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The polygenic risk score (PRS) can help to identify individuals’ genetic susceptibility for various 
diseases by combining patient genetic profiles and identified single-nucleotide polymorphisms 
(SNPs) from genome-wide association studies. Although multiple diseases will usually afflict 
patients at once or in succession, conventional PRSs fail to consider genetic relationships across 
multiple diseases. Even multi-trait PRSs, which take into account genetic effects for more than one 
disease at a time, fail to consider a sufficient number of phenotypes to accurately reflect the state of 
disease comorbidity in a patient, or are biased in terms of the traits that are selected. Thus, we 
developed novel network-based comorbidity risk scores to quantify associations among multiple 
phenotypes from phenome-wide association studies (PheWAS). We first constructed a disease-SNP 
heterogeneous multi-layered network (DS-Net), which consists of a disease network (disease-layer) 
and SNP network (SNP-layer). The disease-layer describes the population-level interactome from 
PheWAS data. The SNP-layer was constructed according to linkage disequilibrium. Both layers were 
attached to transform the information from a population-level interactome to individual-level 
inferences. Then, graph-based semi-supervised learning was applied to predict possible comorbidity 
scores on disease-layer for each subject. The SNP-layer serves as receiving individual genotyping 
data in the scoring process, and the disease-layer serves as the propagated output for an individual’s 
multiple disease comorbidity scores. The possible comorbidity scores were combined by logistic 
regression, and it is denoted as netCRS. The DS-Net was constructed from UK Biobank PheWAS 
data, and the individual genetic profiles were collected from the Penn Medicine Biobank. As a proof-
of-concept study, myocardial infarction (MI) was selected to compare netCRS with the PRS with 
pruning and thresholding (PRS-PT). The combined model (netCRS + PRS-PT + covariates) achieved 
an AUC improvement of 6.26% compared to the (PRS-PT + covariates) model. In terms of risk 
stratification, the combined model was able to capture the risk of MI up to approximately eight-fold 
higher than that of the low-risk group. The netCRS and PRS-PT complement each other in predicting 
high-risk groups of patients with MI. We expect that using these risk prediction models will allow 
for the development of prevention strategies and reduction of MI morbidity and mortality. 

Keywords: Comorbidity, polygenic risk scores, graph-based semi-supervised learning, multi-layered 
network. 
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1.  Introduction 

The prediction of an individual’s disease risk is an essential part of precision medicine and will be 
required to improve public healthcare and understand risk of developing a disease across different 
populations. One of the most popular methods of disease risk prediction is the polygenic risk score 
(PRS), which estimates a patient’s genetic risk for a chosen trait or disease by combining individual 
genetic profiles with many single-nucleotide polymorphisms (SNPs) identified through genome-
wide association studies (GWAS).1,2 Many studies have calculated PRSs for various common 
diseases, including cardiovascular disease, hypertension, and neurological disorders, and they 
suggest that the PRS might be a helpful tool for identifying and categorizing high-genetic risk 
individuals for those diseases.3-6 Nevertheless, a major weakness of the conventional PRS is its focus 
on a single trait for the estimation of genetic risk scores – when predicting the risk scores of an index 
disease of interest, PRS is calculated according solely to the relevant phenotype. In most cases, 
however, multiple diseases will usually afflict a patient at once or in succession. These disease 
complications and comorbidities, referring to the presence of one or more additional medical 
conditions given a primary disease, suggest that effective disease prediction will require us to 
consider multiple phenotypes concurrently.7 In order to estimate the disease risk considering the 
associations among multiple diseases, several studies had attempted to perform the association 
analysis for PRSs with multiple diseases through subsequent analysis8,9 or to combine PRSs for 
multiple traits.10 In these previous studies, a key step involves the determination of which diseases 
related to the index disease are selected for estimation of the combined risk score. However, these 
methods are limited as selection bias is introduced when knowledge reveled in clinical practice is 
used to identify diseases highly related to the target phenotype. Even multi-trait PRSs, which take 
into account genetic effects for more than one disease at a time, fail to consider a sufficient number 
of phenotypes to accurately reflect the state of disease comorbidity in a patient, or are biased in 
terms of the traits that are selected. 
 

