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Mixed Direct-Iterative Methods for Boundary Integral
Formulations of Dielectric Solvation Models

Steven A. Corcelli, Joel D. Kress, Lawrence R. Pratt, Gregory J. Tawa
Theoretical Division, Los Alamos National Laboratory,Los Alamos, NM 87545

This paper describes a mixed direct-iterative method for boundary integral for-
mulations of dielectric solvation models. We give an example for which a direct
solution at thermal accuracy is nontrivial and for which Gauss-Seidel iteration
diverges in rare but reproducible cases. This difficulty is analyzed by obtaining
the eigenvalues and the spectral radius of the iteration matrix. This establishes
that the nonconvergence is due to inaccuracies of the asymptotic approximations
for the matrix elements for accidentally close boundary element pairs on different
spheres. This difficulty is cured by checking for boundary element pairs closer than
the typical spatial extent of the boundary elements and for those pairs perform-
ing an ‘in-line’ Monte Carlo integration to evaluate the required matrix elements.
This difficulty are not expected and have not been observed when only a direct
solution is sought. Finally, we give an example application of these methods to
deprotonation of monosilicic acid in water.

1 Introduction

An interesting development in computational molecular biophysics over the
past decade has been the surprising utility of dielectric models of solvation of
molecular solutes in water1~3% This is surprising a priori because this approach
neglects almost all of the molecular characteristics of solvation. A posterior:
molecular calculations have become available checking the basic soundness of
the dielectric model results®=3% and checking features of the underlying molec-
ular theory3°—3°

Arguments that support such models are simple and broad: much of the
solvation phenomena in water are dominated by electrostatic interactions.
These models provide a physical description of solvation of electrostatic in-
teractions. If we permit a macroscopic empirical parameterization then they
are indeed useful. Furthermore, dielectric models permit a conceptually nat-
ural and feasible coupling of solvation theory with electronic structure tools
of traditional computational chemistry. For these reasons too the dielectric
models have been helpful 4°

The numerical challenge in applying these models is the solution of the
Poisson equation

V o c(r)VE(r) = — 47p(x) (1)

where p(r) is the density of electric charge associated with the solute molecule,
g(r) gives the local value of the dielectric constant, and ®(r) is the electric
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potential. This equation can be a challenge because the function £(r) changes
abruptly on the modeled molecular surface of the solute and that surface must
sometimes exhibit nontrivial variation on an atomic scale.

Because the most important difficulty is associated with treatment of the
molecular surface, boundary integral methods are advantageous!43° Those
methods permit the concentration of numerical resources on the description
of the molecular surface. The resolution in the description of the molecular
surface can then be directly associated with the accuracy of the numerical
calculation.

The accuracy requirements of relevance to us are associated with confor-
mation free energy differences comparable to kgT and with treatment of the
effects of molecular solvent structure by integrating out probe water molecules
with the help of this dielectric model! These interests put high demands of
accuracy and speed on the numerical methods. Stringent testing of the accu-
racy of these dielectric models for structural optimization has been pursued
only relatively recently?!

It might be questioned whether it makes sense to solve approximate di-
electric models to the accuracy discussed here. We offer two responses. First,
though the model is approximate, attempts to draw conclusions from the model
results are complicated by non-physical errors superposed on the model results.
Second, if the model results are valid enough to be helpful, then they might
serve as an initial approximation upon which more refined treatments might
be built*! In that case, understanding the accuracy of the initial predictions
would be important.

The accuracy that can be achieved in the solution of Eq. (1) through a
direct boundary integral approach will be limited by the dimension of the set
of linear equations that corresponds to the linear boundary integral equation.
Since the dimension of that set will be relatively small if direct solution methods
are used, substantial numerical resources can be invested in obtaining accurate
coefficients for the linear equations.

