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A critical challenge in analyzing multi-omics data from clinical cohorts is the re-use of these valuable 
datasets to answer biological questions beyond the scope of the original study. Transfer Learning and 
Knowledge Transfer approaches are machine learning methods that leverage knowledge gained in 
one domain to solve a problem in another. Here, we address the challenge of developing Knowledge 
Transfer approaches to map trans-omic information from a multi-omic clinical cohort to another 
cohort in which a novel phenotype is measured. Our test case is that of predicting gut microbiome 
and gut metabolite biomarkers of resistance to anti-TNF therapy in Ulcerative Colitis patients. Three 
approaches are proposed for Trans-omic Knowledge Transfer, and the resulting performance and 
downstream inferred biomarkers are compared to identify efficacious methods. We find that multiple 
approaches reveal similar metabolite and microbial biomarkers of anti-TNF resistance and that these 
commonly implicated biomarkers can be validated in literature analysis. Overall, we demonstrate a 
promising approach to maximize the value of the investment in large clinical multi-omics studies by 
re-using these data to answer biological and clinical questions not posed in the original study.  
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1. Introduction

The generation of matched multi-omics datasets from large clinical cohorts has resulted in
identification of novel biomarkers of disease progression and therapeutic response in cancers [1-3], 
inflammatory [4, 5], and other complex human diseases [6, 7]. The Integrative Human Microbiome 
Project (iHMP) is a recent effort to understand the complex host and microbiome drivers of 
inflammatory bowel disease (IBD) [8], type 2 diabetes (T2D) [7], and preterm birth (PTB) [9] 
through the integration of human multi-omics. The development of computational tools to integrate 
molecular data across scales [10] and relate signatures to human phenotypes [11] has been a critical 
parallel and synergistic effort to experimental advances that have expanded the scope of molecular 
profiling. Because sequencing remains one of the highest costs to scaling clinical multi-omics, 
patients are recruited with defined criteria to ensure sufficient statistical power to answer the primary 
study questions. Therefore, though the molecular data in these cohorts are rich in detail and scope, 
the clinical and phenotypic variables are often sparse and limited in scope.  

Transfer Learning, the use of information gained solving one problem to inform the solution of 
a different one, is a machine learning area suited to maximize the value of the financial, research, 
and patient efforts required to generate clinical datasets. The profiling of different molecular data 
types in multi-omic cohorts encode trans-omic information that enables correlation of signals across 
scales. If one of these scales is present in single-omic cohort matched to new phenotypic variables, 
the trans-omic relationships in the multi-omics study could reveal molecular associations with the 
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phenotypic variables in the single-omic cohort. We term this Trans-omic Knowledge Transfer and 
suggest that this approach represents a largely untapped reservoir of opportunity to reuse data from 
clinical cohorts to answer questions beyond those posed in the original study.  

Here, we examine potential strategies for Trans-omic Knowledge Transfer to associate multi-
omic signatures from one cohort of patients to a drug-resistance phenotype in another (Figure 1). 
Our objective is to identify gut microbial taxa and metabolites in the IBD Multi-omics Database 
(IBDMDB)[8] predictive of anti-tumor necrosis factor alpha (anti-TNF) therapeutic response in 
Ulcerative Colitis (UC) patients, a phenotype not in the original IBDMBD data.  

 

 
 
Figure 1. Study Overview. (A) Trans-omic Knowledge Transfer to predict biomarkers of response to an anti-TNF drug 
(Infliximab: IFX) training on UC patient gene expression data (GSE16879, “GSE-Data”) and predicting on a test set 
(IBDMDB). (B) Case 1: Supervised Classifier Transfer. The PLS-DA model constructed on the training data is applied 
to IBDMDB gene expression data to predict IFX response. New PLS-DA models are constructed to associate microbial 
taxa and metabolites to the predicted IFX response. (C) Case 2: Relative Separation Transfer. The weights matrix W is 
extracted from the GSE-trained PLS-DA model and the IBDMDB gene expression data are projected onto the GSE 
latent variables (LV). PLS-R models are trained to associate microbial taxa and metabolites to the positions of the 
IBDMDB samples on the IFX response, GSE-trained LVs. (D) Case 3: Signature Transfer. Genes predictive of IFX 
response in the GSE-trained model are extracted via Variable Importance of Projection (VIP) analysis to define an IFX-
response Gene Set. Single Sample Gene Set Enrichment Analysis (ssGSEA) constructs a resistance score for this 
signature in IBDMDB data. PLS-R models are built to associate taxa and metabolites to the resistance score.  
 

