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PACIFIC SYMPOSIUM ON BIOCOMPUTING 2013 
 
2013 marks the 18th Pacific Symposium on Biocomputing.  In addition to being published by World Scientific and 
indexed in PubMED, the  proceedings from all previous meetings are available online at http://psb.stanford.edu/psb-
online/. PSB provides sessions focusing on emerging areas in biomedical computation. These sessions are typically 
conceived at the previous PSB meeting as people discuss the opportunities for new sessions.  Once again, we have a 
very exciting set of areas that build on previous sessions and introduce new topics. The excitement about “Big Data” 
that has received general attention in all fields is particularly relevant to biomedicine. Many of our sessions are 
based on the premise that there are now amazing data sets available for analysis and integration. These are offering 
new models for discovery. The data sets range from molecular level  to cellular, organism and even population 
levels.   In many cases, the best uses of them require broad biomedical computation skills in data integration, data 
mining, machine learning, and modeling. The efforts of a dedicated group of leaders has produced an outstanding set 
of sessions, with associated introductory tutorials. These organizers provide the scientific core of PSB and their 
sessions are as follows:  
 
Computational Drug Repositioning 
Zhiyong Lu, Pankaj Agarwal, and Atul Butte 
 
Epigenomics 
Alexander J. Hartemink, Manolis Kellis, William Stafford Noble, and Zhiping Weng 
 
Identification of Aberrant Pathway and Network Activity from High-Throughput Data 
Rachel Karchin, Michael F. Ochs, Joshua M. Stuart, Trey Ideker, and Joel S. Bader 
 
Personalized Medicine: From Genotypes and Molecular Phenotypes Towards Therapy 
Oliver Stegle, Steven E. Brenner, Quaid Morris, and Jennifer Listgarten 
 
Phylogenomics and Population Genomics: Models, Algorithms, and Analytical Tools 
Luay Nakhleh, Noah Rosenberg, and Tandy Warnow 
 
Post-NGS: Interpretation and Analysis of Next Generation Sequencing Data for Basic and Translational 
Science 
Gurkan Bebek, Mehmet Koyuturk, Thomas LaFramboise, Benjamin J. Raphael, and Mark R. Chance 
 
Text and Data Mining for Biomedical Discovery 
Graciela H. Gonzalez, Kevin Bretonnel Cohen, Casey Greene, Udo Hahn, Maricel G. Kann, Robert Leaman, Nigam 
Shah, Jieping Yie 
 
We are also pleased to present four workshops in which investigators with a common interest come together to 
exchange results and new ideas in a format that is more informal than the peer-reviewed sessions. For this year, the 
workshops and their organizers are: 
 
Modeling cell heterogeneity: from single-cell variations to mixed cells populations 
Eric Batchelor, Maricel G. Kann, Teresa M. Przytycka, Benjamin J. Raphael, and Damian Wojtowicz 
 
Computational Biology in the Cloud: Methods and New Insights from Computing at Scale 
Peter M. Kasson 
 
Computational Challenges of Mass Phenotyping 
Lawrence Hunter 
 
The Future of Genome-Based Medicine 
Quaid Morris, Steven E. Brenner, Jennifer Listgarten, and Oliver Stegle 
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COMPUTATIONAL DRUG REPOSITIONING 
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Despite increasing investments in pharmaceutical R&D, there is a continuing paucity of new drug 
approvals. Drug discovery continues to be a lengthy and resource-consuming process in spite of 
all the advances in genomics, life sciences, and technology. Indeed, it is estimated that about 90% 
of the drugs fail during development in phase 1 clinical trials1 and that it takes billions of dollars 
in investment and an average of 15 years to bring a new drug to the market2.  
 
Meanwhile, there is an ever-growing effort to apply computational power to improve the 
effectiveness and efficiency of drug discovery. Traditional computational methods in drug 
discovery were focused on understanding which proteins could make good drug targets, sequence 
analysis, modeling drugs binding to proteins, and the analysis of biological data. With the 
attention on translational research in recent years, a new set of computational methods are being 
developed which examine drug-target associations and drug off-target effects through system and 
network approaches. These new approaches take advantage of the unprecedented large-scale high-
throughput measurements, such as drug chemical structures and screens3, 4, side effect profiles5, 6, 
transcriptional responses after drug treatment7, 8, genome wide association studies9, and combined 
knowledge10, 11. More importantly there are increasing reports of these findings being validated in 
experimental models5, 7, 12, thus clarifying the value proposition for computational drug discovery. 
As a result, now is an exciting time for computational scientists to gain evidence for reusing an 
existing drug for a different use or generate testable hypotheses for further screening13.  
 
Despite the progress, there is clearly room for technical improvement with regard to computational 
repurposing approaches. Furthermore, to materialize the true potential and impact of these 
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methods, much work is needed to show that they can be successfully adopted into practical 
applications. Hence, the aim of our session is to provide a forum to bring together the research 
community for a serious examination of these important issues. The five papers accepted to the 
session represent the breadth of research interests in the field: a graph-based inference method for 
predicting drug targets, a machine-learning algorithm for predicting protein-chemical interaction, 
an integrated method for identifying drug candidates against a novel cancer target, a knowledge-
based method for target identification against infectious agents, and a systematic evaluation of 
similarity measures in the use of connectivity map data for drug repurposing.  
 
Wang et al. propose a novel computational method for target prediction, known as heterogeneous 
graph based inference (HGBI). HGBI integrates drug‐drug similarities, target‐target similarities, 
and drug‐target interactions into a heterogeneous graph. They model the drug‐target interactions as 
the stabilized information flow problem across the heterogeneous graph. Cross-validation results 
show that HGBI significantly outperforms the state of the art in predicting novel targets for drugs. 
Furthermore, using a case study, the authors show that in practice HGBI can be used to rank 
candidate drug targets and that top-ranked results may be worth further experimental screening.  
 
Shi et al. present a different approach for predicting target-drug interactions, where target-target 
similarities are often first obtained using the primary amino acid sequences. In order to do so, 
unlike the existing methods that generally rely on measuring the maximum local similarity 
between two protein sequences, the authors propose a novel sparse learning method that considers 
sets of key short peptides shared by proteins interacting with the same drug. Their method 
integrates feature selection, multi-instance learning, and Gaussian kernelization into an L1 norm 
support vector machine classifier. According to their experimental results, their approach can not 
only outperform the previous methods, but also reveals an optimal subset of potential binding 
regions. 
 
Phatak and Zhang propose a computational pipeline for identifying novel drug candidates through 
integrating separate results from structure-based virtual screening, chemical-genomic similarity 
search, and graph-based similarity search. To demonstrate its feasibility in practical use, the 
authors report the repurposing of existing drugs against a novel cancer target ACK1, which is 
significantly overexpressed in breast cancer and prostate cancer patients. They screened 1,447 
marketed drugs, and merged complementary hits from different methods to select ten drugs for 
experimental testing. They found four of these drugs to be potent ACK1 inhibitors. Interestingly, 
Dasatinib, one of the final four drugs they discovered computationally was also recently found 
effective on inhibiting ACK1-related prostate cancer progression in a separate experimental study.   
 
Felciano et al. identified novel drug targets against six different pathogens such as Ebola and 
Marburg virus. Using knowledge of the immune system and host-pathogen pathways, their 
method automatically generates a list of potential target proteins that may have a beneficial 
therapeutic effect against at least two of the six pathogens. Then, the candidate targets in the list 
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are reviewed and prioritized for being further validated in vitro and in vivo experiments. Next, 
experimental results are normalized such that target validation could be compared across targets 
and pathogens examined in their study. Finally, based on their analysis, 34% of their predicted 
targets are shown to be promising in mouse models. Their work demonstrates the potential for 
knowledge-based methods in host-directed drug target discovery.  
 
Cheng et al. present a systematic evaluation on different similarity measures used in methods that 
aim to identify related transcriptional profiles based on connectivity map data. Using the drug 
compounds with shared Anatomical Therapeutic Chemical (ATC) classification as the gold 
standard, they compare four different measures for the identification of similar drug pairs and find 
that their proposed Xtreme cosine similarity score achieves the highest accuracy. Moreover, their 
benchmark experiments show that smaller gene signatures outperform larger ones. They also find 
that good transcriptional response to drug treatment is necessary but not sufficient to achieve high 
AUCs. 
 
This is the first year Computational Drug Repositioning has been offered as a track at the Pacific 
Symposium on Biocomputing, and we are pleased with the results of our call for participation. 
Given the interest seen here, new meetings being proposed just focused on drug repositioning. The 
National Center for Advancing Translational Sciences (NCATS) is partnering with pharmaceutical 
companies to offer funding for repositioning. The future seems quite bright for investigators 
conducting research in this field.  
 

Acknowledgments 
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Connectivity map data and associated methodologies have become a valuable tool in 
understanding drug mechanism of action (MOA) and discovering new indications for drugs. 
However, few systematic evaluations have been done to assess the accuracy of these 
methodologies. One of the difficulties has been the lack of benchmarking data sets. Iskar et al. 
(PLoS. Comput. Biol. 6, 2010) predicted the Anatomical Therapeutic Chemical (ATC) drug 
classification based on drug-induced gene expression profile similarity (DIPS), and quantified 
the accuracy of their method by computing the area under the curve (AUC) of the Receiver 
Operating Characteristic (ROC) curve. We adopt the same data and extend the methodology, 
by using a simpler eXtreme cosine (XCos) method, and find it does better in this limited 
setting than the Kolmogorov-Smirnov (KS) statistic. In fact, for partial AUC (a more relevant 
statistic for actual application to repositioning) XCos does 17% better than the DIPS method 
(p=1.2e-7). We also observe that smaller gene signatures (with 100 probes) do better than 
larger ones (with 500 probes), and that DMSO controls from within the same batch obviate 
the need for mean centering. As expected there is heterogeneity in the prediction accuracy 
amongst the various ATC codes. We find that good transcriptional response to drug treatment 
appears necessary but not sufficient to achieve high AUCs. Certain ATC codes, such as those 
corresponding to corticosteroids, had much higher AUCs possibly due to strong 
transcriptional responses and consistency in MOA. 

1.  Introduction 

Identifying the correct disease indication for a drug is an important problem and several 
computational methods have been described [1]. The problem for any practitioner, however, is to 
assess the precision of these methods. The desired method should provide relatively high 
confidence that the first few indications that are predicted for a drug contain at least one that will 
be validated in clinical trials and make a positive impact on patients. One of the most important 
techniques in the space of drug repositioning is connectivity map (CMAP) [2].  

A key contribution of CMAP has been the establishment of a database of cellular expression 
profiles in response to drug treatment in cell lines such as MCF7. This has enabled both the 
discovery of drug MOA and new indications [2,3]. Several CMAP hypotheses suggesting 
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potential therapeutic compounds for new disease indications have been experimentally validated 
[4-8]. 

However, despite numerous impressive anecdotal validations, it has proven challenging to 
quantitatively estimate the accuracy of this technique. A gold standard data set still eludes us in 
terms of drugs that impact a disease positively. Thus research has turned to the cleaner 
benchmarking data sets to predict drug relationships. This is with the implicit hope that methods 
that better predict drug classes will also do better at predicting disease indications for drugs. A 
useful classification is the Anatomical Therapeutic Chemical (ATC) system, which codes divides 
drugs into different groups in a hierarchical fashion according to the organ or system on which 
they act and their therapeutic and chemical characteristics. The ATC level 4 is mostly based on 
common MOA, and thus has proven useful as a benchmark for comparing similar drugs. 

The initial CMAP approach utilized a nonparametric, rank-based Kolmogorov-Smirnov (KS) 
statistic to connect disease gene expression signatures to drug expression profiles. KS scores are 
generated based on the location of the genes in the signature (i.e. up and down lists) within the 
entire ordered list of gene expression changes in response to compound treatment. The disease 
signatures often come from public repositories of expression profiles, such as Gene Expression 
Omnibus (GEO) [9]. Compounds from the reference dataset can also be connected with each other 
using the same type of computation to evaluate the similarity between them.  

Iskar et al [10] provided one of the first quantitative evaluations of CMAP methods. They 
applied a centered mean normalization approach to preprocess the intensity data in order to 
eliminate batch-specific effects. The pair-wise drug-induced gene expression profile similarity 
(DIPS) scores between each pair of drugs in CMAP were then calculated using a method similar 
to inverse total enrichment score (TES) by Iorio et al [11]. (TES itself is modification of KS.) 
They used compounds with high chemical similarities, and compounds with shared ATC 
classification as true positives for their benchmarking. They computed the area under the receiver 
operator characteristic (ROC) curve (AUC0.1) to measure differences at a low false positive rate 
(FPR=0.1). This emphasizes early retrieval which is important because for repositioning we are 
willing to sacrifice some true positives to keep false positives low. The performance of DIPS was 
shown to be superior to the compound vs. biological control comparison method described by 
Iorio et al. 

In addition to modifications of CMAP data processing workflows, many groups have 
investigated alternatives to the KS statistic. More recently researchers have extended methods 
based on Spearman’s correlation (EPSA) [12], Fisher’s Exact test (EXALT) [13], Wilcoxon rank-
sum test (openSESAME) [14], weighted Pearson correlation[15], logistic regression (LRpath) 
[16], probabilistic categorization (ProbCD) [17], empirical background p-values[18], random set 
statistic (GRS) [19]. and partially ranked data[20]. In this paper, we explore an eXtreme Cosine 
method that truncates the middle of the two expression profiles being compared. This focuses 
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attention on true outliers in both treatments. The cosine is an inner product of two vectors much 
like Pearson correlation, which has been shown to be superior to GSEA [18]. 

In this study, we use the ATC classification as the benchmark to compare the eXtreme cosine 
method (XCos) to other CMAP scoring methods, data processing methods, and signature sizes. 
Insights from these comparisons will clarify parameter choices, which can then be used in drug 
repositioning where gold standard benchmarking datasets are more complicated. We score each 
method using AUC in the early (FPR=0.1 and FPR=0.01) discovery phase. This allows us to 
determine which compound classes contain robust expression profiles in CMAP data, and which 
analytical approaches are more accurate at least in this evaluation.  

2.  Methods 

2.1.  Data sources and data processing 

Small-molecule perturbed genome-wide transcriptional response data were downloaded from the 
Connectivity Map (CMAP, build 02, http://www.broadinstitute.org/CMAP/). These data 
comprises of 6,100 gene expression instances (treatment vs. vehicle control pairs) from primarily 
three human cultured cell lines (MCF7, PC3, and HL60) treated with 1,309 bioactive small 
chemical molecules at varying concentrations.  Each instance denotes a treatment and control pair 
for one small molecule. Each instance has attributes such as perturbagen name, concentration, cell 
line and batch etc. 

Two methods of pre-processing probe level intensities are considered in this paper:  

a) MC: Mean Centering CMAP data was obtained directly from P. Bork [personal 
communication]. The data was generated using the method described by Iskar et al.[10]. 
Briefly, each compound treatment arrays were grouped based on the cell line and 
normalized separately using RMA [21]. Vehicle controls from CMAP were discarded and 
for each batch individual probes for each treatment were mean centered to calculate the 
average difference values within the batch. The final data consists of 4,849 treatment 
instances from three cell lines corresponding to 1,144 small molecules.  

b) Batch DMSO Control (BDC): Using controls from within the batch was proposed in the 
original CMAP paper [2], and we wanted to directly compare MC to it. Probe level data 
(CEL files) from CMAP was processed using Array Studio (Omicsoft Corporation, 
Research Triangle Park, NC, USA). Briefly, microarray datasets were grouped based on 
the cell line. For each microarray dataset, the probe set intensities were normalized using 
RMA. Next, all scaled probe sets with values less than primary threshold values (set to 64) 
for all treatments and control samples was set to that threshold value. The intensity values 
for each probe set are then log2 transformed. Finally, the log2 intensities of each probe set 
from all vehicle control samples within the same batch and cell line are averaged and 
subtracted from the treatment sample to generate the corresponding treatment-to-control 
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values and this is termed BDC. We filtered the 6,100 instances to the same 4,849 for MC 
to make results comparable. 

We averaged multiple instances for each compound within a cell line and then across cell 
lines. 

The ATC codes were obtained from Iorio et al. [11] and then supplemented by additional 
annotation. 

2.2.  Pair-wise similarity scores  

We used four methods: KS, TES, DIPS, and XCos to compute similarities between drug pairs. 

KS: The initial CMap approach utilized a nonparametric, rank-based Kolmogorov-Smirnov 
(KS) statistic [2].  

TES (inverse total enrichment score) is a measure based on the KS statistic as described in 
Iorio et al.[11]. A key difference is that this does not require the up and down signature to have 
consistent direction of scores compared to KS. 

DIPS: Uses TES on mean centered (MC) data and we used the data as provided (personal 
communication, P. Bork). 

XCos: The Xtreme cosine similarity score is calculated by retaining only the Xtreme probes 
for each instance after sorting by decreasing fold-change, i.e., only keeping the top N and 
bottom N probe sets and setting all other probe sets to zero. The cosine similarity between two 
Xtreme instances can then be calculated as a dot product of the two vectors. This is a variation 
of a described method [22]. Cosine similarity is much like Pearson correlation except that the 
vectors are not centered around their individual means. Unlike Euclidian distance, both cosine 
similarity and Pearson correlation are scale independent and should be more robust for our 
purpose. 

Pair-wise similarity scores of compounds for each of the three cell lines are generated 
separately and then combined. Similarities between instances of the same compound are excluded 
and not included in any of the plots. 

2.3.  Method nomenclature 

Eight of the nine methods described in this paper follow the SIM_PROC_SIZE nomenclature. 
SIM describes the similarity method which is one of KS, TES, or XCos (see section 2.2); PROC 
describes the data processing method which is either MC or BDC (see section 2.1) and the SIZE is 
the size of the signature which is either 100 or 500. The KS and TES methods were only evaluated 
with MC (and not with BDC), thus we have 8 total methods. DIPS is the ninth method as 
described in Iskar et al. [10]. DIPS is most closely related to TES_MC_500 though DIPS uses a 
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sort order based on detection calls, while our implementation of MC uses a sort order based on 
fold changes. Moreover, DIPS used only a single ATC for each drug while we used all ATC codes 
for a drug. 

 

Figure 1. A schematic of the analytical workflow used to generate the AUC. Parallelograms indicate 
data acquired. The nine measures of similarity scores listed in the three similarity score rectangles 
were evaluated on the ATC codes. 

2.4.  AUCs and p-values 

Pair-wise similarity scores are evaluated using individual ATC codes at different levels as well as 
using ATC levels from 1 to 4 for each of the nine methods as listed in Figure 1. 

For calculating AUC of a particular ATC level, the positive cases are distinct compound pairs 
that share any ATC code at this level. All other pairs are considered negative cases. These criteria 
are effective in handling drugs that have multiple ATC codes. The ROCs in Figure 2 and Table 1 
use this method as they count matches across ATC level 4 as positives. 

For calculating AUC for a specific ATC code, the only relevant pairs are those have at least 
one compound with this ATC code. The positive cases are defined as distinct compound pairs that 
both share this ATC code. The negative cases are the compound pairs with only one compound 
belonging to this ATC code. Thus, if neither compound of a pair share this ATC code, the pair is 
excluded from the AUC calculation for this ATC code. Figure 3 uses this as the standard as AUCs 
are shown for individual ATC codes. 

The p value calculation for comparing “paired” partial AUC is based on a bootstrap test [23]. 
Z is defined as (pAUC1-pAUC2)/sd(pAUC1-pAUC2), where pAUC1 and pAUC2 are the two paired 
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partial AUCs to be compared and the sd(pAUC1-pAUC2) is the standard deviation of the 
difference between pAUC1 and pAUC2. The standard deviation of the difference between the two 
AUCs is estimated from the 1,000 bootstrap runs. 

2.5.  Expression signal strength 

The expression signal strength (ESS) is defined as the sum of the absolute values of the log2 of the 
fold changes of the top and bottom N features (or probesets) of a gene expression profile. We first 
calculated the ESS of every compound expression profile. The ESS values of the same compound 
were then averaged within a cell line, and then these were averaged across the three cell lines to 
generate one ESS value per compound. The ESS for a particular ATC code is calculated by 
averaging all ESS values of the compounds that belongs to this ATC code. Figure 3 plots ESS on 
the x-axis with N=50. 

3.  Results 

Assessment of methods on 4th level ATC codes 

An earlier study showed that DIPS method leads to fewer false positives when compared using a 
partial AUC value at FPR=0.1 (AUC0.1) counting every pair of drugs which had at least one 
matching ATC 4th level code as a true positive [10]. Also the AUC0.1 was higher with mean 
centering (MC) than without mean centering. In this study, we systematically evaluated multiple 
scoring methods using the same data processing method and AUC measurement. We also suggest 
and evaluate the performance of the XCos similarity for the expression vectors of pairs of drugs 
using the top and bottom differentially expressed probes. 

XCos_BDC_100 performed best in terms of AUC at FDR=0.1 (see Figure 2 and Table 1). The 
AUC was 0.0193 and significantly better than the DIPS AUC of 0.016 (two tailed p = 1.8e-7). The 
difference between XCos and DIPS is even larger and more significant at FPR=0.01 (p<1e-13). 
This may suggest that for early discovery consistent with drug repositioning the XCos with 
smaller signatures might indeed be better. There are three obvious differences between these two 
(XCos_BDC_100 and DIPS) methods: A) the batch DMSO control (BDC) vs. mean centering 
(MC), B) the size of the signature: 100 vs. 500, and C) the method itself: XCos vs. TES. To 
understand this further, we isolated these three differences.  

A. XCos_BDC_100 had higher AUC0.1 compared with XCos_MC_100 (p=5e-4), thus at 
least for the XCos method, the batch-based DMSO controls are better than mean centering. 

B. The AUC for XCos_BDC_100 is higher than for XCos_BDC_500, but not significant 
statistically (p=0.26). However, the AUC difference for KS_MC_100 compared to 
KS_MC_500 is significant (p=6e-6), thus at least for KS_MC the smaller signatures are 
better in this comparison. 

Pacific Symposium on Biocomputing 2013

10



C. In terms of method itself, XCos outperformed KS (p=0.008) with mean centering and 100 
probe signatures.  

 

(a)                                                                                   (b) 

Figure 2: Comparison of the different scoring, data processing methods and signature sizes. Drugs 
with at least one matching ATC 4th level code are counted as true positives. The two TES scores track 
KS quite closely so are not shown for clarity. a) AUC0.1: Partial ROC curve at the FPR = 0.1. b) 
AUC0.01: Partial ROC curve at the FPR = 0.01. 

Table 1: Partial AUCs from multiple scoring methods. Drugs with at least one matching ATC 
4th level code are counted as true positives.  

Method AUC0.1: Partial AUC @FPR=0.1 AUC0.01: Partial AUC @FPR=0.01 
KS_MC_100 0.01655 6.06e-4 
KS_MC_500 0.01503 3.79e-4 
TES_MC_100 0.01663 6.12e-4 
TES_MC_500 0.01484 3.82e-4 
XCos_MC_100 0.01789 7.73e-4 
XCos_MC_500 0.01738 6.84e-4 
XCos_BDC_100 0.01926 8.56e-4 
XCos_BDC_500 0.01898 7.20e-4 
DIPS 0.01642 5.14e-4 

 

Pacific Symposium on Biocomputing 2013

11



Figure 3. Relationship between AUC0.1 (for XCos_BDC_100) and the average expression change from 
drug treatment within an ATC level code. ATC codes which primarily describe corticosteroids are 
indicated by crosses, all other ATC codes are shown as rectangles. Descriptions are provided for ATC 
codes of interest shown in green rectangles. Points are sized by the number of compounds in the ATC 
code. All ATC level 4 codes with at least 5 compounds are shown. If all 100 probesets had a uniform 
absolute fold change of 1.414, it would correspond to an expression level of 50 on the x-axis. 

All the p-values were computed as described in the methods. In fact, from Figure 2a and Table 
1 the trends mentioned above are quite apparent as well and the AUC0.1 for XCos_BDC_100 is 
statistically significantly different from the AUC0.1 for all the MC methods in Figure 2a. The 
above trend in terms of AUC0.1 comparisons on different methods could not be observed on the 
overall AUCs (data not shown). For overall AUCs, we observed that mean centering outperforms 
batch-based DMSO controls at least for the XCos method. We also noticed that TES is quite 
similar to KS and thus not shown in Figure 2 for readability.  

Differences amongst ATC codes 

The specific ATC codes at level 4 compared to the generic ATC level 1 codes provide more 
accurate classifiers; in fact, the classification at ATC level 1 is quite close to random (data not 
shown). Figure 3 displays the heterogeneity in the AUC measures for ATC level 4 codes using 
XCos_BDC_100. The ATC codes with the strongest signal are dominated by corticosteroids, β2-
adrenoreceptor agonists, and phenothiazines. We note a large number of related corticosteroid-
related ATC codes with high AUC0.1. On investigation, these are compounds with same MOA 
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but grouped into different ATC codes based on strength, anatomy, and formulation (inhaled, oral 
or topical).  

