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1 Introduction

Improvements in sequencing methods and other genotyping assays introduced high throughput,
low-cost and more automated technologies. The revolution in DNA sequencing opened many possi-
bilities for researchers working in the fields of genetic variation, diseases of genomic origin, and even
personalized medicine [1]. The completion of the pilot phase of the 1000 Genomes Project resulted
in the discovery of a vast amount of normal genomic variation including 15 million SNPs, one
million indels, and over 20,000 structural variants [2]. The new technologies can also be employed
to discover the functional landscape of the human genome as part of the ENCODE Project such as
epigenetic variation (methylation patterns and histone modification) and protein-DNA interaction.
Further uses of the high throughput sequencing technologies include transcriptome analysis, non-
coding RNA discovery, gene expression profiling, rapid testing of genotype-phenotype associations,
and identification of pathogens [1, 3].

Our genetic identity not only determines our physical differences, but it also defines our suscep-
tibility against diseases. Several groups are now working on various methods to exploit the power
of cost efficient technologies to better perform genotype-phenotype associations, in particular to
identify susceptibility to disease and eventually diagnose disease at its early stages. The ultimate
goal is to vastly improve the field of pharmacogenomics, which can broadly be defined as the study
of the relationship between genotype and drug response and how the drugs affect our metabolism.
The wealth of new data gives many opportunities to advance our understanding of how to optimize
drug combinations for each individual’s genetic makeup. The underlying computational tools for
such studies analyze available data to identify differences between a reference genome and sequenced
genomes, as well as perform clustering and classification to obtain both normal and disease-related
phenotype associations.

This tutorial provides a starting reference to analyze personal genomes (and genomic variation)
using various data and techniques such as next generation sequencing (NGS)1, array comparative
genomic hybridization (arrayCGH), and single nucleotide polymorphism (SNP) microarrays.

1Parts of this tutorial are taken from review articles written by Michael Brudno, published in Nature Methods [4]
and Briefings in Bioinformatics. [5]
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2 Discovery of Human Genome Variation

The genetic variation among human individuals spans a wide range of sizes. The smallest variation
is termed single-nucleotide polymorphism (SNP) and is defined as variation occurring when a
single nucleotide differs between different human individuals. Small INDELs are larger in size and
defined as an insertion or deletion of 1-1,000 basepairs [6,7]. Structural variants (SVs) are mid-size
genomic variation and include insertions, inversions, deletions, and duplications of DNA segments
larger than 1000 bp [8–11]. Segmental duplications are also considered to be a type of structural
variant, and they are defined as >1000 bp of duplicated genome segments with >90% sequence
identity [12–15]. As a more general term, copy number variation (CNV) refers to the duplication or
deletion of a segment of DNA sequence compared to a reference genome assembly. The largest types
of genome variation are the chromosomal changes such as duplications, deletions, or inversions of
large portions of chromosomes and translocation events. Although these genomic variants can be
“normal” (i.e. not known to be a cause of disease), many SNPs, INDELs, structural variants, and
chromosomal aberrations are associated with disease such as psoriasis [16], HIV susceptibility [17],
Crohn disease [18,19], epilepsy [20,21], renal disease [20], diabetes [20], autism [22], and more.

In this section, we survey these different types of human genome variation and the tools and
methods to detect such variation.

2.1 Single Nucleotide Polymorphism and Small INDEL Polymorphism

SNP microarrays. SNP arrays were introduced to comprehensively and rapidly study single
nucleotide polymorphisms in human genomes. The International HapMap Project [23, 24] utilized
SNP microarrays to detect and genotype 3.1 million SNPs in 270 individuals from different pop-
ulations. The SNP arrays contain immobilized oligonucleotide probes specifically designed to test
the existence of SNPs common to the human populations. Most commercially available SNP array
designs are biased to SNPs that occur more frequently in European populations, thus they are
not suitable to study more divergent populations. The first SNP arrays contained approximately
10,000 probes; however, current SNP arrays feature 2 million genetic markers. The test DNA
is then labeled using fluorescent molecules and hybridized to the SNP array. Finally, specialized
scanners are used to detect the hybridization signals. Computational analyses of SNP arrays are
mainly statistical in nature, and most tools are supplied by the microarray design companies such
as Affymetrix and Illumina. Non-canonical analyses tools, such as SNPchip [25], are available in
the Bioconductor suite [26].

