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We present methods to investigate the sequence to structure relation for proteins.
We use random structures of HP-type lattice models as a coarse grained model to
study generic properties of biopolymers. To circumvent the computational limit-
ations imposed by most lattice protein folding algorithms we apply a simple and
fast deterministic approximation algorithmwith a tunable accuracy. We investigate
ensembleproperties such as the conditional probability to �nd structures with a cer-
tain similarity at a given distance of the underlying sequence for various alphabets.
Our results suggest that the structure landscapes for lattice proteins are generally

very rugged, while larger alphabets �ne tune the folding process and smoothen the
map. This implies a simpli�cation for evolutionary strategies. The applied meth-

ods appear to be helpful in the study of the complex interplay between folding
strategies, energy functions and alphabets. Possible implications to the investiga-
tion of evolutionary strategies or the optimization of biopolymers are discussed.

1 Introduction

Under physiological conditions in vitro biopolymers generally fold to a unique
structure. It is often assumed that only the sequence determines this \native"
state and that it corresponds to the MFE (equilibrium minimum free energy)
state (the thermodynamic hypotheses). The search space is astronomically large,
yet proteins fold in seconds. Many mechanisms were proposed to understand
protein folding, but there is no consensus yet 1. Folding in vivo is even more
involved since several agents prevent misfolds, aggregation etc. During the
last decades several highly simpli�ed models, among them lattice proteins have
been derived to investigate the basic principles that govern the folding process
of biopolymers and enable natural proteins to evolve under the constraints of
functional adaptation and natural foldability e. In the HP model 2;3 (where
H stands for a hydrophobic residue and P for a polar one) it is assumed that
the non speci�c hydrophobic force is the dominant contribution to stability. It
therefore to a large extent determines the 3D structure of the backbone 4;3;2. In
this framework side-chain packing selects structures within this relatively small
set of compact states and hence allows for detailed functional �ne tuning. For
an excellent review of current methods the reader is referred to Dill et al. 3.
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For our investigations we will use a sequential folding procedure and apply it
to HP-type lattice proteins. Sequential folding may be relevant within several
frameworks e.g. for the folding of sub-domains in vitro and the early steps of
forming a nucleus or locally ordered structures. It may also account for the
case of unguided folding of a nascending chain f in vivo being extruded from
the ribosome to the lumen. This was proposed by Levinthal 5. Some evidences
for the relevance of sequential folding were recently summarized6.

There is a promising strategy to construct biopolymers without disposing
of details about folding: applied molecular evolution is intended to complement
or even replace rational design. There, starting from an initial pool of random
sequences, the principles of evolutionary optimization, error prone replication
and selection of �tter o�springs, are applied in a test tube system. This illus-
trates the importance of studying not only the foldability of single sequences
but the sequence structure relation of ensembles of random ensembles as well.
To understand and describe at a molecular level how the principles of Darwinian
evolution act in shaping biopolymers is also crucial for the understanding of pre-
biotic evolution. These principles can be exploited for biotechnology. Evolving
entities must in principle accomplish two tasks: to conserve acquired features
in their genotype and to adapt to new requirements on the phenotypic level as
well. Since there is a tradeo� between these tasks, it is crucial to understand
roles, interdependencies and interrelations between genotype and phenotype.
Early concepts (developed in the thirties by S. Wright and R. Fisher) coined
the term of �tness landscapes. Evolution is viewed as an adaptive walk over the
set of genotypes preferring \�tter" o�springs by selecting for some functional
criterion, a phenotype property. Later considerations focused on in
uence and
importance of phenotypically neutral mutations. Only few mutations can be
advantageous but a continuous gradient of �tness must be maintained so that
mutated o�springs survive7;8. Applied to biopolymers, this implies that residues
essential for function will be rather conserved and non-essential ones will be re-
placed by evolutionary diverse sequences g .
Since it is di�cult to de�ne �tness a priory and it is generally assumed that
structure largely determines function h, we are primarily interested in the se-

quence to structure map. \Simple exact models" 3 such as lattice proteins or
RNA secondary structures are an ideal playground to explore these issues on
large ensembles of biopolymers. The impact of parameters on structure form-
ation can be studied in full detail and computational demands are reduced to
a manageable level. Since in principle the structure prediction problem is of
comparable complexity for real proteins and (fully represented) RNA, we were
motivated by the recent success in characterizing the sequence to structure map-

f i.e. a chain under construction
gFor the HP representation one would expect HH contacts in the core to be conserved.
hin the sense that it is a conditio sine qua non 9