UC is a chronic inflammatory condition of the digestive tract that impacts the large intestine and 
results in progressively worsening inflammation and intestinal damage [12]. Patients typically 
progress through a sequence of therapies including antibiotics and general immunosuppressive 
drugs, to more targeted biologic agents, the most common of which are anti-TNF agents [13]. 
However, 10-40% [14] of patients will exhibit primary resistance, and up to 50% [15] of initial 
responders will eventually acquire resistance, depending on the disease type and experiment design. 
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Therefore, anti-TNF resistance represents a major clinical problem in UC and the identification of 
microbial and metabolite biomarkers of response could aid in the development of probiotic and 
prebiotic approaches to enhance response and overcome resistance.  

Since information about anti-TNF response is not available in the meta-data for the IBDMDB, 
we developed three transfer learning approaches to leverage UC patient gene expression data 
matched to anti-TNF response in another cohort to infer an anti-TNF response gradient and 
biomarkers in IBDMDB. To compare these approaches, we held the initial model constant, a Partial 
Least Squares Discriminant Analysis (PLS-DA), and compared three strategies for knowledge 
transfer we term (1) Supervised Model, (2) Relative Separation, and (3) Signature Transfer. We 
show how each of these methods enables discovery of cross-cohort biomarkers, assess consistency 
of different approaches, and offer recommendations on how to generalize these approaches to other 
classes of machine learning models for trans-omic, cross-cohort biomarker discovery.  
 
2. Methods 
 
2.1 Datasets – Download and Processing 
Multi-omics data was obtained from the integrated Human Microbiome Project (iHMP) IBD Multi-
omics Database [16, 17]. Large intestine samples from Ulcerative colitis and non-IBD control 
patients were selected if each unique patient had all three of the following data types: gut 
metabolomics data, 16S rRNA seq data, and colorectal transcriptomics. The cohort consisted of 18 
UC patients with all three sets of data. 16S rRNA-seq and gut metabolomic data were log2 
normalized, and the transcriptomic data was z-scored normalized. Gene expression data for UC 
patients matched to Infliximab response information were obtained from Gene Expression Omnibus 
(GEO) from dataset GSE16879 (N = 24) [18, 19]. Data were log2 RMA normalized [20] and the 
top 33% of most variable genes were selected for analysis. The IBDMDB gene expression dataset 
was filtered for just these top 33% of most variable genes from GSE16879 to ensure comparability.  
 
2.2 Partial Least Squares and Variable Importance of Projection Analysis 
Partial Least Squares Discriminant Analysis (PLS-DA) and Regression (PLS-R) models were 
trained in MATLAB_R2022a using the ‘plsregress’ function. For training the initial model with 
GSE16879 gene expression data, models with 1 to 8 latent variables (LV) were assessed using 6-
fold cross-validation. Percent variance explained in Y (infliximab response) and minimized mean 
squared error (MSE) were examined to select the optimal number of LVs for Knowledge Transfer 
to the test set. Test set models using metabolomics or microbial taxa information were trained 
examining 1 to 8 LVs using 6-fold cross-validation and the optimal number of LVs were selected 
based on percent variance explained and minimized MSE. For gene expression, metabolomics, and 
16S rRNA-seq data, predictive features were identified in the PLS models using variable importance 
of projection (VIP) analysis. A VIP score assesses the weighted variance captured by a feature in a 
PLS model relative to the total variance captured in the model. A feature with VIP score greater 
than 1 is considered significantly predictive and higher VIP scores indicate more predictive features.  
 While other methods for predictive modeling do exist (e.g. random forest, neural networks) 
that we could examine here, the strength of PLS-DA and PLS-R is the ease of interpretation of the 
loading coefficients on the latent variables, enabling us to use the inferred biological signatures as 
validation lists. This is necessary since the nature of Trans-omic Knowledge Transfer involves 
prediction on a test set for which we cannot know the ground-truth biological signatures.  
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2.3 Case 1: Supervised Classifier Transfer 
Following PLS-DA model training on the GSE16879 gene expression data predicting Infliximab 
response, the model regression coefficients matrix 𝛽, was extracted. We applied 𝛽 to the z-score 
normalized IBDMDB gene expression data, filtered for overlapping genes with the top 33% most 
variable genes, to predict an Infliximab response for the IBDMDB samples. Predicted values greater 
than 0 were marked as “sensitive” or “1” and less than 0 were marked as “resistant” or “-1”. We 
then used these labels to construct PLS-DA models for the IBDMDB metabolomics and 16S rRNA-
seq data predicting the Infliximab response variable. Models were trained and predictive metabolites 
and microbial taxa were extracted via the procedures described in 2.2.  
 
