracy of
93.56%. Classification is compared to a GCN, RF, SVM, and MLP. The GTN does not perform
as highly as some of the baseline models, but has the advantage of high interpretability. All
multi-omic models outperform each of their respective single-omic miRNA and mRNA models,
aside from the GCN. Extensive interpretation of network attention is performed to identify
important miRNA-mRNA targeting pathways and potential biomarkers for cancer. Ablation
studies are used to determine optimal hyperparameters of the network. In addition, design
parameters are carefully considered to avoid overfitting to training data due to large input
graphs and high number of classes. We constrain graph size by initially filtering a large number
of molecules, only selecting 10 targets per miRNA, and pruning nodes with one edge. Only
12 classes from TCGA with a high number of samples are used. The design of the GTN (e.g.,
number of layers), in addition to choice of external parameters such as graph size and number
of classes, are chosen to optimize performance and generalizability.

The multi-omic GTN is able to classify the 12 cancer types with an accuracy of 93.56%.
Figure 3 displays the confusion matrix showing high accuracy for each class. There are a
number of misclassifications between LUAD and LUSC, which are two distinct lung cancer
subtypes. The misclassifications may be due to the similar tissue properties (i.e., overlapping
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gene expressions) between the two cancers. It has also been shown that lung cancers can
have mixed components of adenocarcinoma and squamous cell carcinoma,?® which may be
an additional factor in these misclassifications and important considerations for treatment
selection. In addition, a number of misclassifications are also seen between CESC, HNSC,
and LUSC. These three classes are (largely) squamous cell carcinoma samples from different
anatomic sites; these likely share similar gene and miRNA expression profiles.

The performance of the multi-omic GTN is compared to a GCN, RF, SVM, and MLP
(Table 1). The MLP outperforms all other models with an accuracy of 97.97%, followed by
the SVM, RF, GTN, and GCN, respectively. The GCN and GTN have the lowest accuracy,
likely due to the larger inputs to the network with both nodes and edges. In addition, both
models take an average of each node feature across all nodes to use as input to the MLP.
This summation may cause a large amount of information to be lost due to the high number
of nodes. However, the GTN still achieves high performance, and has the additional benefit
of excellent interpretability not possible with the other models. Specifically, the attention of
the GTN can be analyzed to determine potential biomarkers and targeting pathways, which
is not easily achieved (or possible) with the other models.

All multi-omic models are compared with and outperform their respective single-omic
models using both miRNA and mRNA, aside from the GCN (Table 1). Most single-omics
performance is similar to their respective multi-omics performance; it is possible the multi-
omics based selection of individual miRNAs and mRNAs during preprocessing may have
positively influenced the single-omics performance. For the graph networks, single miRNA or
mRNA graphs require a substantial number of edges between miRNA-miRNA nodes (4,162)
or mRNA-mRNA nodes (8,992) to retain the same amount of targeting information as in
the miRNA-mRNA graphs. The high number of edges likely increases both the difficulty in
determining important edges and the chance of overfitting to training data.

The edge attention of the GTN is used to determine important miRNA-mRNA pathways
for each cancer. Figure 4 shows five of the top 15 edges identified by attention for breast
cancer. Image (a) displays a validated targeting pathway identified in the literature, previ-
ously associated with melanoma and cervical cancer.?* Due to the upregulated expression
of miR-183 in breast cancer, it is possible this pathway is disrupted, and should be further
explored.? In image (b), all molecules presented in this diagram have been previously associ-
ated as potential biomarkers for breast cancer. While these edges have not been identified as
targeting pathways in cancer, they may be underexplored, or could indicate important rela-
tionships between the expression of these molecules (e.g., co-expressed). Further research into
specific expression should be performed for verification. The attention of GTNs can therefore
be used for multiple pathway analyses (i.e., locating pathways with large inverse targeting
relationships, or identifying related biomarkers with high expression).

To find the attention to specific molecules, edge attention is aggregated for all edges at a
destination node, and averaged for molecules from the same chromosome. In Fig. 5 (a), the
miRNAs from chromosome 4 and 18 have high attention for all cancers. In this study, only
miR-1269a originates from chromosome 4, which is highly associated with numerous cancers.
Four miRNAs originate from chromosome 18: miR-133a, miR-1, miR-187, and miR-122. While
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these have previously been identified as oncomiRs and tumour suppressors, miR-133a and
miR-1 are also specific to muscle tissue.?® It is possible the differing levels of muscle within
the cancer types in this study are used for decision-making by the GTN; tissue specificity
should be considered when identifying potential biomarkers. Figure 5 also identifies unique
signatures of cancer. For example, in (a), the second inner ring (LGG) has noticeably different
attention for chromosomes 6, 12, and 15. These can be analyzed further to identify specific
biomarkers of LGG. The same analysis is performed for mRNAs (Fig. 5 (b)). All five cancers
have high attention for chromosome 21, which consists of TFF2 and KCNJ15. These genes
have previously been shown to affect cell apoptosis and migration in many cancers.

There are a number of limitations to this study. Healthy samples are not included due
to the low number per tissue type in TCGA. It is possible some cancers may have improved
classification based on tissue signature instead of neoplasticity signature. In addition, extensive
pruning of the graph is performed. This includes high initial molecule filtering, and pruning
nodes with one edge. While this is necessary to avoid overfitting (due to the high number of
both nodes and edges), important pathways may have been eliminated from analysis. Lastly,
additional interactions between mRNA-mRNA, and mRNA-RNA binding proteins are not
included, which are also involved in mRNA regulation. Nonetheless, this initial study identifies
the strong potential of graph neural networks for classification, data integration, and biomarker
identification. It can be extended for specific applications, e.g., using all targets of a few
miRNAs for specific pathway analysis.

5. Conclusion

In this study, we propose a novel method of modelling miRNA-mRNA interactions through
graph neural networks to classify 12 cancers. Specifically, graphs are formed using patient-
specific miIRNA and mRNA targeting relationships as edges, and expressions as node features,
to model the direct biological communication between molecules. We use a highly interpretable
GTN to classify 12 cancers from TCGA with an accuracy of 93.56%. While the GTN does
not outperform all baseline models in terms of accuracy, its importance lies in high inter-
pretability of targeting pathways and individual molecules. The performance of each model is
also compared to single-omic miRNA and mRNA models. Four of the five multi-omic models
outperform their respective single-omic model, showing the importance of integrating multiple
data types. In addition, we perform extensive evaluation of attention to both edges (represent-
ing targeting pathways), and nodes (representing individual molecules), identifying important
molecular biomarkers for cancer. Future work should examine datasets with balanced neo-
plastic and non-neoplastic samples, and incorporating TargetScan context scores into edge
weights of graph inputs.
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