When direct methods become unfeasible, it is natural to apply iterative
solution methods to the direct solution used as an initial estimate. Because
the initial solution is expected to be good, the iterative effort is expected to
be modest. Iterative methods permit a larger number of linear equations. But
numerical sophistication in the evaluation of the larger number of matrix ele-
ments becomes prohibitive. Thus, the price to be paid for the higher resolution
is that the most matrix elements are obtained ‘on the fly.” The methodological
problem of this paper is the formulation of the mixed direct-iterative methods
for solution of Eq. (1); and the identification and correction of a difficulty that
can arise.
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Figure 1: Ca** ...Cl~ potential of mean force in water at normal pressure and 298K. The
curve labeled ‘molecular dynamics’ is the literature molecular result#? The curve labeled
‘dielectric’ is obtained by the revised method of Section 2.4.

The results of Fig. 1 present an example that will be used because an it-
erative difficulty can be reproducibly exhibited. Shown there are calculations
of the potential of mean force between a Catt ion and a Cl~ ion in water2
These results utilize the van der Waals surface?! and the radii recommended
by Rashin and Honig2” We include here some qualitative notes about physical
aspects of these results. Firstly, we have much less experience with simulation
results for this potential of mean force than we do, for example, with Nat ...
Cl~. Thus, we view the simulation results of Fig. 1 as preliminary. Assuming
those results are born-out by further study, the interpretation would be that
the Catt holds its solvation shell sufficiently tightly that no contact minimum
exists** Secondly, the dielectric model result predicts an over deep contact
minimum. In this respect the present results are consistent with previous com-
parisons®®3233,41 and these results are therefore not newly troubling. Thirdly,
the maximum in the dielectric model result near 3.8A where the spheres just
touch is expected to be correct though it is clearly a subtle feature on the global
scale shown here. The free energy of the separated ion pair is approximately
700 kpT so resolution of such features here requires an relative accuracy of
about 0.1%. Still, the relative height of that maximum is not negligible on a
kpT energy scale. Calculations that establish the correctness of kg T features
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require care??233% Such methods are the topic of this paper.

2 Methods

Here we catalog the methodological results used below for solution of the Pois-
son Eq. (1). Further discussion of the genesis of these results can be found
elsewhere! We first cast Eq. (1) as an integral equation, e.g.:

(r—r') o Ve(r')

47 v — r'|?

£(r)d(r) = 2O(r) + / { ] i .

The quantity ®(°)(r) is the electrostatic potential in the absense of the medium.
Because the model assumes that e(r) has a sharp step at the molecular surface
the integration on the right collapses to a 2-dimensional integration over the
molecular surface. That molecular surface is defined as the boundary between
the molecular volume — modeled as the union of spherical volumes centered
on solute atoms — and the solution region. For r infinitismally outside the
molecular surface, Eq. (2) provides a closed equation for ®(r) on the molecular
surface. Once ®(r) is obtained on the molecular surface, it can be used on the
right side of Eq. (2) to construct the potential elsewhere.

From such solutions we construct the interaction part of the chemical po-
tential of the solute as

2 = (3) [ o) @i0) - @) . 3)

The subscripts [ and v indicate ‘liquid’ and ‘vapor,’ respectively, so that this
difference is the electric work required to charge the solute in the liquid relative
to the vapor. This requires the solution of Eq. (2) twice, once for the liquid
with

ei(r) = em + (€5 — &m) n(r), (4)
and once for the vapor with
€v(r) = em + (1 —&m) n(r). (5)

Here 7(r) is a step function that is one outside the molecular volume and zero
otherwise; ¢, is the dielectric constant of the solution and ¢, is an assigned
‘dielectric constant of the molecule.” The latter parameter is used to match
the polarizability of the solute. The formulation Eq. (2) makes it simple to
match a given polarizability by adjustment of ¢,, ! This is because the kernel
is proportional to the electrostatic potential due to a surface dipole density.
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Thus, we perform calculations with €, (r) and with ®(®)(r) chosen to describe
a uniform external electric field. The induced electrostatic potential in the
far field is associated with the induced dipole moment. The correlation of the
induced dipole moment with the external field strength provides the modeled
molecular polarizability.

