
Ubiquitous Distributed Objects

with CORBA

Fr�ed�eric Achard, Emmanuel Barillot

Gis Infobiogen

7 rue Guy Môquet, BP 8

94801 Villejuif Cedex, FRANCE

Database interoperation is becoming a bottleneck for the research community in
biology. In this paper, we �rst discuss the question of interoperability and give a
brief overview of CORBA. Then, an example is explained in some detail: a simple
but realistic data bank of STSs is implemented. The Object Request Broker is the
media for communication between an object server (the data bank) and a client
(possibly a genome center). Since CORBA enables easy development of networked
applications, we meant this paper to provide an incentive for the bioinformatics
community to develop distributed objects.

1 Introduction

1.1 Why interconnect?

The process of discovery in science greatly relies on the ability of researchers

to link previously unrelated data or knowledge. This is true at all levels of

research, from the daily task of information gathering to the merging of two

theories into one new dogma based on the accumulation of knowledge involv-

ing links between di�erent �elds a. In biology, the problem of linking data is

becoming more and more crucial: since the discovery of the genetic code, ge-

netics uni�es the biological sciences by o�ering a common basis for various dis-

ciplines such as biochemistry, embryology, taxonomy, cytology and evolution.

The `physics of particles' plays a similar role with regard to `hard sciences'.

However, biology has the advantage that the scale-up between the basic science

and the others is much more manageable than in physics. Thus, the commu-

nity would greatly bene�t from an interconnection of the data generated by

biologists. This has been particularly true since the explosion of molecular

biology: there is a dramatic need to relate mapping data to sequence data and

functional data, as well as to relate the genetic data of di�erent species (e.g.

model organisms or mammalian comparative mapping).

This need advocates for the interconnection of biological databases. Never-

theless, the biological data is dispersed in a large number of di�erent databases.

These databases are often not interconnected in a satisfactory way either for

aA good example is the discovery of the double helix 1.

programmers or for users; at the most, they o�er reliable hypertext links toward

some other databases but very rarely permit one to program easily distributed

data gathering. Moreover, biological databases are managed by heterogeneous

systems, which may not necessarily follow international standards. Examples

of such systems include Relational DBMS, Object-Oriented DBMS,
at �les

and home-made systems.

The interconnection can be described at several levels:

� physical interconnection: the databases should be accessible through the

Internet. Unfortunately, there are some highly specialized databases,

with interesting and sometimes unique expertise, that can not be accessed

via the Internet. This problem is out of the scope of this paper.

� syntaxic interconnection: databases are managed by a variety of het-

erogeneous system that are not interconnected. They use di�erent data

models and data manipulation languages. A common language is re-

quired.

� semantic interconnection: for both data and meta-data levels. At the

data level, it can be di�cult to reveal a semantic link between related

data wich come from distinct databases (or even from one single database).

This problem is discussed elsewhere 2. At the meta-data level, terms are

understood by scientists with regard to their experience and culture. For

example, molecular biologists, geneticists and epidemiologists have not

the same understanding of the term gene. This leads to a semantic bar-

rier and prevents the scientists from going outside their specialty.

� operational interconnection: having an operational way to manipulate

data to and from diverse databases is the purpose of the interconnection.

In addition to the types of interconnection described above, adequate

user interfaces are required. Such developments would clearly bene�t

from the use of an architecture-independent language, such as Java
TM

.

1.2 Which interconnection?

Interconnection is a generic term that can be applied to simple references as

well as any arbitrary complex system linking distinct databases. Therefore

its meaning should be further explained. Basically, the goal is to interoper-

ate data from various sources, typically to provide a single end user interface.

Therefore, what is needed is more than simple accession number references or

hypertext links, which can be considered as the minimum level of interconnec-

tion. A productive interoperation between databases is required. For example,

biologists expect to be able to query all the databases of interest in one row and

to process the data using a tool box of methods such as sequence alignment

and EST mapping. In that respect, an interconnection system must:

� provide a uni�ed view of heterogeneous databases,

� ensure the portability of the existing databases and the adaptation of

softwares,

� facilitate the evolution of the components of the system,

� be applicable both for large databases as well as for small specialized

databases and

� be accessible from heterogeneous architectures.

It follows that one must:

� use an architecture, DBMS and language independent metalanguage to

describe the structure of each data to be shared,

� provide a structured description of the data for computation (hypertext

is not powerful enough) and

� have an excellent scalability. Data are accumulated at an exponential

rate, and the number of areas of knowledge to be connected are increasing

too.

The success of projects involving a large number of heterogeneous compo-

nents is generally achieved through standardization. SQL is a good example

of such a success. This standardization can arise de facto as when a product is

progressively proved better and adopted by the community, or after a formal

consensus as when needs are well speci�ed and the product designed after a

general agreement.