One effective way to comprehensively explore the genetic associations among multiple diseases 
is to consider a network representation, such as the disease-disease network (DDN). Given a set of 
diseases, the DDN represents diseases as nodes, and disease-disease associations as edges. DDNs 
can explore potential comorbidity relationships among phenotypes based on shared genetic 
components. Different genetic components will yield different types of networks, such as gene11, 
protein12, pathway13, and SNP-based DDN.14 In this study, the SNP-based DDN is used to 
incorporate the conventional PRS approach, where edges represent the number of shared SNPs 
between diseases according to results from a phenome-wide association study (PheWAS). The SNP-
based DDN using PheWAS results is depicted in the center panel of Figure 1. Considering D2 as an 
index disease of interest (marked in red), we can see that it is directly connected with four diseases 
(D1, D3, D4, and D6). Three diseases (D5, D7, and D8) share no edges with D2. Directly connected 
diseases share at least one common SNP with D2. Indirectly connected diseases share no genetic 
associations with D2, but they are connected through the other nodes – for instance, D2 and D7 are 
connected in through the sequence of diseases with D2~D6~D7. Overall population-level 
relationships between diseases can be observed through the underlying structure of the DDN, 
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regardless of whether or not a pair of diseases share genetic components. In developing risk 
prediction models which consider the relationships across a multitude of diseases, a DDN can 
provide intuitive, unbiased evidence about the selection of related diseases as well as the strength 
of associations between diseases. However, although the population-level interactome between 
phenotypes can be observed through a DDN, it is not easy to apply these disease-disease associations 
in a patient-specific manner. Indeed, it is difficult to obtain information pertinent to the individual 
because the nodes and edges in DDN are aggregated and summarized from PheWAS data. 
 

To circumvent this challenge, we propose a novel framework of network-based individual 
comorbidity risk scores (netCRS) to predict individual-level disease comorbidity risk through 
population-level interactome networks. The goals of netCRS are as follows: (a) To improve the 
prediction ability of PRS, we present a novel risk score that estimates multiple disease comorbidities 
according to their shared genetic components. The netCRS estimates the combined comorbidity 
scores for multiple phenotypes in the SNP-based DDN when provided with an individual genetic 
profile. In PRS, marginal effect size estimates of SNPs obtained from a GWAS are used as weights 
for weighted sum scores of risk alleles carried by an individual for a single trait. On the other hand, 
in netCRS, disease-specific effect size estimates of SNPs from PheWAS are used as edge weights 
of the network for multiple traits. (b) To obtain individual-level inference from population-level 
interactome, we construct a novel disease-SNP heterogeneous multi-layered network using EHR-
linked biobank-scale PheWAS summary statistics. Using this multi-layered network, we introduce 
a scoring method to infer individual information from population-level networks through layer-wise 
label propagation. 
 

Figure 1 describes the overall conceptual framework of netCRS. The center panel depicts a 
disease-SNP heterogeneous multi-layered network (denoted as DS-Net). The DS-Net is a multi-
layered graph, consisting of a SNP-SNP correlation network (SNP-layer), disease-disease network 
(disease-layer) and SNP-disease associations (coupling graphs). Briefly, the SNP-layer (colored 
solid circles/lines) is constructed according to a linkage disequilibrium matrix, and the disease-layer 
(colorless solid circles/lines) is constructed according to the shared genetic components between 
phenotypes. The coupling graphs for inter-layers (colored dashed lines) between the SNP- and 
disease-layer are derived using disease-SNP associations obtained from PheWAS summary 
statistics. Given the DS-Net and index disease of interest, we first predict individual comorbidity 
scores using graph-based semi-supervised learning (SSL). Graph-based SSL predicts scores on the 
disease-layer by propagating label information when the individual genetic profile is labeled on the 
SNP layer. In the left panel of Figure 1, individual genotype data is used to provide query or seed 
label information to the SNP-layer for the scoring algorithm. Each patient’s genetic data are initially 
labeled on the SNP-layer, and then the label information is propagated through the multi-layered 
network. Predicted risk scores are obtained for each disease node (blue bar). Each bar depicts a 
possible comorbidity score for each disease that an individual patient can have. The predicted 
comorbidity scores are subsequently aggregated into combined comorbidity scores using a meta-
classifier (the right panel of Figure 1). Here, we use logistic regression for our meta-learner, and the 
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combined comorbidity score is denoted as netCRS( ), where the parentheses specify the index 
disease of interest. More details of the proposed methods are explained in the following sections. 