ping for RNA secondary structures10;11;12;13;14. This problem is, however, more
involved for real proteins: 1) in contrast to RNA, proteins do not comprise gen-
otype and phenotype in one molecule 2) there is a level of neutrality that arises
from the redundancy of the genetic code at the genotype level and from struc-
tural robustness of folding at the phenotype level 3) structure representations
simpler than the lattice approximation are not available. This in turn implies
the need for computationally demanding almost-exhaustive or approximation
algorithms.
In this work we are not so much interested in folding single instances. This has
been solved at a reasonable level for the HP model 3;15. For a di�erent lattice
model, a 3x3x3 cube with a broad spectrum of interactions the thermodynamic
property of a pronounced energy gap between the ground state and other states
was proposed to be a necessary and su�cient condition for fast folding in a
Monte Carlo run 16;17;18. We will also not discuss evolutionary issues any fur-
ther (such as the nature of a possible primordial alphabet and the number of
possible structures 19;20;21 that can be realized). It is our goal to present some
techniques to give an idea how questions that we consider as relevant to un-
derstand limits and possibilities of biopolymer evolution can be addressed at
di�erent levels of simpli�cation. Some recent results that we hope will clarify
some aspects of the complex interplay of folding mechanisms, alphabets, and
potentials will be presented.

2 Methods

2.1 \Generic" Lattice Proteins

The HP model: Here we refer to one of the most popular models of lattice
proteins, the subclass of HP-models, introduced by Dill et al. 2;3. All residues
have the same size. The peptide chain is constructed by placing residues se-
quentially on the beads of a regular lattice. The resulting chain has identical
bond lengths and discrete bond angles. We use relative moves for storing and
comparing structures: the structure is represented as a self avoiding walk on a
regular lattice and the movement of the chain is represented as a sequence of
moves where each is encoded relative to the prior. The method is well known
(see e.g. 2); our version has been adapted to apply to any regular lattice (a
detailed description will be given 22). The algorithm has several advantages
over representing structures by absolute moves or integer coordinates: 1) lat-
tice independent programming of folding algorithms and structure comparison
is possible 2) point mutations are pivot moves 23 3) concatenation of strings
corresponds to elongation of the walks 4) storage requirements are kept small
and 5) structures can be compared utilizing classical string comparison meth-
ods 24.



Potentials: The generalized energy function for a sequence with n residues
S = (s1; s2; ::::; sn) with si 2 A = fa1; a2; : : : ; abg, the alphabet of b residues
and an overall con�guration X = (x1; x2; :::::; xn) on a lattice L can be written
as the sum of all pairwise inter-residue interactions:

E(S;X) =
nX
i

nX
j>i+1

E(si; sj)d
�
ijf(si; sj ; ji� jj) (1)

where dij = jjxi� xjjj is the Euclidian distance, Eij = E(si; sj) a pair-potential
retrieved from the energy matrix. In our implementation, contributions are
considered up to a certain cuto� distance: d�ij = 0 if dij > cuto�. For con-
sistency we used cutoff = 1 whenever direct comparison to Dill's model was
considered and f = 1 throughout this work.
We implemented three di�erent potentials: In the \classical" HP-model (ran-
dom) heteropolymers are composed fromA = fH, P g with only one stabilizing
interaction if and only if hydrophobic residues (H) are neighbors on the lattice
but not along the chain. Polar residues (P) do not explicitly contribute to the
energy. The salient features of real protein structures are implicitly considered:
the hydrophobic e�ect comprises solvent-driven collapse to a native state, the
self-avoiding walk constraint accounts for the excluded volume e�ect. The HP'
set includes a strong overall interaction as well. The HPNX-model is a gen-
eric extension of the HP model and mimics \electrostatic" interactions between
negative residues (N) and those with a positive charge (P) as well as repulsions
within these classes. A third class of apolar residues is \neutral" (X) i.

Eij H P Eij H P Eij H P N X

H -1 0 H -3 -1 H -4 1 1 0
P 0 0 P -1 -0 P 1 0 -1 0

N 1 -1 0 0

X 0 0 0 0

Table 1: Energy potentials for alphabetsHP, HP' and HPNX.