Besides, a realistic solution must leave a large degree of autonomy to each

database. It is unrealistic to impose a common DBMS or a common meta-

schema. A relational structure can be perfectly suited to describe a laboratory

notebook for some precisely standardized biological manipulation, while the

complexity of a genome mapping schema clearly requires an object-oriented

approach. This means that an upper layer should be used on top of the existing

databases to provide a syntaxic interconnection. The problem of semantic

interconnection has to be solved separately.

Some pioneering attempts to address the problem of interconnection have

been proposed, such as the Object Protocol Model 3 and the Integrated Ge-

nomic Database 4. Those approaches have been enriching the debate, but they

are not yet universal standards. One can classify those approaches in two

categories:

� data warehouse: data is centralized in an integrated database.

� data interoperation: the queries are distributed over the di�erent data-

bases, and results are grouped back.

Data warehouse is seldom practical because it is costly to curate, maintain

and keep large databases evolving. Data interoperation increases the network

tra�c, but smooths it among the interconnected sites. Each data manager

keeps control on his data and is responsible for its quality.

We will now brie
y describe a standard that could be used for interconnec-

tion, the Common Object Request Broker Architecture, and a �rst application

we have developed on top of it.

2 An overview of CORBA

CORBA 5;6, Common Object Request Broker Architecture, is the result of

the work done by major actors of the hardware and software industry to set

up a communication framework. The goal is to facilitate the development of

distributed applications over a heterogeneous network. In a distributed envi-

ronment, clients are talking to objects. The services that can be delivered to a

client by an object are described in an interface. The means of communication

are handled by an Object Request Broker (ORB). The idea behind CORBA is

to provide an intermediary layer that handles access requests on data. It frees

the developer from most of the portability issues. It enables the development

of \distributed objects": objects that are somewhere on a network, some place

that will not always remain the same.

CORBA de�nes a two-fold set of speci�cations. To be CORBA compli-

ant, a vendor must implement at least the CORBA core: the CORBA Object

Model, the CORBA architecture, the Interface De�nition Language (IDL) syn-

tax and semantics, an ORB (which supports the Dynamic Invocation Interface,

Dynamic Skeleton Interface, the Interface Repository) and one language map-

ping. In addition, the vendor is free to implement a number of services. Those

services, if implemented, are granted a separate compliance point. The main

CORBA services are Lifecycle, Events, Naming, Persistent Object Service and

Relationships. The points of interest for our work will be further discussed in

sections 2 to 4.

CORBA is already a de facto industry standard. We strongly believe that

it will become a standard in the bioinformatics community. The long term goal

is to allow a true and productive interoperation between distributed programs

and databases.

CORBA developments can be featured as follows:

� Object Oriented technologies gives the best model to capture the richness

of data in biology.

� The data and methods to operate an object are described by means of

the Interface De�nition Language (IDL), a strongly typed language.

� The IDL compiler generates a stub for the client side and a skeleton for

the object implementation side. The ORB must store the IDL de�nition

of each object in the Interface Repository. It means that a client can

possibly access a CORBA object with no prior knowledge of its imple-

mentation scheme. It is the foundation for interoperability.

� CORBA provides a set of services that prevents one from reinventing the

wheel. The Object Management Group, the large industry consortium

which accredits CORBA products, guaranties the bene�ts from an In-

dustry Standards: scalability, robustness, support, long-term future. It

is commonly admitted that Bioinformatics developments su�ered from a

lack of consistent standards.

3 An illustrated view of CORBA

We have sketched out a working example to illustrate how the objects are

de�ned and how to access them. This code was written and compiled on a

Sun workstation using the ORBelineTM environment. The scenario models a

distributed environment and demonstrates CORBA interoperability. Although

we meant it to be quite close to real life issues, we deliberately kept the example

simple. Data descriptions are minimal. For this example, we write a simpli�ed

\STS bank object".

We chose this example because \Sequence Tag Sites" are essential objects

in genome study. They are the skeleton of physical maps, the basis of genetic

maps and a keystone in positional cloning. Typically there are pieces of in-

formation that need to be shared via a computer media since the biological

object can be generated from an electronic description. Moreover, STSs are of

interest for any group working in a genomic region.

The object's goal is a management system for STSs. It accepts deposit,

deletion and query by name. We �rst write the IDL interface and then write a

client implementation that accesses this object. Purposely, the object imple-

mentation details are not given. We only describe how to register the object.

Although we developed the facilities b to manage the STSs, the technical im-

plementation is out of the scope of this paper. Our point is to demonstrate a

client implementation to an object for which the IDL interface is known. The

C++ language is used for this example.