This figure also shows the dependence of the AUC0.1 on the average change in expression due 
to compound treatment for a given ATC class. It seems intuitively obvious that if the expression 
change is low, the analytical methods cannot detect similarity. In addition, we observed that the 
poorly detected ATC codes with high expression changes (those labeled as starting with “Other”) 
are often collections of miscellaneous compounds that are unlikely to have common MOAs.  

4.  Discussion 

Numerous methods have been proposed to identify related transcriptional profiles for CMAP 
readouts. They differ mostly by the underlying similarity measure, some of which are quite simple 
and have been known for decades, while other, more complex methods rely on powerful 
computing. Surprisingly, the XCos similarity score, which simply measures the cosine of two 
signatures, outperforms the standard, Kolmogorov-Smirnov (KS)-based CMAP method (Figure 
2). Furthermore, the similarity between related signatures appears to be driven by the genes that 
change the most between treatment and control. Both XCos and KS scoring methods based on the 
top 100 features more accurately predicted ATC codes than the ones based on the top 500 features. 
Of course, both these signature sizes are arbitrary and the optimal signature size should be further 
explored. Flexible signature sizes, however, have also been explored recently [24]. Finally, the 
preprocessing method used to compute the signatures plays a significant role as well. We find that 
mean centering does not improve the similarity scores in comparison to batch based DMSO 
controls – at least for the XCos method. This contrasts with the earlier results[10], and the reason 
is not evident; however, possible explanations include our not using probeset detection calls and 
DIPS comparison not using batch-matched DMSO controls. Moreover, we did not restrict a drug 
to have exactly one ATC code as required by DIPS [10]. 

It should be noted that these conclusions should be considered preliminary as they are limited 
by the use of ATC codes as a “gold standard”. Multiple ATC codes per compound can lead to 
errors and redundant ATC codes may inflate AUCs. Furthermore, many ATC codes do not 
properly characterize MOAs (e.g. “other peripheral vasodilators”, Figure 3). 

Another limitation may be that the averaging over multiple cell lines averages biological 
variation for compounds that may have differential responses in the three cell lines. On the other 
hand, using all available data may lead to more “stable” compound-specific signatures.  

Future work should explore additional accuracy measures, as even AUC0.1 and AUC0.01 
have too many false positives to be useful in terms of number of hypotheses that can be 
experimentally validated. It should also compare more methods and isolate the impact of each 
parameter completely across multiple methods. As indicated in Figure 3, some ATC codes lead to 
high AUC numbers regardless of the method used i.e. some drug classes are really easy to find 
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with expression profiles. To ensure that such high performing ATC codes do not skew the overall 
comparison, future work should include a comparison of methodologies focusing only on the more 
“difficult” ATC codes. 

A key challenge for drug repositioning is to develop a gold standard benchmarking data set 
that will not necessitate the extrapolation of results from drug MOA. With some expert curatorial 
effort FDA approved indications could be mapped to a disease ontology. However, it is not 
evident as to what constitutes matching disease signatures as we would also need to determine 
which of those drugs are disease modifying as opposed to those providing symptomatic relief and 
not expected to match as true positives. We believe that quantitative assessment of repositioning 
methodologies is a must, if computational biology is to make a more compelling case for its utility 
in this field. 
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Knowledge of immune system and host-pathogen pathways can inform development of 
targeted therapies and molecular diagnostics based on a mechanistic understanding of 
disease pathogenesis and the host response. We investigated the feasibility of rapid target 
discovery for novel broad-spectrum molecular therapeutics through comprehensive systems 
biology modeling and analysis of pathogen and host-response pathways and mechanisms. We 
developed a system to identify and prioritize candidate host targets based on strength of 
mechanistic evidence characterizing the role of the target in pathogenesis and tractability 
desiderata that include optimal delivery of new indications through potential repurposing of 
existing compounds or therapeutics. Empirical validation of predicted targets in cellular and 
mouse model systems documented an effective target prediction rate of 34%, suggesting that 
such computational discovery approaches should be part of target discovery efforts in 
operational clinical or biodefense research initiatives. We describe our target discovery 
methodology, technical implementation, and experimental results. Our work demonstrates 
the potential for in silico pathway models to enable rapid, systematic identification and 
prioritization of novel targets against existing or emerging biological threats, thus 
accelerating drug discovery and medical countermeasures research. 

1.  Background 

New and reemerging infectious diseases pose a growing global health risk across public 

health concerns and potential bioterrorism threats. Pandemic viruses, resistant bacteria, and 

technology improvements in bioengineering point to a need for accelerated drug discovery1. 
One approach to this challenge is to use computational techniques to efficiently identify drug 

targets that may effectively mount a defense against one or more biothreats2. Biologically 

diverse pathogens share common or similar mechanism of infection and pathogenesis, and 
the host has similarly conserved immune response biology3–5. 

We have previously demonstrated the broad applicability of systems biology analyses to 

drug discovery and development focused on mammalian disease biology8–10. We hypothesize 
that similar computational characterization of pathogen biology, pathogenesis and host-

response genomic pathways across multiple infectious agents can enable systematic 

identification of targets of intervention that will impact multiple pathogens in a similar 
manner, and thus serve as broad-spectrum drug targets that can be modulated by novel or 
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repurposed therapeutic modalities6,7. To test this hypothesis, we extended our approach to 

identify and predict host-based pathway mechanisms that, once validated, would have a 
beneficial therapeutic effect against a given pathogen. Validated host pathways and targets 

can then form the basis of drug repurposing studies, for example to identify compounds 

previously approved for other disease indications but that share a host mechanism 
leveraged by a pathogen of interest. We developed computational drug target identification 

extensions to Ingenuity’s pre-existing systems biology platform, and performed a pilot study 

to experimentally validate predicted targets against six representative “pilot pathogens”: 
Ebola virus, Marburg virus, Lassa virus, Yersinia pestis, Francisella tularensis, and Bacillus 

anthracis.  

2.  Methods 

2.1.  Overview of our drug target discovery approach 

Our approach (Figure 1) centers on computer-based modeling of disease pathways using 
semantic technology, scientific knowledge bases (KBs) of mammalian biochemistry, and 

 

Figure 1. Overview of Ingenuity-USAMRIID predictive systems biology pilot, including knowledge 

base (KB) construction (A) and host-pathogen pathway model inference (B) for 6 pilot pathogens; 

multiple rounds (“iterations”) of in silico target prediction (C) based on suite of target ID 

algorithms (D); expert review and prioritization of targets using our system prototype (E); and 

final target selections for in vitro and in vivo validation at USAMRIID (F). KBs are updated between 

each iteration. PIC = pathway intervention candidate, i.e. a proposed target centered around the 

perturbation of a specific pathway of interest. 
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bioinformatics tools developed by Ingenuity for drug discovery and development and 

extended herein10. We extended existing pathway models of disease biology to bacterial and 
viral pathogenesis, and developing large-scale, semantically-integrated, knowledge-based 

models of six pathogens (Ebola virus, Marburg virus, Lassa virus, Yersinia pestis, Francisella 

tularensis, and Bacillus anthracis). Specific technology extensions include extending host 
biomedical ontologies and knowledge models to pathogen biochemistry, pathogenesis 

staging, and infectious disease; curation and modeling of pathogen-specific pathway content; 

developing several broad-spectrum target prediction algorithms and target evaluation 
protocols; and augmenting IPA11 pathway visualization, filtering and  scientific workflows to 

enable collaborative, team-based broad-spectrum target identification and validation. These 

extensions, collectively referred to as Pathogen-IPA (P-IPA), were developed as proof-of-
concept to demonstrate the feasibility of using computer-based pathway models to 

accelerate drug target discovery. 

2.2.  Knowledge models for target hypothesis generation 

Central to our approach is the notion of computational hypothesis generation12,13, yielding 

one or more formally-defined “target hypotheses” that relate (1) a host gene or protein and 

(2) a particular positive or negative impact a drug may have on that target (i.e. “activate” or 
“inhibit”), and (3) a positive therapeutic effect on one or more clinically-relevant endpoint in 

hosts infected by each of at least two pathogens. An example of a target hypothesis, rendered 

computationally to English, is “We hypothesize that inhibition of LAMP2 will counteract the 
effects of B. anthracis and F. tularensis (as measured by bacterial uptake studies)”. We used 

P-IPA to computationally characterize the pathogen biology, mechanisms of pathogenesis, 

and host-response pathways for our 6 pilot pathogens, and use these models to identify and 
validate one or more such host targets hypotheses.  

Table 1. Examples of contextualized pathway findings in our causal reasoning networks, 

rendered to English syntax through the use of Natural Language Generation algorithms. 

Example context Example of host-pathogen finding(s) in P-IPA causal networks 

Attenuated  Attenuated live F. tularensis increases proliferation of human 
lymphocytes in culture 10-11 months post-treatment. 

Virulent 
 
Virulent 

 Decrease of mouse CD45 increases survival of murine-
adapted mouse after infection by virulent Ebola virus. 

 A mutant protein fragment (1-254) (H86K with its Zinc 
finger domain mutated) from human ZAP protein in Rat2 
embryo cells decreases viral replication of Sudan ebolavirus. 

Killed or inactivated  In human neutrophils, killed Marburg virus increases 
upregulation of human Tlr protein(s) 1 hour post-treatment 

Therapeutic (includes 
vaccine, antiviral, 
antibacterial 

 Oral administration of Salmonella typhimurium-based vector 
vaccine composed of Y. pestis F1 [caf1] protein and of Y. pestis 
V antigen protein increases (by 83 percent) survival of 
mouse that involves subcutaneous injection of Y. pestis. 
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To generate target hypotheses, we built a global network of causal pathway relationships 

derived from the Ingenuity Knowledge Base (IKB), a large-scale, manually-curated, 
semantically-structured ontology-based knowledge base of disease biology research 

findings14. A “finding” is single biochemical insight derived from an original experiment, as 

supported by primary research or review articles, and tied to a specific biomedical 
investigation and experimental context. The underlying knowledge representation has 

semantics based on RDFS15,16, with pathway models similar to BioPAX Level 3 and SBGN17, 

and extensions for modeling drugs, vaccines, biomarkers and clinical phenotypes. We 
extended IKB with 535,599 new findings curated from primary research, focused on host-

pathogen interactions for our 6 pathogens, that increasing the IKB size by 5.1% (Table 1).  

Updates to IKB findings and pathway models are ongoing. On a weekly basis a series of 
knowledge transformations post-process IKB findings to generate (infer) causal networks 

and other data structures optimized for specific algorithmic approaches (Figure 2), similar 

to 18 but using semantic rather than linguistic dependency graphs. We infer a causal network 
where nodes represent form-, species- and state-specific molecules: DNA, RNA, protein, 

complexes, or pathogen particles, including strain-specific forms. Directional edges 

represent causal dependencies between the biological activity of linked nodes. These cause-
effect relationships include gene regulation, activation / inhibition, chemical modification 

and other interactions, as supported by one or more experimentally-demonstrated findings 

from IKB. Such findings are classified by implied direction of change (DOC) of the associated 

 

Figure 2. Example causal finding used in our predictive analytics. This example illustrates how a 

single experimental observation (A) is modeled as a semantic network of interrelated concepts 

(B), which can then be further transformed into a number of secondary data structures useful for 

computation, such as gene annotations (C) and causal network relationships (D). 
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causal effect (increase, decrease, affects or no-effect). For example, the finding “In human 

neutrophils, killed Marburg virus increases upregulation of human Tlr protein(s) 1 hour 
after initial treatment” (see Table 1) would result in a positive causal regulatory relationship 

between the pathogen (Marburg virus) and host (Tlr protein). Conflicts are resolved by 

preferentially assigning a DOC if >85% of findings support it, or a non-directional affects 
annotation that must be manually inspected to resolve the conflict.  

2.3.  Predictive algorithms for drug target identification  

We identified several target identification strategies, each motivated by a specific aspect of 
pathogenesis that could form basis of a therapeutic strategy and formalized algorithmically 

to explore the associated hypothesis space using models of host pathobiology pathways. 

Based on this analysis we developed a general framework for hypothesis generation 
algorithms, and implemented two complementary approaches for identifying candidate 

broad-spectrum therapeutic targets, as described in 19 (see supporting materials). 

First, we observed that individual host proteins may be regulated in similar ways by 
multiple pathogens, suggesting an important shared regulatory influence by the pathogen on 

host proteins. Reversing this regulatory effect may thus therapeutically benefit the host. Our 

Commonalities algorithm seeks to reverse the polarity of multiple pathogens’ similar, direct 
regulatory effect on a single common host protein, hopefully countering the associated 

pathogenic impact. 

We further observed that multiple host proteins may be similarly regulated by a given 
pathogen. Rather than pursue a complex “drug cocktail” to target multiple components of 

this genomic signature, we hypothesize that such panels of host markers may share common 

upstream regulatory partners. Our second Upstream Regulators algorithm thus seeks to 
identify optimal targets that are upstream of directly affected host molecules, and can serve 

as a single target more easily modulated by a novel or repurposed drug. 

Every target hypothesis generated by these algorithms is supported by a (proposed) 
pathway mechanism that aggregates immunological evidence and a logical rationale for 

selecting the target. Hypotheses were further cross-referenced and annotated existing drugs 

that are either FDA-approved or in various stages of clinical trials for other indications14,20,21. 
Availability of compounds against a protein target was not used to generate hypotheses, but 

served as a “tie breaker” between otherwise biologically compelling targets when 

prioritizing our final target list for experimental validation. 

2.4.  Experimental design for target validation studies 

To assess the effectiveness of our approach, we performed two-phase in vitro and in vivo 

validation studies against our predicted host targets. All validation studies were performed 
by the Bavari lab at the USAMRIID research facilities, using established protocols for 

working with our pilot pathogens. 

For viral in vitro studies, Hela cells were selected as a well-established infection model. 
Two main experimental approaches were used for validating targets against Ebola, Marburg 
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and Lassa: high content image (HCI) analysis and quantitative real time-PCR (qRT-PCR). 

Both these assays measure viral replication as the relevant biological endpoint. Inhibition or 
activation of each targets were achieved by transfection of specific siRNA or  transfection of 

cDNA specific to that target, respectively. For bacterial studies we used three specific types 

of assays: (1) phagocytosis/bacterial uptake, a HCI assay that measures phagocytosis/ 
bacterial uptake by the macrophages; (2) fluorescent antibodies specific to pathogen 

protein(s) used to detect the pathogen that has attached to (and thus phagocytosis by) the 

host cell; and (3) a Live/Dead assay that measures cytotoxicity. 
In vivo studies were designed to further validate inhibition-based targets at the 

USAMRIID research facilities, based on protocols previously designed in the Bavari lab. To 

knock down target expression, we used antisense phosphomorpholino oligonucleotides 
(PMO) inhibition technology (GeneTools, LLC. , Philomath, Oregon). Groups of 10 mice were 

used: one group per target received target-specific PMOs, and a control group receiving 

either standard non-specific PMOs, or phosphate buffered saline. All animals received PMOs 
intraperitoneal (i.p.) or intranasal (i.n.) 4 times (-24h, -4h, 24h, 48h) at 100 to 150 g per 

injection per mouse. Mice were challenged i.p. at day 0 with the corresponding lethal dose. 

For one set of F. tularensis experiments, the bacterial challenge was performed using 
intranasal administration to evaluate survival/protection using a different route of infection. 

3.  Results 

3.1.  Target prediction and prioritization 

We used P-IPA to generate a target pipeline of 490 host proteins whose activation or 

inhibition was predicted to have a beneficial therapeutic impact against at least two of our 6 
pilot pathogens. Through iterative review and filtering using the P-IPA tool suite we 

prioritized this pipeline to identify the most promising targets and select them for target 

validation. Target hypotheses were reviewed and prioritized in P-IPA based on: 
(a) Broad-spectrum potential. Selected host targets must be predicted to impair at least 2 

of the 6 pilot pathogens. 

(b) Contextual consistency of pathway evidence. Targets must be supported by a pathway 
mechanism consistent with existing research data as well as the clinically relevant 

disease context (e.g. virulent rather than attenuated pathogen strains) 

(c) De novo experimental evidence. As special case of (b), we re-integrated our in vitro 
experimental results into IKB as “new but unpublished findings” to facilitate in vivo 

target prioritization,. 

(d) Availability of animal models. Targets must be testable in a mouse system used by a 
reference animal model for 5 of our pathogens (Ebola, Marburg, B. anthracis, F. 

tularensis, and Y. pestis). To the best of our knowledge, there are no well-validated 

mouse models for Lassa virus. 
(e) Clinically-relevant endpoints. Target validity should be confirmed against clinically-

relevant endpoints (e.g. improved host survival, reduced viral load, etc). 

Pacific Symposium on Biocomputing 2013

22



(f) Operational tractability. Host targets were tested using of antisense-based 

intervention across all experiments evaluating loss-of-function or inhibition-based 
targets, as permitted by schedule and budget constraints that determined the total 

number of targets we could test. 

We selected 28 target hypotheses (16 inhibition-based targets and 14 activation targets) 
for Phase 1 in vitro validation. In Phase 2, 12 targets were selected for in vivo testing, 

including 8 inhibition targets validated in vitro (DUSP1, HSP90B1, LAMP1, SERPIN5, 

SERPINE2, SMAD3, AP3D1, IL10RA), and 4 new targets selected based on new curated 
findings highlighted in updated prediction runs (BTRC, HGS, PDCD6IP, PPARA). 

3.2.  Example broad-spectrum pathway hypothesis and host drug target 

By way of illustrating our approach, we describe one target prediction in detail (Figure 3). 
Pathogens may similarly activate or inhibit the function several host proteins. Rather than 

target these commonly-regulated host proteins individually, the Upstream Regulator 

algorithm treats them as protein signature, and tries to identify a single, additional, host 
protein that could counter or reverse the impact of the pathogen’s effect on this signature. In 

this example, Ebola and Marburg viruses have been reported to inhibit a number of common 

host proteins (F2, PROC, PLAU, KLKB1, and C1S). IKB findings (and their underlying 
research publications) further indicate that SERPINE2 represses the activity of the same 

proteins. Thus, the algorithmically-generated hypothesis is that both viruses build upon the 

naturally-occurring suppressive effect of SERPINE2 in the host, and that by removing this 
effect, we may effectively “pull the rug out” from these viruses and potentially slow 

pathogenesis by making them work harder. Significantly, our hypothesis re-uses findings 

from cancer and cardiovascular molecular studies that characterize SERPINE2’s effect on the 
other host proteins include results, as SERPINE2 was previously unassociated with viral 

hemorrhagic fever infection. 

3.3.  Classification of broad-spectrum target validation results 

We formalized our performance evaluation developing a classification framework for target 

validity that partitioning targets based on whether our experimentation demonstrated a 

desired effect or lack of effect, and whether that effect was deemed to be clearly 
demonstrated or whether additional studies were needed to confirm the effect. We used a 5 

category scale: clearly-validated, possibly-validated, not-tested, possibly-not-validated, and 

clearly-not-validated. For in vitro assays, we use 30% reduction in viral load or bacterial 
uptake as a baseline threshold for a clearly-validated classification, adjusted to pathogen-

specific thresholds if they exist for a specific virus or bacterium. For in vivo assays, target 

validity was defined as a minimum level of protection conveyed to infected mice, consistent 
with screening practices. Our baseline threshold was >40% survival in mice after 9 to 22 

days (depending on the pathogen) and twice (2x) the standard control survival rate, 

replicated twice with 10+ mice per experiment. Two other target categories—possibly-
validated, possibly-not-validated—demonstrated lesser phenotypic effect or were not 
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Figure 3. Example of target (SERPINE2, blue node) hypothesis identified by the upstream 

regulators algorithm as playing a common role in pathogenesis of Ebola virus and Marburg 

virus, and a drug (Drotrecogin Alfa / Xigris™, Elli Lily)) that may be repositioning for this 

indication. This drug target hypothesis is grounded in signature of host proteins (yellow 

nodes) that are commonly downregulated by Ebola and Marburg infection. SERPINE2 is 

further linked to relevant immune functions, including ones found in viral hemorrhagic fever 

infection (e.g. coagulation pathways). SERPINE2 was validated in vitro and in vivo to have the 

predicted effect on systems infected by the Ebola and Marburg viruses. 

 

Figure 4. Pipeline of prioritized inhibition-based target hypotheses, with our 16 initially-

selected inhibition-based targets. In vitro and in vivo validation results color code the 

hypothesis arrows based on success or failure classification. For example, the top-left target is 

AP3D1, which was predicted to have a beneficial effect under Ebola and Marburg infection if 

the target was inhibited, shown as two down arrows. Knock-down in vitro screens and in vivo 

studies confirmed these predictions (filled circles, green). Pipeline visualization is interactive 

and updated dynamically as new target hypotheses and validation results are integrated. 
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replicated across multiple experiments, thus requiring additional study to conclusively rule 

them in or out as drug targets. Commercial availability or maturity of a given compound 
through the FDA approval process was presented but not used as a validation criterion. 

3.4.  Validation of drug target predictions 

We analyzed the performance of our method using both in vitro and in vivo experimental 
data by aggregating, discretizing and classifying this hypothesis-specific target validation 

data into the classifications, described in section 3.3.  Briefly, in vitro validation experiments 

in Phase I demonstrated that 24 of 28 predicted targets resulted in hits against at least one 
pilot pathogen, Moreover, 22 hits are broad-spectrum (2 + pathogens) target candidates. For 

example, SERPINB5 showed clear or partial impact against 4 of our 6 pathogens. From this 

panel of prioritized targets, 11 of these 12 tested targets showed effect against at least 1 
pathogen in mice, and 5 clearly inhibit 2+ pathogens (broad-spectrum). Additional targets 

showed promise, but require additional work to confirm. Inhibition-based targets in Figure 4 

have the greatest potential for drug repurposing with compound inhibitors. 

4.  DISCUSSION 

Based on this analysis, 34% directly predicted targets we tested were validated in mouse 

models, which we believe to a very promising yield. This lower bound (34% for in vivo) is a 
conservative performance assessment, treating only clearly-valid results as successes. 

Performance increases if one includes targets that showed some promising effect but not 

sufficient to meet our threshold, although this requires additional experimentation to 
confirm. Table 2 summarizes our findings as predictive success rate, across activation- and 

inhibition-hypotheses and in vitro and in vivo results. SERPINB5 is our strongest validated 

target, clearly validated against B. Anthracis, Ebola virus and Marburg virus, and may further 
show impact against F. Tularensis and Y. Pestis, although further studies may be required to 

optimize dosing to confirm this. As our top-ranking target, we believe SERPINB5 is worthy of 

further investigation to assess mechanism of action. 

Table 2. Topline performance of computational target predictions based on in vitro and in vivo 

experimental results, across all prioritized, tested hypotheses 

Success rate 
N (# tested target 
hypotheses) 

Lower bound 
(clearly-validated) 

Upper bound 
(clearly-validated + 
possibly-validated) 

In vitro 81 27% 46% 
In vivo  32 34% 50% 

 
The measured endpoint across these experiments was percentage survival post-infection 

and treatment. Specifically, we measure the number of mice (out of a total of 10 per group) 

that survived following PMO treatment and challenge with the corresponding pathogen. For 
example, 50% survival rate indicates that 5 of 10 mice survived after treatment. In addition 
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to percentage survival, we factored in the number of independent experiments performed, 

the number of replicates for a sample test, the difference relative to baseline threshold from 
the standard control, and non-measurable expert evaluation for a given sample. In some 

cases we were not able to perform identical replicate experiments for a given pathogen. 

Interestingly, in vivo results out-performed in vitro (34% vs. 27%), which may be 
attributable the limited applicability of cellular assays for modeling host immune biology, as 

well as the overall lower number of tests run in animal studies relative to our in vitro 

studies. In addition, the kinetics of each in vivo experiment is dependent on each pathogen, 
and we occasionally observed off-target effects with scrambled PMOs that enabled some 

increased survival on its own and which we could not control for. This suggests the need for 

additional research into effective, low-cost alternatives to animal and clinical studies for 
drug target validation studies22. 