2.4 Case 2: Relative Separation Transfer 
Following PLS-DA model training on the GSE16879 gene expression data predicting Infliximab 
response, the model weights matrix W was extracted. We multiplied W by the z-score normalized 
IBDMDB gene expression data, filtered for overlapping genes with the top 33% most variable 
genes, to predict an Infliximab response for the IBDMDB samples, to infer the scores of IBDMDB 
samples on GSE16879-trained latent variables. Using this continuous Y matrix, we constructed 
PLS-R models for the IBDMDB gut metabolomics and 16S rRNA-seq data to predict separation of 
IBDMDB samples on Infliximab response-associated latent variables. Following model training as 
described in 2.2 for IBDMDB metabolomics and 16S rRNA-seq data, predictive metabolites and 
microbial taxa were extracted via VIP analysis.  
 
2.5 Case 3: Signature Transfer 
Following PLS-DA model training on the GSE16879 gene expression data predicting Infliximab 
response, significantly predictive genes were extracted via VIP analysis at a threshold of VIP > 2.  
These genes were used to define a gene set for analysis via single sample Gene Set Enrichment 
Analysis (ssGSEA). We analyzed the IBDMDB gene expression data in R (v4.1.1) using the 
package ssGSEA2.0 to infer patient-specific Infliximab resistance pathway scores. After running 
ssGSEA2.0, sample-specific Infliximab-resistance scores for the IBDMDB patients were extracted 
for downstream analysis. We trained PLS-R models with the IBDMDB metabolomics and 16S 
rRNA-seq data to predict the Infliximab resistance scores. Models were trained and significantly 
predictive metabolites and microbial taxa were extracted via VIP analysis as described in 2.2.  
 
2.6 Data Code Availability 
All data required to reproduce the findings in the manuscript is publicly available through GEO [18] 
or the IBDMBD [8] portals. All code required to reproduce the findings in this manuscript is 
available at: https://github.com/WeldonSchool-BrubakerLab/psb2023.git 
 
3. Results 
 
3.1 Training the source PLS-DA model on Infliximab Response-Matched Transcriptomics 
We trained a PLS-DA model predicting Infliximab response from large intestine pinch biopsy gene 
expression data in GSE16879 as the foundational model we held constant in comparing Trans-omic 
Knowledge Transfer modeling approaches. Processed gene expression data were filtered for the top 
33% most variable genes (5,779 genes) as our X-block and a PLS-DA model was trained using a 
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binary Y variable for Infliximab response (Sensitive 1, Resistant -1) (Figure 2A). UC samples 
primarily separated by Infliximab response on LV1 and a two latent variable model minimized 
prediction error across 6-fold cross-validation. Using Variable Importance of Projection (VIP) 
analysis, we identified genes in the model predictive of Infliximab response (2,266 genes VIP > 1) 
and extracted a 70 gene Infliximab resistance signature (VIP > 1) to define an Infliximab resistance 
gene set for trans-omic models (Figure 2B-2C). Of those genes, 55 were up-regulated in Infliximab 
resistant patients relative to sensitive patients. 