2.1 Rules for coarse direct calculations

A discretized version of Eq. (2) is

£:®(ra) = O (ra) + Y wap®(rp). (6)
B

Here r, is the a-th ‘plaque point’ — a point on the molecular surface obtained
by a uniform sampling, for example by exploiting either quasi-random number
series or ‘good lattice’ procedures?3~4® The plaques are defined as the Voronoi
polyhedra of the plaque points on the nonburied surface of each sphere. The
matrix of coefficients w,s can be obtained as follows:

 R(s5)%(es — £m) T (Be—piom a8 (7)

Wap — )
' M(ss) (g [Fa—mil

and

. 1 (53 _5m) Z ( o y—1/2
Bl i 1 —cos¥ie)” 7. (8)
2V2 \ M(s2) / i3,

These are Monte Carlo estimates of plaque integrations. Further details can
be found elsewhere?! The set of sampling points that are within the plaque g
is denoted by {i € #}. M(sp) is the number of points on the sphere sg that
supports plaque 5. In Eq. (8), J;4 1s the angle between the surface normals
at plaque point a and the sampled point ¢. That formula arranges to use
sample points outside the plaque to calculate the solid angle subtended by
that plaque at the plaque point. The purpose is to reduce the variance of the
Monte Carlo estimate. All sample points on the surface of the sphere that
supports plaque a should be used in the estimation. But whether any sample
point resides on plaque « depends on resolution of buried surface because the
plaque boundaries sometimes follow the boundaries between the exposed and

buried surface.
For accurate calculations on small molecule solutes, we have found that
the computational time is dominated by the Monte Carlo effort. Thus, we
use these formulae differently to avoid some of that effort. We use Eq. (7)
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with no Monte Carlo sample in addition to the plaque point; these formulae
constitute one point estimates then. However, the set of plaque points 1s
now a larger set of equidistributed surface points, elements of a fine lattice.
We form the equations to be analyzed by contraction of that description to
one based upon coarse plaques constructed from an initial sequence of the
fine lattice points. We then require the equality of the potential at all fine
lattice points residing on the same coarse plaque. This requirement results
in an overdetermined system. This system is analyzed with a singular value
decomposition to obtain the plaque potentials that minimize the mean square
residual of those equations?®

The advantages of this approach are that much of the Monte Carlo ef-
fort can be avoided and that some account is taken of the spatial variation
of ®(®)(r) within a coarse. plaque. The principal disadvantage is that this
approach requires more memory and this disadvantage can be severe.

2.2 Rules for Gauss-Seidel iteration

Here we give the rules used in our iterative calculations. We begin with an
approximate solution ®(r,). That approximation is then updated in place
according to

B(ra) — (€5 — Waa) "' § BO(ra) + Y wap®(rp) 9)
B#a

sequentially for all a. In this calculation the plaque points are the points of
the fine lattice. Because that set of points is expected to be large, the off-
diagonal coefficients wqp are evaluated ‘on the fly’ using Eq. (7) but no Monte
Carlo sample in addition to the plaque point. Our experience is that accurate
evaluation of the diagonal coefficients wqo is important, so we evaluate them
at an initial stage of the calculation and store them for later use.

These methods were applied to the calculation of the pair potential of
the mean forces between a Ca*t and a Cl~ in water. It was found that
the Gauss-Seidel iteration scheme converged almost always, but diverged in
rare but reproducible circumstances. A necessary and sufficient condition for
the convergence of Gauss-Seidel iteration is that the spectral radius of the
iteration matrix must be less than one® Plotted in Fig. 2 are the eigenvalues
of the Gauss-Seidel iteration matrix for the Ca** ... Cl~ problem for the case
of r = 3.7A with 36 plaque points. One eigenvalue is much greater than one.
Also plotted there are eigenvalues of the Gauss-Seidel iteration matrix for the
same circumstances except that matrix elements were obtained by a modified
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method described below. All eigenvalues are now substantially less than one.
Using the corrected methods the divergences have not been observed.

2.3 What we did to fizr the problem

It was when those Monte Carlo efforts were economized that iterative diver-
gence occasionally presented a problem. Furthermore, the diagonal matrix
elements are always calculated the same way. This suggests that the observed
difficulty was due to the one-point estimate of the off-diagonal elements used
when the iterative calculation was implemented.