 

Figure 1. Overall framework of network-based comorbidity risk scoring algorithms (netCRS): Left) individual 
genotype data collected from Penn Medicine BioBank. Middle) schematic description of disease-SNP heterogeneous 
multi-layered network (DS-Net). SNP-layer constructed by linkage-disequilibrium and disease-layer constructed using 
UK biobank PheWAS summary data. Right) Upper right represents possible comorbidity scores of each disease for 
individual. The possible comorbidity scores are combined by logistic regression, and the combined scores, netCRS, are 
generated by each patient 
  

2.  netCRS: Network-based individual Comorbidity Risk Scoring 

2.1.  Disease-SNP Heterogeneous Network using UK Biobank summary statistics 

We constructed the reference network using UK BioBank (UKBB) PheWAS summary statistics. 
The DS-Net is a multi-layered weighted graph, 𝑮𝑮 = (𝑽𝑽,𝑾𝑾,𝑺𝑺), where 𝑽𝑽 represents the set of nodes, 
𝑾𝑾 represents the set of edges, and S represents the set of layers. The multi-layered network 𝑮𝑮 is 
decomposed into two distinct single graphs with corresponding layers 𝑆𝑆 = {𝑆𝑆Disease,𝑆𝑆SNP}. The 
similarity matrix 𝑾𝑾 for multi-layered network can be expressed in block-wise matrix as follows: 

𝑾𝑾 = �
𝑾𝑾𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑪𝑪

𝑪𝑪T 𝑾𝑾𝑆𝑆𝑆𝑆𝑆𝑆
�                                                        (1) 

The block diagonal matrix (𝑾𝑾Disease and 𝑾𝑾SNP) represents a similarity matrix for each single 
network of the disease-layer and SNP-layer respectively, and the block-off diagonal matrix 𝑪𝑪 
represents the coupling graphs for the connections between inter-layers. 
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2.1.1.  Disease-Layer (Disease-Disease network) 

The disease-layer 𝑮𝑮Disease = (𝑽𝑽Disease,𝑾𝑾Disease) is a sub-network of the DS-Net 𝑮𝑮, where the 
nodes 𝑽𝑽Disease  denotes the set of diseases, and 𝑾𝑾Disease  denotes the similarity between the 
sequences of SNPs that pairs of diseases commonly share. The disease-layer is constructed 
according to shared genetic components, with the hypothesis that two different phenotypes are 
associated if they share significant SNPs from the PheWAS summary results. Given 𝑚𝑚 diseases and 
𝑘𝑘  SNPs, we first generate 𝑚𝑚  disease-SNP association vectors from each PheWAS result. Each 
disease vector 𝒗𝒗 is represented as a 𝑘𝑘-dimensional SNP vector with binary attributes, each of which 
stands for statistically significant (‘1’) or not (‘0’) for the association with a specific SNP that has 
passed the 𝑝𝑝-value thresholds in the PheWAS results.14 Then, similarity between pairs of diseases 
is measured by cosine similarity 𝑤𝑤𝑖𝑖𝑖𝑖 for two diseases 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 . 

𝑤𝑤𝑖𝑖𝑖𝑖
Disease = 𝒗𝒗𝒊𝒊⋅𝒗𝒗𝒋𝒋

‖𝒗𝒗𝒊𝒊‖⋅�𝒗𝒗𝒋𝒋�
                                                              (2) 

2.1.2.  SNP-layers (SNP-SNP correlation network) 

SNP-layer 𝑮𝑮SNP = (𝑽𝑽SNP,𝑾𝑾𝑆𝑆𝑆𝑆𝑆𝑆) is a sub-network of the disease-SNP heterogeneous network G 
when 𝑺𝑺 = {SSNP}. The node 𝑽𝑽SNP denotes the representative SNPs after genetic pre-processing, and 
𝑾𝑾SNP denotes the pairwise genetic correlations between distinct SNPs. We generate the pairwise 
linkage-disequilibrium (LD) matrices of genotype correlation between nearby SNPs using quality-
controlled genotyped data of UKBB samples. The 𝑟𝑟2  between pairs of SNPs is obtained using 
PLINK 1.90 with LD calculation (--r2, --ld-window 10 SNPs, --ld-window-kb 1000kb, and --ld-
window-r2 0.0). The similarity matrix 𝑾𝑾SNP is composed of correlation values ranging from 0 to 1. 
 

