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Abstract

We define a motif as an expression Zy-Zs - - - Z,, with sets Z1, Zo,..., Z,
of strings in a specified family €2 called the type. This notion can capture
the most of the motifs in PROSITE as well as regular pattern languages.
A greedy strategy is developed for finding such motifs with ambiguity
just from positive and negative examples by exploiting the probabilistic
argument. This paper concentrates on describing the idea of the greedy
algorithm with its underling theory. Its experimental results on splicing
sites and FE. coli promoters are also presented.

1. Introduction

Technologies for discovering knowledge from nucleic acid and amino acid
sequences are most expected in Genome Informatics/Molecular Bioinformatics.
Various alignment techniques [8] have traditionally played a very important
role in knowledge discovery from sequences. The knowledge on sequences is
often expressed as a motif which is a pattern common to a family of sequences.
PROSITE Database [3] collects such “motifs” of amino acid sequences of pro-
teins which are expressed in a systematic way. For example, [AC]-2(1)-V-2:(4)-
{ED} is a motif representing [A or Cl-any-V-any-any-any-any-{any but E or D}.
In a motif C-x(2,4)-C-x(12)-H-2(3, 5)-H, x(2,4), x(12), and x(3,5) represent any
sequence of length between 2 and 4, any sequence of length exactly 12, and any
sequence of length between 3 and 5, respectively. Thus some kind of ambigu-
ity 1s allowed in motifs since diversity and uncertainty are involved by nature.
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Finding such motifs from nucleic acid and amino acid sequences is a crucial
problem since motifs provide biologically important knowledge expressed as se-
quences. The most powertul techniques are the finely tuned sequence alignment
algorithms which assume in advance some knowledge such as the Dayhoff ma-
trix. Recently, as to the practice of motif discovery, Wu and Brutlag [22] have
taken an interesting approach and shown a very successful result on the sub-
class of retroviral and retrovirus-related reverse transcriptases by their heuristic
search algorithm although no mathematical proof is supplied to the algorithm
for showing its performance.

This paper presents a greedy strategy for finding such motifs with ambiguity
just from positive and negative examples. The idea is based on the probabilis-
tic argument invented for designing approximation algorithms for the maximum
satisfiability problem [11, 23]. For motifs of a special type, Tateishi et al. [20]
proved a lower bound of the performance of the algorithm. Thus some per-
formance guarantee is provided for our method. We describe the details of
algorithm together with its underling theory, and present its experimental re-
sults on splicing sites and F. coli promoters. We also provide a variation of
the algorithm in order to handle a more general case though no mathematical
results are yet shown for supporting its performance.

We define a motif as an expression 2y - Zy--- Z,, where Zy,Z,,..., Z, are
sets of strings in a specified family () called the type. When Z; consists of several
elements, such as [AC], the expression allows ambiguity. This notion completely
captures the above cases and the case of regular patterns [1] in a uniform way.

We should note that the motif discovery involves computationally difficult
obstacles. As well known, The longest common subsequence problem is NP-
complete [12]. The complexity issues on the problem of finding a best consensus
motif from positive and negative examples have been thoroughly investigated
by Tateishi et al. [20]. It is shown in [20] that even a problem for a very simple
type is NP-complete whether ambiguity is allowed in a motif or not since its
proof works for both cases. Similar works related to the complexity issues on
pattern languages are also found in Jiang and Li [10] and Miyano et al. [13].

2. Motifs and Complexity

For an alphabet ¥, we denote by ¥X* the set of all strings over Y. The length
of a string w in ¥* is denoted by |w|. We denote ¥+ = ¥* — {e} (e is the empty
string) and ¥" = {w € ¥* | |w| = n} for an integer n > 0. For a set S, the
number of elements in S is also denoted by |5].

Definition 1 Let  be a family of subsets of ¥* called a type. A motif © of
type £ is an expression of the form

Zl"'Zrm



where Z;,...,7, are elements in . For a motif 7 = 7, ---Z,, we denote by
L(7) the set of strings defined by {wy---w, | wy € Zy,...,w, € Z,}. For a
string w and a motif 7, we say that = accepts (rejects) wif w € L(x) (w ¢ L(w)).

Example 1 A regular pattern [1] is an expression of the form

T = WoT Wy - W,_1T,w, consisting of strings wy,...,w, € X* and distinct
variables xy,...,x,. The pattern 7 defines a set L(x) of strings in ¥* obtained
by substituting any strings in ¥t to the variables xy,...,x,. Then any regular

pattern is regarded as a motif of type Q = {XT} U {{w} | w € ¥*}.