Lattice Protein Folding is NP-hard 25. A large variety of approximation al-
gorithms was therefore developed 15;26;27. Most of these are not fast enough to
investigate large ensembles of structures and stochastic optimization techniques
(see e.g. 28) are not useful either to study ensemble properties of speci�cally
folded single chainsj . Hart and Istrail29 recently presented an algorithm for the
HP model that guarantee folding within at least 3=8 of the optimum energy. It

iThe frequency of Hs is the same as in theHP model, such that a random distribution of
the HX subset corresponds exactly to the HP model.

janother reasons is given in the next section 2.2



is deterministic, works in O(n), but does not consider di�erent potentials and
cross-space interactions. It will be compared in future work.
Here we use a straightforward deterministic algorithm, termed the greedy Chain
Growth Algorithm (gCGA) 30. In its simplest version the algorithm is fast but
there is, of course, a trade-o� between accuracy and speed. Starting with an ini-
tial move, it proceeds along the chain. The next m residues in the sequence are
added without consideration of the following residues. Energy contributions,
retrieved from EIJ , are evaluated for all neighbors. The next move is determ-
ined by sorting these con�gurations with respect to energies, selecting the best
and appending the �rst move of this chosen con�guration to the \frozen" core.
The gCGA was shown 30;24 to yield good results for short chains on a square
lattice.

2.2 Landscapes

Sequence Space S(n) is de�ned as the set of all bn sequences Si(n) of a given
length n that can be converted by well de�ned string-edit operation; we regard
only point mutations. For two strings of equal length n, the number of positions
by which they di�er is known as Hamming distance h and de�nes a metric in
Sequence Space S(n). The probability P [h] that two randomly chosen sequences
have distance h is given by:

P [h] := P [dS(S1(n); S2(n)) = h] = (b� 1)h
�
n

h

�
b�n (2)

The Shape Space X (n0) is de�ned as the set of all possible structures Xi for
sequences of length n. FollowingGuttman et al. 31;32 the number of self avoiding
walks (SAWs) on a lattice is #(SAWs) = aĉn�2eff n

� where � is a scaling exponent

and ceff the e�ective connectivity of the lattice k.
Our description of landscapes follows that of Fontana et al. 10;11 on RNA

secondary structures. A general notion starts with the de�nition ofCombinatory

Maps (CM) which are maps from one metric space (G; dG) into another metric
space (F ; dF ). If a scalar quantity is assigned, the mapping � : (G; dG) ! IR1

was also termed a combinatorial landscape (CL).
For reasons mentioned above we are interested in the sequence to structure map
and functional properties associated with the structure. CMs are then viewed
as generalizations of mappings from genotype (sequence space (S; dS = h)) to
phenotype (shape or structure space (X ; dx = t)), CLs are generalizations of
mappings from genotype into �tness values. Biopolymer folding can now be
understood as a mapping � from one space into another: � : (S; h) =) (X; t).

kFor a square lattice ĉeff = 2:63 and � = 0:33 for the cubic lattice 4:68 and 1:16
respectively.



Scalar phenotype characteristics fi for biopolymers are, for example, the radius
of gyration Fi := Gi(Si; Xi) or the minimum free energy Fi := Ei(Si; Xi). A
metric is simply dF (i; j) = jFi � Fjj. We de�ne neighbors of a genotype Gi as
the set of genotypes Gj with the smallest possible distance in genotype space
G: N (Gi; dG) = fGjjdG(i; j) = 1g. Neutral Neighbors NN (Gi) in a CL or
a CM are the set N (Gi) of neighbors that fall into the same phenotype with
respect to the chosen dF and �: NN (Gi; dG; dF ) = fN (Gj)jdF (i; j) = 0g. An
instance (Gi; Fi) is called a local optimum if all neighbors N (Gi) have �tness
values lower than F (Gi).
Landscapes have a characteristic topology. If there is a large number of local
optima near any point, the landscape is called rugged and global optimization
strategies may fail. Most descriptions are based on the de�nition of an auto-
correlation function where h:i denote expectation values:

�(h) := �(dG = h) = 1�
hd2F jhi

hd2F i
(3)

This expression can be viewed as a measure of the average similarity dF of
phenotype properties (energies, radius of gyration, structures etc.) for a �xed
genotype distance h of the underlying genotype (sequence) l . It is obvious that
for h = 0 (i.e. two identical sequences) a deterministic procedure (but not ne-
cessarily a stochastic one) will yield the same structure. Consequently, the auto-
correlation function yields 1 at h = 0 and decays to a value of �(h) = 0 when all
similarity is destroyed. A suitable characteristic length is the correlation length

ldF . It is de�ned as the solution of �F (h) = 1=em. As analytical solutions are
not available for most landscapes we use large statistical ensembles of compu-
tationally folded biopolymers to compute �(h). A two-dimensional probability
density surface P [dF = tjdG = h] was proposed for easier visualization 10;11. It
expresses the joint probability of two genotypes Gi(n); Gj(n) having phenotype
distance dF (i; j) at a given genotype distance dG(i; j) = h.