The estimate Eq. (7) will have a larger variance the closer the point r, to
plaque 3. Thus, it is reasonable to suspect those matrix elements corresponding
to close af. It was verified that this suspicion is correct by replacing weug
by wpps whenever r, is on a different sphere than plaque # and |r, — rg| <
2R(sp)/\/M(sg). This is a statistical estimate of the radial extent of plaques
on center sg. This unsatisfying maneuver eliminated the divergence.

A geniune solution is to implement a Monte Carlo calculation of those
matrix elements w,p identified as potentially problematic. For r, close to
plaque 3, an approach like that of Eq. (8) using points sampled outside the
plaque would be most appropriate. But for r, far from plaque 3, it would be
natural to use points on the plaque. That we could use either approach when
the point r, is not on the plaque is justified by the relation

=

valid for r outside the sphere. This is an application of Gauss’s law. Thus we
could estimate the required integral using either points on the plaque g or on
a complementary spherical surface. Using 1/2 of each estimate is an example
of the method of antithetic variates:>°

d3r' =0, (10)

R(s5)%(es — €m) E (ro —ri)om; Z (ro —r;)en; . (1)

Wapn =
" 2M (sp) fey Fa—rP 2 Ira—mf

This effort is expended only when r, is on a different sphere than plaque 3

and |ry —rg| < 2R(sg)/\/M(sp).
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Figure 2: Upper panel: Eigenvalues of the Gauss-Siedel iteration matrix obtained as de-

scribed in Section 2.2 for 36 plaques on the Cat+ ... C1~ di-ion for r = 3.7A. One eigen-

value is much further from the origin than 1.0. Lower panel: Eigenvalues of the Gauss-Siedel
iteration matrix obtained by the revised approach described in Section 2.3,
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3 Deprotonation of monosilicic acid in water

As an application of the methods developed in the previous sections we will
treat the deprotonation of monosilicic acid in water at 298K

Si(OH)4 = Si(OH)30~ + H*. (12)

The monosilicic acid molecule and anion are depicted in Fig. 3. The equilibrium
ratio is

_ [Si(0H);07] [H*]
[Si(OH)4]
with concentrations in molar units. The quantity we seek is the free energy of
reaction

(13)

AG® = _RTIn K (14)

measured to be 13.5 kcal/mol =53

This i1s a helpful example for several reasons. Acid-base equilibria are
an important application of these models in molecular biophysics. Addition-
ally, these solutes have not be treated previously by these methods. Thus,
the expectations for the radii-parameters required can be tested outside the
conventional parameterization suite of solutes.

3.1 Solution thermodynamic formulation

It is more physical®* to consider the reaction
Si(OH)4 + H20 = Si(OH)30~ + H30%. (15)

The reaction described this way does not result in a net loss of chemical bonds
and this is likely the case in water3? The ratio

=~ _ [Si(OH)307][H30%]

K = : 16
(SO )] [H20] =

is then dimensionless. This equilibrium ratio may be obtained as®*
R(T) = KO(T) exp [-AA;;(”) /RT], (17)

where K (©)(T') is the ideal gas result obtainable from standard formulae®* and

L) — A (%) (=) (z)
AN = Abpo+ + A“f;‘%omao— = Aby,0 = Blsiom),: (18)
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Table 1: Partial charges for Si(OH)4 and Si(OH),0~.

Atom | Si(OH); | Si(OH)30-
Si 1.62 1.52
Ol | -0.90 -0.89
02 | -0.90 -0.90
03" 1 2090 20.92
04 | -0.90 “1.06
H1 0.49 0.44
2 0.49 0.41
3 0.49 0.41
H4 0.50 p=e

K and K are related by K = K/[H,0] and the free energy of reaction is simply
AG® = —RTIn K — RT In[H,0]. (19)

We assume that the solute concentrations are sufficiently low that the formal
concentration of H,O is satisfactory.