4.1.  Contributions 

We have demonstrated the use of causal network analysis to effectively identify valid 
drug target hypotheses for a complex disease indication, with a good success rate as 

demonstrated experimentally through animal studies. To the best of our knowledge, such 

predictive causal analytics have not been validated to this extent in a host-directed 
infectious disease context or across multiple viral and bacterial agents. Further, our novel 

upstream regulators algorithm successfully identified previously unassociated valid protein 

targets based on the predicted propagation of net regulatory effects on the host-pathogen 
interface. We propose that causal network analysis can extend to previous target 

identification approaches7,23 by identifying valid, functionally important targets not 

identifiable through study of direct host-pathogen interactions alone. 
We attribute part of our success the accuracy and contextual detail of the underlying 

causal network, which in turn is based on semantically-normalized IKB content. In particular, 

IKB findings are (a) manually modeled by experts to ensure accurate representation of the 
underlying biology24; (b) always supported by experimental evidence (no predicted or 

inferred data); and (c) annotated in sufficient biological and experimental detail to allow 

finding inclusion or exclusion based on contextual fit to the pathogen in question. We 
suggest that such normalized, contextualized, experimentally-grounded network datasets 

can improve the quality of any causal network analyses by driving the algorithm directly (as 

is our case), or by serving as a high-quality training set for learning-based approaches25. 
Finally, we developed a framework for rapid, team-based, computational target discovery 

to run multiple target ID algorithms in parallel, formalize their predictive outputs and 

supporting evidence as hypothesized mechanism of action for a novel drug target, and 
review and prioritize the targets using interactive, collaborative pathway tools. In addition 

to supporting rapid, evidence-based generation of target lists for medical countermeasures, 

we believe this model can be extended to include targets identified experimentally e.g. via 
screening approaches, as well as expert suggested hypotheses26, thus potentially helping 

unify computational and experimental target identification approaches. 
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Our methodology can be applied to any disease where a body of host pathway knowledge 

has been experimentally characterized and can be modeled as causal, regulatory network 
relationships. For novel or emerging pathogens that are as of yet unstudied, evolutionary 

mapping using next-generation sequencing would allow a similar approach using host-

pathogen pathway knowledge from closely-related evolutionary neighbors, although some 
loss of performance should be expected. Finally, a drug repurposing use case could be 

directly supported by automatically filtering or prioritizing hypotheses anchored by a 

specific drug or drug class. This would, in turn, highlight candidate compounds for use in 
target validation studies. 

5.  Conclusion and future work 

Our scientific objective was to identify broad spectrum countermeasures to viral and 
intracellular biothreats. We have described and evaluated a novel target discovery 

methodology that is: host-directed and broad-spectrum in biological focus; unbiased in its 

consideration of prior target association with the disease of interest; computationally-
enabled by formal models of disease pathways and host-pathogen mechanisms; and delivers 

testable, evidence-based target hypotheses suitable for experimental validation in rapid 

response scenario. Our empirical results validate this approach and, more generally, for the 
use of causal analysis for the discovery of novel drug targets. While our “pathogen and 

mechanism first” approach focuses primarily on broad-spectrum therapeutics, we believe 

this approach is readily adaptable to single-spectrum (i.e. against only one pathogen) target 
identification scenarios as well as other disease areas. We suggest that systems biology 

pathway models are sufficiently mature to be used alongside traditional screening-based 

approaches in most applied drug discovery initiatives. 
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Exploiting drug polypharmacology to identify novel modes of actions for drug repurposing has gained 

significant attentions in the current era of weak drug pipelines. From a serendipitous to systematic or rational 

ways, a variety of unimodal computational approaches have been developed but the complexity of the 

problem clearly needs multi-modal approaches for better solutions. In this study, we propose an integrative 

computational framework based on classical structure-based drug design and chemical-genomic similarity 

methods, combined with molecular graph theories for this task. Briefly, a pharmacophore modeling method 

was employed to guide the selection of docked poses resulting from our high-throughput virtual screening. 

We then evaluated if complementary results (hits missed by docking) can be obtained by using a novel 

chemo-genomic similarity approach based on chemical/sequence information. Finally, we developed a 

bipartite-graph based on the extensive data curation of DrugBank, PDB, and UniProt. This drug-target 

bipartite graph was used to assess similarity of different inhibitors based on their connections to other 

compounds and targets. The approaches were applied to the repurposing of existing drugs against ACK1,  a 

novel cancer target significantly overexpressed in breast and prostate cancers during their progression. Upon 

screening of ~1,447 marketed drugs, a final set of 10 hits were selected for experimental testing. Among 

them, four drugs were identified as potent ACK1 inhibitors. Especially the inhibition of ACK1 by Dasatinib 

was as strong as IC50=1nM. We anticipate that our novel, integrative strategy can be easily extended to other 

biological targets with a more comprehensive coverage of known bio-chemical space for repurposing studies. 

 

1.  Introduction 

The continual decline of the number of new small molecular entities from the pharmaceutical 
industry pipelines has been well documented1. The stop-gap measures such as mergers and 
outsourcing associated with the modern drug discovery process are unlikely to improve the drug 
discovery success rates in the long run2. Of several approaches under consideration to improve the 
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pipeline output, drug repositioning is the one that aims to increase the applicability of already 
discovered therapeutics to hitherto unknown clinical conditions. This approach may save time and 
costs associated with the discovery phase2. Drug repurposing certainly comes with some distinct 
advantages and the efforts have been driven by several important factors including: the access to 
increasing amounts of experimental data (e.g. kinase profiling3), better understanding of 
compound polypharmacology4, biological data mining (BioCreative III)5, and regulatory impetus 
from FDA and NIH2. Current successful examples are mostly from serendipitous discoveries such 
as the repurposing of buproprion from depression to smoking cessation as Zyban6 and Duloxetine7 
from depression to stress urinary incontinence. Without doubt, there is an unmet need to develop 
novel, comprehensive methods for systematic drug repositioning to improve the efficiency.  

In silico methods, either receptor-based or ligand-based, have been applied to drug repurposing 
projects. Keiser et al. predicted and validated 23 novel drug-target associations using two-
dimensional chemical similarity approach (SEA)8. Recently the approach was employed for a 
large-scale prediction and testing of drug activity on side-effect targets9. Ligand-based quantitative 
structure-activity relationship (QSAR) models have been used by Yang et al. to predict indications 
for 145 diseases using the side effects as features10. With structure-based techniques, inverse 
docking was also used for drug repositioning11, 12.  Likewise by mining drug phenotypic side effect 
similarities, Campillos et al. identified novel drug-target interactions13; Oprea et al. incorporated 
semantic method-based text mining for predicting novel drug actions2. With bipartite graph-based 
methods, Yildirim et al. linked FDA approved drugs to targets using binary associations14, and 
Yamanishi predicted drug-target interactions using a combination of graph and chem-genomic 
approaches15. Our group recently conducted a comprehensive review of using molecular networks 
for drug discovery and development16. By developing models with other publicly available data, 
Dudley et al. repositioned Topiramate, an anti-convulsant drug to potential usage as an 
inflammatory bowel disease drug17. However, these unimodal approaches are likely to be limited 
by their respective shortcomings, e.g. inverse docking by scoring limitations18. Thus we propose 
that multimodal approaches may offer better solutions by offsetting the weakness of individual 
methods. In this study, we describe an integrative computational framework based on structure-
based drug design and chemical-genomic similarity methods, combined with molecular network 
theories for drug repurposing. The approaches were applied to identification of existing drugs to 
target ACK1 for cancer treatment.   

ACK1 (activated CDC42 kinase 1) is a ubiquitously expressed atypical non-receptor tyrosine 
kinase that integrates and delivers signals from multiple ligand-activated receptor tyrosine kinases 
such as EGFR, HER2 and PDGFR19. It also regulates several downstream proteins (e.g. AR, AKT 
and Wwox) implicated in cell survival roles19, 20. The activated ACK1 phosphorylates androgen 
receptor at Tyr-267 that leads to increased transcription of androgen receptors involved in the 
development of advanced metastatic prostate cancer or androgen independent prostate cancer21, 22. 
The knockdown of ACK1 increases cell apoptosis in prostate cancer cell lines, suggesting its 
importance as an anti-oncogenic drug target22, 23. Unlike the limited efficacies of conventional 
targeted therapeutics against RTKs, it has been hinted that ACK1 inhibitors may have higher 
efficacy for cancer treatment as it integrates signals from multiple RTKs and thus restraining the 
compensatory mechanisms of RTK signaling20. Although inhibitors targeting ACK1 have been 
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developed, publicly available data on them are still limited and few late stage clinical trials are 
being conducted to date. Therefore, it is an attractive cancer target for drug repurposing.  

Fig. 1. The schematic Diagram of our modeling workflow. The first step is the construction of the drug-target 
bipartite graph. Drugs and targets are represented as circles and rectangles, respectively. Node sizes and color are 
proportional to the degree of each node. The larger shapes and the red color represent nodes with higher degrees. 
After three steps: A. high-throughput docking; B. Chemical similarity search using AIM-100, a known inhibitor 
of ACK1; C. Genomic similarity search of ACK1 against proteins in the drug-target graph to identify similar 
proteins and only the corresponding interacting drugs are selected; D. Using only the drug-target graph to identify 
drugs similar to those identified from steps A-C. 

With our integrative approach consisting of classical structure-based drug design and chem-
genomic similarity analysis approaches in tandem with the bipartite drug-target graph method, we 
identified 10 drugs for experimental testing. Four of them (Dasatinib, Sunitinib, Flavopiridol and 
Gefitinib) were confirmed active with IC50<20uM. In particular, the IC50 of Dasatinib is as low as 
1nM. Our results showed that integrative analysis of chemical-genomic features and molecular 
networks of drug-targeted interactions, combined with structure-based high-throughput docking 
could be successfully applied to drug repurposing for potent inhibitor discovery. 
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2.  Methods and Materials 

2.1.  Overall Approach 

Our drug repositioning workflow is illustrated by Fig. 1 using an integrated three-level approach 
consisting of virtual screening, chemical genomic similarity, and bipartite-graph methods. The 
bipartite-graphs were developed based on the extensive data curation of DrugBank23, Protein Data 
Bank (PDB)24, and Protein Knowledge Base (UniProt)25 using in-house developed python scripts. 
In brief, we employed high-throughput virtual screening followed by a pharmacophore-guided 
method to select a set of drugs as potential ACK1 inhibitors. Next, we evaluated if complementary 
results (hits missed by docking) can be obtained by using a novel chemo-genomic similarity 
approach based on chemical/sequence information. Finally, employing only the drug-target 
bipartite graph-based similarity, we identified a third set of drugs as potential ACK1 inhibitors. 
These three sets were further evaluated and merged into our final set consisting of 10 drugs which 
were evaluated using a qPCR-based kinase assays26. Four hits showed strong inhibition of ACK1 
(1nM~20μM) and they can be potentially used for prostate cancer treatment.  

2.2.  Virtual Screening 

Several structures of the ACK1 kinase domain are available in PDB. For virtual screening we 
chose two of them (3EQR and 1U4D) which are co-crystallized with very different ligands (T74 
and DBQ, respectively). This strategy would implicitly accommodate for receptor flexibility and 
also possibly help us identify diverse chemotypes. Analysis of these two crystal structures revealed 
the importance of residues Ala208, Thr205, Glu206, Ala208 and Asp270 because they form 
hydrogen-bonding interactions with ligands. Particularly in 3EQR, the amine moiety on the 2,6-
dimethylphenyl group of T74 interacts with the hydroxyl group on the conserved Thr205 residue. 
This hydrogen bond was found to significantly enhance the ACK1 inhibition in both biochemical 
and auto-phosphorylation assays as compared to its parent compound (N-aryl pyrimidine-5-
carboxamide series)27. It suggests the importance of using this interaction as a pharmacophoric 
feature for subsequent hit selection. The high-throughput docking was conducted with the Glide 
software (www.schrodinger.com). Default parameters were used unless otherwise stated. The grid 
box with size 10Å X 10Å X 10Å was centered on the centroid of ligands (T74 or DBQ), and the 
active site flexibility was addressed with the induced-fit protocol. Only the approved/experimental 
drugs from DrugBank were selected for screening, and they were prepared with Epik, including 
their protonation and tautomer states at pH 7.0. The standard-precision (SP) mode was used for 
docking and scoring. To validate our protocol, both T74 and DBQ were re-docked into their 
respective co-crystallized crystal structure. In both cases, the ligands were docked within 1Å of 
their crystal structure binding poses. The Glide docking scores for T74 and DBQ were -10.4 and -
9.26, respectively. Therefore, screened compounds with Glide scores above –9.26 were retained 
during hit selection via pharmacophore-based visual inspection. The pharmacophores were derived 
using MOE based on the analysis of the crystal structures and known ACK1 inhibitors (e.g., AIM-
100)28. To be selected, the hits have to mimic at least three pharmacophoric features: 1). a 
hydrophobic moiety in the nucleotide binding pocket surrounded by residues Ile190, Met203, and 
Leu207; 2). hydrogen bonds with either Ala208, Thr205, Glu206 or Asp270; and 3). a polar 
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solvent exposed group in the phosphate binding region of ACK1 surrounded by Asp215 and 
Arg216.  With this strategy, the aim was to reduce the false positives by eliminating the 
dependence on docking scores as the only parameter because frequently many high ranked 
compounds could have completely wrong poses due to inaccuracies in scoring functions.  

2.3.  Chem-genomic Similarity 

To compensate for the limitations of docking methods (e.g. inaccurate scoring functions), we 
implemented a novel approach by combining chemical and genomic similarity metrics. This was 
to identify those missing ACK1 inhibitors from virtual screening. The underlying assumption of 
our chemical similarity metric is that similar chemistry may result in similar biological activity. To 
this end, the MACCS fingerprints were employed as they represent chemical substructures within 
compounds as a bitstring using pre-defined substructures and are suitable for such applications. 
The similarity was expressed with Tanimoto coefficient defined as  

 

	 | ∩ |/| ∪ |                                   Eq. 1. 

Where: Tc( ) = Tanimoto coefficient between drugs i and j. Ai = number of on bits (1 is for on 
and 0 is for off) in drug i, Bj = number of on bits in drug j. This cheminformatics approach was 
implemented using the Openbabel toolkit (www.openbabel.org). Briefly, a known ACK1 inhibitor 
AIM-10029 was used as the query compound and compared with all of the small molecule drugs in 
our curation. In order to determine the cutoff Tanimoto coefficient, AIM-100 was compared with 
Dasatinib (Tc = 0.61) as it was shown to be active against ACK1 in our virtual screening study. 
Therefore, only those drugs that were similar to AIM-100 with ± 5% of Tc = 0.61 were selected, 
and their affiliated targets in our curated data were obtained. 

Genomic-based approaches in such studies were reported to be complementary to their 
cheminformatics counterparts30. Hence to enable rational selection of hits for experimental testing, 
all protein sequences from PDB were compared with the ACK1 kinase domain. For those 
sequences/targets with a meaningful genomic similarity with ACK1 (defined as sequence 
identity>40%), their corresponding drugs, if available in our data curation, were selected for 
experimental testing. For this step, the Needleman-Wunsch algorithm was employed to identify 
proteins from PDB similar to ACK1 and the proteins must be represented in our bipartite drug-
target graph (described below). We considered the drugs connected to these proteins in the 
bipartite-graph as likely inhibitor candidates against ACK1. 

2.4.  The Unweighted Drug-Target Bipartite Graph 

To use drug-target networks14 in this study, we extensively curated data (e.g., structures, 
annotations, etc.) from multiple databases including DrugBank, PDB and UniProt, and developed 
an unweighted drug-target bipartite graph16, 23. Once the proteins were identified (e.g. based on 
genomic similarity), the respective PDB codes would be obtained from PDB and their 
corresponding co-crystallized drugs would also be derived. However we only selected those drugs 
that were present in the drug-target bipartite graph but not identified either from virtual screening 
or from chem-genomic similarity search. To this end, the DrugBank database was downloaded 
from the website (www.drugbank.ca). The initial database containing 6,711 drug entries included 

Pacific Symposium on Biocomputing 2013

33



 

6,580 small molecule drugs. For this study, entries containing biotech/nutraceuticals, withdrawn, 
illicit and other non-small molecule like (as defined by the chemical filter developed for this 
study) were excluded. This eventually resulted in 1,447 approved drugs in our curation. At the 
time of this work, the drugcard information did not contain The PDB codes were mapped to their 
respective UniProt codes using a a Biopython (www.biopython.org) based protocol to rationally 
reduce the complexity of the drug-target bipartite graph by eliminating redundant degrees as one 
UniProt code can effectively represent multiple pdb codes. Denoting the drug set as D = ,
, … ,  and the target UniProt set as U = , , … , , the drug-target bipartite graph was 

developed as G(D,U,E) where E= {eij: di∈D, uj∈U}. A link (eij in E) is established between di and 
uj only when there is an explicit association in the respective drug record.  

2.5.  Graph-based Similarity 

The unweighted and undirected bipartite graph of drugs from DrugBank is shown in Fig. 1. Here, 
drugs are represented as vertices and their corresponding proteins as edges. Since this graph 
follows the power-law probability distribution31, it is feasible to calculate the similarity between 
two vertices (drugs) based on the shared edges (proteins). Once the similarity of two drugs is 
established, their affiliated edges (proteins), even unshared ones, may be established as a likely 
target for the drugs respectively. In our study, we attempted to identify those drugs that shared 
graph-based similarity with any hit identified from docking and chem-genomic approaches. For 
the similarity metric we utilized the Salton’s cosine measure as it normalizes the similarity 
measures and does not penalize/favor vertices that may have larger number of edges. This graph 
could easily be represented as an n × m adjacent matrix {aij} where aij = 1 if di and uj (drug and 
UniProt, respectively) were connected, or 0 if not. In an undirected network as in our case, the 
number nij of common neighbors of vertices i and j is given by: 
 

	 ∑                                                                    Eq. 2. 
 

Where A is the matrix. Thus, as proposed by Salton, the cosine similarity can be represented as:  
 

cos ∑ / ∑ ∑              Eq. 3. 

 

As our drug-protein network is an unweighted graph, the elements of the adjacency matrix take 
only the values of 0 and 1, so that 	  for all i, j. Then ∑ 	∑ 	  where 	is 
the degree (number of connections) of vertex i. Thus: 

 

	
∑

	 	                                                   Eq. 4.	
 

In simple terms, the cosine similarity of i and j is therefore the number of common neighbors 
(in our case, proteins represented by UniProt IDs) between two vertices (represented as drugs) 
divided by the geometric mean of their degrees. Therefore in this approach, only graph-based 
geometric similarity is considered without including any chemical/biological information. 
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2.6.   Experimental Testing 

To validate our predictions, the selected drugs were experimentally tested using the proprietary 
screening platform with a quantitative qPCR-based assay26. This approach measures the amount of 
DNA-tagged kinase that is unable to bind to an immobilized ligand attached to a fixed support. 
The kinase assays were developed as kinase-tagged T7 phage strains that are grown in parallel in 
24-well blocks in an E. coli host derived from the BL21 strain and tagged with DNA for qPCR 
detection. Streptavidin-coated magnetic beads treated with biotinylated small molecule ligands for 
30 minutes at room temperature were used to measure binding affinities for kinase assays. All hits 
were prepared as 40x stocks in 100% DMSO and directly diluted in the assays. All reactions were 
performed in polypropylene 384-well plates in final volume of 0.04 ml. The assay plates were 
incubated at room temperature with shaking for 1 hour, and the affinity beads was washed with 
buffer (1 X PBS, 0.05% Tween 20). The beads were re-suspended in elution buffer (1 X PBS, 
0.05% Tween 20 0.5μM non-biotinylated affinity ligand). The kinase concentration in the eluates 
was measured by qPCR. The compounds were screened at 0.1µM and 10µM. In addition to 
ACK1, five other kinases of our interest and implicated in important cancer signaling pathways 
were used to evaluate selectivity of these inhibitors. The results for primary screen binding 
interactions were reported as %Ctrl where lower numbers indicate stronger hits:  
 

%Ctrl calculation = 
	 	 	 	

	 	 	 	 	
∗ 100         Eq. 5. 

3.   Results 

3.1.  High-throughput virtual screening 

As described in the Methods section, small 
molecule drugs were docked and scored 
against two ACK1 crystal structures. Drugs 
scored above -9.26 were selected, also based 
on specific pharmacophoric features 
characterizing the binding poses. We 
particularly were interested in those hits with 
a hydrophobic moiety in the nucleotide 
binding pocket and forming hydrogen bonds 
with the Thr205 pocket. For example, 
Indinavir, a HIV protease inhibitor, was 
discarded despite being the best ranked hit 
(data not shown). On the other hand, although 
Dasatinib only ranked the 8th, it was selected 
because the drug demonstrated consistent 
binding pose with  ACK1 (Fig. 2). Similarly, 
Amodiaquine, Flavoxate, Imatinib and 
Lapatinib were also selected based on our 

Fig. 2. Dasatinib (magenta sticks) docked into ACK1 
(ribbon display). It was ranked top and has reasonable 
interactions with ACK1. The gray lines are critical 
residues in the active site. Hydrogen bonds are in 
magenta dashed lines. The spheres are pharmacophores: 
gray for hydrophobic, cyan for hydrogen bonds, and 
yellow for solvent exposed groups. 
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docking studies with 3EQR and Mebendazole with 1U4D crystal structures. These hits also 
exhibited similar shape properties to the co-crystallized ligands of the respective crystal structure. 
We found that hits from 3EQR had high average molecular weight of 461Da (T74 MWT is 
514Da). Screening with 1U4D which has the smaller co-crysallized ligand (DBQ, MWT =254Da) 
resulted in smaller hit (e.g., Mebendazole MWT=295Da). This was in-line with our hypothesis 
that diverse chemotypes might be obtained when different crystal structures are used. 

3.2.  Chem-genomics based inhibitor identification 

 The fundamental principle behind this approach is: a). compounds with similar chemistry are 
likely to possess similar biological profiles, and b). if there is meaningful genomic similarity (e.g., 
high sequence identity) between two proteins (thus also similar tertiary profile), compounds 
binding to one protein may interact with the other protein as well. We employed AIM-100 
inhibitor for chemical similarity search. To determine the Tanimoto coefficient (Tc) threshold, 
AIM-100 was compared with Dasatinib (a promising binder based on docking) and we obtained 
Tc=0.61. Hence, all similar drugs within ±5% of Tc were kept. The small range of Tc is to ensure 
that the hits would maintain a certain degree of both chemical similarity and diversity. Based on 
drug-target bipartite graph, the corresponding targets of these selected drugs were also identified.  

On the other hand, all proteins in our dataset were identified based on their genomic similarity 
to ACK1 (sequence identity>40%), and then their corresponding bound drugs were also obtained. 
These two sets of selected drug-target pairs were merged if two pairs shared the same target or the 
same drug. This resulted in a graph as demonstrated in Fig 3. Based on this combined chem-
genomic similarity approach, Gefitinib, Sorafenib and Sunitinib were identified after excluding 
those (e.g., Imatinib) already identified by molecular docking. These observations were consistent 
with our postulation that combining in silico approaches, e.g. classical structure-based methods 
with molecular networks, might help identify unique and complementary sets of inhibitors. 

Fig. 3. A. The graph was derived from the drug chemical similarity and target genomic similarity. It represents 
the inhibitor AIM-100 (red square) and ACK1 (red circle) and those drugs obtained from the chemical similarity 
search (non-red squares) and proteins similar to ACK1 (green circles). B. The enlarged portion of graph A 
shows Gefitinib is similar to AIM-100 and its target (P00533) has significant genomic similarity to ACK1.  

Pacific Symposium on Biocomputing 2013

36



 

3.3.  Graph-based similarity 

In this step, we attempted to identify potential ACK1 inhibitors based on their similarity to those 
already identified in the previous steps. However, the strategy was not based on chemical structure 
or genomic sequence similarities. Instead, the similarity was defined purely with our drug-target 
graph-based geometry (e.g., vertices and edges) without considering other chemical/biological 
information. We tried to investigate if this could provide us any extra hits. Using Salton’s cosine 
index we calculated a similarity matrix based on the bipartite graph with the shared edges 
(proteins). A snapshot of the entire matrix is shown in Fig. 4. The hypothesis was that any small 
molecule drugs that showed some similarity to the previously identified inhibitors from the 
docking and chem-genomic similarity steps might be an inhibitor as well. As expected, we were 
able to identify the majority of the common hits such as Dasatinib and Imatinib (identified by both 
docking and similarity search methods). But we also identified new hits such as Flavopiridol as 
one of the ACK1 inhibitors, based on its graph similarity to Lapatinib. Though several other drugs 
were also identified, only Flavopiridol, along with another 9 drugs, was purchased for 
experimental testing due to the constraints of their commercial availability and our budgets. 