 
 
Figure 2. Training the underlying PLS-DA model. (A) Scores of GSE16879 ulcerative colitis samples in PLS-DA 
latent variables (LV) predicting Infliximab sensitivity or resistance. Two LV were selected explaining 71.4% variance 
and minimizing MSE. (B) Volcano plot of genes by VIP score and log2 fold change between R and NR patients. (C) 
Heatmap of Infliximab response-associated genes at VIP > 2 used to construct the gene set for Case 3: Signature Transfer 
Modeling. R-Responder, NR- Non-responder or resistant. Bolded genes are up-regulated in Infliximab resistant patients.  
 
3.2 Inferring Gut Microbial Taxa Predictive of Infliximab Response 
Having trained the initial PLS-DA model predicting Infliximab response from gene expression data 
in UC patients from GSE16879, we examined three approaches for Trans-omic Knowledge Transfer 
to identify gut microbial taxa predictive of Infliximab response using gene expression and 16S 
rRNA-seq data from IBDMDB (Figure 3). For our first case, Supervised Classifier Transfer, we 
applied the PLS-DA model trained on GSE16879 gene expression data to the IBDMDB gene 
expression data to predict a binary Infliximab response variable for these patients. Having made this 
prediction, we trained a new PLS-DA model (2 LV – 73.2% variance explained) predicting 
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IBDMDB Infliximab response labels from IBDMDB 16S rRNA-seq data (Figure 3A). The 
microbial taxa information was able to stratify the predicted labels primarily along LV1. 

For the second case, Relative Separation Transfer, we applied the weights matrix W from the 
GSE16879-trained PLS-DA model to the gene expression data from IBDMDB to calculate the 
scores of IBDMDB samples on GSE16879 latent variables. We then trained a PLS-R model (2 LV 
– 59.9% variance explained) predicting IBDMDB scores on GSE16879 LV1 and LV2 using 
IBDMDB 16S rRNA-seq data (Figure 3B). Positive scores on GSE16879 LV1 and LV2 were 
associated with Infliximab resistance (Figure 2). We observed that these scores were not well 
stratified by the PLS-R model, but some separation could be observed on 16S rRNA-seq LV1.  

 

 
 
Figure 3. Gut Microbial Predictors of Infliximab Response. (A) Case 1 Supervised Classifier Transfer. Scores plot 
for a PLS-DA model predicting IBDMDB inferred Infliximab response classes from 16S rRNA-seq data. Infliximab 
response classes were predicted by applying the GSE16879 trained PLS-DA model to the IBDMDB gene expression 
data. (B) Case 2 Relative Separation Transfer. Scores plot for a PLS-R model trained to predict separation of IBDMDB 
samples on GSE16879 PLS-DA latent variables from 16S rRNA-seq data. Plots are colored by IBDMDB sample scores 
on GSE16879 latent variables 1 and 2 inferred using IBDMDB gene expression data. (C) Case 3 Signature Transfer: 
PLS-R model predicting IBDMDB Infliximab resistance gene score from 16S rRNA-seq data. (D) Comparison of 
microbial taxa VIP scores from Case 1 (C1), Case 2 (C2), and Case 3 (C3) PLS Knowledge Transfer models. (E) Venn 
diagram of the number of Infliximab response-associated taxa (VIP > 1) across models.  
 