3.1 Interface De�nition

First we de�ne the structure of an STS as it will be stored within the object:

// Specification of an STS

struct STS {

string Name;

string Species;

string CA_primer;

string GT_primer

long Length;

float Heterozygosity; // in percentage

};

Then we de�ne the services that we are going to o�er, related to STS

objects. The interface bank describes a new CORBA object type. The

object can be manipulated by means of the three methods de�ned within it:

add sts, del sts, get sts.

// hold the STSs interface bank {

boolean add_sts (in STS sts_info);

boolean del_sts (in string name);

boolean get_sts (in string name ,

out STS sts_info);

};

Then the OrbelineTM IDL-to-C++ interpreter generates a stub, used to

implement the client side, and a skeleton, used to implement the object side.

The key points of the client implementation are further explained in the next

section.

bthe object source program is available on request

3.2 Client implementation

First the program makes a connection to the ORB, then asks whether the ORB

knows an object called bank (which refers to the interface bank of the IDL).

In case of success, the ORB provides the client with a proxy object. Here the

binding is straightforward because the ORB knows where objects are located

within a local network. However client may specify the use of an instance of

the object that resides on a speci�c host.

// connection to the ORB

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// bind to the object

bank_var sts_object;

sts_object = bank::_bind();

Once the binding is done, methods can be applied to the object.

� Adding an STS to the bank is done by calling the method add sts on

the sts object. The method takes an STS description as argument and

returns true on success.

CORBA::Boolean success;

STS a_sts;

a_sts.Name = "AFM115xf2";

a_sts.Specie = "human";

a_sts.CA_primer = "ttcaaaggtggagacccttc";

a_sts.GT_primer = "ttttggtcagaatggagtgg";

a_sts.Length = 107;

a_sts.Heterozygosity = 77;

success = sts_object->add_sts(a_sts);

if(!success) cout << "'add_sts' failed" << endl;

� Deleting an STS from the bank is done by calling the method del sts

on the sts object. It takes a name as argument (a string in IDL ter-

minology, which maps to a C++ const char *) and returns true on

success.

CORBA::Boolean success;

success = sts_object->del_sts("AFM115xf2");

if(!success) cout << "'del_sts' failed" << endl;

� Fetching an STS from the bank is done by calling the method get sts on

the sts object. It takes a name as in argument (a string in IDL termi-

nology, which maps to a C++ const char *), an STS as out argument

(a pointer to STS, passes as a reference) and returns true on success.

CORBA::Boolean success; STS *& to_sts = new STS;

success = sts_object->get_sts("AFM115xf2", to_sts);

if(!success) cout << "'get_sts'" failed << endl;

CORBA provides facilities for error checking via the C++ exception mech-

anism. Each time a method is applied to a CORBA object, we encapsulate

it with a try which allows to catch errors such as network failure or wrong

argument calls. For example, the add sts method is called as follows:

try {

status = sts_object->add_sts(a_sts);

}

catch(const CORBA::Exception& excep) {

cout << "Error add_sts " << endl << excep ;

exit(2);

}

3.3 Object implementation and running the example

The object side implements the facilities described within the IDL interface.

The object is registered to the ORB with the following code (note that methods

of implementation are not reproduced):

int main(int argc, char **argv) {

// Initialize ORB and the Basic Object Adaptator

CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

CORBA::BOA_ptr boa = orb->BOA_init(argc, argv);

Bank bank_server;

boa->obj_is_ready(&bank_server);

// get ready to receive requests

boa->impl_is_ready();

return(1);

}

We then compile and link our C++ code with the IDL compiler-generated

stubs for the client side and the skeleton for the object side. The ORB is

started with osagentTM (Orbeline smart agent). The object is registered to

the ORB by running its code. Then clients can access it via the ORB for each

type of method, as described earlier.

By this example we attempt to demonstrate that developing a CORBA

client is surprisingly easy and e�ective. Note that issues such as identi�cation

and security should be addressed for a real life program. In addition, a very

powerful aspect of CORBA is the use of the Dynamic Invocation Interface

which allows one to discover the methods associated to an object at run time.

This feature is not demonstrated in this paper.

4 A prospective view on CORBA

The ORB by itself only provides basic mechanisms for brokering object re-

quests. All other services are provided by objects with IDL interfaces that

reside on the top of the ORB (see 2). Unfortunately, we were restricted to

discussing these services in the \prospective" section because only few of them

are currently implemented. Some of these services represent the cutting edge

of distributed objects and client/server technologies. However, we believe that

most of the basic services will soon be available from ORB vendors. Software

developers in the biological community will bene�t from some of these services

in ways that are brie
y discussed in the following sections.

