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There is significant interest in developing machine learning methods to model protein-ligand
interactions but a scarcity of experimentally resolved protein-ligand structures to learn from.
Protein self-contacts are a much larger source of structural data that could be leveraged,
but currently it is not well understood how this data source differs from the target domain.
Here, we characterize the 3D geometric patterns of protein self-contacts as probability dis-
tributions. We then present a flexible statistical framework to assess the transferability
of these patterns to protein-ligand contacts. We observe that the level of transferability
from protein self-contacts to protein-ligand contacts depends on contact type, with many
contact types exhibiting high transferability. We then demonstrate the potential of lever-
aging information from these geometric patterns to aid in ligand pose-selection problems
in protein-ligand docking. We publicly release our extracted data on geometric interaction
patterns to enable further exploration of this problem.
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1. Introduction

The majority of FDA approved drugs are small organic molecules that exert their effects by
binding to various proteins. Experimental discovery of novel drug-like compounds is expensive
and throughput-limited. As a result, there is significant interest in developing computational
approaches to model protein-ligand binding. Classical methods in this area try to approximate
the physics of proteins and ligands to predict the energy of specific protein-ligand binding
events. Recently, there has also been interest in applying modern machine learning to this
problem. While machine learning has produced some successes, deep learning in particular
has not yet had nearly the same impact on modeling of protein-ligand binding that it has had
on protein folding [1, 2]. A major contributing factor to this disparity is the fact that there
are far fewer experimental structures of protein-ligand interactions (~18,000 [3]) compared
to structures of individual proteins (~180,000 [4]). This discrepancy is amplified by the fact
that while protein self-interactions scale linearly with chain length, protein-ligand contacts
are restricted by the relatively constant size of the ligand. In this work, we develop statistical
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Fig. 1. Many important chemical groups in amino acids are also common in drug-like molecules.
We seek to measure the transferability of geometric interaction patterns for these chemical groups,
between protein self-contacts and protein-ligand contacts. Building on earlier work, we study distri-
butions of chemical group geometry relative to amino acid backbones. We rely on summary statistics
of the geometry such as chemical group centroid and atomic angles.

analyses to connect the larger dataset of individual protein structures to the problem of
modeling protein-ligand binding.

Since the laws of physics are universal across proteins and ligands, an appealing strategy
to work around the scarcity of protein-ligand structures is to transfer knowledge from datasets
and models of individual protein structures. Correct protein folding relies on the formation
of hydrogen bonds and van der Waals interactions, the same kinds of interactions that allow
ligands to bind to proteins (Figure 1). Recently, Polizzi and DeGrado [5] used the idea of
transferring geometric interaction patterns from those generated by protein folding (protein
self-contacts) to those between proteins and ligands (protein-ligand contacts). They defined
the van der Mer (vdM), a structural unit that represents interaction geometry between an
amino acid and a specific interacting chemical group (iCG). They then calculated vdMs for the
iCGs found in amino acids by analyzing a large set of individual protein structures. Finally,
they used these vdMs to design a protein to bind a particular ligand. The key insight in this
work was that the iCGs found in amino acids are also common in drug-like molecules, and
that the interaction patterns for these iCGs might be similar between protein self-contacts and
protein-ligand contacts. However, Polizzi and DeGrado did not present a large-scale evaluation
of the latter hypothesis.

In this work, we present frameworks to more thoroughly assess the transferability of ge-
ometric interaction patterns from protein self-contacts to protein-ligand contacts. We first
extract the distributions of protein self-contact geometry in an easy-to-use format. We then
calculate the same distributions for a dataset of protein-ligand structures and devise a sta-
tistical test to quantitatively assess the transferability of geometric patterns from protein
self-contacts to protein-ligand contacts. We find that the degree of transferability depends on
contact type, with many instances of high transferability. We apply our findings to the impor-
tant problem of ligand docking and demonstrate the potential of leveraging these transferable
contact distributions to improve ranking of candidate ligand docking poses.
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2. Related Work