2.1.3.  Coupling graphs (SNP-Disease associations) 

The coupling graphs 𝑪𝑪 = {𝑐𝑐𝑖𝑖𝑖𝑖| 𝑖𝑖 ∈ 𝑽𝑽𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 , 𝑘𝑘 ∈ 𝑽𝑽𝑆𝑆𝑆𝑆𝑆𝑆} imply connections between diseases and 
SNPs across different layers of the network. Coupling edges are derived from the disease-SNP 
association vectors (described in section 2.1.1). Edge weights take value of z-scores, equivalent to 
the beta-coefficients (𝛽𝛽𝑖𝑖𝑖𝑖) divided by standard errors (SE𝑖𝑖𝑖𝑖) from the significant association between 
phenotype 𝑖𝑖 and SNP 𝑘𝑘 from PheWAS results. These weights are rescaled to lie within a range of 0 
to 1.  
 

Combining the disease-layer, SNP-layer, and coupling graphs yields the proposed DS-Net. The 
constructed network can provide insights into the population-level interactome between diseases 
and SNPs. 
 

2.2.  Individual comorbidity risk scoring algorithms 

Given an index disease of interest, we can predict individuals’ disease comorbidity risk scores using 
the DS-Net. Since the network describes a biobank-scale population-level interactome, we take 
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individual genetic information from another biobank to calculate risk scores for individual patients. 
In this analysis, the summary-level data from UKBB were used for the network construction, and 
the individual-level genetic data were collected from the Penn Medicine BioBank (PMBB). More 
details are explained in the Section 3.  
 
Let us define disease comorbidity risk scoring 𝒇𝒇:𝐕𝐕 → ℝ as a function that quantifies the degree of 
commitment of the diseases associated with SNPs on the network. To implement this scoring 
function in a DS-Net, we employ graph-based SSL with transductive learning settings.15 As shown 
in Figure 1, individual genotypes are used for initial label information in the DS-Net. We set the 
genotype CC (homozygous non-reference) as 0, genotype CT (heterozygous) as 0.5, and genotype 
TT (homozygous reference) as 1 for initial labels of label propagation. Once the labels for the SNP-
layer are provided, graph-based SSL propagates the label information through all edges in the 
heterogeneous multi-layered network simultaneously. Since we are interested only in the 
comorbidity risk of multiple diseases, the propagated disease scores 𝒇𝒇Disease on the disease-layer 
𝑽𝑽Disease are used as the predicted comorbidity feature vectors. To aggregate these scores, we employ 
logistic regression as the meta-classifier. 
 

The following section describes the formulation of the proposed network-based comorbidity 
scoring algorithm. Assume that we have genotype data for m individuals and that we know the 
diagnosis outcomes of the index disease. Then, 𝑖𝑖-th patient’s genotype data 𝒎𝒎𝑖𝑖 has 𝑘𝑘-dimensional 
SNP vectors with values of 0, 0.5, and 1 as described above. The outcomes of the index disease for 
all patients 𝒛𝒛 is an m-dimensional vector with value ‘1’ if the patient has been diagnosed with the 
index disease or ‘0’ otherwise. To apply the individual data to graph-based SSL, we set the initial 
label set of vector 𝒚𝒚 and predicted scores 𝒇𝒇. The initialization and learning process is performed 
iteratively patient-by-patient. Let 𝒚𝒚 = (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛,𝑦𝑦𝑛𝑛+1, … ,𝑦𝑦𝑛𝑛+𝑘𝑘)T = (𝒚𝒚Disease,𝒚𝒚SNP)T  denote the 
set of initial labels and 𝒇𝒇 = (𝑓𝑓1, … ,𝑓𝑓𝑛𝑛,𝑓𝑓𝑛𝑛+1, … , 𝑓𝑓𝑛𝑛+𝑘𝑘)T = (𝒇𝒇Disease,𝒇𝒇SNP)T  denote the set of 
predicted scores, where n is the total number of diseases and k is the total number of SNPs in the 
network. In the problem setting of disease comorbidity scores, we set the 𝒚𝒚Disease to the zero vector 
and 𝒚𝒚SNP to 𝒎𝒎𝑖𝑖. The label information is propagated to all connected nodes along with edges in 
𝑾𝑾SNP, 𝐂𝐂, and 𝐖𝐖Disease on graph 𝐆𝐆. Graph-based SSL provides the real-valued scores 𝒇𝒇 with two 
assumptions: (a) smoothness function (predicted scores 𝑓𝑓𝑖𝑖  and 𝑓𝑓𝑗𝑗  should not be different if two 
nodes 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗  are adjacent), (b) loss function (predicted scores 𝑓𝑓𝑖𝑖 should be close to the given label 
of 𝑦𝑦𝑖𝑖).  We can obtain predicted score 𝒇𝒇 by minimizing the following quadratic function: 