Sequencing-based strategies. Recently many algorithms were developed to discover SNP and
small indel variation using high throughput sequencing data sets. Several of such algorithms are
listed in Table 1. Since the mapping of a read generated by NGS technologies is only a prediction
of its true location, most SNP calling algorithms include a data preparation step in which read
mappings are evaluated and filtered. Reads that may be mapping to paralogs or repeat sequences
are discarded, or considered only when other reads offer supporting evidence [27–29]. Quality
values may also be (re)assigned to the reads based on the basepair traces or various statistics. A
re-alignment step [30] may also be employed to better align small indels (1-5 bp), if they are present
in the mappings.

In general, a Bayesian approach is applied to the filtered, aligned reads to infer genotypes.
These approaches compute the conditional likelihood of the nucleotides at each position using the
Bayes rule:
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P (G|R) =
P (R|G)P (G)

P (R)

This equation states that one can get the probability of a certain genotype G given the data
R (posterior) if one has the overall probability of that genotype (prior) and the probability of ob-
serving the given data given from this genotype (likelihood). The denominator can be understood
as a normalization factor. Most often, the prior P (G) will be represented by the probability of
the variant, for example, the widely used MAQ [28] tool set uses a probability of heterozygosity r.
The probability of observing the prepared reads P (R|G) is then estimated for each possible donor
genotype. Continuing with the example of MAQ, this probability is computed with a binomial
distribution if errors are assumed independent and identical for each base in the read, or other-
wise with a weighted product of the observed errors. Finally, a posterior probability P (G|R) is
computed, which either estimates the donor nucleotide themselves given the data or the probabil-
ity of a SNP given the data. Applying a threshold to this probability for SNP discovery offers a
sensitivity/specificity trade-off.

Although most methods use a Bayesian approach to SNP discovery, they vary widely in the
details, use different interpretation of statistics, and have diverse approaches for small indel dis-
covery. While PolyBayes [27], SOAPsnp [29], and MAQ each assume some prior probability that
a site is polymorphic, the rest of the model is different in its implementation. In order to assign a
posterior, MAQ estimates a probability of observing the given read errors for each genotype prior
via a binomial distribution if errors are correlated or a similar estimating function if they are not.
SOAPsnp computes the likelihood estimating a posterior that is based on various features of the
reads. PolyBayes assumes knowledge of a probability of error via quality values and uses the prod-
uct of those directly to compute the posterior. In a recent publication, Hoberman et al. [31] present
a SNP discovery algorithm with a generally different approach. First, site-specific and more general
features are generated from read mappings; and this information is used to train a classifier. Next,
this classifier is then used to score the heterozygosity at each position.

For small indel discovery, PolyScan [32] re-evaluated de novo signatures, followed by a segment
alignment algorithm that is very sensitive to small indels. A statistical model is then presented,
but instead of analyzing each column in the multiple alignment, it considers the amount of shift
within clusters of re-aligned reads in order to detect small indels. A different approach, mentioned
above, was utilized in the MAQ tool [28] and in the Corona Light pipeline [33]. Both of these utilize
mate-pair information: at first, all reads are mapped without allowing gaps. Second, mate-pairs
with only one end mapped allow the gapped mapping of the second read, in an expected range
around the mapped read. This allows for detection of indels, while keeping the computational
complexity introduced by gapped alignment limited to a small subset of the reads.

SNP Calling in Color-Space AB SOLiD’s di-base sequencing has several properties that
present unique challenges for SNP and indel identification. Some tools map the reads by translating
the reference and mapping in color-space, but in order to call SNPs, they translate the multiple
alignment back to nucleotide space (while correcting likely sequencing errors) and call SNPs as
described in the above sections [28,29]. McKernan et al. [33] describe Corona Light as a consensus
technique where each valid pair of read colors votes for an overall base call. The DiBayes tool
implements a Bayesian algorithm that works solely in color-space. Here, the posterior probability
is computed for a particular combination of color pairs (dicolors); the prior is based on the expected
polymorphism rate, and the likelihood is the probability of seeing a certain dicolor given the error
rates. McKernan et al. [33] describe this algorithm as similar to PolyBayes [27], which we discussed
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Algorithm Platform Strategy Variation