Computational, structure-based models of protein-ligand binding are most widely used in the
context of ligand docking [3, 6, 7]. Methods for ligand docking rely on scoring functions to
evaluate the number and favorability of interactions between the protein and the ligand, but
state-of-the-art scoring functions still do not deliver reliably accurate results [6]. Classical
scoring functions try to approximate the physics of protein-ligand interactions in order to
score the favorability of a ligand binding pose [8, 9]. Recent work suggests that one can
supplement these physics-based scoring functions with pattern-based metrics that attempt to
recapitulate favorable interaction modes [10]. In particular, methods that maximize structural
similarity with a known ligand binding pose [11], or that ensemble predicted poses of multiple
ligands [6, 12| have been shown to lead to significantly better enrichment of correctly ranked
compounds and poses. However, these methods still rely on either an experimental structure
of the binding site with a ligand, or the prior knowledge of multiple ligands that target a
particular site, restricting their utility to well-studied protein systems.

There has also been significant interest in using deep learning to learn how to score protein-
ligand interactions based on 3D structure [13-15]. Methods have been developed based on
graph neural networks [13], 3D convolutional neural networks [14], and SE(3) equivariant
neural networks [15], among other architectures. However, these models often struggle to
maintain accuracy under even slight domain shifts, likely because the available experimental
protein-ligand structures are small in number and contain biases that are not well understood
[3, 16, 17]. Machine learning methods that have been successful in this space have used very
carefully constructed datasets and relatively low capacity models [7].

Deep learning methods have had significant impact in the related problems of protein fold-
ing [1, 2] and ligand-based antibiotic discovery [18], where much larger datasets are available.
There has been previous work exploring transfer from small-molecule only data to modeling of
protein-ligand interactions [19, 20]. Transfer of patterns from individual protein structures to
protein-ligand contacts has also been implemented in classical scoring functions at the level of
single atoms or bonds [21]. We seek to explore transfer for significantly larger groups of atoms.
There has also been previous work in extracting geometric patterns of protein self-contacts
at the scale we examine [5, 22]. However, these extracted patterns are either not based on a
modern set of experimentally resolved protein structures or do not allow easy measurement of
transferability to protein-ligand contacts. To our knowledge, our work is the first to provide
precise estimates of the distribution of protein self-contact geometry and the first to examine
how these distributions transfer to a collection of protein-ligand structures.

3. Methods
3.1. Datasets

Protein self-contacts were extracted from the same subset of the Protein Data Bank (PDB)
described by Polizzi and DeGrado [5]. In brief, their selection criteria involved resolution
(dmin < 2.0 A), refinement quality (Reps < 0.3), geometric fidelity (Molprobity [23] score < 2.0)
and nonredundancy (chains with greater than 30% sequence identity were discarded). This
resulted in a database of 9189 unique chains from 8734 PDB structures.

Native protein-ligand contacts were extracted from a combination of the “DCOID”
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dataset [7] and the 2020 version of the core set of PDBBind [3]. In order to reduce redundancy
across this dataset, for all protein-ligand structures with the same UniProt Accession 1D, we
first clustered structures with ligand Tanimoto similarity > 0.5, and within clusters, removed
structures with identical sets of binding pocket residues that contributed to hydrogen bonding
contacts. These criteria were established to maximize data retention while also removing ob-
vious duplicate instances of a particular ligand-binding pocket. This yielded a final test set of
5,926 protein-ligand structures. Lists of PDB files for protein self-contacts and protein-ligand
complexes are provided in our public dataset release.

Finally, to apply our method to protein-ligand docking, we used the dataset of docking
poses for various protein-ligand complexes generated by Paggi et al. [6]. They used Glide [8],
a widely used docking method, to generate candidate poses for a variety of protein targets of
pharmacological interest, each with a number of different ligands.