Structure representation: We use the string of relative movesRi := R(Xi) =
(r1; r2; : : : ; ri); ri 2 R (where R is the alphabet of relative moves), the distance
matrix DM (n�n) (which is symmetric and contains the Euclidian distances
between two residues) n and the contact matrix CM (Xi), which contains a 1
where the entries dij = 1 and 0 else. Scalar measures of compactness are the

radius of gyration, and the number of contacts CC, de�ned for all ( b(b+1)
2

) pairs

of interactions as: C
(ai;aj)

C (XI ) = jfCijj(a = i; b = j)gj.
De�ning distance measures is essential for comparing structures and to charac-
terize landscapes: the number of identical contacts is de�ned asD

ai;aj
C (X1; X2) =

lWhen e.g. structure distances are correlated to sequence di�erences, measured by h, we

obtain a characteristics of the sequence to structure mapping.
mwhere e denotes Euler's constant
nAll information except the nature of the bonds and the chirality are retained.



jfi; j 2 N; i < jjcij(X1) = cij(X2) = 1gj and can be normalized e.g. as

D̂
ai;aj
C (X1; X2) =

2DC(X1;X2)

CC(X1)+CC (X2)
such that only contact regions in two struc-

tures are taken into account. Comparing two structures Ri; Rj is simple: the
Hamming distance counts the number of pairs of identical directions at identical
positions DRh

= (n� h(R1; R2)). Ri-s can also be aligned using standard dy-
namic programming procedures de�ning gap-penalties and edit costs for the
exchange of directions 24.
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Figure 1: Probability density surfaces for lattice proteins (n = 18,HP alphabet, m=5, square
lattice). (a): structure distance (relative moves) vs. h, (b): structure distance (contacts) vs.

h, (c): same as (a) but cubic lattice, (d): energy distance vs. h.
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Figure 2: Probability density surfaces for lattice proteins (n = 60, HPNX alphabet, m=2):

structure distance (relative moves M) vs. h on a square lattice (a) and a cubic lattice (b).
(Data are cuto� at h = 30.)

3 Computations

Assessing the performance of the gCGA we have shown that increasing m yields
better results 24;30. At fairly small look-ahead values an average success rate of
10% and a performance within 80% of the optimal energy for can be obtained.
In general, increasing m lowers energy and increases compactness and the num-
ber of contacts. The contacts, except HH remain rather unchanged, indicating
that compactness results from a tighter core. A small number of PP-contacts
implies that they are surface exposed without being explicitly penalized. The
major reason for improved e�ciency is that, the more the chain \looks ahead",
the deeper a trap along the folding pathway can be overcome 24.
We compute large ensembles of random structures for short chains (n = 18)
on a square and a simple cubic lattice. We generated 500 reference strings and
5 mutations for all hamming distances. Convergence of this uniform sampling
procedure is fast. We checked the in
uence of the alphabet, the look ahead para-
meter m and the lattice. We calculated the conditional probability p that two
structures (energies) have a distance m or c (or e respectively) given that their
underlying sequences have Hamming distance h. Some instructive examples are
reported in �gs. 1 to 3, more comprehensive results will be reported elsewhere.
The overall shape looks, similar to RNA landscapes 10;11, like half a horseshoe.
Peaks at h = 1 and M = 0 refer to the number of neutral point mutations i.e.
strictly identical structures. The probability to �nd a closely related structure
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Figure 3: Lattice protein landscapes for the square lattice (a) and the cubic lattice (b). Auto-

correlation functions r(h) for energies (upper, nearly straight lines) and structure (relative
moves, lower graphs) distances are shown for search depth m = 5 (thin lines) and 11 (thick

lines), for the HP (full line), the HP' (dotted line) and the HPNX (dashed lines) alphabet.

is rapidly shifted to a random distribution with increasing h. Above a certain
\critical" value hcr the probability density becomes independent from h and
the structure ensemble is essentially randomized. This de�nes something like
a quantitative measure for a neighborhood size and corresponds roughly to the
characteristic lengths (see below). This suggests that the majority of local op-
tima as obtained by the gCGA can be found in a close neighborhood of any
random structure. The structure density surfaces for DRh