 For the third case, Signature Transfer, we used the 70 genes with VIP scores greater than 2 
from the GSE16879 PLS-DA model to define an Infliximab resistance gene set for single sample 
Gene Set Enrichment Analysis (ssGSEA) of the IBDMDB gene expression data. In brief, ssGSEA 
calculates an enrichment score for a pathway or gene set, for each sample in a dataset based on the 
cumulative expression of genes within that sample gene set. Here, we used ssGSEA to calculate an 
Infliximab resistance score for each sample in the IBDMDB gene expression data and then trained 
a PLS-R model predicting that score using the IBDMDB 16S rRNA-seq data (Figure 3C). We 
observed very strong separation of IBDMDB samples by Infliximab resistance scores along the 
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microbial taxa latent variables. Compared to the Supervised Classifier Transfer and Relative 
Separation Transfer approaches, the model trained using Signature Transfer generated latent 
variables capturing the greater proportion of variance between samples.  
 We performed VIP analysis of the microbial taxa in each Knowledge Transfer model to 
extract Infliximab response-predictive microbial taxa from each approach. When we compared the 
extracted features across models by VIP score, we observed that there was relatively little 
consistency between the biomarkers identified by each approach (Figure 3D). This suggests that 
while all approaches shared the same base-model, a PLS-DA model trained on GSE16879 gene 
expression data, the specific procedures of trans-omic knowledge transfer strongly influence the 
downstream-inferred biomarkers. Despite these differences, we were able to identify a core set of 
50 microbial taxa associated with Infliximab response across all approaches (Figure 3E). Of these, 
18 have been reported to be associated with anti-TNF-α response in clinical studies (Table 1). 
 
Table 1. Bacteria abundance in response to anti-TNF treatment in IBD patients 

SILVA Genus Effect 

Subdoligranulum responder baseline↑[21] responder post-therapy↑ [22] 

Blautia responder baseline↑[23] responder after therapy↓[21, 22]  

Butyricicoccus responder after therapy↑[24]  

Fusicatenibacter responder after therapy↑[22] 

Roseburia responder baseline↑[24] responder after therapy↑[25] 

Clostridium sensu stricto 1 responder baseline↑[24] 

Faecalibacterium responder baseline↑[26] responder baseline↑ (F. prausnitzii) [21] responder 
after therapy↑[22, 25] non-responder after therapy↓[22] 

Eubacterium hallii group responder after therapy↑[22] CD responder after therapy↑[24] 

Ruminococcacea NK4A214_group responder baseline↑[24] 

Lachnospiraceae NK4A136 group responder baseline↑[24] 

Eubacterium coprostanoligenes group responder baseline↑[24] 

Dialister non-responder baseline↑ responder after therapy↓[21] 

Ruminococcacea NK4A214 group responder baseline↑[24] 

Coprococcus responder after therapy↓[21]  

Ruminococcus gnavus group responder after therapy↑[24] responder baseline↑[23]  

Dorea responder baseline↑[23] responder after therapy↑[22] 

Bacteroides relapser baseline↓[27] 

Eubacterium rectale responder baseline↑[28] 
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Faecalibacterium is one of the most abundant bacterial genera in the human intestine, and 
Faecalibacterium prausnitzii is the only known species in this genus [29]. Its abundance is reduced 
in both CD and UC [30-34]. Recent literature shows that a higher pre- and post-treatment level of 
Faecalibacterium correlates to a better anti-TNF-α response [21, 22, 25-27], which may result from 
the anti-inflammatory effect of a high amount of butyrate produced by Faecalibacterium prausnitzii 
[33]. Furthermore, the pre- and post-treatment level of Blautia, Roseburia, Dorea, and 
Ruminococcus gnavus group is also found to differentiate between anti-TNF-α responders and non-
responders [21-25, 28, 35], inferring that they may be useful biomarkers for IBD prognostics. 
 
3.3 Inferring Gut Metabolites Predictive of Infliximab Response 
Similarly, to the microbial taxa Knowledge Transfer models, we used the PLS-DA model trained 
on UC patients from GSE16879 to examine Trans-omic Knowledge Transfer approaches to identify 
gut metabolites predictive of Infliximab response using gene expression and stool metabolomics 
data from IBDMDB (Figure 4). For Supervised Classifier Transfer, we used the same Infliximab 
response labels inferred for analysis of the 16S rRNA-seq data to train a new PLS-DA model using 
the IBDMDB stool metabolomics data to predict the inferred IBDMDB Infliximab response labels 
(Figure 4A). A two LV model (83.4% variance explained) strongly separated IBDMDB samples by 
predicted Infliximab response and appeared to capture more total variance explained in these 
samples than the 16S rRNA-seq PLS model.  