3.2. Contact extraction

As in the work by Polizzi and DeGrado, we extracted data for 20 iCGs which are present
in amino acids and therefore well represented in protein self-interactions. These are listed
in Supplemental Table S1. To extract protein self-interactions from the PDB data, we first
protonated the structures using REDUCE [23] and then identified contacts using PROBE [24].
Flexible regions of a structure were ignored during the contact extraction process by setting
maximum crystallographic B-factor and minimum atomic occupancy thresholds of 40 A2 and
0.99, respectively. We extracted interactions that were labeled by PROBE as either hydrogen
bonds or close van der Waals contacts. Each interaction was initially labeled as between two
different residues in the protein that are separated by at least 7 amino acids to avoid bias
from proximity effects. We picked one residue to serve as the source of iCGs and the other
to provide coordinates for the amino acid, and then repeated with the choice flipped. After
choosing a residue to serve as the source of iCGs, we identified all iCGs in the residue. We
then extracted an observed interaction between that iCG and the other residue, composed of
the atomic coordinates of the three backbone atoms (N, C,, carbonyl C) of the residue and
the non-hydrogen atoms in the iCG. The interactions were labeled by whether or not they
contained a hydrogen bond and by whether or not any atoms of the amino acid side chain
were involved in the interaction.

To extract protein-ligand interactions from the protein-ligand test set, we first preprocessed
structures using the Protein Preparation Wizard in Schrodinger [25] instead of REDUCE,
which we found to be insufficiently accurate for many of the ligands of interest. We then
identified protein-ligand interactions using PROBE. The ligands were then decomposed into
strictly non-overlapping iCGs via the Schrodinger Python API using SMARTS style strings
listed in Supplemental Table S1. For each interaction between ligand and protein involving an
iCG, we extracted atomic coordinates for the iCG and the involved amino acid, and labeled
them by whether they contained hydrogen bonding and side chain interactions.

For the docking data from Paggi et al. [6], processing was performed identically, except that
protein-ligand contacts for each docked pose were identified using Schrodinger’s poseviewer.py
script. Inspection of numbers of extracted contacts between PROBE and poseviewer.py on
the DCOID dataset showed almost identical identification of protein-ligand contacts, though
some minor discrepancies were observed in the treatment of hydrogen bonds involving thiol
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groups and aromatic hydrogen bonds.

3.3. Representing contact geometry

Our representations for contact geometry build on the ideas presented by Polizzi and De-
Grado [5] (Figure 1). After extraction from our datasets, each contact contained 3D coordi-
nates for an amino acid and 3D coordinates for an iCG. We sorted these contacts into bins
corresponding to the amino acid and iCG pair (400 total bins, from 20 amino acids and 20
iCGs — Supplemental Figures S1 and S2). We then calculated two summary statistics for each
contact. First, we looked at the distance between centroids (unweighted center of mass) of the
iCG and amino acid backbone. Second, for each atom in the iCG, we computed a statistic
from —1 to +1 measuring whether the atom points towards or away from the amino acid
backbone (described in detail in Section 4.1). While these statistics do not fully parameterize
the 3D geometry of a contact, they have the advantages of not requiring alignment and being
robust to noise. In particular, Polizzi and DeGrado noted that aligning contacts on backbone
atoms leads to the “lever-arm effect”, through which variance in experimental measurements
of the backbone atoms is shifted to the iCG atoms and amplified (Supplemental Figure S3).
The statistics we have chosen are invariant to the type of variance that causes the lever-arm
effect. We also analyzed contacts after alignment on amino acid backbone in Section 4.3 and
part of Section 4.1, but the results of these analyses are robust to the lever-arm effect. For
ease of visualization and interpretation, we focus on hydrogen bonding interactions in Section
4. This narrows our scope to the 15 iCGs capable of forming hydrogen bonds. However, we
provide equivalent preprocessed data for other close van der Waals interactions in our dataset
release.