3.4.  Experimental Results 

The Kinomescan’s proprietary platform based on several thousands of profiled kinase inhibitors 
allowed the estimation of binding affinities of any compound based on their primary screening. 
The specific assay details of this approach are described elsewhere26. In addition to ACK1, we 
screened our selected compounds against several other kinases including EGFR, MEK1, PDPK1, 
PIK3CA and ABL2, because these targets are suggested to play important and diverse roles in 

various cancer pathways. EGFR, 
PDPK1 and PIK3CA are located in the 
signal transduction pathways that aid 
tumor growth and reduce apoptosis. 
MEK1 is located in the MAPK cell 
signaling that might affect the 
prognosis of the androgen-independent 
prostate cancer. We also tested ABL2 
as it is the reported target of several 
drugs (e.g., Imatinib and Dasatinib). 

At the end, 10 hits were purchased 
and tested. Among them, four drugs 
including Dasatinib, Sunitinib, 
Flavopiridol and Gefitinib, showed 
significant inhibition of ACK1 with 
estimated IC50<25µM. The activities of 

these compounds are illustrated in Table 1. These true ACK1 inhibitors were originally designed 
for different kinases, demonstrating the well-known polypharmacological properties of kinase 
inhibitors. In particular, Dasatinib was originally designed as a multi-BCR/ABL and Src family 

Fig. 4. A representative heat-map of purely graph-based cosine 
similarities of Flavopiridol against drugs identified from docking 
and chem-genomic similarity. The higher values (darker red) 
means higher graph-based similarity. 
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tyrosine kinase inhibitor approved for chronic myelogenous leukemia (CML). Here we 
demonstrated that it also strongly inhibited ACK1 (further experiments showed IC50=1nM) which 
is implicated in advanced prostate cancer patients. This provided a strong mechanistic support of 
using Dasatinib to treat prostate cancer. Interestingly, just after our experimental testing of these 
ACK1 inhibitors, Dr. Whang's group from UNC Chapel Hill published their evaluation of 
Dasatinib on inhibiting ACK1-related prostate cancer progression in vitro and in vivo32. Their 
discovery highly conformed to our in silico predictions. Currently we are teaming up to further 
explore repurposing of our identified drugs to treat advanced prostate cancer by targeting ACK1. 

Table1. Experimental screening results of in silico drug hits against six kinases. 

Sunitinib, Flavopiridol and Gefitinib were originally developed as PDGFR-Beta, CDK-2, and 
EGFR inhibitors, respectively, but also inhibited ACK1 based on our results. Imatinib and 
Sorafenib only showed moderate inhibition of ACK1. Flavoxate and Mebendazole were initially 
considered interesting as they are not kinase inhibitors but were predicted to inhibit ACK1. 
Unfortunately experimental results indicated that they were either false positives or weak ACK1 
inhibitors. Therefore no further work is being performed on them but our efforts of identifying 
new chemotypes (non-kinase inhibitors) as ACK1 inhibitors are still undergoing. 

3.5.  Comparison of Different Methods 

Our multi-modal approach clearly differs from other unimodal methods developed for drug 
repurposing such as SEA30 and AERS-based method33. Cheng et al. recently evaluated multiple 
schemes and they found that their network-based interference (NBI) approach obtained better 
results in their cases34. In this study, we focused on a combined strategy but also investigated in 
details how each method is different from the others in their ability to identify ACK1 inhibitors. 
Table 2 demonstrates docking-based virtual screening could reveal more diverse chemotypes 
including both kinase and non-kinase inhibitors. As expected, drugs uncovered with chemical 
structure and protein sequence based similarity analysis are all kinase inhibitors. Gefitinib and 
Sunitinib were shown to have low micromolar affinity to ACK1. Lastly, the graph-based similarity 
method, which does not include any chemical, biological, or sequence/structure information, 

     Target 
ACK1 PIK3CA PDPK1 ABL2 EGFR MEK 

Compounds 0.1µM 10µM 0.1µM 10µM 0.1µM 10µM 0.1µM 10µM 0.1µM 10µM 0.1µM 10µM 

Amodiaquine 89 100 97 93 100 93 97 100 100 91 95 96 

Gefitinib 100 77 100 100 100 1000 100 83 2.2 0 100 83 

Lapatinib 100 93 98 92 100 100 99 100 0.25 0.05 95 87 

Imatinib 100 82 100 92 100 100 43 3.2 100 71 95 94 

Dasatinib 4 0 95 98 100 100 0.15 0 59 1.2 89 3.2 

Sorafenib 100 89 100 99 100 85 97 33 100 96 100 99 

Mebendazole 100 98 100 100 100 100 100 33 100 83 100 38 

Flavoxate 100 94 100 100 100 100 100 94 100 88 94 95 

Sunitinib 93 33 100 83 100 39 92 51 92 72 51 0.1 

Flavopiridol 100 74 100 97 100 100 100 80 100 53 92 92 
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identified a different chemotype drug -- Flavopiridol. It exhibits ~25uM inhibition of ACK1. The 
common hits (blue in Table 2) by these methods are Imatinib and Dasatinib, and in particular, the 
later demonstrates a nanomolar IC50. Clearly this multi-modal approach shows improved 
performance over each individual methods in the present study.  
 
However, certain limitations still 
exist. For structure-based 
docking methods, the target 3D 
structures are usually required. 
To reduce false predictions, we 
incorporated as much known 
expert knowledge as possible 
such as using multiple ACK1-
inhibitor complex structures to 
partially compensate for target flexibility18. We also filtered the top-ranked hits with protein 
pharmacophores27. The chemical similarity based methods are generally reliable, but combination 
with shape-based techniques may give better results35. For the graph-based analysis we were 
limited to the publicly available drug-protein interaction information. As the data increases, we 
expect our predictions will be continuously improved.  

4.  Conclusions 

Understanding the drug polypharmacology may hold a great promise in our next generation of 
drug discovery and development. Along the line, drug repurposing applications are getting more 
and more attention as it may provide an efficient and effective way to fuel the current drug 
discovery engines. Both FDA and NIH have recently put a significant amount of funding and 
effort to promote drug repurposing. From in silico point of view, more multi-modal approaches 
and data integration are needed to increase our opportunity of success. To this end, our present 
study is to integrate the classical structure-based methods with chem-genomic similarity 
approaches, along with molecular graph theories to develop new strategies for drug repurposing. 
Our approach was applied to identification of existing drugs as ACK1 inhibitors for prostate 
cancer treatment, and multiple potent inhibitors have been discovered. 

Our three-pronged approach consisted of curating currently available drug-target information 
into high-quality bio-chemical databases. Next, by combining the high-throughput molecular 
docking, chem-genomic similarity search and our in-house drug-target bipartite graphs, we 
identified 10 promising hits. Subsequent experimental profiling of these selected drugs against six 
kinases indicated that four of them, including Dasatinib, Sunitinib, Flavopiridol, and Gefitinib, 
could significantly inhibit ACK1. In particular, the IC50 of Dasatinib was as low as 1nM. 
Therefore we have demonstrated that, extensive analysis of chemical-genomic features, 
characterization of drug-target relations with graph-based approaches, and classical high-
throughput docking are complementary to each other. The combination use of these methods can 
efficiently and accurately reveal strong inhibitors, corroborating our hypothesis of the need for an 
integrative approach for drug repurposing. In principle, this approach can be easily extended to 
other biological targets and chemical databases as a general tools for drug repurposing. 

Table 2.  Drugs identified by different methods. 
High-throughput 

Docking 
Chem-genomic 

Similarity Analysis 
Graph-based 

Similarity Analysis 
Imatinib Imatinib Imatinib 
Dasatinib Sunitinib Dasatinib 
Lapatinib Gefitinib Flavopiridol 

Mebendazole Sorafenib  
Amodiaquine   

Flavoxate   
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Given the difficulty of experimental determination of drug-protein interactions, there is a significant
motivation to develop effective in silico prediction methods that can provide both new predictions for
experimental verification and supporting evidence for experimental results. Most recently, classifica-
tion methods such as support vector machines (SVMs) have been applied to drug-target prediction.
Unfortunately, these methods generally rely on measures of the maximum “local similarity” between
two protein sequences, which could mask important drug-protein interaction information since drugs
are much smaller molecules than proteins and drug-target binding regions must comprise only small
local regions of the proteins. We therefore develop a novel sparse learning method that considers sets
of short peptides. Our method integrates feature selection, multi-instance learning, and Gaussian
kernelization into an L1 norm support vector machine classifier. Experimental results show that it not
only outperformed the previous methods but also pointed to an optimal subset of potential binding
regions. Supplementary materials are available at “www.cs.ualberta.ca/~ys3/drug_target”.

Keywords: Drug-target interaction; SVM; Sparse learning; Kernelization.

1. Introduction

Proteins operate in highly interconnected networks (“interactome networks”) that play a cen-
tral role in governing cell functions. If a protein’s conformation is changed, its function can
be altered, thus affecting cell function. Drugs are small molecules that bind to target pro-
teins to intensionally change the protein conformation, ultimately achieving treatment effects.
The function of many classes of pharmaceutically useful protein targets, such as enzymes, ion
channels, G protein coupled receptors (GPCRs), and nuclear receptors, can be modulated by
ligand interaction. Identifying interaction between ligands and proteins is therefore a key to
genomic drug discovery.

Various high-throughput technologies for analyzing the genome, the transcriptome, and
the proteome have enhanced our understanding of the space populated by protein classes.
Meanwhile, the development of high-throughput screening technology has enabled broader
exploration of the space of chemical compounds.1–3 The goal of the chemical genomics re-
search is to identify potentially useful compounds, such as imaging probes and drug leads,
by relating the chemical space to the genomic space. Unfortunately, our understanding of the
relationship between the chemical and the genomic spaces remains insufficient. For example,
the PubChem database at NCBI4 contains information of millions of chemical compounds,
but the number of compounds with known target proteins is limited. The lack of documented
protein-chemical interactions suggests that many remain to be discovered, which motivates
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the need for improved methods for inferring potential drug-target interactions automatically
and efficiently. To facilitate the study of protein-chemical interactions, Kuhn et al. created a
protein-chemical interaction database called STITCH,5 which, up to now, contains interactions
for between 300,000 small molecules and 2.6 million proteins from 1,133 organisms.

By elucidating the interaction between proteins and drug molecules, 3D-structure based
“docking analysis” has been the principle method for drug discovery.6–8 In docking analysis,
drug-protein binding affinities are modeled by non-covalent intermolecular interactions, such as
hydrogen bonding, electrostatic interactions, hydrophobic and Van der Waals forces. Through
establishing equations that model the physical interaction between a receptor and potential
ligand, the potential energy of binding can be calculated. There are many docking software
tools available, including DOCK,8 GOLD,6 and AutoDock.7 All these methods require com-
plete 3D structural information for the target, which might not be available in practice. Such
a major disadvantage makes docking analyses infeasible for genome wide application.

Given the difficulty of experimental determination of compound-protein interactions,9,10

there is a significant motivation to develop effective in silico prediction methods that can
provide both new predictions for experimental verification and supporting evidence for exper-
imental results. To predict compound-protein interactions various computational approaches
have been developed. Keiser et al.11 propose using the known structure of a set of ligands
to predict target protein families. This method does not take advantage of available pro-
tein sequence information, and is thus limited to those between known ligands and protein
families. Campillos et al.12 propose predicting drug-target interaction based on similarities
between side-effects of known drugs. Some results of this approach have been verified by in
vitro binding assays, but the approach remains limited to predictions involving drugs with
known side-effects. Yamanishi et al.13 have investigated the relationship between drug chem-
ical structure, target protein sequence, and drug-target network topology, and developed a
regression-based learning method for predicting unknown drug-target interactions. In partic-
ular, they integrated the chemical and the genomic spaces into a unified space, referred to
as the “pharmacological space”, wherein chemical-chemical, protein-protein, and chemical-
protein similarities can be modeled. Perlman et al.14 used a combination of Smith-Waterman
score, protein-protein interaction, and Gene Ontology information to measure the gene-gene
similarity (similarity between targets), but these ancillary information is not always available
making the prediction hard to extend to general case, and the way of combining different
information sources is somehow tricky.

Most recently, classification methods have been adopted in drug-target prediction.15–17

These methods firstly calculate the similarities between targets and/or drugs, then use these
similarities to construct kernel matrices for the classifiers, such as the support vector machines
(SVMs) for predicting novel drug-target interactions. The prediction can be cast into two
ways, one for drug side or drug-to-target and the other for target side. For drug-to-target
prediction, drug-drug similarities are first obtained, based on structural or pharmacological
information; then a bipartite known drug-target interaction graph is constructed; for a new
drug with known structural or pharmacological information, its similarities to known drugs are
calculated to predict its interactions with known targets using the bipartite interaction graph.
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Similarly for target-to-drug prediction, target-target similarities are first obtained using the
primary amino acid sequences;13,17,18 then for a new target with known primary sequence, its
similarities to known targets are calculated to predict its interactions with known drugs again
using the bipartite interaction graph.

It should be pointed out that in the state-of-the-art works of target-to-drug prediction,
the target-target similarity is defined out of the normalized Smith-Waterman score.17 This
S-W score measures the maximum “local similarity” between two protein sequences,19 thus
reasonable, but the local similarity still uses the whole sequences and consequently might
involve long substrings, which is unreasonable. In fact, long substrings could mask important
interaction information, since drugs are usually much smaller molecules than proteins and the
drug-target binding sites mostly comprise of only small local regions of the target.

In this work, we focus on the latter target-to-drug prediction to address the issues in the
existing works. We first attempt to identify key local binding regions from the common short
substrings shared by proteins that interact with the same drug. These key short substrings
are then used to construct a vector representation for a protein sequence, to be used in the
training and testing phases of a classifier. The use of key short substrings (i.e. potential binding
regions) as features for the targets is a more direct and meaningful representation for drug
interaction prediction. Additionally, the explicit vector representation of targets, as opposed
to assessing similarity based on the S-W score, maps the targets into higher dimensional
spaces, thus increasing the effectiveness of kernel-based classifiers. We remark that our use of
common short substrings differ from the substring composition representation for proteins,15

which uses all substrings while disregarding whether interactions exist.
The rest of the paper is organized as follows. In Section 2, we introduce the details of our

prediction method, in which we focus on the SVM classifiers. We demonstrate in Section 3
the performance of our method compared against the existing ones. Lastly, in Section 4, we
discuss the advantages and disadvantages of our method and propose future work.

2. Methods

The drug-target interaction prediction framework is the same as in Bleakley et al.,17 in which
we assume a dataset containingm drugs d1, d2, . . . , dm and n targets t1, t2, . . . , tn, and the binary
indicator on whether or not drug di interacts target tj. The goal is to predict which of the
drugs a new target tc will interact.

2.1. Target Vectorization

In the bipartite local model (BLM) by Bleakley et al.,17 to which our method will compare
against, the similarity between two targets t and t′ is defined as the normalized Smith-
Waterman score:17

s(t, t′) =
SW (t, t′)√

SW (t, t)
√

SW (t′, t′)
, (1)

where SW (·, ·) denotes the original Smith-Waterman score.19 As we mentioned in the intro-
duction, such a similarity measure might overlook the key short sequence regions to which a
drug binds.
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To address this issue, we want to identify the common short substrings of the targets
that interact the same drug. We consider one drug, say di, at a time. From the dataset, we
first retrieve the set of targets Ti = {ti1, ti2, . . . , tini

} interacting with di. By including the new
target tc, we obtain another set Ti ∪ {tc}. Using a substring length lower bound, we compute
for each of the two sets Ti and Ti ∪{tc} the multi-set of pairwise maximal common substrings,
denoted as withoutSS = {si1, si2, . . . , siq′} and withSS = {si1, si2, . . . , sip′}, respectively. In each
of the two multi-sets, if two substrings differ at at most one position, they are merged into
one and their frequencies are summed together. This way, we obtain two reduced sets with-
outSS = {si1, si2, . . . , siq} and withSS = {si1, si2, . . . , sip}, containing q and p unique substrings
respectively, and each substring is associated with its number of occurences.

Using the substrings in set withSS and their occurrences, we can map the n training targets
and the new target tc into the p dimensional Euclidean space, where each substring represents
a dimension and the coordinate of target t in dimension s is calculated as the normalized
match score between t and s in set withSS :

M(t, s) =
L(t, s) · cs∑p

i=1 csi
, (2)

where L(·, ·) is length of the longest common substring between the two sequences and cs is
the number of occurrence of substring s. Intuitively, if target tc contains a long substring that
is also frequent in the binding targets, then its match score for this feature substring will
be high indicating a high likelihood of binding. We use (M(t, s1),M(t, s2), . . . ,M(t, sp)) as the
vector representation for target t.

This way we obtain an n × p training matrix X, where each row represents a training
target, and a p×1 testing vector xc representing the new target tc, along with the n×1 binary
training label vector y (with 1 indicating the target interacts with drug di and −1 otherwise).
The task is to construct a classifier to return 1 if the new target tc interacts with drug di, or
−1 otherwise.

The classification problem can be analogously formulated using set withoutSS substring
set. Next we show how to construct a classifier from the training data.

2.2. Classification with Feature Selection

In any classification problem, the quality of features used determines the accuracy of pre-
dictions. Here, features correspond to substrings of target proteins, which comprise potential
binding regions between the proteins and drugs. Thus, selecting good features not only im-
proves classification accuracy, but also provides candidate drug-target binding sites for further
investigation. We investigated an approach that integrates feature selection in L1-norm based
support vector machine (SVM) classification method.

The primal form of L1-norm SVM is:

min
w,b,ξ

β∥w∥1 + 1T ξ

s.t. : ξ ≥ 1−△(y)(Xw − b1),

ξ ≥ 0.

(3)

where △(y) denotes putting the vector y on the main diagonal of a square matrix. Here
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X ∈ Rn×p, y ∈ {+1,−1}n, n is the number of data points (targets), and p is the number of
features. Since by Micchelli et al.20

∥w∥1 = min
γ≥0

1

2

∑
j

(
w2
j

γj
+ γj) = min

γ≥0

1

2
(wT△(γ)−1w + γT1),

so (3) becomes

min
w,b,ξ,γ

β

2
(wT△(γ)−1w + γT1) + 1T ξ

s.t. : ξ ≥ 1−△(y)(Xw − b1),

ξ ≥ 0,γ ≥ 0.

(4)

By introducing Lagrangian multipliers λ ≥ 0 and µ ≥ 0, (4) becomes

min
w,b,ξ,γ

max
λ,µ

β

2
(wT△(γ)−1w + γT1) + 1T ξ + λT (1−△(y)(Xw − b1)− ξ)− µT ξ

s.t. : λ ≥ 0,µ ≥ 0,γ ≥ 0.
(5)

Let the objective function of (5) be L1, and let ∂L1

∂ξ = 0, we get λ = 1−µ. Therefore, since
µ ≥ 0, we conclude that λ ≤ 1, hence 0 ≤ λ ≤ 1. By substitution, (5) becomes

min
w,b,γ

max
λ

β

2
(wT△(γ)−1w + γT1) + λT1− λT△(y)Xw + bλT△(y)1

s.t. : 0 ≤ λ ≤ 1,

γ ≥ 0.

(6)

Let the objective function of (6) be L2, and let ∂L2

∂b = 0. We get λTy = 0, so (6) becomes

min
w,γ

max
λ

β

2
(wT△(γ)−1w + γT1) + λT1− λT△(y)Xw

s.t. : 0 ≤ λ ≤ 1,

λTy = 0,

γ ≥ 0.

(7)

Let the objective function of (7) be L3, and let ∂L3

∂w = 0, we get β△(γ)−1w−XT△(y)λ = 0,
so that w = 1

β△(γ)XT△(y)λ. By substitution, (7) becomes

min
γ

max
λ

λT1− 1

2β
λT△(y)X△(γ)XT△(y)λ+

β

2
γT1

s.t. : 0 ≤ λ ≤ 1,

λTy = 0,

γ ≥ 0.

(8)

Note that γ is the feature selection vector. Crucially, this problem is convex in γ and has no
local minima,21 hence it provides an optimal form of feature selection that can be efficiently
obtained in conjunction with SVM training. Because a drug may bind to different regions
of different proteins, i.e., different regions on different targets can bind to the same drug,
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each positive data point may correspond to a different set of important features (substrings).
Therefore, the nature of this drug-target classification problem is essentially a multi-instance
classification problem. To address this, we consider two ideas:

Idea (a) Use a radial basis function (RBF) kernel (Gaussian kernel), rather than a linear
kernel since this addresses the multi-instance classification problem more effectively after
implicitly mapping data points to an infinite dimensional space. After Gaussian kernelization,
the original linear kernel matrix K = X△(γ)XT becomes K ′

ij = e
−1

2σ2 (xi−xj)T△(γ)(xi−xj).
Idea (b) Because each positive data point may correspond to a unique set of important

features, in principle each positive example xi should employ its own feature selection vector γ+
i

while all negative examples should share a same vector γ−. So we get K ′′
ij = e

−1

2σ2 ∥γi⊙xi−γj⊙xj∥2

for all i and j, where γi = γ+
i if yi = +1, and γi = γ− if yi = −1. Here ⊙ stands for element-wise

multiplication.
Idea (a) can be easily applied to (8) at the sacrifice of convexity, while applying Idea

(b) to (8) will introduce too many extra coefficients which makes the model computationally
expensive. To circumvent these issues, we introduce an efficient approach to re-weight the
features. Intuitively, we wish to down-weight the features that are false positive indicator of
binding, i.e. features that have a high score/value at some negative training examples (not
bind). This motivation is similar to the case in multi-instance learning, where false positive
indicators call for more strict control than true positive indicators. Towards this end, we
introduce a p-dimensional weight vector c corresponding to the p features, and re-scale the
feature matrix X by X̃ = X△(c). A simple formula of c that concretizes our intuition is
cj = 1

n

∑
i aij, where aij = 1 if xij ≤ 1 − ϵ and yi = 1, and aij = 0 otherwise. Here ϵ is a

small positive number, and all elements in X are assumed to have been normalized to [0, 1].
Therefore by replacing X with X̃ in (8), we encourage using features that indicate less false
positive, and formally we obtain

min
γ

max
λ

λT1− 1

2β
λT△(y)K ′△(y)λ+

β

2
γT1

s.t. : 0 ≤ λ ≤ 1,

λTy = 0,

γ ≥ 0,

(9)

where K ′
ij = exp

( −1
2σ2 (x̃i − x̃j)

T△(γ)(x̃i − x̃j)
)
.

We solve (9) by using a combination of L-BFGS-B (Limited-memory Broyden-Fletcher-
Goldfarb-Shanno Bounded Optimization) and gradient decent method over γ. After optimiza-
tion, we get solutions for γ and λ. γ serves as a useful feature selector, with γj > ϵ indicating
the j’s features should be selected and otherwise not. λ can be used to construct the hyper-
plane in the SVM and to predict new data points. Given a test data point (target) xc, we can
predict its label (binding to the drug or not) based on the sign of the classifier’s output:

yc =

n∑
i=1

λiyi exp

(
−1

2σ2
(x̃c − x̃i)

T△(γ)(x̃c − x̃i)

)
− b. (10)

As a key step for solving (9), we need the partial derivative of the objective function in (9)
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(denoted as L4) with respect to the k’s feature selector γk:

∂L4

∂γk
=

1

2β

∑
ij

λiλjyiyj
∂K ′

ij

∂γk
+

β

2
,

where
∂K ′

ij

∂γk
= K ′

ij

[ −1

2σ2
(x̃ik − x̃jk)

2
]
= exp

(
−1

2σ2
(x̃i − x̃j)

T△(γ)(x̃i − x̃j)
T

)[ −1

2σ2
(x̃ik − x̃jk)

2
]
.

3. Experimental Results and Discussion

3.1. Methods under Comparison

We compared our method with the state-of-the-art method proposed by Bleakley et al.17 In
particular, we focused on target-side prediction of their method to make the two approaches
comparable. Bleakley et al.17 used the normalized Smith-Waterman score in (1) to evaluate
the similarity between two target sequences. In the context of SVM classification, they used
this target-target similarity matrix as the kernel matrix, i.e. the kernel matrix was fixed in
their method. Based on this similarity measure, nearest neighbor (NN) classifiers can also be
constructed as a baseline. We refer to Bleakley et al.’s approach as BLM SVM and BLM NN
respectively. On the other hand, our methods include:

• SS L1-SVM: L1-SVM with withSS feature (the main model of this paper),
• SS L1-SVM: the classic L2 norm SVM with withSS feature,
• SS NN FS: nearest neighbor classifier based on the features selected by SS L1-SVM,
• SS NN noFS: nearest neighbor classifier based on all withSS features.