min
𝑓𝑓

  (𝒇𝒇 − 𝒚𝒚)T(𝒇𝒇 − 𝒚𝒚) + 𝜇𝜇𝒇𝒇𝐓𝐓𝑳𝑳𝑳𝑳                                         (3) 

where 𝑳𝑳 is the graph Laplacian defined as 𝑳𝑳 = 𝑫𝑫−𝑾𝑾, 𝑫𝑫 = diag(𝑑𝑑𝑖𝑖) is diagonal degree matrix,  
𝑑𝑑𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑗𝑗 , and 𝜇𝜇 is user-specific parameter that provides a trade-off between the loss function 
(first term of Eq. (3)) and smoothness function (second term of Eq. (3)). The closed form of solution 
𝒇𝒇 becomes  

𝒇𝒇 = (𝑰𝑰 + 𝜇𝜇𝑳𝑳)−1𝒚𝒚                                                        (4) 
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The predicted scores 𝑓𝑓 on Eq. (4) can be re-expressed in a block-wise representation by using Eq. 
(1).12  

�
𝒚𝒚Disease
𝒚𝒚SNP � = �

𝑰𝑰 + 𝜇𝜇(𝑫𝑫Disease−𝑾𝑾Disease) −𝜇𝜇𝑪𝑪
−𝜇𝜇𝑪𝑪T 𝑰𝑰 + 𝜇𝜇(𝑫𝑫SNP−𝑾𝑾SNP)� �

𝒇𝒇Disease
𝒇𝒇SNP

�            (5)    

Since the nodes in the SNP-layer are all labeled and nodes in the disease-layer are all unlabeled, Eq. 
(5) is simplified by substituting 𝒇𝒇SNP  as 𝒚𝒚SNP  and 𝒚𝒚Disease  as 𝟎𝟎 . The predicted scores on the 
disease-layer are thus obtained as 

𝒇𝒇Disease = 𝜇𝜇{𝑰𝑰 + 𝜇𝜇(𝑫𝑫Disease −𝑾𝑾Disease)}−1𝑪𝑪 ⋅ 𝒚𝒚SNP                           (6) 

This process is iteratively repeated for each individual patient, and 𝑭𝑭∗ = {𝒇𝒇Disease
(1) , … ,𝒇𝒇Disease

(m) } 
represents the 𝑚𝑚-dimensional comorbidity score vector. To aggregate these vectors, we employ 
logistic regression as a meta-classifier with 𝐳𝐳 ~ 𝛃𝛃T𝒇𝒇Disease + 𝝐𝝐. We can then obtain the combined 
possible comorbidity risk scores as netCRS( ) = 𝜷𝜷�T𝑭𝑭∗ for the individual. A step-by-step process 
for scoring is summarized with pseudo-code in Supplementary Figure 1. 
 

3.  Results 

In this study, we selected myocardial infarction (PheCode: 411.2) as the index disease of interest. It 
is commonly known as a heart attack and occurs when blood flow reduces or stops to a part of the 
heart. Myocardial infarction (MI) is the main undesirable outcome of coronary artery disease. 
Coronary artery disease, often caused by coronary atherosclerosis, is a common chronic condition 
characterized by a substantial and complex polygenic contribution to disease risk, with a heritability 
between 40% and 60%. We describe a MI-specific DS-Net and present comorbidity scores of MI 
for the individual, netCRS (myocardial infarction, MI). 
 