For Relative Separation Transfer, we used the same projections of IBDMDB samples onto 
GSE16879 gene expression latent variables used in for the 16S rRNA-seq models in Figure 3. We 
trained a PLS-R model (2 LV – 69.9% variance explained) using gut metabolomics to predict 
IBDMDB scores on GSE16879 latent variables and observed that the metabolomics data produced 
clearer separation of projection scores and captured more sample-to-sample variance than the 16S 
rRNA-seq data (Figure 4B). For Signature Transfer, we trained a new PLS-R model predicting the 
IBDMDB Infliximab resistance gene score from the IBDMDB metabolomics data (2 LV - 86.0% 
variance explained) and observed strong separation of IBDMDB samples by resistance score on the 
inferred metabolomics latent variables (Figure 4C). Like the microbial taxa data, the clearest 
separation between samples and the largest variance explained was attributable to the Signature 
Transfer methodology. The models using the metabolomics data produced clearer separation 
between IBDMDB samples than the microbial taxa data in all matched cases, potentially due to the 
greater percent variance captured in the Y-block by the metabolomics data.  

We performed VIP analysis of the metabolites in each Knowledge Transfer model to extract 
Infliximab response-predictive metabolites from each approach. Just like with the 16S rRNA-seq 
models, when we compared the metabolites across models by VIP score, we observed that there was 
relatively little consistency between the biomarkers identified by each approach (Figure 4D). This 
strengthens our observation that while all approaches shared the same base GSE16879 trained 
model, the trans-omic knowledge transfer approach strongly influence the downstream-inferred 
biomarkers. Despite these differences, we identified core set of 44 microbial taxa associated with 
Infliximab response across all approaches (Figure 4E).  
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Figure 4. Gut Metabolite Predictors of Infliximab Response. (A) Case 1 Supervised Classifier Transfer. Scores plot 
for a PLS-DA model predicting IBDMDB inferred Infliximab response classes from gut metabolomics. Infliximab 
response classes were predicted by applying the GSE16879 trained PLS-DA model to the IBDMDB gene expression 
data. (B) Case 2 Relative Separation Transfer. Scores plot for a PLS-R model trained to predict separation of IBDMDB 
samples on GSE16879 PLS-DA latent variables from gut metabolomics. Plots are colored by IBDMDB sample scores 
on GSE16879 latent variables 1 and 2 inferred using IBDMDB gene expression data. (C) Case 3 Signature Transfer: 
PLS-R model predicting IBDMDB Infliximab resistance gene score from gut metabolomics data. (D) Comparison of 
microbial taxa VIP scores from Case 1 (C1), Case 2 (C2), and Case 3 (C3) PLS Knowledge Transfer models. (E) Venn 
diagram of number of Infliximab response-associated taxa (VIP > 1) across models. 
 
Sphingomyelin (d18:1/16:0), a sphingolipid abundant on the apical side of the gastrointestinal 
epithelial cell membrane and in the myelin sheath of nerve cells [36], significantly increased in the 
UC mice [37, 38] and ileum of CD human [39]. It was reported that the sphingomyelin level was 
elevated in anti-TNF-α non-responding IBD patients' serum [40]. This accumulation potentially 
results from the downregulation of alkaline sphingomyelinase—one of the sphingomyelin digesting 
enzymes that exhibit anti-inflammatory properties in colitis mice—in IBD [41-43], inferring that 
the increase of sphingomyelin may correlate to the aggravation of the inflammation, which 
manifests as the diminished effect of anti-TNF-α. Our model also identified glycine as a core 
metabolite. It is an amino acid that has been reported to increase in the feces of adult and pediatric 
IBD patients [44, 45]. The metabolome profile of pediatric Crohn's Disease patients shows a 
decrease in pediatric CD patients after anti-TNF-α treatment [46]. Given glycine inhibits the TNF-
α activity [47], such a decrease could result from the remission. In the same study, sebacic acid, a 
breakdown product of fatty acids that is normal in urine, was reported to be more abundant in the 
non-responder. Furthermore, metabolites like leucine, phosphatidylcholine, and arginine are closely 
related to TNF-α and associated pathways in IBD [48-51]. Their potential as metabolomic predictors 
of anti-TNF-α response warrants future studies. 
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4. Discussion 
 