3.2  FElectronic structure results on the isolated molecules

All electronic structure calculations were performed using the GAUSSIAN-
92 program?’® Two different quantum mechanical methods were employed:
Hartree-Fock (HF), and HF followed by a second-order order Moller-Plesset
(MP2) correlation energy correction. Two different basis sets were used: 6-
31G(d) [also denoted 6-31G*], and 6-31G++(2d). The “(d)” and “(2d)” de-
notes that the 6-31G basis is supplemented by one and two sets of polar-
ization®® d-functions, respectively, on the heavy (non-hydrogen) atoms. The
”++” denotes that the basis is supplemented by diffuse®” functions. Together
the quantum mechanical method and basis set specifies a theoretical model,
e.g., Sauer®® has performed HF/6-31G(d) calculations on monosilicic acid. The
optimized geometries for H,O, H3Ot, Si(OH)4 and Si(OH)30~ were deter-
mined by analytic gradient techniques using the HF/6-31G(d) model. The
structures found for monosilicic acid and its anion are shown in Fig. 3. The
bond distance and angle for H,0 is 0.947A and 105.50°, respectively compared
to the experimental values®® of 0.957A and 104.5°, respectively. The calculated
value for all three H-O-H bond angles for H30% is 113.06°. Teppen et alf°
have examined the effects of basis set size and electron correlation corrections
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Table 2: Partial charges for H,O and HzO%.

-0.82 | -0.62
041 | 0.54

Atom | H,O H30+
O
H

on the properties of monosilicic acid. For a 6-31G(d) basis, they®® find that the
MP2 bond lengths for Si-O and O-H were 0.022 and 0.023A larger, respectively
than the HF values and the MP2 Si-O-H angle decreased 2.9° from the HF
value. For the HF method, they®® also find that the MC6-311G(2d,2p)®! bond
lengths for Si-O and O-H were 0.007 and 0.009A smaller than the 6-31G(d)
values and the MC6-311G(2d,2p) Si-O-H bond angle increased 1.3° from the
6-31G(d) value. For the present work these differences are acceptable, and
HF /6-31G(d) was used to optimize geometries.

To obtain atom-centered charges (Tables 1 and 2) necessary for the sol-
vation energy calculation, a fit of the HF/6-31G(d) electrostatic potential
(CHELPG®?) was performed. Harmonic vibrational frequencies and rota-
tional constants were computed with the HF/6-31G(d) model and were used
to compute the partition functions in Eq. (17). Since the HF method over-
estimates frequencies, the computed values were scaled by 0.88%3 The elec-
tronic ground state energies, Eg, (Table 3) were calculated by optimizing the
molecules with the MP2/6-31G(d) model. The calculation of polarizability,
@ = (agz + ayy + a;.)/3, is sensitive to the basis set. For H,O at the HF /6-
31G(d) geometry, @ = 0.70, 0.90, 0.90, and, 1.06A3, calculated with the 6-
31G(d), 6-314+G(d), 6-31G(2d), and 6-314++G(2d) basis sets, respectively. The
6-31++G(2d) value agrees reasonably well with another HF calculation®® & =
1.17A3. The experimental value®®®® for H,O, @ = 1.44A3, was used in the
solvation calculations for both H,O and H3O*. For Si(OH)4 and Si(OH)30~,
a was calculated with the HF /6-31G++(2d) model using the HF/6-31G(d)
geometries. These values were scaled by 1.36, the ratio of the experimental
and HF/6-31G++(2d) @ values for H,0O. The scaled values (Table 3) were then
used in the solvation calculations.

3.3 Results for the deprotonation of monosilicic acid

Three different calculations were performed for the free energy of deprotona-
tion, Eq. (12). The first calculation did not include molecular polarizability,

nor spheres on the H atoms of Si(OH)4 and Si(OH)30~. The second calcula-
tion included molecular polarizability, but again not spheres on the H atoms.
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Figure 3: Monosilicic acid molecule (upper) and anion (lower) established by the electronic
structure calculations of Section 3.2
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Table 3: Electronic energies and polarizabilities.

Molecule | Eq (hartree) | @ (A®)
Si(OH); | -590.89160 | 6.9
Si(OM);0~ | -590.20838 | 7.4
H,O -76.01075 1.44
H30™" -76.28934 1.44

The final calculation included both molecular polarizability and spheres on
every atom of Si(OH)4 and Si(OH)30~. This sequence of calculations reflects
our chronological approach to this system starting with the simplest model,
gradually adding more complications, and gradually refining the values of the
parameters used. This approach also gives helpful information on the sensitiv-
ity of the calculation to the empirical parameters used.