Example 2 Let ¥ be the set of amino acid residues. For integers k, ¢ < j, let
X(k)=Aw | we ¥ Jw =k} and X(4,j) = {w | w e ¥ ¢ < |w| <}
Let Q = {X(k) | k> 1} U{X(G,j) |1 <i<jtu{Z]|0+#7Z CX}. Then
the zinc finger motif C-x(2,4)-C-x(12)-H-2(3, 5)-H, the leucine zipper L-2(6)-L-
2(6)-L-2(6)-L and a motif such as [AC]-z(1)-V-2(4)-{ED} in PROSITE can be
regarded as motifs of type Q, where [AC] represents “Ala or Cys” and {ED}
represents “any but Glu or Asp.”

A yes-no example is a pair («a, 3) of strings in ¥* with o # 3. For a motif
7 and a yes-no example (a, ), we say that («, 3) is good for = if © accepts «
but rejects . A yes-no sample is a set S = {(a®, 1)), ... (o™ B} of
yes-no examples. We call strings oM, ..., o™ positive examples and strings
AW, B negative examples. Then, for a motif 7 and a yes-no sample S, we
define cost(.S, 7) to be the number of pairs in S which are good for 7. Note that
cost(S,7) = |L(7x) N P| x |(£* — L(7)) N N| if a yes-no sample S is provided as
P x N with two disjoint sets P and N of strings.

Let Q be a type. The best consensus motif problem for type ) is, given a
yes-no sample S, to find a motif & of type ) that maximizes cost(.S, 7).

Tateishi et al. [20] have shown that the best consensus motif problem is
computationally intractable by proving with a rather heavy argument the NP-
completeness of the decision version of the problem. Therefore, we have to
develop approximate/heuristic strategies which shall work in practice for the
best consensus motif problem. The purpose of this paper is to give a strategy
coping with this computational difficulty.

Theorem 1 [20] The best consensus motif problem is NP-complete for the fol-
lowing type:

(1) Q: all nonempty subsets of .

(2) Qy: XF, all nonempty subsets of X (k) for all k > 1, all nonempty subsets
of X(¢,7) forallj >1>1.

The above results also hold even if a yes-no sample S is provided as P x N of
two disjoint sets P and N of strings in {0,1}*.



It should be noticed that the problem of deciding if there is a motif 7 of type
Qy such that all yes-no examples are good for 7 is easily solved in polynomial
time (see Section ). Thus the maximization problem has a sense. Although €,
includes €, different arguments are required in [20] for the proofs.

3. Greedy Strategy for Best Consensus Motif Problem

Let Q be a type. For 1 < k < n, let p, : @ — [0,1] be a probability
distribution on ) and let 7 be a random variable taking values in ) with the
probability distribution py, i.e., the probability of 7, = Z is given by pi(Z) for
Z in ).

We call an expression

_ 1 1 2 2 n n n+1 n+1
Iu(ﬂ—lv"'vﬂ—n) — Zl ...Zkl.ﬂ-l.Zl "'Zk2'772"'77n—1'Z1 anﬂ—nzl ...an+1

with Z7,...,Z,, € Q1 <t <n+1, k >0for 1 <t <n+1)a random motif
with random variables 7y,...,7,. We denote by u(Y1,...,Y,) the (random)
motif obtained by substituting Y, to 7, for 1 < k£ < n. For a random motif
(7, ., ), wedenote by P{(«a, 3) is good for u(xy,...,m,)} or, more simply,
P((a, 3), u(71,...,7,)), the probability that a yes-no example (a, 3) is good for
(71, ..., 7). Formally, let

H(( 8), i1, 7)) = {(Vir - ¥a) € 07| (a0, 8) s good for (¥, Vo).
Then P((a, 3), (71, ..., %)) is given by

> pi(Y1) - pa(Y0).

For a yes-no sample S = {(a®, W) ... (o™ 30" and a random motif
(71, ..., ), the expected number E(S, p(m,...,7,)) of the yes-no examples
in S which are good for p(m,...,7,) is given by

m

E(S, (71, 7)) = ZP((a(i), ﬂ(i)), Ty ey )
i=1
Our greedy strategy shown in Fig. 1 assumes that the probability distri-
butions pq,...,p, are known beforehand. Then it determines Z;,..., 7, in §
consecutively in the following way: When Z,,..., Z,_, are determined, Zj is
set to be an element Z in  such that E(S, u(Z1,..., Ze_1, Z g1y %)) 18
maximized, where 7;11,...,7, are random variables.