4. Results
4.1. Protein self-contacts exhibit clear geometric clustering

Here, we explore patterns in the protein self-interaction data, and begin with the distribution
of iCG centroid after alignment on amino acid backbone. For the most part, contacts involving
a hydrogen bond showed clear geometric patterns with well-separated interaction modes. This
agrees nicely with the power law behavior that Polizzi and DeGrado [5] observed in the sizes
of their vdM clusters. By further stratifying our analysis into discrete distance radial bins
from the reference backbone’s centroid, we uncover a strong underlying distance dependence
in the overall distribution. In particular, many amino acids share a common short-distance
interaction mode that likely reflects chemical group interactions that involve backbone atoms
(blue radial bin, Figure 2). The more distant interactions (green and red bins, Figure 2) likely
reflect broad geometric constraints on hydrogen bonding conditioned on the rotameric state
of the reference amino acid. Rather than explicitly modeling these distributions, aligning on
backbone atoms implicitly takes this into account.

We also explored the distributions of the orientation statistics introduced in Section 3.3.
For each atom in the iCG, we computed the vector from the iCG centroid to the atom and
the vector from the amino acid backbone centroid to the iCG centroid, and took the cosine of
the angle between these vectors (Figure 3a). This value ranges from —1 to +1 for each atom,
with —1 indicating that the atom points at the amino acid backbone and +1 indicating that
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Fig. 2. iCGs from protein self-contacts show clear geometric clustering. 3D plot and histogram of
iCG centroid density relative to the reference amino acid backbone in different radial bins for two
different contact types, Asparagine-Carbonyl (a) and Tyrosine-Carboxylate (b).

it points away from the amino acid backbone. We observe that the atoms of an iCG that can
form hydrogen bonds almost ubiquitously point towards the centroid of the reference amino
acid (Supplemental Figure 3a). This is most obvious for smaller iCGs with a single hydrogen
bonding atom (Figure 3b), but is also maintained in the indole heterocycle with the nitrogen
preferentially oriented towards the reference backbone, and the other atoms (except for the
diametrically opposite carbon) distributed almost uniformly elsewhere (Figure 3c). We believe
this parameterization of orientation to be more informative than an absolute rotation of the
full iCG in 3D, as it provides a direct readout of optimal rotational patterns that maximize
hydrogen bonding strength in a contact type.

4.2. Many geometric patterns transfer to protein-ligand contacts

We next sought to measure how well interaction patterns transfer between protein-protein
and protein-ligand instances. It is not immediately obvious what specific notions of “trans-
ferability” are useful and feasible to measure. One option would be to apply a statistical
test of whether two distributions are identical for each contact type between the protein
self-interaction data and the protein-ligand data, using a summary statistic such as the iCG
centroid. However, such a test may be too strict, since there are known sources of distri-
butional shift between the two data sources. In their work, Polizzi and DeGrado designed
protein-ligand interactions under the assumption that protein-ligand interaction geometries
should be near modes in the distribution of protein self-interaction geometries [5]. We chose
to use a statistical test that targets a similar use case, by testing for whether protein-ligand
contacts have high density under the distribution of protein self-contact geometries.
Concretely, if the true density f of a statistic X ~ f of protein self-interactions (e.g.,
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Fig. 3. iCGs preferentially orient their hydrogen bonding atoms towards the reference amino acid.
(a) The atomic angle statistic for a particular atom is the cosine of the angle between the centroid-
centroid vector (dotted) and each of the centroid-atom vectors (solid) within the iCG. H-bonding
atoms of the iCG are shown in red, while non H-bonding carbons are colored gray. Values range from
—1 (pointing directly to the backbone centroid) to 4+1 (pointing opposite to the backbone centroid).
Orientation distribution of each atom in isopropanol (b) and indole ring (c) iCGs relative to various
reference amino acids. Preferential orientation of the hydrogen bonding atom in each iCG is preserved
regardless of whether or not the reference amino acid’s side chain can form hydrogen bonds.