SNP Indel

MAQ [28] Illumina Read pileup Yes Yes

SAMtools [35] Illumina/SOLiD Read pileup Yes Yes

Mosaik Illumina/454 Hashing reference Yes Yes

SOAPsnp [29] Illumina/454 Likelihood optimization Yes Yes

Corona Light [33] SOLiD Bayesian framework Yes Yes

VARiD [34] Illumina/454/SOLiD HMM Yes Yes

ProbHD [31] Illumina/454 Probabilistic framework Yes No

SPLINTER [36] Illumina Probabilistic framework Yes Yes

Dindel [37] Illumina Expectation maximization No Yes

QCALL [38] Illumina Probabilistic framework Yes No

Pindel [39] Illumina Split read mapping No Yes

Table 1: Algorithms to discover SNPs and small indels using sequencing data.

in the previous subsections; however, a detailed description has not yet been published. In addition
to AB SOLiD-specific SNP callers, a recent algorithm, VARiD, merges information from both color
and letter space data to improve SNP and small indel detection sensitivity [34].

2.2 Structural Variation and Copy Number Variation

SNP microarrays. The SNP genotyping data from various SNP microarray assays, such as
Affymetrix and Illumina BeadXpress, can also be used to detect and genotype both common and
rare CNVs. The methods that use the SNP microarray data to predict CNVs are usually Hidden
Markov Model (HMM) based approaches that make use of the allele frequency of SNPs, the distance
between neighboring SNPs, and the signal intensities. Each of these algorithms are fine tuned for
different type of SNP microarray assay, and different classes of CNVs. In addition, they can also
be used to genotype the copy number of the duplicated DNA segments, however, since the probe
density over the duplicated genome intervals are usually poor, these predictions are unreliable. One
of the most used CNV detection tools from Illumina SNP genotyping data is called PennCNV [40].
HMMSeg [41] is an HMM based segmentation algorithm that simultaneously analyzes both the
normalized total intensity (“LogR ratio”) and allelic intensity ratios (“B-allele frequency”) [42] to
detect regions of homozygous deletion, hemizygous deletion, or amplification. SCIMM [43] uses
the same array data and aims to genotype CNVs in a large number of samples using as few as
two SNP probes (when the breakpoints of candidate CNVs are known in advance). It was used
to identify large CNVs in ∼1200 individuals with an emphasis on “hotspots” of human genetic
disease [44]. Another recently developed algorithm, named SCOUT [45], is similar to SCIMM in
nature, however it performs better in detecting rare CNVs in large cohorts.

Birdseye [46] is similar to SCIMM, but it is developed to use another SNP microarray platform
(Affymetrix) and was employed to characterize CNVs in 270 HapMap samples [19]. At the Personal
Genomics session in PSB’2010, Yavas et al. also described yet another CNV caller from Affymetrix
data, called ÇOKGEN [47].

Array comparative genomic hybridization. The underlying technology of array comparative
genomic hybridization (arrayCGH) is similar to SNP microarrays, but the aim is to measure copy
number differences between two individuals (“affected” vs. “control”). Oligonucleotides from
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genomic regions of interest are immobilized in a microarray, DNA samples from two individuals are
labeled with different marker molecules, and hybridized to the chip. Finally a specialized scanner
compares the signal intensity difference (log2 score, generated by the two different fluorescent dyes)
to measure the copy number difference (Figure 1). Usually a second experiment is performed as
a control and to prune “bad” probes using the same samples but with the fluorophores swapped.
Selecting the oligonucleotides in array design is particularly important to minimize hybridizations
occurring by chance [48]. For each probe a log2 ratio of signal intensities is calculated. After a
normalization procedure based on control regions (known invariant copy number), a genotype is
assigned as:

• No difference, log2(2/2) = 0
• Hemizygous deletion in test: log2(1/2) = −1
• Duplication (1 extra copy) in test: log2(3/2) = 0.59
• Homozygous duplication (2 extra copies) in test: log2(4/2) = 1

Figure 1: Array comparative genomic hybridization (arrayCGH). Figure adapted from Feuk et
al. [9]