This greedy strategy requires (R1) and (R2) for effective implementation.

(R1) The expectation F(S, u(Z1,..., Zx_1, Z Tra1, ..., 7,)) must be easily com-
putable.



[* Let p(my,...,7,) =7 - -7, be a random motif. */
/* This algorithm determines Z;,..., 7, in Q. %/
for k+— 1ton
begin
Find Z € Q maximizing E(S, u(Z1, ..., Lo, ZyTht1s -y Tn)));
Zk — 7
end

Figure 1: Greedy algorithm.

(R2) For Z in Q, let gain(k, Z, S) be the difference

E(S, (2o oy oty ZoTpats oo osTn)) — E(S p(Z1y ooy oty Ty e ey Tn))-

In order to guarantee that the expectation does not decrease in each iter-
ation, it must be shown that gain(k, Z,5) > 0 for some Z in 2 for each
1 <k < n Itisalso a problem to give the probability distributions so
that we can have such guarantee.

In Section 4, we deal with the case that this greedy strategy is applicable in
practice by solving all these difficulties. Section 6 proves its usefulness with its
experimental results. In Section 5, we consider a more general case and devise a
heuristic algorithm for the best consensus motif problem although we have not
yet succeeded in providing a sound theoretical basis.

4. Approximation Algorithm for Motifs of Type 4

In this section we concentrate on the case that the typeis @, ={Z |0 # Z C
Y}. For example, L-2(6)-L-2(6)-L-2(6)-L and [AC]-2(1)-V-2(4)-{ED} in Example
2 are motifs of type ;. For a yes-no sample S = {(aM, g ... (al™), g™},
we assume that

|a(1)| _ |5(1)| _ .= |a(M)| _ |5(m)|

since the length of a motif 4 must be the same as the length of o if (a9, ()
is good for p.

The problem of finding, if any, a motif ug of type €y such that all yes-no
examples in S are good for g can be solved i m polynomial time since gy must
be of the form py = Zy -- ZWlchk—{ozk|1<z<m}for1<k<n

and 1o must reject all negative examples from 5, where al) = ozg) o) with
aﬁ”, ...,aD € % However, by Theorem 1 (1), the best consensus motif problem

for 4 is hardly solvable in polynomial time.



Let 7y -7, be a random motif with random variables 7y,..., 7, taking
values in Q. Let py : Q; — [0,1] be the probability distribution of m; for
1 <k < n. We first see that the expectation

E(S, Zy - Zp_amp - )

with Z1,..., Z;_1 in € is easily computable.
For o € ¥, let
Se={Z2€Q|oeZ}

and

pe(So) = 2. pl(Z).

7€S,
For a string v = 1+ 4n, let 8(y, 21+ Zpoq) = Vil y oyt € Zy -+ Zjy
else 0. Then for a yes-no example (o, 3) (@« = a1+, 3 = B1--- ), the
probability that (o, ) is good for Z; -+ Z;_y7p - - - 7, is expressed as:

P((avﬂ)vzl oo LT "7Tn)

= (o, 2y Zpea) - (ﬁpj(saj) —6(B, 21+ Zy-a) - ﬁpj(saj N Sﬁj)) :

i=k
This can be computed in polynomial time and therefore the expectation

n

B8, (1, o)) = 30 P((a, 89) (s )
i=1

is also computable in polynomial time. This fulfills the requirement (R1) in
Section 3. Since )7 is a finite set, it is also trivial to find an element 7 in 4
that maximizes the expectation.

For satisfying the requirement (R2) in Section 3, Tateishi et al. [20] proved
the following result:
Theorem 2 [20] Let mp be a random variable taking values in Qy with a prob-
ability distribution py for 1 < k < n. Let s = |X|. Assume that the probability
distributions py (1 < k < n) satisfy the following conditions:

1. pe(S,) < % for all o in X.

2. pr(S, N S;) > SLQ for all o,7 in X.

Then, for each 1 < k < n, there is some Z in Oy such that gain(k,Z,S) > 0,
where S is a yes-no sample.

Theorem 2 has an advantage that it allows variations for motifs by speci-
fying the probabilities for Z in ; as long as they satisfy the two conditions
in Theorem 2. As a corollary of Theorem 2, we can prove the following lower
bounds of the expectation:



Corollary 1 Let m = |S|, s = |X| and let n be the length of a motif.

(1) If pr(7) = 2L for all Z in 0 and for all1 < k < n, then

5.25—1

BSmm) 2 5 (S

This is the case that any Z is allowed for a motif.