3.1.  Experimental Setting 

3.1.1.  Data for model development and validation set 

To build the MI-specific DS-Net and calculate netCRS(MI), a total of 1,403 PheCode-based UK 
biobank PheWAS summary statistics were obtained from https://www.leelabsg.org/resources.16 To 
construct the myocardial infarction-specific DS-Net, 135 diseases were selected with the following 
criteria: (a) The diseases were included in the disease-layer if phenotypes had a minimum number 
of cases larger than 1000, and (b) the diseases were included if phenotypes had at least one shared 
SNP with myocardial infarction (directly connected with MI). The selected disease categories and 
disease-layers are described in Figure 2. In the SNP-layer, 39,365 SNPs were selected with genome-
wide significance p-value threshold ≤ 1 × 10−4 . Linkage disequilibrium (LD) pruning was 
performed with thresholds (window size: 50, step size: 5, and r2 threshold: 0.5). A list of components 
in the DS-Net is described in Supplementary Table 1. 
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Individual genotype data were collected from the PMBB. The PMBB is an institutional research 
program that recruits patient-participants throughout the University of Pennsylvania Health System 
by enrolling at the time of outpatient visits ore more recently, through electronic consenting. 
Approximately 45,000 of these participants already have genotype data available along with 
electronic health records (EHR). ICD-9 and ICD-10 codes were aggregated to PheCodes by 
referring to the PheCode Map 1.2 version.17-19 4,972 individuals of European ancestry were included 
for this study, all of whom underwent genotyping and had available electronic health record data 
(Table 1). The detailed genotype QC we performed refers to the previous study 20. According to the 
accumulated medical history at the time of participation, individuals were considered cases for MI 
if they had at least 2 instances of the PheCode on unique dates, controls if they had no instance of 
the PheCode, and ‘other/missing’ if they had one instance or a related PheCode. Table 1 describes 
the list of data and sources for model development and validation cohort.  
 
Table 1. Demographics table of the development and validation cohort. 

Development 
Cohort 

(Network construction) 

UK BioBank PheWAS summary data (UKBB) 
Phenotypes  135 (out of 1,403) 
SNPs 39,365 (after genetic pre-processing) 

Validation 
Cohort 

(Genotype data) 

Penn Medicine BioBank (PMBB) 
 Total MI cases Controls p-value 

No. of samples (N = 4972) (N = 763) (N = 4209)  
Sex    <0.001 

Female (%) 1,854 (37.3%) 171 (22.4%) 1683 (40.0%)  
Male (%) 3,118 (62.7%) 592 (77.6%) 2526 (60.0%)  

Age at enrollment 62.0 ± 14.8 68.4 ± 11.2 60.9 ± 15.1 <0.001 
 

Figure 2. Visualization of MI-specific disease-layer: The node size is the sum of the weighted degree of 
the node, indicating the relative size, and the node labels represents their PheCode. The thickness of the line 
represent the edge weights (similarity). Parentheses in disease categories represent the percentages of 
diseases that belong to a category.   
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3.1.2.  Experimental Setting 

To evaluate the prediction performance of netCRS using PMBB genotype data, we compared 
proposed method to PRS with pruning and thresholding (PRS-PT), calculated using PRSice-221. 
Area under the receiver operating characteristic curve (AUC) was used as performance measure. 
The model parameters were searched over the following ranges for the respective models. In 
netCRS(MI), we performed a hyper-parameter search of 𝜇𝜇 for Eq. (4) of graph-based SSL over 𝜇𝜇 =
{0.01, 0.1, 1, 10, 100}. The PRS-PT was generated from the sum of the risk alleles weighted by their 
effect sizes based on GWAS summary statistics from Coronary Artery Disease Genome-wide 
Replication and Meta-analysis plus the Coronary Artery Disease Genetics (CARDIOGRAMplus 
C4D consortium).22 The parameters were selected from a range of p-value thresholds {5 ×
10−8, 1 × 10−6, 0.0001, 0.001, 0.01, 0.05} and LD-based clumping 𝑟𝑟2 (0.1 to 0.9) within 1,000 kb. 
The generated netCRS(MI) and PRS-PT(MI) were compared between MI cases and healthy controls 
with the logistic regression model, respectively. For both models, the best performance was selected 
by searching over the respective model-parameter space. The best model of PRS-PT(MI) was 
determined based on the optimal threshold with the largest Nagelkerke's R2 value (in Supplementary 
Table 1). 