(Fig. 1a) and D̂C

(Fig. 1b) have a similar shape although the structure measures are based on
completely di�erent de�nitions. Hence the overall shape of the density surfaces
do not depend on the usage of a certain structure notion. The density surface
for the cubic lattice (Fig. 1d) shows faster randomization which is intuitively
clear since shape space is much larger. Still there is a signi�cant number of
neutral mutations. To illustrate the versatility of our approach we also report
the density surfaces for length n = 60 and the HPNX alphabet on the square
and the cubic lattice (Fig. 2). There the number of neutral mutations is signi�c-
antly larger which supports an assumption by Lipman and Wilbur 33 about the
increasing probability of neutral mutations with larger chains. Also the shift of
the average structure distance to higher values becomes more pronounced for
the cubic lattice.
The energy density surfaces (Fig. 1c) look di�erent: energies are stronger cor-
related and again there is a signi�cant number of neutral mutations. At small



h, however, the distribution is rather bell shaped and rapidly broadens. Since
most structures are relatively compact, in the case of the HP alphabet most
structures have 8,9 or at most 10 contacts and the most frequent energy dis-
tance is 1. This is of course not the case for di�erent alphabets and longer
chains (data not shown).
We then computed autocorrelation functions following Equn. 3. It can be
clearly seen that correlations are in
uenced only slightly by the search depth.
Results of structure statistics depend strongly on the particular alphabet and
correlations are approximately HPNX > HP' > HP. Energies are less sensitive
to mutations than structures which is a result of the high degeneracy of lattice
models, that is the correspondence of more than one structure to the MFE state
3. Larger alphabets, however, have energy landscapes that are more rugged.
This re
ects the larger number of possible states in energy space and a smaller
degeneracy. It is certainly interesting to note that most of these results are
similar to �ndings from RNA secondary structures 11;13.

4 Discussion

We presented and implemented an approach to characterize �tness landscapes
of lattice proteins. Clearly enough our results on folding single instances are not
unexpected from the \lattice protein point of view". We think, however, that
our results are signi�cant in the sense they constitute an important new method
for understanding certain features of relevance for the evolution of biopolymers:

� Combining theHP model with the concept of relative moves and applying
a fast approximation algorithm, makes it feasible to investigate ensembles
large enough for a statistical characterization of �tness landscapes. It
was also shown that the performance tradeo�s of the algorithm allow
it to handle larger chains and thereby address biologically meaningful
problems.

� Structure Landscapes of HP-type lattice proteins are very rugged. This
suggests that there are many local optima and evolutionary strategies
may easily get stuck. Yet energies are higher correlated i.e. less sensitive
towards point mutations than structures. This is de�nitely a consequence
of using random sequences that usually fold to multiple ground states 3.
Since uniquely folding sequences are rare it is reasonable to assume that
evolution from one \unique folder" to another is even more di�cult and
requires more mutations. Larger alphabets reduce this degeneracy and
energy and structure correlations correspond to a similar �tness criterion.

� The ruggedness depends strongly on the size of sequence space and shape
space. Larger alphabets smoothen both, the folding landscape and the �t-



ness landscapes. This is another analogy to the �tness landscapes of RNA
secondary structures and meets some earlier claims 24 that real proteins
need a larger sequence space not only for chemical diversity but also for
smooth evolution.

� The probability density surfaces also imply that a signi�cant amount of
neutrality complies with the possibility of a fast exploration of shape
space o. The number of neutral mutations for larger Hamming distances,
however, is small. This seems to be a clear contradiction to observations
in real proteins that are very robust with respect to point mutations.
On one hand this can be attributed to the crudeness of the HP model
since each mutation actually corresponds to more mutations in a larger
alphabet. On the other hand it may result from using an approximation
algorithm that typically �nds local optima.
The issue of neutral evolution also deserves a closer look since earlier work
in the HP - models by Lipman and Wilbur 33 postulated the existence of
extended neutral sets in sequence space and that their frequency increases
with sequence length.

� In spite of signi�cant changes on single structure properties, ensemble
properties are hardly in
uenced by the search depth. This is particularly
interesting in the light of most recent results on RNA secondary struc-
tures 13 where ensemble properties are robust with respect to the chosen
algorithm and will be the subject of more detailed studies.

Since we used several simpli�cations, we view our results as a very crude
model of realistic processes of the \real world" analogy. Major caveats to our
studies are certainly the restriction to very simple models and the usage of
an approximation algorithm without performance guarantee. Future work will
focus on a comparison to other algorithms, alphabets and �tness criteria to
re�ne the methods presented in this work.
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