2) If pr({o}) = L forall o in 2, pp(X) = L and pp(Z) = 0 for other Z in
2s 2
Qq foralll <k <n, then

n—1
E(S,ﬂ'lﬂ'n)>ﬁ<8+1) .

— 2s 2s
This is the case that only ¥ and {o} for o € ¥ are allowed for a motif.

From Theorem 2, the greedy algorithm produces a motif # = Z; - -- Z, with
cost(9, 7) at least as large as E(S, 7y - - - 7). The lower bounds of E(S, 7y - 7,)
in Corollary 1 are not good when n and s are larger. However, experiments in
Section 6 show that our greedy strategy exhibits much better performance in a
series of experiments on exon/intron splicing sites and promoter regions.

5. Heuristic Method for Finding More General Motifs

This section gives a greedy heuristic algorithm which can deal with a motif
of the form

DIAERY/# 3

with Z1,..., 7, in ;. For simplicity, we denote the above motif by *7; - - - Z, *.
Motifs of type €y in Section can cope with the case that the location of a
segment of interest in a sequence is clear or determined beforehand. On the
other hand, the motifs of the form *Z; - - - Z, % are more flexible than the motifs

of type €.

From a practical point of view, we consider how to apply the greedy strategy
to this case by employing the random motif p(7y,...,7,) = *m - 7% with
probability distributions pq,...,p,.

First, let Z1,..., Zx_1 be elements in ;. For a yes-no example (a, 3), it is,
in general, hard to compute efficiently the probability that («, /) is good for
p( 21y ooy 2y, Thy- .o, 7). In practice, instead of evaluating the exact proba-

bility, we shall give a lower bound of the probability and use it for obtaining a
rough estimation of F(S, p(71,...,7,)) for a yes-no sample S.

Let o =ay---apand =y 3, wherea; € ¥ for 1 <j<pandf;eX
for 1 <k < ¢q. We assume n < p,q. We consider the segments of length n of «



and 8. Let o/ = o+ qjynq for1<j;<p-n+1and % = B+ Brgn_y for
1 <k<g—n+1. Wedenote o] = aj;;_1 and ﬂf = Bryiq for 1 <@ < n. First
note that

P{(Oé, 6) 18 gOOd for p(Zh MR Zk—lvﬂ-kv . '77Tn)}
> max  P{(a’,3) is good for p(Z1,..., Zp_1, ks, 7n)}-

T 1<<p—n+1

Then we shall give a lower bound of the probability that (a’, 3) is good for

P21y ooy Dty They ooy Tn)).
In the argument below, for a set U C Q77 P(U) represents the probability

.....

forl<j<p—n+1and
Li={(r,...,r) [1 < <o < <g—n+ 1}
for 1 <t < g—n+1. Then for each (ry,...,r) € I, let

n

FEGy (rseeor)) =TI 0085 001 S,

i=k
Note that F*(j, (r1,...,7)) C E*(5) for any (r1,...,7;). Recall that
P{(a’,3") is good for u(Zy, ..., Zp_1, Thy oy Tn)}

= §(a), 2y Zpea) - (H pi(S,i) = (" Zy -+ Zga) - Hpj(sag N Sﬁ[))
=k

1=k
= 8l 2y L) POEMNG) = 8(8" 2y Zyea) - FP(jr))
forl <j<p-n+landl <r<qg-—n+l, where 1 - F*(5,7) = F*(j,7)
and 0- F*(j,7) = 0. For convenience, let F'*(j,r) = §(3", 2y Zr_1) - F*(5,7).
Then let
Qo = P(E'(j)
Q: = > P(E*(5,r) N -0 F¥(,r)) for 1 <t <q—n+1.

Let 6o = 6(a’, Zy -+ Z_1). Then we have
P{(a’, B) is good for p(Z1, ..., Zs1, Ty, 7n))}
= bo- P((E*(j) = F*(G, 1)) 0= N (EMG) = F*(,g = n + 1))
= o~ P(E*(j) = (F*(, ) U--- U F*(j,g —n + 1))
= b P(EF(j) = 80 P(F*(j,1) U+ U F*(j,g—n +1))
= 860 Qo=+ Q= Qs+ -+ (=1)'Qi+ -+ (=1)""Qup1)-

8



Note that F*(j,r) NN F*(5,7r) = F*(5, (r1,...,7)). Thus for ¢t > 1

Q = S TI68™ Zy -+ Zia) - P(ER(G, (r1se -2y 10)