3.1.3.  Risk predictions of myocardial infarction with netCRS 

Table 2 shows the performance comparison of the best PRS-PT(MI) and netCRS(MI) in terms of 
overall AUC for MI cases and healthy controls. In the results, we included the prediction 
performance of singleton risk model (netCRS and PRS-PT) and models with covariates of sex and 
age. We also included the additive models of (PRS-PT + netCRS) with and without covariates. The 
netCRS with 𝜇𝜇 = {0.1} achieved best predictive performance across both singleton and additive 
models. When netCRS was used along with the conventional PRS model, the combined model [6] 
(netCRS + PRS-PT + covariates) achieved an AUC improvement of 28.29%(=
(0.7417 − 0.5827) 0.5827⁄ ) compared to the PRS-PT alone model [1] in MI case prediction.  Also, 
the combined model [6] improved the performance up to 0.7417 of AUC (lifted from 0.6979), 
comparing to the individual PRS-PT model [4] (AUC improvement of 6.26%). Models with 
superscript of asterisk were used in further association analysis to validate netCRS and its 
effectiveness (model [2], [5], and [6]) 
 
Table 2. Performance comparison of netCRS and PRS-PT in terms of AUC 

Models 
Hyper-parameter (𝜇𝜇) for netCRS 

0.01 0.1 1 10 100 

[1] PRS-PT 0.5827 (Baseline) 

[2] netCRS* 0.6028 0.6444 0.6395 0.6197 0.6039 

[3] netCRS + PRS-PT 0.6274 0.6609 0.6570 0.6389 0.6255 

[4] PRS-PT + Sex + Age 0.6979 (Baseline) 

[5] netCRS + Sex + Age* 0.7083 0.7287 0.7261 0.7144 0.7051 

[6] netCRS + PRS-PT + Sex + Age* 0.7230 0.7417 0.7396 0.7287 0.7199 
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3.1.4.  Association analysis of netCRS and PRS 

To investigate the effectiveness of the association between both risk scoring models and covariates 
with age and sex, we assessed multiplicative interactions between netCRS and each of the 
stratification variables. We stratified participants based on quartiles of netCRS; low risk (0th-25th), 
intermediate risk (26th-50th), high risk (51st-75th), and very high risk (76th-100th). Compared with 
the low-netCRS risk group, the higher netCRS risk group had higher odds ratios in the validation 
cohort. In stepwise multivariate models (model [5] and [6]), the models with covariates and/or PRS-
PT remained significantly (Table 3). Participants in the very high-netCRS risk group for MI had 
approximately four-fold increased risk of MI occurrence relative to those with the corresponding 
low-genetic risk group (shown in Table 3). In addition, we investigated the benefit of using netCRS 
and PRS together in screening high-risk groups for MI. Table 4 demonstrates that combinations of 
MI-PRS and netCRS were able to capture the risk of MI up to approximately eight-fold higher than 
the low-risk group. Supplementary Table 3 provides demographics of participants according to 
netCRS risk groups. 
 
Table 3. Diagnostic odds ratio and 95% confidential intervals for the MI according to netCRS risk group: We compared 
three different models: (a) model [2]: netCRS alone, (b) model [5]: netCRS + sex + age, and (c) model [6]: netCRS + 
PRS-PT + sex + age. 

Abbreviations: OR, odds ratio; CI, confidence interval; PRS, polygenic risk score. *p-value for netCRS categories. 

 
Table 4. Genetic subgroups based on the combinations of PRS and netCRS  

Odds ratio* 
(No. of MI / No. of Total) 

PRS-PT(MI) 
Low risk 
(0th-25th) 

Intermediate risk 
(26th-50th) 

High risk 
(51st-75th) 

Very high risk 
(76th-100th) 

ne
tC

R
S(

M
I)

 

Low risk (0th-25th) Reference 
(19/334) 

1.18 
(20/299) 

1.35 
(21/273) 

2.46 
(34/243) 

Intermediate risk (26th-50th) 1.46 
(23/276) 

2.36 
(36/268) 

2.77 
(45/286) 

3.07 
(46/263) 