3.2. Experiment Settings

The framework of our experiment is similar to Bleakley et al.17 Specifically, we enumerated
all pairs of drug di and protein t in the whole data set. For each (di, t) pair, we treated t as
the single test example while the remaining proteins were used as training examples. To learn
an L1 and L2 SVM, we chose the hyper-parameters (e.g. β and ϵ) by using three-fold cross
validation on the training set, making sure that all the three folders contain at least one target
that binds to the drug (i.e., at least one positive example). After the classification model was
learned, we applied it to protein t in a way like (10), and obtained a score yit that could be
subsequently used to compute useful performance measures (see Section 3.4). All yit calculated
by ranging over all drugs di and target t in the data set constituted a drug-by-target score
table.

We set the minimum length of a feature sub-sequence to 5 after trying all lengths from
4 to 12, noting that a too small cutoff generated excessively many features while a too big
cutoff generated an insufficient number of features.

3.3. Datasets

We used drug-target interaction information from Bleakley et al.,17 which was collected from
the KEGG BRITE,2 BRENDA,22 SuperTarget23 and DrugBank24 databases. In particular, we
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Fig. 1. The precision-recall curves of the four methods SS L1-SVM, SS SVM, BLM SVM, BLM NN,
SS NN FS, SS NN noFS on three data set. The results are based on training data with drug interacting
with at least 2 targets.

used three data sets—nuclear receptors, GPCRS, and ion channel—which have 54, 223, 210
drugs, 26, 95, 204 targets, and 90, 635, 1476 interactions, respectively. The three data sets
used in this article are identical to those used in the state-of-the-art study,17 which facilitates
a fair comparison between the two methods. Since we only focused on target-side prediction,
we did not require any drug structural or pharmacological information to obtain drug-drug
similarity information. The amino acid sequences of the target proteins were obtained from
the KEGG GENES database.2

3.4. Classification results

We used five measurements to evaluate the quality of drug-target prediction: Area under the
Precision-Recall Curve (AUPR), Area under the ROC Curve (AUC), F-Measure, Precision
(or Specification), and Recall (or Sensitivity). With the prediction score table yit available
from Section 3.2, these performance measures were all computed in a micro-average fashion.
That is, given a cutoff point, all yit could be converted into a binary label via thresholding
(i.e., binding or not). By comparing these labels with the ground truth over the whole drug-
by-target score table, we derived the number of false positive and false negative, which led to
Precision, Recall, and F-Measure. The AUPR and AUC were derived by increasing the cutoffs
with a fine step size, which led to thousands of points in the precision-recall curve. Of the five
measurements, AUPR, AUC, and F-Measure are more robust than the others.

We only demonstrate the results based on withSS feature because the withoutSS feature
set did not result in as good performance. Tables 1, 2, and 3 demonstrate the effectiveness
of the different drug-target prediction methods over the five evaluation quantities. The F-
Measure, Precision, and Recall scores reported in these tables were obtained at the cutoff point
where F-Measure was maximized for respective methods. Figure 1 demonstrates the precision-
recall curves of SS L1-SVM and SS SVM compared to BLM SVM, BLM NN, SS NN FS, and
SS NN noFS on three data sets, namely Nuclear, GPCR, and Ion Channel from left to right.

Based on these evaluation, the SVM approaches that use withSS feature set (i.e.,
SS L1-SVM and SS SVM) outperform the current state-of-the-art methods BLM SVM and
BLM NN. Moreover, the L1 norm feature selection method SS L1-SVM is more effective than
the traditional SVM method; it uses only 72.85%, 85.02%, and 62.86% of the original features
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Table 1. Evaluations of classification quality on Nuclear data set. The F-Measure,
Precision, and Recall scores were obtained at the cutoff point where F-Measure was
maximized for respective prediction methods.

Performance comparison: AUPR AUC F-Measure Precision Recall

SS L1-SVM 0.8756 0.9512 0.8205 0.8205 0.8205
SS SVM 0.7635 0.9277 0.7111 0.8205 0.6275

BLM SVM 0.6163 0.8034 0.6353 0.7941 0.5294
BLM NN 0.7111 0.8347 0.6916 0.6607 0.7255
SS NN FS 0.6985 0.8680 0.6415 0.5075 0.8718

SS NN noFS 0.6743 0.8459 0.6308 0.5190 0.8039

Table 2. Evaluations of classification quality on GPCR data set. The F-Measure,
Precision, and Recall scores were obtained at the cutoff point where F-Measure was
maximized for respective prediction methods.

Performance comparison: AUPR AUC F-Measure Precision Recall

SS L1-SVM 0.8039 0.9603 0.7840 0.8360 0.7381
SS SVM 0.7720 0.9600 0.7607 0.8013 0.7240

BLM SVM 0.6800 0.9435 0.6812 0.7152 0.6503
BLM NN 0.7287 0.8721 0.7209 0.6842 0.7618
SS NN FS 0.7155 0.8878 0.6997 0.6219 0.7996

SS NN noFS 0.7219 0.8875 0.7081 0.6365 0.7977

Table 3. Evaluations of classification quality on Ion data set. The F-Measure, Preci-
sion, and Recall scores were obtained at the cutoff point where F-Measure was maxi-
mized for respective prediction methods.

Performance comparison: AUPR AUC F-Measure Precision Recall

SS L1-SVM 0.8632 0.9666 0.8205 0.8260 0.8151
SS SVM 0.8450 0.9690 0.8045 0.8173 0.7921

BLM SVM 0.8561 0.9568 0.8088 0.7785 0.8416
BLM NN 0.8226 0.9075 0.8179 0.8101 0.8258
SS NN FS 0.7041 0.8542 0.6954 0.6647 0.7290

SS NN noFS 0.6702 0.8640 0.6497 0.5671 0.7606

in the Nuclear, GPCR, and Ion Channels datasets, respectively. The significant reduction in
feature set size can not only make the classification more efficient and effective, it can also
help biological practitioners to identify important features more accurately.

We further investigated the prediction result generated by the SS L1-SVM method and
the BLM SVM method. At the prediction cutoff where both methods attained their own
maximum F-Measure score, there were 8, 127, and 78 true positive interactions that SS L1-
SVM managed to identify but were missed by BLM SVM. This was in comparison to 7, 16,
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52 true positives that were identified by BLM SVM but not by SS L1-SVM. False positive is
another important measurement of a method. On the three datasets Nuclear, GPCR, and Ion
Channels, SS L1-SVM generated 0, 73, and 139 false positive interactions, compared to 2, 85,
117 false positive interactions generated by BLM SVM.

Some interesting case studies are in order. On the Nuclear dataset, the two nearest neigh-
bors of the target protein RORB (KEGG Homo sapiens protein ID “hsa6096”) under the nor-
malized Smith-Waterman score are RORA (“hsa6095”) and RORC (“hsa6097”), with scores
0.578 and 0.458 respectively. RORB and RORC share a common interacting drug Tretinoin
(KEGG drug ID “D00094”) while RORB and RORA do not. According to the BLM method,
RORB will be predicted to have no interaction with Tretinoin because its nearest neighbor
RORA does not interact with Tretinoin. On the contrary, our method can correctly identify
the interaction between RORB and Tretinoin because the withSS feature set based method
can discover two important substrings “EVVLVRMCRA-N” and “N-TV-FEGKYGGM” that
exist in both RORB and RORC. Therefore, although the overall match score between RORB
and RORC is not the highest, their feature vectors (with respect to the two feature substrings)
are the most similar.

On the GPCR dataset, the five nearest neighbors of the target protein CHRM1 (KEGG
Homo sapiens protein ID “hsa1128”) under the normalized Smith-Waterman scores are
CHRM5 (“hsa1133”), CHRM3 (“hsa1131”), CHRM4 (“hsa1132”), CHRM2 (“hsa1129”),
and HRH3 (“hsa11255”), with scores 0.4707, 0.4536, 0.4237, 0.4228, and 0.2446 respec-
tively. Although CHRM1 is supposed to bind to drug Metoclopramide (KEGG drug ID
“D00726”), none of its five nearest neighbors bind to this drug. In fact binding occurs
only with the 6-th nearest neighbor, HRH2 (“hsa3274”), whose SWnorm score with re-
spect to CHRM1 is 0.2137. Therefore, the BLM methods can hardly predict that CHRM1
binds to Metoclopramide. In contrast, our method can correctly predict this interac-
tion because the important substrings such as “KRTPRRAA”, “Y-AKRTP-RAA-MI-L-
W”, and “NYFL-SLA-AD” are present in both CHRM1 and several proteins that bind
to Metoclopramide, e.g., HTR1A (“hsa3350”), HTR1B (“hsa3351”), HTR1D (“hsa3352”),
HTR1E (“hsa3354”), HTR1F (“hsa3355”), HTR2A (“hsa3356”), HTR2B (“hsa3357”),
HTR2C(“hsa3358”), HTR4(“hsa3360”), HTR5A(“hsa3361”), and HTR6(“hsa3362”), which
are all considered as faraway neighbors according to the SWnorm scores.

The binding regions discovered by our computational model can also be found on the
Ion dataset. To provide potential drug-target binding regions for further investigation, we
produced all the important common substrings selected by the SS L1-SVM method, which
are made available online at “http://www.cs.ualberta.ca/~ys3/drug_target”.

4. Conclusions

In this article, we proposed a novel drug-target interaction prediction method based on poten-
tial drug-target binding regions. According to the evaluation metrics, the proposed method
significantly outperformed the current state-of-the-art methods. More importantly, it identi-
fied a number of drug-target interactions that were missed by previous methods. We believe
that the poor recall of previous methods is due to the use of a target kernel matrix based
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on Smith-Waterman score: a low overall similarity between two protein sequences does not
mean they do not share common drug binding regions. This drawback was overcome in our
approach by collecting a large number of candidate binding regions (i.e., common substrings)
that subsequently played the primary role in interaction prediction. In addition, the use of an
explicit vector representation, as opposed to implicit similarity measure, enabled the easy use
of non-linear kernel expansions that were not possible for fixed kernel methods like BLM.

Besides the kernels based on substring feature vector, we believe the techniques of string
kernel proposed in25 could be useful in this problem. One straightforward benefit of using the
string kernel is that it will automatically consider all substrings of a given sequence pair. It can
also provide more intuitive understanding of substring-based sequence similarities than using
Gaussian kernel. However, to employ the string kernel, one needs to customize the feature
selection function into the model and to extend the non-gapped matching in string kernels.

We presented a feature selection method based on L1-norm SVM that could not only pre-
dict the binding relations more accurately, but also find important candidate binding regions
(features). It integrated feature selection directly into L1-norm SVM and kernelized the op-
timization model. A drawback was that the sparse regularization term tended to select only
a single feature from the candidate set. This is a well known problem with L1 based regu-
larization.26 To avoid this limitation, we will investigate a combination of L1 and L2 norm
regularizers, known as the elastic net,26 which is generally more effective at group feature
selection. Another possible extension is to adopt the OSCAR model,27 which appears even
more effective. We also discovered that the inference problem of drug-target interaction—in
some cases—can be considered as a multi-instance learning problem. So we proposed using
multiple feature selection vectors for each positive training example in theory and applied the
feature cost vector to address the multi-instance problem in practice. We hypothesize that
more advanced machine learning methods specifically tailored for multi-instance classification
can further improve the accuracy of drug-target interaction prediction. Moreover, considering
that protein 3D structures carry the essential binding information and an increasing amount of
protein 3D structure is being made available (e.g., PSI Nature Structural Biology Knowledge-
base28), incorporating protein 3D information in the prediction model in addition to sequence
information would lead to promising improvement.
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A key issue in drug development is to understand the hidden relationships among drugs and 
targets. Computational methods for novel drug target predictions can greatly reduce time and 
costs  compared  with  experimental  methods.  In  this  paper,  we  propose  a  network  based 
computational approach for novel drug and target association predictions. More specifically, 
a  heterogeneous  drug‐target  graph,  which  incorporates  known  drug‐target  interactions  as 
well  as drug‐drug  and  target‐target  similarities,  is  first  constructed. Based on  this  graph,  a 
novel  graph‐based  inference  method  is  introduced.  Compared  with  two  state‐of‐the‐art 
methods,  large‐scale cross‐validation results  indicate  that  the proposed method can greatly 
improve novel target predictions.  

 

1.  Introduction 

Drug  targets  are  a  class  of  molecular  structures  which  could  interact  with  drugs1. 
Establishing new connections between existing drugs and targets or finding novel targets for 
a given drug plays an important role in drug development. Experimental prediction of drug‐
target associations is a laborious and costly task2. So far there are only about a few hundreds 
of known targets1. In contrast, there are many more computationally predicted targets, e.g., 
the so called druggable genome3,4. The druggable genome denotes a set of human genes that 
encode proteins which might be able to bind drug‐like molecules3. Though different sets of 
druggable genes have been predicted,  the  consensus on  the number of druggable genes  is 
around 30004. Due to the large number of potential targets, examining each one of them with 
a  specific  drug  becomes  a  tedious  or  even  impossible  task.  From  this  point  of  view,  an 
accurate druggable genome filtering or ranking approach becomes in urgent need. 
      In  recent  years,  a  large  number  of  approaches  have  been  proposed  to  address  this 
problem.  Zhu,  et  al.  (2005)5  attempted  to  mine  implicit  chemical  compound  and  gene 
relations  from  their  co‐occurrences  in  the  literature.  However,  their  results  were 
constrained  to  current  knowledge.  Furthermore,  there  are many  inconsistencies  in  target 
names  and  drug  names,  which may  adversely  affect  the  accuracy  of  the  results.  By  using 
some  basic  biophysical  principles,  the  structure  based  maximal  affinity  model6  could 
generate  accurate  predictions  of  druggability  based  solely  on  the  crystal  structure  of  a 
target’s  binding  site.  This method,  however,  is  applicable  only when  the  3D  structures  of 
targets are known, which may not be available  in general. More  recently,  several methods 
have  combined  drug‐drug  or  target‐target  similarities  into  novel  target  predictions7‐13. 
Phenotypic  side‐effect  similarities were used  to build a drug‐drug  relation network, based 
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on  which  novel  drug‐target  associations  were  inferred7.  Yamanishi  and  coauthors8,9 
formalized  the  drug‐target  interaction  inference  as  a  supervised  learning  problem  on  a 
bipartite graph. The learning process was based on a unified ‘pharmacological space’, which 
was constructed by combining chemical and genomic properties. It has also been shown that 
chemical  similarities  between  drugs  and  ligands,  small  molecules  that  bind  to  molecular 
targets,  can  be  used  to  predict  unanticipated  associations10.  Bipartite  local models  (BLM) 
used  supervised methods  to predict  target proteins  of  a  given drug,  then  to predict  drugs 
targeting  a  given  protein,  and  finally  these  two  steps  were  combined  to  give  a  final 
prediction  for  each  drug‐target  interaction11.  In  another  work,  Perlman  et  al.  (2011)12 
proposed a framework that combines multiple drug‐drug and gene‐gene similarity measures 
using  a  logistic  regression  model.  The  final  classification  score  was  used  to  indicate 
interactions  between  drugs  and  targets.  Very  recently,  a  network  based  inference  (NBI) 
method  was  proposed  to  infer  novel  drug‐target  interactions13,  which  ranks  drugs  for  a 
specific target based on a two‐step diffusion model on the bipartite drug‐target graph.  

The guilt‐by‐association principle has been widely used  in many different domains and 
applications  (e.g.,  Jeh  and Widom  (2002)14).  Chiang  and  Butte  (2009)15  proposed  a  novel 
drug  repositioning method  based  on  the  guilt‐by‐association  principle.  They  claimed  that 
suggestions for novel drug uses can be generated from the uses of drugs that cure the same 
diseases. This assumption was further extended by concluding that similar diseases tend to 
be  connected  with  similar  drugs  and  similar  drugs  tend  to  be  connected  with  similar 
target16. Based on this assumption, the intra‐similarity information can be incorporated into 
novel  association  predictions  by  constructing  a  heterogeneous drugtarget  graph/network, 
which  includes  both  intra‐similarity  information  (connections  between  the  same  kind  of 
nodes,  such  as  drug‐drug  connections  and  target‐target  connections)  and  interaction 
information  (connections  between  different  kinds  of  nodes,  such  as  drug‐target 
connections).   In this paper, we propose a method, termed HGBI, for Heterogeneous Graph 
Based  Inference,  for  novel  drug  target  predictions  based  on  the  guilt‐by‐association 
principle  and  an  intuitive  interpretation  of  information  flow  on  the  drug‐target 
heterogeneous  graph.  The  algorithm  iteratively  updates  the measure  of  strength  between 
unlinked drug‐target pairs based on all the paths in the network connecting them. We show 
that when properly normalized, the proposed procedure will eventually converge and stable 
relationships  between  drugs  and  targets  can  be  achieved.  Fig.  1  shows  the  framework  of 
HGBI. Based on large scale  leave‐one‐out cross‐validation experiments, we show that HGBI 
exhibited  superior  performance  and  achieved  much  higher  AUC (area under the receiver 
operating characteristic, i.e., ROC curve) than  two  existing  state‐of‐the‐art  novel  drug  target 
prediction  methods,  BLM11  and  NBI13.  In particularly,  when focusing on the top 1% ranked 
targets, HGBI successfully retrieved 1339 out  of  1915 drug-target interactions, whereas BLM and 
NBI only retrieved 56 and 10 such interactions. Furthermore, HGBI can establish a novel 
interaction between a drug and a target even none of the two have directly associated 
targets/drugs. Some of these novel predictions are confirmed  based  on  a  new  database,  which 
is not used in this study.  
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Fig. 1 The framework of HGBI. A: A heterogeneous graph is constructed based on drug‐drug 
similarities, target‐target similarities, and drug‐target interactions. B: Edge weights between 
drugs and targets are updated iteratively by incorporating all possible paths between each 
drug‐target  pair.  C:  For  each  drug,  all  candidate  targets  are  ranked  according  to  the  final 
weights. 

 

2.  Materials and methods 

2.1 Datasets collection 

There  are  two  intra‐similarity  matrices  which  represent  the  drug‐drug  similarities  and 
target‐target  similarities,  respectively.  In  addition,  there  is  an  interaction  matrix,  i.e.  the 
drug‐target interaction matrix, which represents the connections between drugs and targets. 
The  drug‐drug  similarity matrix  includes  all  the  FDA‐approved  drugs  from  the  DrugBank 
database17. The similarities are calculated based on their chemical structures. First, chemical 
structures  of  all  drug  compounds  in  the Canonical  SMILES  format18  are  downloaded  from 
DrugBank17. Then, the Chemical Development Kit19 is used to calculate a binary fingerprint 
for each drug. Finally,  a  similarity  score of  two drugs  is  calculated using Tanimoto score20 
based on their fingerprints, which is in the range of [0, 1]. A druggable gene is defined as a 
human protein coding gene that contributes to a disease phenotype and can be modified by a 
small  molecule  drug.  The  term  “druggable  genome”  has  been  used  to  denote  a  list  of 
computationally  predicted  genes  that  their  proteins  can  serve  as  suitable  targets  for 
developing  therapeutic  drugs21.  We  use  the  term  “druggable  gene”  and  “target” 
interchangeably  in  this  study.  The  list  of  druggable  genes  is  downloaded  from  the  Sophic 
Integrated Druggable Genome Database project21, which includes genes from the ENSEMBL 
database22,  the DrugBank database17 and the  InterPro‐BLAST database23. The  target‐target 
similarities are calculated using  the Smith‐Waterman algorithm24 based on  the amino acid 
sequences of  their corresponding proteins. The similarities are normalized using  the same 
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method proposed  by Bleakley  and Yamanishi  (2009)11.  Initial  drug‐target  interactions  are 
collected from the DrugBank database17, but limited to drugs that have associated diseases 
in the Online Mendelian Inheritance  in Man (OMIM) database25, which are the same as the 
one used  in Ref16. For each drug‐target  interaction,  their  corresponding value  in  the drug‐
target interaction matrix is 1. All other items in the drug‐target matrix are set to 0. 

2.2 Basic statistics 

The total number of drugs is 1409. The total number of targets is 3997. The matrix is very 
sparse with many isolated nodes (having no connections). The total number of connections 
among drugs and targets is only 2098, with 554 drugs having at least one known target and 
602  targets  connecting with at  least one drug. Among  the connected nodes, many of  them 
have more than one connection, which means known information about drugs and targets is 
biased  towards  a  very  small  subset  of  all  drugs/targets.  The  degree  distribution  of  each 
entity in the matrix is given in Fig. 2. 
 

 
Fig.  2.  Degree  distributions  of  drugs  (A)  and  targets  (B)  among  the  initial  drug‐target 
interactions.  

2.3 Intrasimilarity analysis 

Before  performing  the  proposed  approach,  we  first  study  the  statistical  characteristics  of 
these datasets. The distributions of the two intra‐similarity matrices, i.e. the drug‐drug and 
the target‐target similarity matrices, are presented in Fig. 3A&C, which show the majority of 
the similarities are quite small. According to previous studies26,27, low level similarity values 
provide little information for interaction inference. Furthermore, including the mess of low 
values  could  adversely  affect  prediction  performance.  Therefore,  for  the  constructed 
heterogeneous graph, two nodes of the same type are connected only if their similarity score 
≥ 0.3.  It  is also noted that although the entries between a node to  itself have already been 
excluded,  there are still some entries with value 1 (Fig. 3B&D), which  is mainly due to the 
representation issue. To ensure that a node can only have a similarity score of 1 to itself, we 
replace those 1s with 0.99, which should not affect the final results much. 
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Fig. 3.  Intra‐similarity distributions. A:  the distribution of drug‐drug similarities; B:  the tail 
distribution of drug‐drug similarities  in the range of (0.95, 1); C: the distribution of target‐
target similarities; D: the tail distribution of target‐target similarities in the range of (0.95, 1); 
E: similarity distributions of targets sharing the same drugs (blue curve), and from different 
drugs (red curve); F: similarity distributions of drugs sharing the same targets (blue curve), 
and from different targets (red curve). 
  
      This  study  is  based  on  the  assumption  that  similar  drugs  tend  to  be  associated  with 
similar  targets  and dissimilar drugs  are prone  to be  associated with dissimilar  targets. To 
study the validation of the assumption on the collected real datasets, similarities of drugs for 
the same targets and similarities of drugs from different targets are compared. The average 
similarity of drugs for the same targets is calculated by averaging the similarities of all drug 
pairs  that  belong  to  the  same  target.  To  determine  the  average  similarity  of  drugs  from 
different targets,  the similarity values of all drug pairs that are across different  targets are 
averaged.  Similarly, we  examine  the  similarities  among  targets  that  share  the  same drugs 
and  similarities  among  targets  that  do  not  share  any  drugs.  The  results  are  given  in  Fig. 
3E&F. The average similarity of drug pairs from the same targets and the average similarity 
of  target  pairs  from  the  same  drugs  are  0.2445  and  0.1836,  respectively.  In  contrast,  the 
average  similarity of drug pairs  from different  targets and  the average  similarity of  target 
pairs  from  different  drugs  are  0.1429  and  0.0231,  respectively.  We  further  test  the 
differences of the corresponding distributions using the Wilcoxon rank sum test. Both tests 
reject  the null  hypothesis  that  the  distributions  are  the  same  at  the  5%  significance  level. 
Based  on  these  results,  it  can  be  concluded  that  drugs  (targets)  associated with  the  same 
targets (drugs) possess higher similarity values than those associated with different targets 
(drugs). The guilt‐by‐association principle can be utilized in this study. 
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2.4 Drugtarget association predictions 

The drug‐target heterogeneous graph has two kinds of nodes: drug nodes and target nodes. 
Let  1 2{ , ,..., }nR R R R=  denote  the  n  drug  nodes,  and  1 2{ , ,..., }mT T T T=  denote  the  m  target 
nodes. A drug is connected with another drug if and only if their similarity is greater than a 
pre‐defined threshold (0.3 in this study), which is assigned as the weight of the edge. Edges 
and  weights  for  target  pairs  are  constructed  similarly.  Finally,  a  drug  and  a  target  are 
connected if  they  interact  in the original drug‐target  interaction dataset. The weights of all 
drug‐target edges are originally assigned 1. Let Err, Ett, and Ert represent drug‐drug,  target‐
target  and drug‐target  edges,  respectively,  and Wrr, Wtt,  and Wrt  represent  the weights  on 
these  three  kinds  of  edges.  The  heterogeneous  drug‐target  graph  can  be  represented  as

{{ , },{ , , ,},{ , , ,}}RT rr tt rt rr tt rtG R T E E E W W W= .  Based  on  this  graph,  the  novel  target  prediction 
problem  can  be  transformed  into  a  novel  drug‐target  edge  prediction  problem  on  the 
constructed drug‐target graph. This means that the original heterogeneous graph GRT can be 
considered as an incomplete graph with missing edges between R (drug) nodes and T (target) 
nodes. The objective is to capture hidden interactions between drugs and targets based on 
the  drug‐drug  similarities,  target‐target  similarities,  and  known  drug‐target  interactions. 
The novel drug‐target edge prediction problem can be formalized as follows: 
Input:  {{ , },{ , , ,},{ , , ,}}RT rr tt rt rr tt rtG R T E E E W W W=  
Output:  {{ , },{ , , ,},{ , , ,}}new new new

RT rr tt rt rr tt rtG R T E E E W W W=  
where new

rtE  and  new
rtW represent the newly calculated edges and their weights respectively. 