ArrayCGH has been utilized in many studies to characterize copy number variation in large
cohorts of both normal individuals and patients [49–51] as well as to investigate segmental dupli-
cations in primates [52]. Most algorithms to analyze arrayCGH data are based on Hidden Markov
Models. Each observed log2 value reflects an underlying copy number state. Using the observed
values, the underlying state for each probe is inferred. Based on some model, the sequence of states
most likely to produce the observed values is chosen. ArrayCGH is a powerful and low-cost method
to detect CNVs, yet it poses some limitations. First, CNV detection is only possible in the “tar-
geted” regions in the genome, and due to probe uniqueness, the designs are biased against repeats
and duplications. Furthermore, although it is possible to assay duplications using arrayCGH, when
the copy number differential is low in high-copy regions (for example 10 vs. 11 copies), resolution
provided by arrayCGH does not discriminate the copy number difference [14,15,52,53].
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Sequencing-based strategies. Detecting SVs between two individuals would be a trivial task
if their genomes were already assembled. Since this is currently prohibitive for humans, current
methods use only one assembled genome (the reference) and another sequenced genome (the donor).
Thus, they are unable to compare the sequences directly and instead rely on detecting variation
through signatures—patterns of paired-end mappings that are created by structural variation.

Two of the easiest and most commonly detected signatures are the basic insertion and basic
deletion [8,54] (Fig 2). A matepair that spans an isolated deletion event maps to the corresponding
regions of the reference, but the mapped distance is greater than the insert size. If the event
is an insertion, then the distance is smaller. Another variant that leaves a clear signature is an
inversion. A matepair that spans either (but not both) of its breakpoints will map to the reference
with the orientation of the read, lying inside the inversion, flipped. Two such matepairs, respectively
spanning each of the two breakpoints, form the basic inversion signature [8, 55,56] (Fig 2).

Figure 2: Types of structural variation that can be detected with paired-end sequences: mapped
span of paired-end reads appear larger than the expected insert length if there is a (a) deletion
and smaller in an (b) insertion haplotype. Disagreement between the mapping orientations and
the sequencing library specifications might either report a (c) tandem repeat or an (d) inversion.
Also, note that in the case of inversions CLONE1 and CLONE2 predict two different inversion
breakpoints (shown with arrows), but by examining the map locations and orientations, one can
deduce that both clones predict the same inversion, and both breakpoints of the inversion event can
be recovered. If the paired-end reads align confidently on different chromosomes, a (e) translocation
event is reported. In this figure, we assumed the expected end-sequence orientation properties in
capillary based sequencing and Illumina platforms.

Several methods have been packaged into algorithms and are available to the public, including
SegSeq [57], PEMer [58] VariationHunter [56], MoDIL [7], Pindel [39], BreakDancer [59], EWT [60],
and AB SOLiD Software Tools [33]. Each one can be characterized in terms of two distinguishing
factors—the signatures they detect and the way they cluster/window these signatures. These
characterizations are summarized in Table 2. This table can be used to guide a user’s decision on
which method is most applicable.
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In addition to the methods already mentioned in the previous section, there have been more
recent approaches that have combined previously developed methodologies into a single frame-
work [33, 59, 72]. For example, BreakDancer combines the standard clustering paradigm (Break-
DancerMax) with the distribution-based approach proposed in MoDIL, albeit without hemizygous
event detection (BreakDancerMini). AB SOLiD Software Tools combine the standard clustering
paradigm with a different distribution-based approach for indel identification, and the binary cir-
cular segmentation algorithm to identify regions of gain/loss.

Another prominent tool is PEMer [58], a highly modularized framework for detecting SVs that is
specifically tailored to easy modification and development by the user. Some of the PEMer modules
include read mapping, filtering of low quality reads, signature detection, and clustering. Such a
modularized framework has the potential to facilitate future algorithmic development by allowing
algorithmic improvements to particular modules without the need for implementing a whole SV
discovery pipeline. However, we note that there is still work to be done to create full-fledged
user-friendly tools for biologists.

Segmental duplications are yet another type of structural variants defined as low copy dupli-
cations of size >1000 bp and >90% sequence identity [12, 13]. Despite their importance in gene
innovation and phenotypic variation, duplicated regions have remained largely intractable due to
difficulties in accurately resolving their structure, copy number, and sequence content. Recently,
Alkan et al. [14] developed a read mapping tool mrFAST that tracks all possible map locations of
reads within a given sequence identity threshold. Additional heuristic methods were employed to
analyze depth of coverage to detect segmental duplications and predict absolute copy number of
the duplicated genes. Furthermore, by inspecting the sequence substitutions and small indels in
the duplicated genes this method can distinguish between different copies of highly identical genes,
providing a more accurate census of gene content and insight into functional constraint without
the limitations of array-based technology [14, 15]. A Hamming distance only version of this read
mapping tool, called mrsFAST can also be used for the read depth analysis [73].