(r1,..,re)EL 1=1

n n
_ Z H5(ﬂ”,Z1Zk—l)HpZ(SafmSﬁfl mmSﬁ:t)

(7’1 ..... Tt)elt =1 1=k
t n

- Z H 6(B", Zy -+ Zy—r) - Hpi(s{ag,ﬁjl ..... ﬁjt})v
(7’1 ..... Tt)elt =1 1=k

where S{ag,ﬁ.l gy = {Z e Q| {ad,B,....0} C Z}. Q, contains O(n')

...... (]

terms. Thus, the total computation of 23;3“(—1)@ requires exponential

time. Therefore, we may take an odd constant integer A" > 0 and let

]5((0/, By p(Zrs ooy Dty Ty ooy )
= 00(Qo—Q1+Q2— Qs+ — Q).

Then we use

P((a,ﬂ), Py s Dty Thy e oy )
= max  P((a?,8),p(Z1y ..oy Zp 1y Ty e e oy T0))

1<;<p—n+1

as a lower bound for the estimation. The greedy algorithm in Fig. 1 uses

E(S, P( 1y Doty Tl ey )
= > Pl(e,B),p(Z1y.os Dty Ty oy )

(a,8)€S

instead of the exact expectation which requires exponential time to compute.

No mathematical proofs are yet provided for the requirements (R1) and
(R2) though Theorem 2 solves a special case of the problem. We implemented
this heuristic algorithm by modifying p((ozj, B)yp(Zaye oy Zp1y Thy vy ) iNtO
60(X(ryer, Qo — @) instead of taking a large K > 1 so that it shall work in
practice. Some experimental results shall be given in Section 6.

6. Results

The purpose of this section is to evaluate the performance of the greedy
strategy in Fig. 1 by implementing two kinds of algorithms. The first is the
greedy algorithm for type €y discussed in Section 4. We denote this algo-
rithm by GREEDY[Q;]. We use the probability distributions py,...,p, given
in Corollary 1 (1). The second is the heuristic algorithm for finding a motif of

9



the form ¥*7, .- Z, %" discussed in Section 5. This algorithm is denoted by
GREEDY [ %].

6.1. Experiments by GREEDY|[{),]

For testing GREEDY[{); ], we use data on exon/intron splicing sites and F.coli
promoters since good statistics are known and the problem is very suited for
the motifs of type ;. The approach with HMM [7, 15] also seems very suited
for the best consensus motif problem for type €; by definition. We ha not
compared with our strategy with the HMM approach on the same data.

6.1.1. Exon/intron splicing sites

We shall present some experimental results of the algorithm on exon/intron
splicing sites. For the coding region identification problem, there are many
papers aiming at predicting splicing sites. For example, Brunak et al. [4]
applied neural networks to predict splicing site locations in human pre-mRNA.
Some software is also available [19].

Examples are taken from GenBank. Positive examples are sequences of
length 60 each of which comprises a segment of length 30 in the exon and a
segment of length 30 in the intron. Negative examples are sequences which are
known not to include any splicing sites.

The first sample Sg;300 consists of 300 yes-no examples randomly generated
from the above positive and negative examples. The motif length is 60. From
300 yes-no examples, 269 yes-no examples are good for a very (too) simple
motif (Fig. 2). It accepts all positive examples but does not reject 31 negative
examples. This motif is consistent with the GT-AG rule [21].

The second sample S¢;50.100 was constructed in the following way: First, we
took 50 positive examples aq, ..., a5 and 100 negative examples (1, ..., Bio0-
Then for each positive example «;, two yes-no examples (o, Bioi—1)+;) (J = 1,2)
are generated. Thus in total, 100 yes-no examples are generated. Fig. 3 shows
the result. GREEDY[;] found a motif for which 97 yes-no examples are good
(97%).

The third sample Sei10.100 Wwith 100 yes-no examples was constructed from
10 positive examples and 100 negative examples in the same way. Fig. 4 shows
the result. GREEDY[(2;] found a motif for which all yes-no examples are good

(100%).

6.1.2. E. coli promoters

For testing GREEDY[(};], the FE. coli promoters are also good examples since

10



Figure 2: Motif (30)-g-[ct]-2(28) for exon/intro splicing sites. From 269 yes-no
examples in S.;399 are good for this motif.

Figure 3: 97 yes-no examples in S¢;50.100 are good for the above motif. Letters
in vertical line, for example a, c, g at position 3, represent the set consisting of
these letters.

those sites are very well characterized [9, 14, 6]. Examples are again taken from
GenBank. Positive and negative examples are taken from a sequence as shown
in Fig. 5.