      Based  on  the  guilt‐by‐association  assumption,  the  intra‐similarities  and  drug‐target 
associations  can  be  combined  together  to  predict  novel  interactions  between  drugs  and 
targets.  For  example,  given  the  graph RTG ,  one way  to  calculate  the  association  coefficient 
(i.e., weight) between each initially unconnected drug‐target pair  is based on the following 
equation, 

                                      
( , ) ( , ) ( , ) ( , )

i j

i i j j
r R t T

w r t w r r w r t w t t
∈ ∈

= × ×∑∑                                                              (1) 

Here r is a drug and t is a target and they are not connected in the original graph. ri’s and tj’s 
are the neighbors of r and t that are connected with each other in  RTG . w(r, ri) is the weight 
between r and ri, and w(t, tj) is the weight between t and tj. Equation 1 basically means that 
one  can  establish  a  new weight  between  a  drug  and  a  target  by  summarizing  all  paths  of 
length  three,  consisting  one  edge  in  each  of  , ,rr rt ttE E E .  This  is  essentially  the  same  idea 
adopted by NBI 13.   
      Naturally, once new relationships/weights between drugs and targets being established 
based on equation 1, they themselves can be utilized again to generate more relationships. 
An  iterative  procedure  can  be  constructed,  which  can  be  represented  as  matrix 
multiplications:  1i i

rt rr rt ttW W W W+ = × × . In general, there are two related issues that need to be 
resolved in order to make the proposed iterative approach to work. First, one may want to 
treat the initial  links between drugs and targets differently from the inferred links because 
the  initial  links  deserve  more  credibility.  Second,  it  is  desirable  if  the  matrix  Wrt  will 
converge,  which  means  that  the  information  propagation  is  stabilized  at  the  end.  In  this 
study, we propose an iterative approach based on equation 2, which naturally solves the first 
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problem based on its formulation. Furthermore, we show that with proper normalization, it 
also solves the second problem.         

                                   
1 0(1 )i i

rt rr rt tt rtW W W W Wα α+ = × × + −                                                                 (2) 

     In this formula,  0
rt rtW W= , represents the initial interactions between drugs and targets, α 

is a decay  factor with  its value between 0 and 1.  In each  iteration,  the original drug‐target 
interactions will  contribute  to  the  newly  constructed  interactions,  and  the  contribution  is 
controlled by the scale factor 1 ‐ α. Theoretically, one can optimize α  based on results from 
cross validations. In this study, we fix α  = 0.4. By iteratively using this formula, the strength 
between a drug and a target will eventually include all the possible paths connecting them in 
the  heterogeneous  graph.  We  prove  that  when  rrW  and  ttW  are  properly  normalized,  it  is 
guaranteed that equation 2 will converge. The result  is summarized as Theorem 1 and the 
details  of  the  proof  can  be  found  in  the  appendix.  To  obtain  the  final  solution  based  on 
equation 2, we use an iterative propagation‐based algorithm28. Once the final result is given, 
for  each drug,  all  the  targets will  be  ranked according  to  the  strength of  their  links  to  the 
drug.   
 
THEOREM  1.  When  rrW  and  ttW  are  properly  normalized  utilizing  equation  3,  it  is 
guaranteed that formula (2) will converge.                                                                                              

                      1 1 1 1

( , ) ( , )
( , ) , ( , )

( , ) ( , ) ( , ) ( , )

i j i j
i j i jn n m m

i k k j i k k j
k k k k

w r r w t t
w r r w t t

w r r w r r w t t w t t
= = = =

= =

∑ ∑ ∑ ∑
                             (3) 

3 Experiments 

3.1 Evaluation metrics 

In  order  to  systematically  evaluate  the  proposed  approach  on  the  collected  datasets,  we 
adopt a leave‐one‐out cross‐validation (LOOCV) strategy in our experiments. For each drug, 
one of  its connections to a target  is  treated as  the test data, and  it  is ranked with all other 
targets  in descending order according to the calculated drug‐target association coefficients 
using the remaining connections as training data. For each specific ranking threshold, if the 
rank of the testing connection is above the threshold, it is regarded as a true positive. On the 
other hand, if the rank of an unknown connection is above the threshold, it is regarded as a 
false  positive.  True  positive  rate  (TPR)  and  false  positive  rate  (FPR)  are  calculated  by 
varying  thresholds  to  construct  the  ROC  curve29.  The  area  under  the  curve  (AUC)  value 
represents the overall performance of the algorithm. In addition to LOOCV, we also perform 
10‐fold  cross‐validation,  where  all  the  drug‐target  connections  are  randomly  partitioned 
into 10 subsets and each subset  is treated as the test set  in each iteration. Furthermore,  in 
practice, it is natural that most researchers only focus on top ranked targets. Therefore, we 
also examine the performance of the algorithm on the top ranked results, i.e., the number of 
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correctly  retrieved connections based on various  top percentiles  (the most  left  side of  the 
ROC curve). In addition, to test the capacity of the algorithm in detecting novel interactions 
for drugs with no known targets, we collect all drugs that only have a single known target 
and perform the experiment by removing the only interaction. Finally, using all the data as 
training data, we test our algorithm again and compare the top ranked targets with those in 
another database 30 that is not used in training. 

3.2 Comparison with existing methods 

To evaluate the proposed approach, we choose to compare its performance with BLM11 and 
NBI13.  BLM  is  considered  one  of  the  state‐of‐the‐art  approaches  in drug‐target  interaction 
predictions.  In  this  study,  BLM  is  implemented  the  same  way  as  the  one  in  the  original 
paper11. The predicted scores generated from SVM are used as the ranking criterion, which 
means that larger predicted scores yield higher ranks. In order to choose a proper number of 
negative samples for SVM training of BLM, we perform cross‐validation. Based on the results 
(Fig  S1  in  appendix),  the  number  of  negative  training  samples was  set  to  be max{20,  2  x 
num_positive_samples}. The result of BLM is obtained by averaging five runs with the same 
configuration  but  different  negative  training  samples.  We  choose  to  compare  with  NBI13 
because it can be viewed as a simplified version of the proposed approach, in the sense that 
only  a  two‐step diffusion of  the matrices  (similar  to  equation 1)  is used  in NBI, while our 
approach uses the converged matrix.  NBI13 is implemented according to the original paper. 
 
3.3 Experimental results 
3.3.1 Predictions for drugs with known connected targets 
The cross‐validation experiments for target predictions were conducted using all drugs with 
at least two known targets. In total, 371 such drugs and 1915 initial drug‐target edges were 
considered.  The  ROC  curves  and  AUC  values  of  NBI,  BLM,  HGBI  (LOOCV  and  10‐fold)  are 
given  in  Fig.4A.  It  shows  that  HGBI  (AUC:0.93)  significantly  outperforms  both  BLM 
(AUC:0.89)  and  NBI  (AUC:0.73)  for  LOOCV.  Furthermore,  HGBI  almost  has  the  same 
performance when using 10‐fold cross‐validation. The numbers of correctly retrieved drug‐
target interactions according to different ranking thresholds are also given in Fig.4B. Results 
show that when focusing on the top ranked results, the performance of HGBI is much better 
compared with NBI and BLM, especially for the top 1% ranked targets, in which case HGBI 
correctly retrieved 1339 drug‐target  interactions, whereas BLM and NBI only retrieved 56 
and 10 such interactions. 
 
3.3.2 Predictions for drugs without known connected targets 
To  demonstrate  the  effectiveness  of  the  proposed  approach  in  detecting  novel  targets  for 
drugs without known  targets,  only drugs with  exactly one  connected  target  in  the dataset 
were collected in this experiment. There are in total 183 such drugs.   Because BLM cannot 
predict novel targets for drugs without known targets, we only compare HGBI with NBI here. 
The  ROC  curves  of  NBI  and  HGBI  are  given  in  Figure  5.  Again,  HGBI  (AUC:0.93)  achieves 
much better performance than NBI (AUC:0.72).  
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Fig.4  A:  ROC  curves  of  drug‐target  association  predictions.  AUC  of  each  curve  is 
indicated  in  the parentheses; B: The number of retrieved drug‐target  interactions 
using different thresholds. xaxis is the ranking thresholds in percentile. 

  
3.3.3 Case studies on drugtarget association predictions 
Finally,  using  all  the  data  as  the  training  data, HBGI  can make  new predictions  for  all  the 
drugs in the database. To further analyze its performance for practical usage, six drugs,  i.e. 
Citalopram  (Drugbank  ID:  DB00215),  Escitalopram  (DB01175),  Terfenadine  (DB00342), 
Diphenidol  (DB01231),  Fexofenadine  (DB00950),  and  Naltrexone  (DB00704),  were 
randomly chosen for the case studies. For each drug, all their initial targets and the top 10 
predicted targets were collected. A subset of these drugs, targets, and their connections are 
also  illustrated  in Fig 5B, which only shows upto 3 known targets and the  top 3 predicted 
targets  for  clarity.  Several  observations  can be made based  on Fig  5B.  First,  similar  drugs 
tend  to  share  similar  predicted  targets,  such  as  the  drugs  Diphenidol  and  Terfenadine. 
Second,  predictions  for  drugs  without  known  connected  targets,  such  as  the  drug 
Fexofenadine,  can  be  performed  using  HBGI.  Because  it  is  connected  with  the  drug 
Diphenidol, one of Diphenidol’s targets (target Entrez_ID: 1128 in Fig 5B) is predicted to be 
associated with it.  
      We further searched the Supertarget database30, which is an extensive web resource for 
analyzing  drug‐target  interactions.  Some  of  the  top  ranked  predictions  by  HBGI  are 
supported by newly  reported discoveries  in  the database. For example,  in  the Supertarget 
database, Citalopram  (DB00215) has  two new  targets  SLC6A3  (6531)  and SLC6A2  (6530) 
that were not in the DrugBank database. They were ranked as the 2nd and the 17th among all 
target candidates by HBGI. Similarly, ADRA1D (146) & CHRM1 (1128) were not associated 
with Terfenadine (DB00342) in the DrugBank database. They were ranked as the 3rd & the 
8th, respectively. 
      In  a  very  recent  study31,  the  authors  experimentally  validated  123  unique  drug‐target 
relationships. In comparison of our prediction with these newly validated relationships, our 
median rank for this data set is 16 (out of 3997 targets) and 43 of them are ranked in top 10.   
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Fig.5 A. ROC curves of novel target predictions for drugs without known targets. B. The 
subsetwork for the case study. 

4 Conclusion 

In this paper, we have proposed a drug target prediction approach, HGBI, which integrates 
drug‐drug  similarities,  target‐target  similarities  and  drug‐target  interactions  into  a 
heterogeneous graph and models the drug‐target  interactions as the stabilized information 
flow  between  them  across  the  heterogeneous  graph.  Experiments  have  shown  that  HGBI 
significantly  outperforms  two  existing methods  in  predicting  novel  targets  for  drugs with 
and without known targets. A case study has illustrated that HGBI can be used in practice to 
rank  candidate  targets  for  drugs  and  many  top  ranked  ones  can  be  utilized  for  further 
investigations.  
      Although equation 2 is similar to the framework of random walk with restart (RWWR)32, 
it is different in the sense that 1) equation 2 is defined on a heterogeneous graph and only 
connections  between  nodes  of  different  types  need  to  be  derived;  2)  because  of  the 
heterogeneous graph,  all  the  information on  similar drugs,  similar  targets  and drug‐target 
interactions has been used in predicting new drug‐target associations.     
      For future directions, first,  instead of using top ranked targets, it is possible to adopt an 
automatic  threshold  to  declare  significant  predictions  using  the  same  idea  in  Ref33. 
Furthermore, many approaches have been developed to identify disease genes. However, the 
relationships between disesae genes and drug targets are not totally characterised. It would 
be interesting to include disease gene information in drug target predictions.  
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6. Appendix 
PROOF of Theorem 1: To make the proof process clear, Let A, B and X denote Wrr, Wtt, and Wrt respectively. A, B 
and X are n×n, m×m  and n×m matrices respectively.  iA and  jA denote  the  i‐th row of A and  j‐th column of A 
respectively. aij is used to represent the value at the i‐th row and j‐th column of matrix A. These conventions are 
also used for matrix B and X.  
Then according to equation (2), we have 0(1 )j

ij i ijx A XB xα α= + − . For 1X , we can also get 
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If  we  use  j
iA B× to  denote ,1 1, , 1, ,1 , , ,i j i n j i m j i n m ja b a b a b a b⎡ ⎤⎣ ⎦ ,  then  equation  (2)  can  be 

written as 
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Let C denote 1 1
1 1

Tn m
n nA B A B A B A B⎡ ⎤× × × ×⎣ ⎦ and 

i sn t= + ,  j rn θ= + ,  { 0} ( 1) { 0}s sI t s I t= > + − = ,  { 0} { 0}t tI t nI t= > + = , 
{ 0} ( 1) { 0}r rI r Iθ θ= > + − = ,  { 0} { 0}I nIθ θ θ θ= > + = , 0 ,t nθ≤ < . 

Then we get:  , , 1, 1i j t r sc a bθ + +=
 
and  , , 1, 1j i t s rc a bθ + +=  .                                                                                                                 

By comparing the above two equations, we can easily find that C is a symmetrical matrix with row and column 

number  n×m.  If  we  use  X*  to  represents  1 TnX X⎡ ⎤⎣ ⎦ ,  then  equation  (4)  can  also  be  written  as: 

( )* * *01X CX Xα α= + −                                                           (5)                                                    
According to (Vanunu, et al. 2010)29, in order to get a converged solution for equation (5), C is normalized as: 

1/2 1/2normC D CD− −=  , where D is diagonal matrix with di,i equals to the sum of the i‐th row of C. Therefore, we 
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We can get  , , 1, 1
norm norm norm
i j t r sc a bθ + +=  .                                                                                                           

With this equation, we can rewrite equation (5) as  ( )* * *01normX C X Xα α= + −                                                                                    

 
Figure S1 Cross‐validation results of BLM using different numbers of negative samples. 
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Epigenomics involves the global study of mechanisms, such as histone modifications or DNA methy-
lation, that have an impact on development or phenotype, are heritable, but are not directly encoded
in the DNA sequence. The recent availability of large epigenomic data sets, coupled with the in-
creasing recognition of the importance of epigenetic phenomena, has spurred a growing interest in
computational methods for interpreting the epigenome.
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Scientists have known for a long time that the sequence of nucleotides that comprise the
genome is not sufficient to explain the heritability of traits from one generation to the next,

nor is that sequence sufficient to drive the myriad functions of a living cell. Recently, however,
catalyzed by the rapid acquisition of a wide variety of genome-scale data sets from projects

such as ENCODE,1 modENCODE,2 and Roadmap Epigenomics,? scientists have begun to
characterize just how much information is encoded beyond the primary DNA sequence. Ac-

cordingly, many of the central questions facing biology today concern the interpretation and
integration of epigenomic data with our existing knowledge of the molecular pathways within

the cell, including DNA, RNA, proteins, and metabolites. This session includes three papers,
each of which describes a novel computational method for the analysis and interpretation of

one or more types of epigenomic data.
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The first paper analyzes a single type of data, derived from a DNase 1 sensitivity assay.

The endonuclease DNase 1 has long been known to preferentially cleave in short regions of
open chromatin, known as DNase 1 hypersensitive sites.3 Such regions are of great interest

because they correspond to various types of regulatory elements, including promoters, en-
hancers, insulators and boundary elements. Recently, a series of DNase 1-based assays have

been described for ascertaining the cleavage profile of DNase 1 across the entire genome.
Originally based on quantitative PCR4 and microarrays,5,6 these assays were quickly adapted

for next-generation sequencing platforms.7,8 Importantly, in addition to recognizing classical
hypersensitive sites, which have a typical size of 225–250 bp, subsequent work demonstrated

that a detailed DNase 1 cleavage profile could localize protein-binding events at basepair
resolution.9,10

Given the importance of transcription factor binding for gene regulation, and given the

increasing availability of DNase 1 data for a wide variety of human cell types, a variety of
computational methods have been developed to interpret DNase 1 sensitivity data. Luo and

Hartemink contribute to this literature by introducing a method, called Millipede, that aims
to identify transcription factor binding events on the basis of DNase 1 sensitivity data as

well as analysis of the primary sequence. Millipede improves upon the previously described
Centipede algorithm11 by reducing the number of parameters and switching from unsupervised

to supervised learning. Luo and Hartemink benchmark Millipede using data from human and
yeast.

The second paper, by Sahu et al., proposes a machine learning approach to enhancer detec-
tion. An enhancer is a gene regulatory element that is responsible for upregulating one or more

genes. Enhancers are notoriously difficult to detect because they often do not occur proximal
to their target gene, relying instead upon DNA looping or other complex chromatin structures

to carry out their regulatory effect. No single high-throughput assay can be used to identify
the “enhancerome” because different types of enhancers presumably rely upon different regu-

latory mechanisms. The gold standard method for identifying an enhancer involves knocking

it out and observing the resulting downregulation of the target gene. This approach, obviously,
does not scale to whole-genome analysis. Currently, closest proxy we have for genome-wide

enhancer detection is ChIP-seq for the DNA-binding protein p300. Although almost all p300
binding sites are enhancers, many known enhancers are not bound by p300.

This lack of a high-quality and high-throughput enhancer assay has led to the development
of a series of computational methods that aim to identify putative enhancers.12–15 Sahu et al.

contribute to this ongoing project by introducing a support vector machine classifier that learns
to identify enhancers on the basis of ChIP-seq histone modification and DNase 1 sensitivity

data. They demonstrate that, not only does their classifier perform well in cross-validation,
but it also can be used to identify putative enhancers associated with SNPs from genome-wide

association studies of cardiac phenotypes.
Finally, the paper by Ahn and Wang describes a statistical testing methodology for identi-

fying genomic regions in which patterns of variability in DNA methylation across individuals
may be indicative of disease. DNA methylation involves the addition of a methyl group either

to an adenine or (most commonly in animals) a cytosine. Methylation is used extensively by
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the cell to shut off expression of individual genes or large chromosomal regions, and plays a

critical role in regulating cellular processes such as embryonic development, X chromosome
inactivation, genomic imprinting and chromosome stability.16 Methylated cytosines can be

identified by first subjecting the DNA to bisulfite conversion, which changes cytosine residues
to uracil unless the cytosines are methylated, and then sequencing the converted DNA. The

result, by comparison to a reference genome, is a map of the frequency of methylation at each
cytosine residue. Methylation is associated with a set of heritable syndromes—imprinting

disorders—that result from asymmetric expression of the alleles of one or more genes, as well
as with a variety of repeat-instability diseases.16 More recently, aberrant methylation has been

increasingly implicated in various types of cancer.17

The primary goals of Ahn and Wang’s work is to improve our ability to detect patterns

of aberrant methylation that are potentially associated with a given disease. Their proposed

statistical framework draws upon the observation that such loci differ not only in the mean
level of methylation but also its variance. Accordingly, Ahn and Wang propose a regression-

based testing framework that captures more features of the methylation profile of a given locus
and, in so doing, boosts statistical power relative to approaches based only on the mean.

The topics covered by these three papers are quite diverse, reflecting the wide range of
challenging computational and statistical problems posed by epigenomic data.
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DNA methylation is an important epigenetic modification that regulates transcriptional expression 

and plays an important role in complex diseases, such as cancer. Genome-wide methylation patterns 

have unique features and hence require the development of new analytic approaches. One important 

feature is that methylation levels in disease tissues often differ from those in normal tissues with 

respect to both average and variability. In this paper, we propose a new score test to identify 

methylation markers of disease. This approach simultaneously utilizes information from the first and 

second moments of methylation distribution to improve statistical efficiency. Because the proposed 

score test is derived from a generalized regression model, it can be used for analyzing both 

categorical and continuous disease phenotypes, and for adjusting for covariates. We evaluate the 

performance of the proposed method and compare it to other tests including the most commonly-

used t-test through simulations. The simulation results show that the validity of the proposed 

method is robust to departures from the normal assumption of methylation levels and can be 

substantially more powerful than the t-test in the presence of heterogeneity of methylation 

variability between disease and normal tissues. We demonstrate our approach by analyzing the 

methylation dataset of an ovarian cancer study and identify novel methylation loci not identified by 

the t-test.   
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1.  Introduction 

DNA methylation is an important epigenetic modification that regulates transcriptional 

expression and plays an important role in complex diseases including cancer. 
1
 Recently, 

tremendous amounts of DNA methylation data have been generated from high-throughput DNA 

methylation platforms for many complex diseases. Compared to patterns of other molecular 

profiling, e.g. gene expression, DNA methylation has unique features.  One example is that not 

only the mean but also the standard deviation of methylation levels can vary across age groups.
2,3 

New statistical approaches designed to incorporate these features are desirable because they could 

be more robust and efficient than conventional methods. As such, Chen et al. proposed a test to 

evaluate the overall statistical significance of association by combining p-values from different 

age groups and showed it was more robust and usually more powerful than existing tests. 
4
 

Another phenomenon that has recently received attention is the increased methylation 

variability at relevant loci of cancer. 
5-7

 It has been found that differential variability between 

normal and cancer tissues can be very useful for identifying methylation markers of cancer 
6-8

 

However, commonly-used statistical methods, such as the t-test and linear regression, which do 

not directly detect differences in variability, are statistically inefficient in the presence of 

heterogeneity of methylation variability.   In the statistical literature, various tests, e.g. the 

Barlett’s test
9
 and the Levene’s test

10
, have been proposed for testing homogeneity of variance 

between two groups. In general, the Levene’s test is less sensitive than the Bartlett’s test to 

departures from normality. Figure 1 shows methylation distributions of several representative loci 

in cancer and normal tissues from an ovarian cancer study.
3
 One important feature of these loci is 

both the mean and variability of methylation levels are different between cancer and normal 

tissues. For these loci, it may be useful to combine information from both the first and second 

moments of methylation distribution to improve power to identify methylation markers. One 

approach to combine the results for testing mean and variability is Fisher’s method of combining 

p-values. However, it requires that the mean and variance are independent, which is often not true 

for methylation data. Another approach is to use tests, e.g. Kolmogorov-Smirnov test, to compare 

the empirical distribution of methylation data, which, however, is often not statistically efficient
11

.  

In this article, we propose a new statistical test that incorporates changes in both mean and 

variability to identify methylation markers of diseases, and demonstrate how jointly testing the 

mean and variability can identify methylation markers that are otherwise missed by testing the 

mean alone.  More specifically, we first define two score tests for testing methylation differences 

in mean and variability, respectively, under a generalized regression model. Then, we develop a 

new joint test by combining these two statistics, while accounting for their correlation. As such, 

the new test may not require intensive sampling approaches to evaluate p-values. We evaluate the 

performance of the proposed approach and compare it to the conventional tests including the 

commonly-used two-sample t-test through simulations. We show that the validity of the proposed 

test is robust to departures of the normal distribution of methylation levels and can be substantially 

more powerful than the t-test in the presence of heterogeneity of variability between two groups. 

Finally, we apply our approach to the methylation data of an ovarian cancer study and identify 

cancer relevant loci that other tests could fail to identify.  
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Fig1: Histograms of DNA methylation values of pretreatment cancers and control groups at 9 

selected methylation loci. Red bars represent cancers and green bars represent controls. 

 

2.  Methods 

We consider detecting the association of individual methylation loci with disease based on a 

case-control study. For individual ii (i = 1;2; :::;n), the trait value is denoted as Yi, and the 

methylation value is denoted as Xi.  To identify methylation loci that are relevant to disease, we 

consider the statistical hypothesis H0 : ¹0 = ¹1 and ¾2
0 = ¾2

1H0 : ¹0 = ¹1 and ¾2
0 = ¾2

1 versus H1 : ¹0 6= ¹1 and ¾2
0 6= ¾2

1H1 : ¹0 6= ¹1 and ¾2
0 6= ¾2

1, in 

which ¹0 and ¹1 are means of methylation levels for controls and cases, respectively, and ¾2
0 and ¾2

1 

are the corresponding variances.  

To compare the average methylation levels of disease and normal tissues, we consider a 

generalized linear model,  

logit[P(Yi = 1)] =®+¯Xi, 

in which  and  are regression coefficients.  Under this model, a score statistic to test the 

difference of the average methylation levels of two groups is given by  U1 =
P

i(Yi¡ ¹Y )Xi. By 

treating XiXi as the variable, the variance of the score statistics can be estimated by 

¾̂2
U1

=
P

i(Yi¡ ¹Y )2¾̂2
X, where ¾̂2

X¾̂
2
X is the estimated variance of methylation levels. As such, the score 

test can be formed by 

T1 =
U2

1

¾̂2
U1

. 