3 SNPs and Disease

The interpretation of genomic variation is an active area of research with great impact in molecular
biology. SNPs are the major source of human variability, occurring about every 300 base pairs,
and are also responsible for the insurgence of human pathologies. Although some progress toward
the understanding of disease mechanisms and their association to SNPs has been made, the per-
sonalization of medicine is still far away. Meeting that goal will require strong collaborative efforts
between health care and academia to assemble larger collections of curated SNPs and to create user
friendly, integrated tools that evaluate disease risk associated with genetic variations.

3.1 SNPs Databases and Annotations

Large scale genome-wide association studies and human sequencing projects are producing hun-
dreds of SNPs with putative relevance to cancer [74] and other diseases (see review by Altshuler
et al. [75]). Some of these sequence variations in the protein produce changes in the stability,
regulation, ability to interact, or to be modified, and are ultimately associated with the disease.
The OMIM database [76], manually curated and updated daily, is one of the largest catalogs of
human genes and disorders. As part of the NCBI Entrez database, OMIM is freely available and
contains over 11,000 genes with known sequence and over 6,000 phenotypes. It should be noted
that only a few hundreds of the genes with known sequences currently annotated in OMIM have
known phenotypes. Automatic approaches for linking genotype with phenotype information have
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the potential to overcome the data scarcity problem inherent in manual efforts. To that purpose,
several approaches have been developed including PhenoGo [77] that use natural language pro-
cessed information in combination with Gene Ontology (GO) data to create a collection of over
500,000 phenotype-GO associations, including approximately 33,000 genes from 10 species. Simi-
larly, Gene2Disease automatically assigns priorities to genes related to a disease, and provides a list
of candidates based on PubMed Mesh terms and GO. Another resource, Genecards [78], provides
a suite of tools that integrate information from over 70 sources including OMIM, constituting a
single location to retrieve available information for over 24,000 genes including relationships to
diseases when available. The PhenomicDB [79] database uses associated orthology relations to pro-
vide multi-species genotype-phenotype mappings across human and several model organisms. The
Orthodisease database provides a cluster of more than 3,000 disease genes comprising 26 Eukary-
otic organisms. Swissprot is a database of protein sequences that includes disease annotations for
about 2,600 of its 270,000 entries (16,600 are for human proteins). PharmaGKB [80] is a catalog
of over 300 genes and 400 diseases (with genes involved in drug response), providing a single plat-
form to study relationships between drugs, diseases and genes. Finally, Kann and co-workers have
recently mapped all human SNPs and disease mutations (from OMIM [76] and Swiss-Prot [81]) to
their corresponding protein domain sites and created a resource for the domain mapping of domain
mutations, the DMDM site [82]. DMDM aggregates all the information about human mutations
and provides coordinates of all mutations within the human domains. Users will find that most of
these databases are freely available (Genecards is limited to nonprofit institutions) and their inter-
face varies in flexibility and convenience. Almost all of them can be easily searched using related
words in the query (disease or gene). In addition, the use of standard vocabularies and ontologies
within all these databases needs to expand beyond Gene Ontology, so that descriptions of disease
phenotypes, cytological changes, and molecular mechanisms can be well-defined and standardized
for better discoverability, correlations, and mining. In general, while these databases provide an
excellent resource, only a small proportion of the genomic data known to be involved in an inherited
disease have both known gene sequence and phenotype. A summary of these resources and others
described below can be found in Tables 3 and 4 and in a recent review by Kann [83]. Another
major challenge is the integration and organization of phenotypic databases. The NIH, recognizing
this need, launched the whole genome association studies. The NCBI’s database, dbGaP [84] pro-
vides open and controlled access to summary and individual data respectively for several genotype
association studies.

3.2 Prediction of deleterious SNPs

Currently, the dbSNP database contains approximately 20 million validated SNPs; yet, their im-
pact on human health is known only for a small fraction of them. The increasing gap between
the number of available SNP data and the amount of annotated variants highlights the need for
developing computational methods to predict functional SNPs. Recently, several algorithms have
been created to predict the effect of non-synonymous coding or missense SNPs [96, 97]. These
methods are binary classifiers that use empirical rules [89,90], machine learning, and statistical al-
gorithms [86–88,91,92,98] to discriminate between disease-related and neutral missense SNPs. The
input information for missense SNP predictors is mainly derived from protein sequence, structure,
and evolutionary analysis. Sequence information describes the residue composition of the mutated
protein and its chemico-physical properties. The structural features provide information about the
residue interactions that occur in the mutated region, as well as those that occur non-locally which
cannot be detected from sequence analysis alone. A multiple sequence alignment of the protein
family provides information about the evolutionary conservation of the mutated residue. A new
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Database URL Explanation

OMIM [76] http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM Catalog of human genes and ge-
netic disorders

Genecards [78] http://www.genecards.org A compendium of genes, pro-
teins and diseases.