4.1 Persistence Object Service

We expect, from the client side, that an instance of the object is always running

and always preserves its state. This requirement represents an obligation on

the object side and some coding to do so is necessary. The \Persistent Object

Service" (POS) provides the means to standardize this process. In other words,

vendors are expected to provide means for easy storage, either by developing

their own scheme or supporting bridges to other database systems such as

relational ones.

4.2 Object Query Service

This service will allow one to �nd objects whose attributes meet the search

criteria one speci�es using a query. Three query languages will be supported:

OQL (ODMG-93's Object Query Language), SQL with object extensions or a

subset of the two previous ones.

4.3 Collections and Relationships

This service will let you create relationship between objects. It is a dynamic

process; one can relate objects without modifying the object. Object itself is

not aware that it is part of a relationship. This service, associated with the

Object Query Service, will allow queries that are arbitrarily complex.

4.4 Authenti�cation and Authorization

In our example (see 3), the addition and the deletion of an STS are accessible

to any client. A real life object server should enforce security of its data.

Therefore, when a client connects to an object, the object should be able to

check

� if the client is really what it claims to be

� what resources the client can access

Facilities to do so are provided with the Authenti�cation and Authorization

Services.

5 Conclusion

A loose system of interoperation that lends autonomy to data managers is

mandatory to be widely accepted. In particular, it is not necessary to give an

access to the database as a whole, because some data may be redundant or

irrelevant. Another important point is to use a recognized standard; it is clear

that too many standards exist in biology. CORBA can play this role, though

it is not the answer to every question about interconnection. In particular, it

does not address the issue of semantic interconnection. Nevertheless, we think

that it will provide the basis for sharing objects in an uni�ed way and that

semantic questions will be solved on top of CORBA.

The implementations of CORBA are not very complete at the present

time. However as CORBA-compliant ORBs will provide more and more of

the services, programming will become easier, both on the object and the

client side, and at the same time, distributed objects will become much more

dependable. Still, it is di�cult to forecast the availability of all the CORBA

services. And the network performance is an issue that needs to be addressed.

On the other hand, a very appealing aspect of CORBA lies in the vertical

facilities. This term denotes the services that are industry speci�c. Currently,

OMG has established working groups in various domains such as health care

or �nancial services. We believe that the creation of such a group will bene�t

to the biology community. We hope that such a group will be initiated soon

because we believe that the proliferation of biological objects, in the CORBA

sense, over the network will be the foundation for a productive interoperation

of biological data.

Our middle term project is to o�er a CORBA interface to HuGeMap, our

local database for human genome data. As a test case, the objects de�ned will

be accessed by the EBI to complement the data of the RHdb database. In that

respect, an Object Database Adapter will be developed for the OODBMS we

use c. The interoperation of this mapping data should facilitate the develop-

ment of tools to help the cloning of new genes.

Acknowledgments

This paper greatly bene�ted from Tom Flores and Patricia Rodriguez-Tom�e of

the EBI for �rst suggesting the use of CORBA to address the interoperability

problems and for pro�table discussions 7.

We are thankful to Guy Vaysseix for valuable discussion, Claude Scarpelli

and Philippe Gesnouin for providing excellent informatics support.

We also wish to thank Jennifer Fitzpatrick for smart critical reading of the

manuscript.

We would like to acknowledge contribution of Visigenic and PostModern

Computing for providing their OrbelineTM ORB.

cIDB system by Eric.Viara@infobiogen.fr

This work was supported by the European Community under grant BIO4-

CT95-0037 for the BIOTECH Research and Technological Development Pro-

gram.

References

1. J.D. Watson. The double helix. La�ont, 1968.

2. Fr�ed�eric Achard. Proposal scheme for storing links among genomic

databases. In Hugo's Human Genome Meeting, Heidelberg, March 1996.

3. I-Min A. Chen and Victor M. Markowitz. An overview of the object-

protocol model (OPM) and OPM data management tools. Information

Systems, 20(5), 1995.

4. Otto Ritter, P. Kocab, M. Senger, D. Wolf, and S. Suhai. Prototype

implementation of the integrated genomic database. Computers and

Biomedical Research, 27:97{115, 1994.

5. Robert Orfali, Dan Harkey, and Jery Edwards. The Essential Distributed

Objects Survival Guide. Wiley Computer Publishing Group, 1996.

6. Jon Siegel. CORBA, Fundamentals and Programming. Wiley Computer

Publishing Group, 1996.

7. European Bioinformatics Institute. Linking Biological Databases work-

shop, Hinxton Hall, November 1995.