Se.cotito:1oo are generated in the same way as S.;0.100 by taking 10 positive
examples and 100 negative examples. Fig. 6 shows the result. GREEDY[(]
found a motif for which all yes-no examples are good (100%).

6.2. Erperiments by GREEDY () *]

Eukaryotic promoters are more complex and larger than F. coli promoters.
No definite consensus has been built for eukaryotic promoters although some
major elements are known, such as CCAAT, GC and TATA boxes.

Positive and negative examples for eukaryotic promoters are collected in the
same way as F. coli promoters. We took three samples 57, S9 and S35 shown in
Table 1.

Experiments were done for these samples S, S, and S3 by changing motif
the motif length from 10 to the maximum length in step 10. Fig. 7 shows an
example of a motif of length 40 that GREEDY[+€2;*] found from S;. Only 6 yes-
no examples are good for this motif though there seems to be a TATA-like region

-30 -20 -10 1 10 20 30
B a...a....aacgtaag...ca.a...cccC.a.C.......

c c c ccg cc gc c  gggg c g

gg gt g g tttt g t

Figure 4: All (100) yes-no examples in Sei10:100 are good for the above motif.
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<- length 50

<- CDS starts here

XXX XX XXX XX XX XXX XXX XXX XXX XXX XXX XX XX XXX
skokkoRR kKRR kR Rk Rk k<= Tength 30 —Dsksckokokskokokskokkofskokkokok ok ok

- >

positive example

<-

length 50

- >

negative example

Figure 5: Positive and negative examples for S, .o110:100-

-50 -40 -30 -20 -10 -1
a.Cc..a.aac.c.Cc..aaa...a...a.a.a.a.a..aaaa.a....aa
§8 cCcCgggEg cCcc C cggcc ogeggc o cg
tt ttttt t ttg t tttt t tt t t

Figure 6: All (100) yes-no examples in Se coni10:100 are good for the above motif.

Table 1: Three samples for eukaryotic promoters. For example, Sy consists of 20
yes-no examples constructed from 10 positive and 20 negative examples whose

length is 50.

Sample | Yes-No Examples | Positive | Negative | Length
Sy 20 10 20 50
S 20 20 20 100
S3 50 50 50 50

12



.............. a.a.aaa.........aaaa.aa..t
C t CCCC CC
t tgtg tt

Figure 7: A motif of length 40 found from 5.

in the motif. As a whole, experimental results by GREEDY[*{); %] on eukaryotic
promoters are not attractive in any case. It seems difficult for GREEDY [*); %]
to find interesting motifs for eukaryotic promoters. Eukaryotic promoters are
less well characterized [5]. It seems more reasonable to find motifs of the form
€y * Q% -+ % Q. However, currently, we do not have any efficient strategy
for finding such motifs.

7. Conclusion

Motivated by the problem of extracting motifs, such as in PROSITE, we
have developed a greedy strategy for finding motifs from positive and negative
sequences by exploiting probabilistic arguments. We presented some of the
experimental results on F. coli and eukaryotic promoters and splicing sites. The
results by GREEDY[)4] are not so much astonishing, but reasonable knowledge
are found by our strategy. The lower bounds in Corollary 1 are not good but
these experiments showed that the performance of our greedy algorithm is much
better. The experimental results by GREEDY[*{);*] on eukaryotic promoters
are unfortunately not successful. In order to characterize eukaryotic promoters,
we need another strategy that can cope with more complicated motifs. In
this paper, we have dealt with only DNA sequences and ignored amino acid
sequences. This is simply because the alphabet of 20 symbols is too large for
our algorithm since the time complexity increases exponentially with respect
to the size of the alphabet. The difference between 2* and 22° is very serious
in our algorithm. From both theory and practice, it is an challenging open
problem to devise efficient approximation algorithms for finding such general
motifs together with proofs guaranteeing their performance.

Aiming at knowledge discovery from amino acid sequences, the second au-
thor’s research group has developed a system called BONSAI [2, 16, 18] that
produces, from positive and negative examples, a mapping ¢ called an alphabet
indexing which classifies twenty amino acid residues into a smaller categories
and a decision tree whose internal nodes are labeled with regular patterns.
Since regular patterns are used for making decisions at nodes, only exact pat-
tern matching is allowed. We are planning to implement the strategy developed
in this paper in a forthcoming version of BONSAI so that it can cope with
sequences with ambiguity.
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