The evaluation of the vibrational, rotational, and translational partition
functions of the isolated molecules on the basis of the electronic structure
results leads to a multiplicative contribution of 1.30 to the equilibrium ra-
tio of Eq. (17). The change in the electronic energy AFE, was found to be
197.5 kcal/mol.

In all of the calculations the water and hydronium ions were treated as
single spheres of radius 1.6A on the O atom. A molecular dielectric constant €y,
was 2.42. This reproduces the polarizability of the water molecule34:6%:66 The
solution dielectric constant was €, = 77.4 appropriate to water at 298K and
1.0g/cm®. The calculation of the excess chemical potential of solvent species
used 186 coarse lattice points and 936 fine lattice points. Ten Gauss-Seidel
iteration passes were applied to the coarse solution in all calculations. The
difference in excess chemical potential between the hydronium ion and water
was found to be -107 kcal/mol. All calculations on Si(OH)4 and Si(OH)30~
used 36 coarse lattice points and 936 fine lattice points on each sphere.

The first calculations for Si(OH)4 and Si(OH)30~ used a sphere of radius
1.8A on the each Si atom and a sphere of radius 1.65A on each O atom.
em =1.0 was adopted, thus ignoring the polarizability of the molecule. The
difference in excess chemical potential was found to be -49.6 kcal/mol. This
calculation gives 38.3 kcal/mol for the change in free energy for Eq. (12), in
poor agreement with experiment.

In the next calculation a sphere of radius 1.8A was centered on the each
Si atom and a sphere of radius 1.60A on each O atom. &,, =2.95 and 3.40
were assigned to the Si(OH)4 and Si(OH)30~ molecules, respectively. These
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values match the estimated molecular polarizabilities discussed in the previous
section. The difference in excess chemical potential was found to be -57.9
kcal /mol, which gives 30.0 kcal/mol for the change in free energy for Eq. (12).
This improves upon the calculation which ignored the polarizability of Si(OH)4
and Si(OH)30~ but still differs from experiment by more than a factor of two.

The final calculation had spheres on every atom of the solute molecules.
The O atoms were given radii of 1.4A, the Si atoms were given radii of 1.8A,
and the H atoms were given radii of 1.3A. Values of 3.10 and 3.55 were used for
the €, of Si(OH)4 and Si(OH)30~, respectively. Again these values were de-
termined to match the polarizability of the molecules. The difference in excess
chemical potential between Si(OH)4 and Si(OH)30~ was -68.1 kcal/mol. This
calculation gives 19.8 kcal/mol for the change in free energy for the deproto-
nation of Si(OH)4 in water, a much improved agreement with experiment.

4 Conclusions

The iterative divergence occasionally encountered in the calculation of the
Catt ... Cl™ pair potential of mean force was due to inaccuracies of the asymp-
totic approximations used for the matrix elements for accidentally close bound-
ary elements on different atomic spheres. This problem is cured by checking for
boundary element pairs closer than the typical spatial extent of the boundary
elements and for those pairs performing an ‘in-line’ Monte Carlo integration
to evaluate the required matrix elements. These difficulties are not expected
and have not been observed when only a direct solution is considered.

These methods can give a reasonable description of the free energetics of
the deprotonation of monosilicic acid in water. A modeled solute polarizability
and spheres on hydroxyl protons have been found to be important in achieving
a reasonable agreement between model and experiment. The discrepancy re-
maining provides a suggestion of more specific solute-solvent interaactions. It
has been noted previously*! how specific molecular solvation structure can be
reintroduced into these models. Those ideas for integrating-out solvent degrees
of freedom suggest the electronic structure calculations should be performed
on complexes of the solutes of interest plus a probe water molecule?! Those
approaches will require a substantially larger computational effort.

The necessity of better treatment of the molecular solvation structure is
also clear in the example of Ca** ... Cl~. The probe water molecule approach
mentioned above would help here too but would require accurate, rapid calcu-
lations on larger, more complicated solution complexes. It is hoped that the
methods developed here will make such calculations feasible.
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