High risk (51st-75th) 2.07 
(33/280) 

4.59 
(71/272) 

3.94 
(52/241) 

4.55 
(60/232) 

Very high risk (76th-100th) 4.04 
(52/226) 

4.66 
(58/219) 

5.60 
(78/245) 

7.88 
(113/252) 

*For calculating odds ratio, we performed multivariate logistic regression analysis for MI classification task (myocardial 
infarction (MI) cases versus Normal control). Logistic model: (MI cases vs. Normal control) ~ 16 combinations (PRS 
and netCRS groups) + sex + age. With the lowest risk group (Low PRS group & Low netCRS group) as a reference, the 
odds ratio of each combination was reported in this table. 

Total (N = 4,972) No. of MI/ 
No. of Total 

Model [2] Model [5] Model [6] 
OR (95% CI) p-value* OR (95% CI) p-value* OR (95% CI) p-value* 

Low risk 
(0th-25th) 94/1243 Reference 

Intermediate risk 
(26th-50th) 150/1243 1.68 (1.28–2.21) <0.001 1.71 (1.30–2.25) <0.001 1.65 (1.25–2.19) <0.001 

High risk 
(51st-75th) 218/1243 2.60 (2.02–3.37) <0.001 2.72 (2.10–3.55) <0.001 2.70 (2.08–3.53) <0.001 

Very high risk 
(76th-100th) 301/1243 3.91 (3.06–5.02) <0.001 4.01 (3.13–5.50) <0.001 3.83 (2.98–4.96) <0.001 
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4.  Conclusion 

In this study, we developed and proposed netCRS, a network-based disease comorbidity risk scoring 
algorithm based upon biobank-scale PheWAS summary statistics. To improve the prediction ability 
of PRS, we introduced a novel combined comorbidity risk scores using a multi-layered network. 
Most current biological networks suggest only associative information between biological 
components according to aggregated population-level data 23. Although these population-level 
networks provide insights regarding the interaction of components, it is not easy to obtain individual 
inference from them.  
 
To solve this problem, we proposed a novel method for the prediction of individual-level risk scores 
from population-level interactome. We first constructed a DDN (disease-layer) which elaborates on 
the genetic associations among multiple phenotypes in UKBB PheWAS data. In order to use the 
disease-layer at the individual-level, we attached a SNP-layer to the disease-layer. The final 
developed network is a disease-SNP heterogeneous multi-layered network denoted as DS-Net. We 
employed graph-based SSL on the network to devise a network-based scoring algorithm. The SNP-
layer is a single network that serves as initial labeling to receive individual genotyping data, and the 
disease-layer is an output network. The disease-layer serves as the predicted possible comorbidity 
risk scores in which the individual's genotype is propagated. To obtain layer-wise predicted scores, 
a layer-wise positive-unlabeled learning setting was employed, where the all nodes on the disease-
layer are unlabeled and all the SNPs on the SNP-layer are labeled. Graph-based SSL can operate in 
this problem setting to propagate label information according to the topology of the network. The 
resulting netCRS is an estimated comorbidity score that integrates pre-defined genetic association 
between phenotypes using the underlying structure of the DS-Net. This score includes not only 
genetic information about a specific target disease, but also multiple associations of diseases. We 
validated the proposed netCRS by considering MI as index disease of interest. The netCRS model 
outperformed the conventional PRS-PT model in predicting MI patients and healthy controls. From 
experimental results of the association analysis, it is noteworthy that netCRS and PRS-PT work 
complementary to one another in identifying the very high-risk group of patients with myocardial 
infarction.  
 

The current proposed method still has room for improvement. First, when constructing a disease-
specific heterogeneous multi-layered network, it is expected that better comorbidity scores will be 
obtained if more precise criteria are applied to node selection. Second, our network was constructed 
using only common variants from PheWAS summary data. If we expand the network to include rare 
variants and other clinical information, we expect that using these risk prediction models will allow 
for the development of prevention strategies and reduction of MI morbidity and mortality. Also, the 
current disease-layer was constructed according to shared common SNPs between diseases. We can 
also try to build the DDN using different forms of genetic correlations such as LD regression scores. 
For future work, we will test netCRS in various diseases and compare netCRS with more recent 
PRS approaches in order to prove its generalized prediction performance. 
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