This test is closely related to the commonly-used t-test as they both test the difference of means 

between two groups and has a centered Â2
1 under the null hypothesis for a large sample size.  
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To test the difference in methylation variability between disease and normal tissues, we first 

define a variability score for each sample by Zi = (Xi¡ ¹X)2,  in which ¹X is the sample mean of 

methylation levels. With the variability score, a similar logistic regression can be constructed with 

the variability score as the independent variable. Then, the score statistic is given by 

U2 =
P

i(Yi¡ ¹Y )Zi . It can be easily seen that this score statistic is proportional to the difference of 

estimated variances between disease and normal tissues, i.e.  U2 / ¾̂2
1 ¡ ¾̂2

0.  The variance of U2 can 

be estimated by ¾̂2
U2 =

P
i(Yi¡ ¹Y )2¾̂2

Z , in which ¾̂2
Z is the estimated variance of the variability 

score. As such, the score test based on the variability score is 

T2 =
U2

2

¾̂2
U2

. 

Similarly, T2 also has Â2
1 under the null hypothesis for a large sample size. 

A joint test statistic for both mean and variability of methylation levels may be simply formed 

as T1 +T2 that has a Â2
2 under the null hypothesis, or by Fisher’s method for combing p-values 

when T1 and T2 are independent. However, T1 and T2  are generally not independent. To take into 

account the correlation between T1 and T2, it is necessary to estimate the covariance of U1U1 and U2U2. 

To do this, we denote the joint score statistic as  Ujoint = (U1;U2) and its variance-covariance 

matrix can conveniently be estimated by §̂2
Ujoint =

P
i(Yi¡ ¹Y )2§̂2

S
 , in which §̂2

S is the estimated 

variance-covariance matrix of XX and ZZ. Then, the joint test is defined by 

Tjoint = Ujoint§
¡1
Ujoint

UT
joint. 

For a large sample size, Tjoint has a centered Â2
2 under the null hypothesis. When sample size is 

small, we could use a fast permutation procedure by randomly shuffling the order of the trait 

values of Yis. Of note, the inverse of §̂2
S does not require to be calculated at each replicate.  

3.  Results 

3.1  Simulation study 

We evaluated the performance of the proposed joint test through simulations.  To evaluate the 

type I error rate, we first considered a case-control study with various sample sizes (n=20, 30, 50 

and 100) for each group and sampled methylation values of cases and controls from various 

distributions (the standard normal, t distribution with 10 degrees of freedom or Â2 with 2 degrees 

of freedom). For each scenario, we used 10,000 replicates to evaluate type I error rate. It is also of 

interest to examine the false positive rate at a more stringent threshold as a large number of loci 

are now routinely examined in methylation studies. We simulated 10 million replicates to evaluate 

type I error rate for a sample size of 100 cases and 100 controls. With this large number of 

simulations, we estimate the false positive rate with reasonable accuracy for a threshold of 10
-5

. 

Finally, we examined the type I error rate of the proposed test after adjusting for batch effects. We 

assumed different proportions of cases and controls were assayed in two batches (30% in batch 1 

for cases and 70% in batch 1 for controls), yielding difference methylation variability between 

cases and controls due to batch effects. 
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Table 1: The empirical type I error rate at the statistical significance level of 0.05 

Distribution Sample size t-test Levene KS  Tjoint Tpermutation 

N(0,1) 20 0.050 0.040 0.037 0.039 0.053 

 30 0.047 0.043 0.033 0.039 0.049 

 50 0.050 0.042 0.037 0.045 0.050 

 100 0.050 0.050 0.036 0.048 0.050 

t10 20 0.048 0.049 0.041 0.034 0.051 

 30 0.050 0.043 0.037 0.036 0.050 

 50 0.049 0.048 0.042 0.042 0.050 

 100 0.052 0.047 0.037 0.046 0.051 

χ2
2
 20 0.050 0.039 0.033 0.034 0.049 

 30 0.051 0.044 0.034 0.038 0.050 

 50 0.050 0.046 0.041 0.036 0.049 

 100 0.054 0.040 0.048 0.043 0.049 

 

We further compared power of the proposed joint test with the t-test, Levene’s test and 

Kolmogorov-Smirnov test (KS) at the statistical significance level of 0.05. First, we simulated the 

methylation values of controls from a standard normal distribution, and cases from a normal 

distribution with various means and standard deviations (sd).  The sample size was set at 100 for 

each group. Second, we simulated situations when different levels of heterogeneity exist in cancer 

tissues by sampling cases from a mixed normal distribution, 

¼0N(0;1) +(1¡¼0)N(¹2;¾2). 

In this simulation, we set ¼0 at 0.5 and varied ¹s and ¾2s to simulate different changes in the mean 

and variances between cancer and normal tissues. The sample size was set at 200 for each group. 

For each scenario we used 1,000 replicates to evaluate power. P-values of the proposed method 

were assessed using both the asymptotic distribution and the empirical null distribution obtained 

by the permutation procedure. The number of permutation was set at 1,000. 

Table 1 shows the empirical type I error rate at the statistical significance of 0.05 for the 

proposed joint test (TjointTjoint), the joint test based on permutation (TpermuationTpermuation), the Levene’s test 

Kolmogorov-Smirnov test (KS), and the t-test. We can see all tests maintained a good control of 

type I error rate under simulated scenarios. However, TjointTjoint tended to be slightly conservative 

when sample size is small (n<50) and the distribution is highly skewed (χ2
2
 distribution). For a 

more stringent threshold of 10
-5

, we found a similar pattern of the type I error rate for TjointTjoint, which 

tended to be slightly conservative with the type I error rate at around 0.4×10
-5

.  

Table 2 shows the type I error rate of different tests when there is a difference in methylation 

variability between cases and controls due to batch effects. We can see the proposed test 

maintained a good control of type I error rate by incorporating a batch variable for adjustment for 

batch effects, while the Levene’s test tend to have an inflated type I error rate.  
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Table 2: The empirical type I error rate at the statistical significance level of 0.05 in the presence of heterogeneity in 

variability between cases and controls due to batch effects (n=100) 

SD1* SD2 t-test KS Levene Tjoint Tpermutation 
1 1.1 0.053 0.036 0.061 0.059 0.058 

1 1.2 0.046 0.038 0.066 0.042 0.044 

1 1.3 0.038 0.033 0.068 0.046 0.047 

1 1.4 0.046 0.039 0.091 0.042 0.042 

1 1.5 0.045 0.031 0.090 0.042 0.042 

*SD1 and SD2 are standard deviations of methylation values in batch 1 and 2, respectively. 70% cases are assumed to 

be assayed in batch 1 and 30% controls are assayed in batch 2.  

 

Fig 2: The empirical power of the proposed test and the two-sample t-test at significance level of 0.05 to detect 

methylation loci associated with disease. (a) Controls are simulated from a standard normal distribution and cases are 

simulated with varied means and standard deviations (sds). The x-axes indicate varied means of cases and different 

panels represent varied sds. The sample size is 100 for each group. (b) Controls are simulated from a standard normal 

distribution and cases are simulated from a mixture normal distribution, i.e. 0.5N0(0,1)+0.5N1(d,sd). The x-axes 

indicate the means of N1(d,sd)  and panels represent sds of N1(d,sd). The sample size is 200 for each group.   
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Figure 2 compares the empirical power of different tests at the significance level of 0.05 to 

detect methylation loci associated with disease under various situations. Based on our simulations, 

we have the following observations.  First, Tjoint was slightly less powerful than Tpermutation. In 

situations when cases were sampled from an admixture distribution, the gain of power for 

Tpermutation appeared more obvious, which might reflect the conservative nature of the asymptotic 

test when the normal assumption does not hold. Second, the proposed tests were substantially 

more powerful than the t-test in the presence of heterogeneity of methylation variability between 

cases and controls. Third, Tjoint and TPermutation were only slightly less powerful than the t-test 

when there was no heterogeneity of variability between cases and controls. 
 

3.2  Application to an ovarian cancer study 

To demonstrate the utility of the proposed test, we applied the proposed method to the data of 

United Kingdom Ovarian Cancer Population Study (UKOPS)
3
. This dataset is available at the 

NCBI Gene Expression Omnibus (http:///www.ncbi.nlm.nih.gov/geo) with accessing number 

GSE19711. The data includes 266 cases with 131 treatment and 135 post-treatment patients, and 

274 age-matched healthy controls. To avoid the heterogeneity between age groups, we chose to 

analyze the 50-60 year group with 35 pretreatment patients and 82 controls. The data with 27,578 

GpG loci were generated by Infinium assay with the HumanMethylation27 DNA Analysis 

beadchip.  After background correction and normalization for the raw fluorescent intensities, a 

summarized value, i.e. β value, is calculated based on about 30 replicates in the same array by 

max(M,0)/[max(M,0)+max(U,0)+100], where M is the average signal from a methylated allele 

and U is from an unmethylated allele. Hence, the range of the β value is between 0 (unmethylated) 

and 1 (fully methylated). Because of the small sample size, we calculated both Tjoint and 

Tpermutation, and compared them to other tests. For computational reasons, the number of 

permutations for each locus was determined adaptively. Initially, 10
3
 simulations were performed. 

If the resulting empirical p value was less than 0.01, 10
4
 simulations were performed. If the p 

value from 10
4
 simulations was less than 0.001, 10

5
 simulations were performed.  

 
Table 3: Number of loci with p-values smaller than the given cutoff from different tests 

P-value t-test Levene KS Tjoint Tpermutation t-test and Tjoint 

(Tpermutation) 

<0.01 750 157 1044 1047 1318 549(750) 

<0.001 267 18 353 463 582 214(267) 

<0.0001 62 4 85 169 250 51(62) 
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Fig 3: The correlation of –log10 p-values between the t-test, Tjoint and Tpermutation for comparing pre-treatment 

cases and controls in the age group of 50-60 years. (a) the t-test and Tjoint (b) the t-test and Tpermutation and (c) 

Tjoint  and Tpermutation. 

 

Table 3 shows the number of significant loci at different significance levels fordifferent tests. As 

expected, Tpermutation identified slightly more loci than Tjoint because Tjoint tends to be conservative 

for small sample sizes. However, Tjoint and Tpermutation identified many more loci than the t-test. We 

further compared –log10 p-values of different methods for all loci (Figure 3). It can be seen that for 

many loci,  Tjoint and Tpermutation provided much lower p-values than the t-test, suggesting a large 

proportion of loci may have significant changes in the methylation variability between cases and 

controls. However, Tjoint and Tpermutation had similar p-values, although Tpermutation tended to 

generate slightly smaller p-values. The analysis has also been performed on other age groups (60-70 

years and >70 years) and yielded similar findings (data not shown). 

4.  Discussion 

Although in recent cancer studies suggested the difference of methylation levels in both mean 

and variability was observed between cancer and normal tissue
5-7,12,13

, so far most methods to 

identify differentially methylated loci examine the methylation mean and variability separately.  

To overcome this drawback, we propose a new statistical score test that achieves higher power 

than the t-test when there is heterogeneity in methylation variability between cases and controls.  

The traditional t-test gives less significant p-values in this case as it ignores information provided 

by the second moment of the methylation distribution. When there is no heterogeneity in 

methylation variability, the proposed method, although it is not optimal in terms of power, 
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generally has robust power. Additionally, because the proposed test is very simple and hence can 

be calculated in a fast fashion, it is computationally feasible to be applied to very large 

methylation datasets, e.g. Illumina 450K. Our simulations and application to an ovarian cancer 

demonstrated the utility of our new method for discovering new methylation markers of complex 

diseases. 

Essentially, the proposed method is an attempt to combine tests for mean and variance of 

methylation levels between two groups. With the normal assumption of methylation levels, one 

may perform the t-test for comparing means and F-test for comparing variances; and the joint test 

statistic can be obtained by Fisher’s method for combining p-values.
14

 However, the normal 

assumption is in general not true for methylation data. Moreover, a normal transformation is often 

not feasible for a large number of genome-wide methylation loci, since each can have a unique 

distribution. One of the consequences due to departures of normal distribution is that test statistics 

for the mean and variance are no longer independent, resulting in an inflated type I error rate when 

Fisher’s method of combining p-values is used. To obtain valid p-values, computationally 

extensive sampling procedures, e.g. permutation, may be necessary. However, for highly 

significant p values, sampling is not a trivial task as such a procedure can be very inefficient. To 

address the issue of correlation, we propose a score test in which the correlation between test 

statistics for the mean and variance can be naturally adjusted. Another consequence of non-

normality, in particular when the distribution is skewed, is that the t-test may lead to loss in power. 

The underlying assumption of our test statistic is that there is a linear relationship between 

independent variables and risk of disease.  Because the linear relationship does not hold when the 

distribution is skewed, the power of our method may also be sensitive to skewness of the 

methylation distribution, although the validity of our method is quite robust. Of note, the 

permutation procedure itself would not improve power in this case. Further research is necessary 

to develop or identify statistical tests that can maintain good power when the distribution is highly 

skewed.  

In the application to a real dataset from an ovarian cancer study, our method achieves higher 

statistical significance than the t-test at some loci. Indeed, a relatively large proportion of markers 

are only identified by the proposed test. The main reason for this might be that heterogeneity of 

methylation variability between cancer and normal tissue is a common phenomenon. In our study 

 of both simulated and real datasets, the t-test performs better than our method when there is no 

difference in variance between cases and controls as an extra degree of freedom is used for testing 

variance in our method. However, Figure 2 (a) and (b) show that the relative power gain of the t-

test is not very dramatic.  

The proposed method can be generalized in different ways. In this paper we consider a case-

control study. However, our score test is developed from a generalized linear regression model. As 

such, our method could be generalized for both continuous, e.g. age, and other categorical disease 

phenotypes. Another advantage of our method is that it can easily generalize to incorporate 

covariates. As such, our method can differentiate the true biological difference from the technical 

difference of variance between cases and controls, e.g. the batch effect, by incorporating an 
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addition batch variable as a covariate. As shown in our simulation result, our method maintained a 

good control of the type I error rate after adjustment for batch effects. When there is no obvious 

variable, the technical difference can also be corrected by using a “genomic control”, in which the 

null distribution of the test statistic can be estimated from random methylation loci in the 

genome
15

. In addition, the application of our method can naturally extend beyond the analysis of a 

single methylation locus to the region-based (or gene-based) analysis under the framework of 

generalized linear regression.  The advantage of the region-based analysis is it can make use of 

information of correlated loci in a spatial region. One challenge in applying the method for testing 

variances is the interpretation. Because the proposed test is an omnibus test that can 

simultaneously account for methylation mean and variability, it may be useful to further examine 

the independent effect of the change in methylation mean and variability when an association is 

identified. Various reasons could cause the change of methylation variability in disease tissues. 

One possibility is the heterogeneity of disease itself. However, it has also suggested that 

methylation variability may play an important biological role in the development of complex 

diseases
5
. Understanding the cause of heterogeneity of variance could have fundamental biological 

implications.  

In summary, our results demonstrate that simultaneously testing differences in means and 

variances of methylation levels between cases and controls could identify disease related loci that 

are otherwise missed. Our method has the potential to be an efficient tool for screening potential 

methylation markers of diseases as our method does not require computationally intensive 

sampling to obtain valid p-values, and provides higher power than the t-test in the presence of 

differences in variability. 

5.  Acknowledgments 

S.A is a high school student and worked as a summer intern in this project. T.W. is supported 

in part by the CTSA Grant UL1 RR025750 and KL2 RR025749 and TL1 RR025748 from the 

National Center for Research Resources (NCRR), a component of the National Institutes of Health 

(NIH) and NIH roadmap for Medical Research, R21HG006150 from National Human Genome 

Research Institute (NHGRI). 

References 

1. Laird, P.W. & Jaenisch, R. DNA methylation and cancer. Hum Mol Genet 3 Spec No, 1487-95 
(1994). 

2. Christensen, B.C. et al. Aging and environmental exposures alter tissue-specific DNA methylation 
dependent upon CpG island context. PLoS Genet 5, e1000602 (2009). 

3. Teschendorff, A.E. et al. Age-dependent DNA methylation of genes that are suppressed in stem 
cells is a hallmark of cancer. Genome Res 20, 440-6 (2010). 

4. Chen, Z., Liu, Q. & Nadarajah, S. A new statistical approach to detecting differentially methylated 
loci for case control Illumina array methylation data. Bioinformatics 28, 1109-13 (2012). 

Pacific Symposium on Biocomputing 2013

78



 

 

 

5. Feinberg, A.P. & Irizarry, R.A. Evolution in health and medicine Sackler colloquium: Stochastic 
epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc 
Natl Acad Sci U S A 107 Suppl 1, 1757-64 (2010). 

6. Hansen, K.D. et al. Increased methylation variation in epigenetic domains across cancer types. Nat 
Genet 43, 768-75 (2011). 

7. Jaffe, A.E., Feinberg, A.P., Irizarry, R.A. & Leek, J.T. Significance analysis and statistical dissection 
of variably methylated regions. Biostatistics 13, 166-78 (2012). 

8. Teschendorff, A.E. & Widschwendter, M. Differential variability improves the identification of 
cancer risk markers in DNA methylation studies profiling precursor cancer lesions. 
Bioinformatics 28, 1487-94 (2012). 

9. Snedecor, G.W.a.C., William G. Statistical Methods, (Iowa State University Press, 1989). 
10. Levene, H. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, 

(Stanford University Press, 1960). 
11. Chakravarti, L.a.R. Handbook of Methods of Applied Statistics. Vol. 1 392-394 (John Wiley and 

Sons, 1967). 
12. Issa, J.P. Epigenetic variation and cellular Darwinism. Nat Genet 43, 724-6 (2011). 
13. Feinberg, A.P. et al. Personalized Epigenomic Signatures That Are Stable Over Time and Covary 

with Body Mass Index (vol 3, 65er1, 2011). Sci Transl Med 2(2010). 
14. Perng, S.K.a.L., R.C. A test of equality of two normal population means and variances. Journal of 

the American Statistical Association 71, 968-970 (1976). 
15. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997-1004 (1999). 

 

 

 

Pacific Symposium on Biocomputing 2013

79



USING DNASE DIGESTION DATA TO ACCURATELY IDENTIFY
TRANSCRIPTION FACTOR BINDING SITES

KAIXUAN LUO1 and ALEXANDER J. HARTEMINK1,2

1Program in Computational Biology and Bioinformatics, and
2Department of Computer Science, Duke University, Durham, NC 27708, USA

E-mail: kaixuan.luo@duke.edu, amink@cs.duke.edu

Identifying binding sites of transcription factors (TFs) is a key task in deciphering transcriptional
regulation. ChIP-based methods are used to survey the genomic locations of a single TF in each
experiment. But methods combining DNase digestion data with TF binding specificity information
could potentially be used to survey the locations of many TFs in the same experiment, provided
such methods permit reasonable levels of sensitivity and specificity. Here, we present a simple such
method that outperforms a leading recent method, centipede, marginally in human but dramati-
cally in yeast (average auROC across 20 TFs increases from 74% to 94%). Our method is based on
logistic regression and thus benefits from supervision, but we show that partially and completely
unsupervised variants perform nearly as well. Because the number of parameters in our method is
at least an order of magnitude smaller than centipede, we dub it millipede.

1. Motivation

Identifying binding sites of transcription factors (TFs) is a key task in deciphering tran-
scriptional regulation. Methods based on chromatin immunoprecipitation (ChIP) permit the
identification of TF binding sites at varying degrees of precision (ChIP-chip < ChIP-seq <

ChIP-exo),1 but they can only survey the genomic locations of a single TF per experiment.
To increase throughput, a complementary strategy based on the genomic digestion prod-

ucts of deoxyribonuclease I (DNase I, which we will simply call DNase) might be considered.
DNase cleaves DNA in a manner that depends, inter alia, on the chromatin state of the
genome, with nucleotides bound by proteins being cleaved less frequently than unbound nu-
cleotides. Thus, the frequency with which a particular nucleotide is cleaved provides (noisy)
information about the degree to which that nucleotide is bound by a protein. The primary
motivation for using DNase digestion is that it applies non-specifically to all proteins binding
the genome, regardless of their identity. This non-specific property is both a strength—in that
it overcomes the one-TF-at-a-time limitation of ChIP—and a weakness, since simply knowing
that a nucleotide is bound does not reveal the identity of the protein that binds it.

However, the binding specificities of many DNA-binding proteins are known (in this work,
we assume specificities are modeled using a position weight matrix (PWM), but our method is
general and can use any binding specificity model). This raises the prospect that a computa-
tional method combining DNase digestion data with prior knowledge of TF binding specificities
might be able to identify binding sites in a TF-specific manner, at least for TFs with suffi-
ciently distinct binding specificities. This prospect has spurred the development of a number
of promising methods over the past few years. Though these methods all use DNase data in
conjunction with binding specificity information, they adopt one of two distinct strategies:

(1) TF-generic DNase signature. Early methods started by scanning the mapped DNase data
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for signatures of TF binding (roughly: the cleavage frequency is elevated, then drops for a
short interval, and is then elevated again). Once sites with these signatures are detected,
the TF(s) putatively bound to each site may be assigned by searching for matches to
known PWMs. This strategy was first adopted by Hesselberth et al. in yeast, where initial
site-detection was performed using a greedy approach.2 As a technical refinement applied
to the same data, Chen et al. developed a dynamic Bayesian network (DBN) approach for
initial site-detection.3 Boyle et al. developed a hidden Markov model (HMM) approach
for initial site-detection, and applied it to DNase data from human cells.4 More recently,
Cuellar-Partida et al. formulated an informative positional prior from the human DNase
data, and then looked for strong posterior evidence of binding, using PWM matches for
the likelihood;5 this method is essentially DNase-weighted motif scanning.

(2) TF-specific DNase signature. One disadvantage of the previous strategy is that the DNase
signature of TF binding is necessarily the same for all TFs. A more effective strategy might
be to start by scanning the genome for sites that match TF binding specificities; these will
be called ‘candidate binding sites’. The DNase data in the genomic region surrounding
each candidate binding site can then be used (along with other relevant information, such
as the strength of the PWM match) to estimate whether the TF is indeed bound there.
The first (and to our knowledge only) such method, given the moniker centipede, was
developed by Pique-Regi et al. and tested exclusively on human DNase data.6

Figure 1 shows two examples—Reb1 in yeast and REST (also known as NRSF) in human—
of DNase data surrounding candidate binding sites that arise from PWM scanning of the
genome. The figure illustrates that methods capable of using TF-specific DNase signatures
are more likely to be effective at identifying TF binding sites. As such, in what follows, we
focus exclusively on this second strategy.

2. Background

centipede learns TF-specific DNase signatures in an unsupervised manner, using an EM
algorithm to optimize a Bayesian mixture model.6 The model discriminates bound from un-
bound sites using DNase data, plus other prior information (e.g., strength of match to PWM,
degree of conservation, proximity to TSS). The likelihood of the DNase data is modeled in
terms of both the total number of DNase cleavage events (‘cuts’) in the region around the
candidate binding site (using a negative binomial), and the specific ‘shape’ of the cuts as they
are arranged in the region (using a multinomial). centipede’s discrimination power is largely
driven by the PWM component of the prior and the multinomial component of the likelihood.
However, the use of the highly flexible multinomial means that the model has the potential
to over-fit irrelevant details in the shape of the DNase data—both in and around candidate
binding sites—including random noise, systematic bias in DNase digestion, or artifacts arising
from EM becoming trapped in a local mode. Indeed, the authors attempt to address the likely
over-fitting by employing shrinkage estimators for their multinomial parameters, which im-
proves certain evaluation metrics like area under the ROC curve (auROC), but at the expense
of others, such as sensitivity at 1% false positive rate (FPR).