distance between centroids or angles as described above) were known, a natural approach
to identify whether corresponding K measurements {Yi,...,Yx} ~' g of the protein-ligand
interactions fall into high-density regions (according to f) would be to investigate the sample
mean Si = % Zszl f(Yy) of associated densities. Under the null assumption of ¢ = f and given
sufficiently large K, Sk behaves approximately normal with mean Ef(X) = [, f(z)dz = || f||3
and variance [Varf(X)]/K = (| fII3—fl3)/K, and hence can be converted to z-scores to perform
one-sided hypothesis testing. In practical settings, f is not directly accessible and requires
estimation instead. Various standard approaches exist for attaining such estimates, of which
a computationally and theoretically particularly appealing one consists of discretizing X on
a resolution commensurate with the available sample sizes (in our analysis, we guarantee on
average ~ 300 observations per bin), and computing null distributions based on this discretized
version. The p-values we report are based on this discretized test.

We first applied this test to the distribution of distances between iCG centroids and amino
acid backbone centroids for every contact type. This statistic is one-dimensional and able to
tolerate the very small sample sizes in the protein-ligand data (Supplemental Figure S2) better
than any higher-dimensional statistic. Of all the contact types, 87 had sufficient data for the
asymptotic assumptions of the test to be valid (at least 30 samples in protein-ligand data
and at least 600 in protein self-interaction data). Of these 87 contact types, 57 had a p-value
under 0.05 (not transferable) while the remaining contact types had fairly uniform p-values
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Fig. 4. Comparison of protein-protein and protein-ligand backbone-iCG centroid distances for var-
ious contact types. Top Row: two cases rejected by our statistical test. The overall mode structures
were similar, but with uneven peak densities. Bottom Row: two cases that show similar distributions.

(Supplemental Figure S5, left panel) that were not correlated with sample sizes in the protein-
ligand data (Supplemental Figure S5, right panel). These results indicate that interaction
geometries often, but not always, transfer between the two domains. We highlight the full
distributions for four contact types that were particularly well sampled, two of which were
rejected and two of which were not rejected (Figure 4). In particular, distributions with similar
mode structures, but dissimilar density in each mode were rejected by our test as being out-of-
distribution (Figure 4, top). This is a potential limitation of our definition of “transferability”
depending on the application of interest. We therefore release our preprocessed data and
provide density distributions for all contact types in Supplemental Figure S6, so that readers
may make decisions about transferability that are appropriate for their own applications.

We further used this test to examine how well the iCG orientations defined in Section 3.3
transfer between domains (Supplemental Figure S7). We highlight 4 well-sampled examples, of
which two were rejected (Figure 5, top row) and two were accepted (Figure 5, bottom row) by
our test. As with the distance distributions, in all cases, the distribution of iCG orientations
from protein-ligand complexes fell nicely within the support of those from protein-ligand
contacts. Notably, the contact types accepted by our test showed very clear distributional
overlaps for all H-bonding atoms, including those not primarily oriented towards the reference
amino acid. The rejected samples featured uneven mass distributions relative to the empirical
protein-ligand modes; in the cases illustrated here, this is likely a consequence of a contact
involving a long and flexible amino acid (Figure 5, top left) or a repulsive interaction between
negatively charged groups (Figure 5, top right) in both the amino acid and iCG.
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Fig. 5. Comparison of protein-protein and protein-ligand iCG orientation distributions for various
contact types. Orientations reflect the degree to which a particular atom points in the direction of the
reference amino acid’s backbone. Top Row: two contact types rejected by our statistical test. Bottom
Row: two contact types that display similar atomic orientations in protein-protein and protein-ligand
contacts. Smooth curves represent distributions of atomic orientations from protein self-interaction
data; histograms show observations from the protein-ligand dataset.