We show that Trans-omic Knowledge Transfer provides a framework for inferring multi-omic 
biomarkers of phenotypes across cohorts. The approaches we examined, Supervised Classifier, 
Relative Separation, and Signature Transfer, have methodological and interpretability differences 
with advantages and disadvantages. Supervised Classifier Transfer is direct application of a 
supervised model on a test set. New phenotypic labels are inferred in the test set using one data type, 
and secondary models are built to infer biomarkers in other data types in the test set. The challenge 
with this approach generally is that the validity of the inferred phenotypic labels cannot be directly 
assessed and for a binary phenotype, drug resistant or sensitive, the classification threshold at which 
the phenotypes are defined in the test set may influence the resulting downstream biomarkers.  
 Relative Separation Transfer partially addresses issues of classification threshold and by 
using a projection onto latent variables to define a continuum of anti-TNF resistance states in the 
test set. This allows for continuous modeling of relative differences in samples in the test set along 
one or more latent variables defined in the training data. However, the projection procedure appears 
to be the noisiest of the approaches we tested here based on the lack of clear separation by LV scores 
and interpreting positions on latent variables, rather than a binary phenotype, is challenging.  
 Signature Transfer is perhaps the most interpretable Knowledge Transfer approach we 
examined here. Once the gene signature is extracted from the training set, no other features of the 
model from the training data are retained, all inference of biomarkers is performed in the test set 
modeling the signature as a dependent variable. The final model thus only aims to characterize the 
trans-omic relationships in the test set and relative signature score associated with a phenotype. 
Separation between samples was clearer in this model compared to the Relative Separation approach 
and the internal consistency of the model mitigates some concerns of predicted class validity in the 
Supervised Classifier Transfer approach. Though the association of gene signature activity with 
anti-TNF resistance is still uncertain in this approach, we recommend Signature Transfer as the most 
rigorous and interpretable Trans-omic Knowledge Transfer approach among those tested here.  
 Despite the methodological differences in the three approaches, we find that a common set 
of microbial and metabolite biomarkers of anti-TNF response can be identified. Validation against 
literature suggests that consensus biomarkers inferred across approaches have potential clinical 
benefit. A fourth approach to Trans-omic Knowledge Transfer may be to construct multiple models 
using the same single-omic training and multi-omic test sets and extract the commonly identified 
trans-omic features for future biological studies. This Ensemble approach to Knowledge Transfer 
may be further augmented by testing multiple classes of prediction models, such as support vector 
machines, random forests, or neural networks, and extracting the resulting consensus biomarkers.  
 Our study has some limitations which may be addressed in future studies to extend the 
approach. While we present important feasibility and proof of concept data here, a disseminatable 
software toolbox would increase the impact and applicability of our approaches to other problems. 
Part of this should include additional benchmarking using pairs of multi-omics datasets, varying 
gene inclusion threshold percent, and withholding select data types to enable more quantitative 
validation metrics. While not examined here, in principle our frameworks could be expanded to 
other -omic data types, including proteomics, scRNA-seq, and metagenomics data, provided data 
types are encoded in latent variables reflective of data-specific distributional properties.  
 In conclusion, we demonstrate that Trans-omic Knowledge Transfer modeling is a 
potentially powerful approach for integrating multi-omics and single-omics data across clinical 
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cohorts to discover biomarkers of conditions and phenotypes measured in one or the other cohort. 
To our knowledge, there are no comparable approaches widely implemented for us to compare our 
approaches and results to, making this an important first feasibility study of the utility of Trans-
omic Knowledge Transfer. The paucity of other methods in this space is likely due to the challenge 
of validating approaches with quantitative metrics, a limitation we acknowledge and propose a 
solution to for future methodological studies.  

In future work, extensions of this approach could account for cohort-specific covariates in 
biomarker discover to enhance the robustness of the inferred associations. The ability to re-use 
clinical multi-omics data to answer novel biological questions adds an important tool to preclinical 
studies of drug resistance and disease biology. Such methods increase the value of the initial 
investment to generate the cohort by allowing basic and translational scientists to test new 
hypotheses through computational models of existing data and to potentially advance new therapies.  
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