Swissprot [81] http://www.ebi.ac.uk/swissprot Database of protein sequences
with disease annotation.

DMDM [82] http://bioinf.umbc.edu/dmdm Domain mapping of disease mu-
tations, it aggregates all human
SNP and disease mutations at
the protein domain level.

PhenomicDB [79] http://www.phenomicDB.de Phentoytpe-gentotype database
integrating data from multiple
organisms.

Gene2Disease http://www.ogic.ca/projects/g2d 2 A database of candidate genes
for mapped inherited human
diseases.

Orthodisease [85] http://orthodisease.cgb.ki.se Eukaryotic Ortholog Groups for
Disease Genes.

PhenoGo [77] http://www.PhenoGO.org Computed database that pro-
vides phenotypic context to ex-
isting associations between gene
products and Gene Ontology
(GO) for multiple organisms.

PharmaGKB [80] http://www.pharmgkb.org Pharmacogenetics research
database.

Table 3: Databases with disease annotation.

class of recently developed methods includes information from functional annotations or functional
predictions [29,92]. Although the algorithms to detect deleterious missense SNPs so far developed
can perform quite accurately, they do not provide any information regarding the SNPs’ associated
pathologies. To overcome this limitation, gene prioritization methods have been developed [99].
Gene prioritization methods are based on the assumption that similar genes are involved in similar
biological processes, allowing transferring of disease associations between similar genes. Gene prior-
itization methods combine different knowledge sources (i.e. functional annotations, protein-protein
interactions, biological pathways, and literature information) to rank candidate genes [93–95,100].
When the genes are poorly annotated in human some of the methods use functional annotations
from close homologs. In summary, the methods here discussed predict disease-related missense
SNPs and their pathologic effect, but none of them are able to predict the effect of multiple SNPs
including the non-coding SNPs. One of the main challenges for the recent future of bioinformat-
ics will be to develop statistical methods that estimate the disease risk associated with a group
of SNPs; accomplishing this goal will facilitate the study of disease in the context of complete
genomes. Applying these new algorithms to disease prevention and medical diagnosis will have a
strong impact on human life style habits, health policies, treatment of diseases, and reduction of
health care costs.
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Selected tools for disease-related SNPs detection

Resource URL Explanation

MutPred [86] http://mutpred.mutdb.org/ Provides structural and func-
tional annotation.

PANTHER [87] http://www.pantherdb.org/ Hidden Markov model-based
tool multiple sequence align-
ment of protein families.

PhD-SNP [88] http://gpcr2.biocomp.unibo.it/cgi/predictors/PhD-SNP/PhD-SNP.cgi SVM-based method based on
protein sequence information.

PolyPhen [89] http://genetics.bwh.harvard.edu/pph/ Uses straightforward physical
and comparative considera-
tions.

SIFT [90] http://blocks.fhcrc.org/sift/SIFT.html Based on sequence homology
and the physical properties of
amino acids.

SNAP [98] http://www.rostlab.org/services/SNAP NN-based method for the detec-
tion of functional SNPs

SNPs3D [91] http://www.snps3d.org/ Based on structure and se-
quence analysis.

SNPs&GO [92] http://snps-and-go.biocomp.unibo.it/ SVM-based method including
functional annotation.

Selected tools for gene prioritization

Resource URL Explanation

Endeavour [93] http://www.esat.kuleuven.be/endeavour Based on functional annoata-
tion, includes several genomics
data.

MedSim [94] http://www.funsimmat.de/ Functional annotation for genes
and proteins in human and
mouse.

PhenoPred [95] http://www.phenopred.org/ Protein–protein interaction
gene–disease associations,
protein functional information.

ToppGene [59] http://toppgene.cchmc.org/ mouse phenotype data, human
gene annotations and literature.

Table 4: Selected tools for SNP annotation.
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