4.3. Application to protein-ligand docking

We explored transferring distributions of protein self-contact geometry to protein-ligand dock-
ing. We used the docking dataset described by Paggi et al. [6], which includes docking poses
for several hundred protein-ligand pairs across 30 different protein targets which are all of
pharmacological interest. To apply 3D contact geometry to protein-ligand docking, we con-
structed a simple method to assign a scalar score to a contact. We only scored contact types
with evidence of good transfer to protein-ligand data. Specifically, only contact types with at
least 30 samples in the protein-ligand data, distance p-value greater than 0.05, and all angle
p-values greater than 0.05 were used. This left us with 20 contact types. We fit a density for
each contact type based on the centroid of the iCG after alignment in the protein self-contact
data. To guarantee strictly positive densities, we used a kernel density estimate with a Gaus-
sian kernel on Euclidean distance with bandwidth of 1 A. We then scored contacts from the
docking poses by computing their log density under the model for their contact type and then
taking the z-score of this log density compared to the log densities of protein self-contacts.
We scored all contacts from all docking poses and sorted them by whether they come
from an acceptable pose (RMSD to true pose less than 2 A as defined by Paggi et al.) or an
unacceptable pose (RMSD greater than 2 A) We also scored contacts from the experimental
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Fig. 6. The distributions of protein-ligand contact scores from docking poses is shown for poses
of acceptable and unacceptable quality, along with the distribution of true protein-ligand contact
scores. These distributions are computed only using contact types with strong evidence of good
transferability. Unacceptable pose contacts are enriched for scores less than —2 (16.2% of contacts,
compared to 1.4% for acceptable pose contacts and 0.9% for true structure contacts).

protein-ligand structures that are available for this dataset. Figure 6 shows the distribution of
scores. Note that unacceptable pose contacts are enriched for very negative z-scores less than
—2.

These results motivated us to test the effectiveness of simply filtering poses that have a
contact with z-score less than —2. We examined the top 5 poses of each protein-ligand pair,
as ranked by Glide, and found that 836 poses have at least one hydrogen bond of the 20
contact types we examine. Of these, 323 poses were unacceptable and 513 were acceptable.
We next calculated the geometric z-scores and found that 41 poses had a contact with z-
score less than —2. Of these 41 poses, 30 were unacceptable and 11 were acceptable, with
the unacceptable poses coming from 17 different protein-ligand pairs. These data support the
claim that unacceptable poses are enriched by this filter. With the alternative hypothesis that
the filter chooses unacceptable poses with higher probability and the null hypothesis that
unacceptable and acceptable poses are chosen with equal probability, the p-value is 4.5 x 1076,
We have thus demonstrated that transferring contact geometry from protein self-contacts can
improve protein-ligand docking performance. We anticipate that the increase in performance
can likely be improved further by integrating protein self-contact geometry in a more careful
manner. This result is also limited by the lack of samples in the protein-ligand data. Collecting
more experimental protein-ligand structures will allow the identification of more contact types
with good transferability, which in turn will allow scoring a larger number of ligand docking
poses. For example, nearly 2,000 poses in this dataset have a contact that could be scored if
all contact types were included, compared to 836 in the current analysis.
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5. Conclusion and Future Work

Our results suggest that while many contact types extracted from protein self-contacts can
directly transfer to protein-ligand contact evaluation, the majority show some amount of dis-
tributional shift. Qualitatively, many contact types rejected by our test share similar mode
structures with the underlying empirical protein self-contact distribution, but with skewed
allocation of density into each mode. This observation implies that many amino acids may
predominantly employ one of many favorable geometries when interacting with iCGs on lig-
ands. This may reflect a sample size imbalance, or may be the result of optimization of ligand
interactions to primarily involve terminal regions of side chains in order to best exploit re-
gions that drive specificity. We therefore provide preprocessed data and introduce a flexible
hypothesis testing framework that can be adapted to best suit the application of interest with
different levels of stringency. Finally, our preliminary results on the ligand-docking problem
indicate the potential impact of applying transferability to drug discovery and other important
problems.

Supplemental Material, Code, and Data Availability

Supplementary Material (with Supplementary Table and Figures), our source code, and pre-
processed datasets of protein self-interaction and protein-ligand interactions are available at
https://github.com/songlab-cal/contact-geometry.
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