The authors of centipede also explored the use of activating and repressing histone
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Fig. 1. DNase digestion data used in conjunction with TF binding specificity information can be used to
identify TF binding sites. Left panel shows data for Reb1 candidate binding sites in yeast, and right panel
shows data for REST (also known as NRSF) candidate binding sites in human. In each case, rows represent
candidate sites based on PWM matches; rows are grouped by ChIP labels into positive and negative sets and
then randomly ordered within each set. For each candidate binding site, columns depict DNase cuts in the
region 100bp up- and downstream, PWM score, and ChIP label. Darker blue in data columns indicates higher
number of DNase cuts at each position or higher PWM score. The figure makes clear that (a) both DNase
data and TF binding specificity information provide noisy evidence of TF binding, and (b) since DNase cuts
near Reb1 binding sites have a distinct pattern from DNase cuts near REST binding sites, methods using
TF-specific DNase signatures are more likely to be effective at identifying TF binding sites.

marks in their likelihood, but reported limited benefit. Cuellar-Partida et al. later explored
individual histone modifications, and proposed a TF-generic DNase signature method called
H-p, intended to make better use of histone modification data (alongside DNase data and
PWM scores).5 With the same six human TFs of Pique-Regi et al., they evaluated their
proposed H-p method in comparison with (a) D-p, their method using DNase data and PWM
scores, but omitting histone modifications, (b) D-s, a straw-man method using only the total
number of nearby DNase cuts, but omitting both histone modifications and PWM scores,
and (c) centipede. Surprisingly, in terms of auROC, the proposed H-p model was the worst
performer across the board for all six human TFs, suggesting that histone modifications are
not likely to be helpful for this task. Even more interestingly, the straw-man method D-s
outperformed H-p and D-p, and was competitive with centipede, though it was not very
sensitive at 1% FPR. This surprising set of results motivated us to ask the following questions:

(1) Based on the observation that D-s was performing competitively even though it lacked
a TF-specific DNase signature and ignored the strength of the PWM match, could we
develop an effective model that would address these two shortcomings of D-s, yet be much
simpler than centipede, to minimize the possibility of over-fitting?

(2) Would such a model perform well across organisms, not only in the human data of Boyle
et al.4 but also in the yeast data of Hesselberth et al.?2 This is important for three reasons:
(a) it would ensure that our conclusions about the relative merits of various approaches
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are not specific to human, (b) it would allow us to evaluate using a larger set of TFs
because many TFs have been profiled by ChIP in yeast, and (c) we had observed that
centipede performed quite poorly when applied to DNase data from yeast. In summary,
could we develop a model that worked at least as well as centipede in human, but
improved dramatically upon centipede in yeast?

In this paper, we describe a conceptually simple method for combining DNase data with in-
formation on TF binding specificity to identify TF binding sites. We show that our simple
method outperforms centipede marginally in human and dramatically in yeast. Its supe-
riority is robust to the choice of evaluation metric, as well as the definition of positive and
negative binding sites. Our method is based on logistic regression and thus benefits from su-
pervision, but we show that partially and completely unsupervised variants perform nearly
as well. Because the number of parameters in our method is at least an order of magnitude
smaller than centipede, we dub it millipede.

3. The millipede framework

millipede improves upon centipede in two primary ways. First, it reduces the number of
parameters to be estimated by 1–2 orders of magnitude. This reduces the potential to over-fit
irrelevant details in the DNase data, speeds up computation, and simplifies interpretation. The
reduced number of parameters is a consequence of aggregating the DNase cut data within bins.
One specific motivation for—and benefit of—such a strategy is that it reduces the prospect
of fitting structure in the DNase signal that arises from digestion bias, which we show later
may be important to address (though a more sophisticated approach would be to model the
bias explicitly). Second, it is supervised, allowing the model to be trained to discriminate
between bound and unbound sites rather than simply having to guess which sites are bound
and unbound, as centipede does. When labeled data are not available (for instance, if one
is interested in identifying binding sites for a TF that has no ChIP data), we show later that
partially and completely unsupervised variants of millipede still perform admirably.

3.1. Bins for aggregating DNase cuts

Consider a candidate TF binding site, always oriented with respect to the strand on which the
PWM is matched. As illustrated in Figure 2, within the binding site we construct two bins
representing the left and right half of the site. Then, within the 100bp regions flanking the
binding site both up- and downstream, we construct five equal-size bins (the choice of five is
arbitrary: it allows the 100bp flanking regions to have some substructure, but not an excessive
amount; we discuss this choice later). The result is 12 total bins across a genomic region of
size 200 + w, where w is the width of the TF PWM.

If we use all 12 bins in millipede, we call the model M12. However, not all of these bins
may be important, so we can construct various model simplifications by merging or dropping
bins. For example, we can merge the two bins of the left and right halves of the binding site
into a single bin, resulting in 11 total bins, so we call this model M11. Next, we can merge
bins in the up- and downstream flanking regions: by merging the more proximal three bins
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Fig. 2. Understanding the relationships between bins in various millipede models. All bins are defined
relative to the orientation of the candidate binding site: green bins are within the binding site, blue bins are
upstream, and red bins are downstream. Models are arranged from most to least complex, so that each simpler
model is derived from the one above it by merging or dropping bins. The simplest model M1 arises when the
upstream and downstream bins of M2 are merged (thus shown in purple).

into a single bin, and merging the more distal two bins into a single bin, we are left with two
bins upstream, two bins downstream, and one bin for the binding site, so we call this model
M5. We can then drop the up- and downstream distal bins altogether, resulting in model M3.
We can further drop the binding site bin, resulting in model M2. Finally, we can merge the
two bins of M2, resulting in a model that has only one bin: M1. Specifically, M1 is a model
that aggregates DNase cuts in the union of the two 60bp windows upstream and downstream
of the binding site.

It is also possible to make the model more complex, for example by distinguishing between
the forward and reverse strands when strand-specific DNase cleavage data is available. Strand-
specific information was not available in the yeast DNase data from Hesselberth et al.,2 but
was available in the human DNase data from Boyle et al.4 For example, if we start with model
M12 but elect to distinguish between forward- and reverse-strand cuts, we have a model with
24 bins, which we call M24.

3.2. Logistic regression

The millipede framework is based on standard logistic regression. Natural extensions with
regularization (shrinkage or selection) are easily applied (though we do not explore them in
this paper). Any relevant variables can be included, which makes the framework flexible and
extensible. In what follows, the logistic regression covariates at each candidate binding site are
simply (a) log2-transformed counts of aggregate DNase cuts within each bin, (b) the PWM
score, and (c) optionally, a score measuring the degree of conservation. Formally, the full
millipede model for estimating the probability pi that candidate binding site i is bound is:

log(
pi

1− pi
) = β0 +

B∑
b=1

βb × db,i + βpwm × pwmi + βcons × consi

where db,i is the log2-transformed count of aggregate DNase cuts in bin b relative to site i, B is
the total number of bins being considered in the model, and pwmi and consi are the PWM
and conservation scores of site i, respectively. Note that we could also choose to include other
variables if they were deemed relevant. Specifically, we could add a term βtss×tssi to include
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a score measuring proximity to the TSS for any TFs where that might be informative. We
tested this but observed that TSS proximity scores were of negligible benefit; in what follows,
we therefore omit them for simplicity.

When millipede is run in a supervised mode, we learn its various coefficients from training
data (and we can interpret the resulting model by examining the learned coefficients). We
describe later how millipede can also be run in completely or partially unsupervised modes.

4. Experimental methods

4.1. Human data

To facilitate comparison with the work of Pique-Regi et al.6 and Cuellar-Partida et al.5 in
human, we used the exact same data wherever possible, kindly shared with us by Roger
Pique-Regi. We used the same DNase digestion data in GM12878 cells, originally collected in
the lab of Greg Crawford and reported in Boyle et al.4 We used the same candidate binding
sites as reported by Pique-Regi et al.; to avoid mappability bias, Pique-Regi et al. filtered out
candidate sites whose surrounding region contained more than 20% unmappable nucleotides.
We used the same PWM, conservation, and TSS scores as reported by Pique-Regi et al.
(eventually deciding to omit the TSS scores, as discussed above). For training and evaluation,
we studied the same six TFs, constructing positive and negative sets using the same ENCODE
ChIP-seq data in GM12878 cells, as processed by Pique-Regi et al.

4.2. Yeast data

We used DNase digestion data in α-factor arrested yeast cells, collected in the lab of John
Stamatoyannopoulos and reported in Hesselberth et al.2 When scanning for candidate binding
sites, we used PWM models of TF binding specificities from MacIsaac et al.,7 and the sacCer2
(June 2008) version of the yeast genome. Following Pique-Regi et al., to avoid mappability bias,
we filtered out candidate sites whose surrounding region contained more than 20% unmappable
nucleotides. For training and evaluation, we studied 20 TFs, constructing positive and negative
sets using ChIP-exo data from Rhee et al.,1 where available (Reb1, Rap1, and Phd1), as well
as the ChIP-chip data of Harbison et al.,8 as processed by MacIsaac et al.7 MacIsaac et al.
used conservation information to define positive binding sites, so to avoid potential bias, we
omit all conservation data when evaluating performance in yeast. In practice, the usefulness
of conservation information when applying millipede in human suggests that it would likely
also be useful in yeast.

4.3. Gold standard evaluation sets regarding TF binding

Cuellar-Partida et al.5 describe a ‘peak-centric’ approach for constructing gold standard eval-
uation sets, in contrast to what they term the ‘site-centric’ approach of Pique-Regi et al.
As it happens, the two approaches construct positive sets quite similarly—requiring positive
TF binding sites to have both sufficiently strong ChIP signal and sufficiently strong PWM
score—but construct negative sets quite differently (more on this below).
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4.3.1. Positive TF binding sites

Since site-centric and peak-centric approaches construct positive sets in roughly the same
fashion, we defined our positive TF binding sites in a manner analogous to Pique-Regi et al.:
among all candidate binding sites determined by PWM scanning along the genome, positives
are those that fall within a ChIP peak. In human, we used the exact same positive set as
Pique-Regi et al., while in yeast, we constructed our own positive set using ChIP-exo peaks
(where available) and the TF binding sites of MacIsaac et al., derived from ChIP-chip signals
(requiring a ChIP-chip p-value < 0.005, and a ‘moderate’ level of conservation). One small
caveat is that although the peaks from ChIP-exo (for Reb1, Rap1, and Phd1 in yeast) and
ChIP-seq (in human) are likely of high enough quality to serve as a fairly accurate gold
standard, peaks from ChIP-chip in yeast are perhaps better described as a bronze standard.

4.3.2. Negative TF binding sites

Since we are trying to predict whether or not candidate binding sites are bound, a natural
choice for a negative set would be all candidate binding sites that are not in the positive set
(do not fall within a ChIP peak); these are the negative sets we use in this paper, and we refer
to these as ‘millipede gold standards’. Under such a construction, every candidate binding
site is either positive or negative. The two previous approaches for constructing negative sets
are notably different. The negative sets of Pique-Regi et al. are roughly subsets of ours because
they require both of the following: (a) the candidate binding site does not fall within a ChIP
peak, and (b) the ChIP treatment signal is less than the ChIP control signal at the site. This
reduces the size of the negative set by including only those sites with the strongest negative
signal, which makes the discrimination task easier and may thus over-estimate performance.
In contrast, the negative sets of Cuellar-Partida et al. are roughly supersets of ours because
negatives are defined as all genomic sites that do not fall within a ChIP peak (whether they are
candidate binding sites or not). However, since we are only making predictions on candidate
binding sites, our definition of negatives is equivalent to that of Cuellar-Partida et al. for this
task. To ensure our results do not depend importantly on our choice of negative sets, we also
evaluate each method’s performance in human using the same negative sets that Pique-Regi
et al. considered, referring to these as ‘centipede gold standards’.

4.4. Evaluation metrics

We evaluate the predictions of each model using four different metrics. To facilitate comparison
with previous work, we report both area under the ROC curve (auROC) and sensitivity at 1%
FPR. However, we also report area under the precision-recall curve (auPR) and precision at
1% FPR, which may be more realistic metrics of performance with imbalanced evaluation sets.
When millipede is supervised, reported results are averages based on 5-fold cross-validation.

4.5. Availability

Software, data, complete numerical results, and other Supplemental Material are all available
from http://www.cs.duke.edu/∼amink.
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Fig. 3. millipede models with various numbers of bins perform similarly. As in Figure 1, rows represent
candidate binding sites based on PWM matches to Reb1 in yeast (left) or REST in human (right). For each
candidate binding site, columns depict DNase cuts in the region 100bp up- and downstream, probability of
being bound under various millipede models, and ChIP label. Darker blue in data columns indicates higher
number of DNase cuts or higher probability of being bound under the respective millipede model.

5. Results

We compared the performance of our millipede model with centipede for 20 yeast TFs in
G1-arrested cells and six human TFs in GM12878 cells. We used the millipede gold standard
for both yeast and human TFs (in Supplementary Material, we also show results using the
centipede gold standard for human TFs).

Since millipede can use various numbers of bins as covariates in its logistic regression
model, we first explored the effect of merging and dropping bins to produce simplifications of
the full millipede model. As illustrated in Figure 3, different simplifications of millipede
have surprisingly similar performance; although we use yeast Reb1 and human REST as
running examples in the manuscript, this is true across all TFs and all four of our evaluation
metrics (full results in Supplementary Material). Looking more closely, we observe that model
M5 generally shows the best performance with DNase data for both yeast and human TFs,
with a mean auROC using the millipede gold standard of 94.2% across 20 yeast TFs, and
97.6% across six human TFs (the latter number becomes 98.6% when using the centipede
gold standard). As an aside, we note that M12 usually outperforms M24 in human, suggesting
the strand-specific information may not be too informative, at least for these six TFs.

As demonstrated in the various panels of Figure 4 and the bar chart in Figure 5, our
millipede M5 model achieves significantly better ROC performance for yeast TFs compared
to centipede, and slight improvement for human TFs. In addition, M5 largely outperforms
centipede (nearly 10% higher on average) when considering other metrics like auPR, and
sensitivity or precision at 1% FPR, for both yeast and human TFs using the millipede gold
standard (Supplementary Material). Finally, in terms of sensitivity at 1% FPR for human TFs
using the centipede gold standard, millipede improves noticeably on the D-s straw-man
method of Cuellar-Partida et al.,5 achieving 82.2% with M5 and 84.7% with M12, each at least
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Fig. 4. Comparing millipede model M5 to centipede across all yeast and human TFs. Top panels are
akin to those of Figure 3, but compare millipede model M5 to centipede with shrinkage estimates of
multinomial parameters for yeast Reb1 and human REST. To reduce clutter, we only show centipede results
with shrinkage, since this performs noticeably better in an ROC setting than without (as shown in Figure 5).
To confirm that results hold beyond the specific cases of Reb1 and REST, bottom panels show ROC curves
for millipede (red) and centipede (blue) across all 20 yeast TFs (left) and all six human TFs (right). Two
other yeast factors are shown later in Figure 6.

10% higher than D-s (Supplementary Material). Compared to D-s, millipede’s inclusion of
PWM scores increases its ability to properly recognize the identity of the bound TF (versus
other TFs that may be bound at those same candidate sites).

Normally, millipede is run in a supervised mode to achieve high accuracy with the help
of ChIP training data. However, when no ChIP data are available, we can run millipede in
a completely unsupervised mode: we choose a simple model and set the various coefficients
to 1 (or −1 for bins that are either within a candidate binding site or distal). As shown in
Figure 5, an unsupervised version of the millipede M2 model still exhibits quite satisfactory
auROC performance across both yeast and human TFs. As an intermediate scenario, if we
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Fig. 5. Area under the ROC curve for 20 yeast and six human TFs. Red bars are millipede model M5 run
in a supervised mode, orange bars are millipede model M2 run in a completely unsupervised mode, blue
bars are centipede with shrinkage, cyan bars are centipede without shrinkage. Bars start at 50% since that
represents random performance for an ROC curve; values below 50% are just not shown (e.g., for centipede
on Swi4, Sok2, and Phd1). The 20 yeast TFs are listed before the six human TFs; within each organism, the
TFs are sorted such that the red bars decrease in height (the poor performance for Ace2 and Swi5 is perhaps
unsurprising since the yeast DNase data are from cells arrested in G1). As summarized in the far right bars,
mean performance is remarkably similar across the six human TFs, but millipede improves dramatically
upon centipede in yeast, even when run completely unsupervised.

have some ChIP data available, but not for our TF of interest, we can run millipede in a
‘partially unsupervised’ mode. To do so, we simply use coefficients trained on other TFs and
apply those same coefficients to the new DNase data and PWM scores. This crude form of
transfer learning results in very high prediction accuracy. Using the coefficients of millipede
M2 model trained on yeast Reb1 and applying it to the other 19 yeast TFs achieves a mean
auROC of 93.9%, while using the coefficients of M2 trained on human REST and applying
it to the other five human TFs leads to a mean auROC of 98.5% using the centipede gold
standard. These results suggest that even a single ChIP experiment can go a long way toward
learning effective millipede models.

While examining the DNase cleavage patterns for yeast TFs, we sometimes found strikingly
similar DNase cleavage patterns for both bound and unbound sites, as with Abf1 and Mcm1,
shown in Figure 6. Hesselberth et al. showed a significant match between Mcm1’s DNase
cleavage pattern within the binding site and the crystal structure of Mcm1-DNA contact,2

but the similar patterns we see across all unbound sites (not just borderline cases) suggest
the detailed cleavage patterns within the binding site are more likely a sequence-dependent
artifact, perhaps arising from DNase digestion bias. To further test this claim, we also looked at
the digestion patterns for Swi4, whose consensus binding sequence is CGCGAAA. Examining
the more than 29,000 candidate binding sites that are unbound by Swi4, the number of cuts in
the CG-rich left half of the candidate site is noticeably lower than the number in the AT-rich
right half of the site (Supplementary Material).

Finally, we observed strong correspondence between DNase cleavage patterns in bound
sites and the model coefficients learned in millipede models. For most TFs, including our
running examples of Reb1 and REST, we see positive coefficients for the bins proximal to
the binding site, and negative coefficients for bins within the binding region or distal to it.
These models therefore recapitulate the TF-generic DNase signatures of early papers2–4 in this
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Fig. 6. DNase data can exhibit systematic artifacts such as sequence-dependent digestion bias. Left and
right panels show yeast Abf1 and Mcm1 candidate binding sites, respectively. Notice that some fine details
of the DNase cut data are preserved within and around candidate binding sites, whether the site is bound
or unbound. centipede is prone to over-fit these details both because of the large number of parameters in
the multinomial component of its likelihood, and because it is unsupervised and uses EM to assign labels to
candidate sites.

area: cleavage frequency rises to elevated levels near the binding site, then drops for a short
interval, and is then elevated before gradually falling again. However, for individual factors,
we saw subtly distinct patterns, lending credence to the importance of TF-specific DNase
signatures. We even observed striking exceptions for a few TFs. For instance, for yeast Fkh1,
millipede models have significant positive coefficients for bins in the binding site and the bin
immediately downstream, whereas for yeast Fkh2, millipede models have significant positive
coefficients for bins in the binding site and the bin immediately upstream. Correspondingly,
we also see elevated DNase digestion in those regions without clear depletion in the binding
site. As Fkh1 and Fkh2 are known to bind with other TFs like Mcm1 and Ndd1, this result
may reflect consistent positioning of each TF relative to other co-factors along the genome.

6. Discussion

millipede models achieve accurate and robust prediction performance under all four of our
evaluation metrics across both yeast and human TFs. We have therefore demonstrated that
a very simple model using only the most salient information from DNase data can perform
as well as or better than more complex models like centipede, with the further attendant
advantages of fast computation, easy interpretation, and low potential of over-fitting.

Because our millipede model is so simple, many variants can be imagined. For example,
the number, widths, and locations of our bins have not been optimized in any way, though
we briefly explored whether our results were sensitive to our admittedly arbitrary choices;
we did not observe any notable change. Also, other covariates might be added to the model:
millipede’s logistic regression framework permits great flexibility in including new covariates,
should more information become available to further improve its performance. If the number
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of covariates becomes large, shrinkage or selection could be used to regularize the parameters.
Interestingly, we often observed detailed DNase cleavage patterns inside unbound candidate

binding sites (especially in yeast), suggesting that some of the detail may be induced by
sequence-dependent DNase digestion bias rather than actual protein-DNA protection at the
single nucleotide level. This might also partially explain why centipede does not work nearly
as well for identifying TF binding sites in yeast. By declining to fit the detailed signal at every
nucleotide, millipede focuses its attention on the large-scale differences between bound and
unbound sites, making it robust to biases that might arise at the single nucleotide level.

Since current technology for profiling TF occupancy requires a separate ChIP experiment
for each TF being profiled, gaining a comprehensive understanding of the dynamic TF occu-
pancy across the genome for all TFs across many tissues and conditions using only ChIP is
utterly impractical. The prospect of using a complementary assay like DNase digestion has
been tantalizing, but the sensitivity and specificity gap with ChIP has been too large to date.
However, as more accurate methods like millipede are developed to close the gap, efficient
means for profiling TF occupancy across the genome for many TFs at once may become a re-
ality. Intriguingly, since it can operate in a supervised mode, millipede can leverage available
ChIP data to train its models for identifying TF binding sites from DNase data alone.
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Mammalian gene regulation is often mediated by distal enhancer elements, in particular, for tissue
specific and developmental genes. Computational identification of enhancers is difficult because they
do not exhibit clear location preference relative to their target gene and also because they lack
clearly distinguishing genomic features. This represents a major challenge in deciphering transcrip-
tional regulation. Recent ChIP-seq based genome-wide investigation of epigenomic modifications
have revealed that enhancers are often enriched for certain epigenomic marks. Here we utilize the
epigenomic data in human heart tissue along with validated human heart enhancers to develop a
Support Vector Machine (SVM) model of cardiac enhancers. Cross-validation classification accuracy
of our model was 84% and 92% on positive and negative sets respectively with ROC AUC = 0.92.
More importantly, while P300 binding has been used as gold standard for enhancers, our model can
distinguish P300-bound validated enhancers from other P300-bound regions that failed to exhibit
enhancer activity in transgenic mouse. While GWAS studies reveal polymorphic regions associated
with certain phenotypes, they do not immediately provide causality. Next, we hypothesized that ge-
nomic regions containing a GWAS SNP associated with a cardiac phenotype might contain another
SNP in a cardiac enhancer, which presumably mediates the phenotype. Starting with a comprehen-
sive set of SNPs associated with cardiac phenotypes in GWAS studies, we scored other SNPs in LD
with the GWAS SNP according to its probability of being an enhancer and choose one with best
score in the LD as enhancer. We found that our predicted enhancers are enriched for known cardiac
transcriptional regulator motifs and are likely to regulate the nearby gene. Importantly, these ten-
dencies are more favorable for the predicted enhancers compared with an approach that uses P300
binding as a marker of enhancer activity.

Keywords: Enhancer, Epigenomics, SVM, heart disease

1. Introduction

Eukaryotic transcription is intricately regulated at multiple levels including chromatin reor-
ganization through epigenomic modifications and sequence specific binding of transcription
factors (TF) to either proximal promoter or to distal enhancer/repressor regions of the gene.1,2

Enhancers can regulate their target genes from long distances, up to a megabase away and
are especially important in regulating developmental and tissue-specific genes.3,4 Numerous
genome wide association studies (GWAS) have revealed genomic loci associated with various
human traits.5 Going from association to causality is however a major challenge, because a
vast majority of GWAS signals lie in non-coding regions, often far from any gene, and our
understanding of functional consequences of non-coding mutations is incomplete. It is possible
that many of these associations are mediated via regulatory regions.6 By investigating puta-
tive polymorphic enhancers near GWAS signals, we might be able to identify the causal links
between genetic variability and disease, at least in some cases. Thus, both for our fundamental

Pacific Symposium on Biocomputing 2013

92



understanding of transcriptional regulation as well as for interpretation of genotype-phenotype
relationships, a comprehensive knowledge of context-specific enhancers is critical.

Large scale identification of enhancers is challenging because they do not have sufficiently
discriminating sequence properties (except for their tendency to harbor homotypic binding
motifs7) and their location is not restricted relative to the location of the target gene. More-
over, enhancers are often tissue and cell-type specific and are detectable only under the ap-
propriate conditions. Recent revolution in sequencing technologies have triggered several large
scale profiling of epigenomic marks and analysis of these marks have revealed strong associa-
tions between enhancers and specific epigenomic marks (either positive or negative8–10). Using
genome-wide profiling of several epigenomic marks, Ernst et al. segmented the genome into 51
segment classes, where each segment class is defined by a specific combination of epigenomic
marks.8,11 They designated two of these segment classes as strong and weak enhancers. Apart
from epigenomic marks, histone acetylase P300 is known to bind to tissue-specific enhancers,
with high rate of experimental validation using mouse transgenic.10,12 However, it is argued
that while P300 may mark tissue-specific enhancers, those enhancers are not necessarily active
in a specific context.13 This assertion is consistent with less than perfect validation rate of
P300 bound regions as enhancers. Despite this, previous approaches to predict enhancers have
used P300 bound regions as the gold standard to assess the methods prediction accuracy.14,15

Here we report an SVM trained specifically on 83 validated cardiac enhancers using four
epigenomic profiles marks (H3K4me1, H3K27me3, P300 and DNase hypersensitivity) in hu-
man heart tissue. Our model achieves a cross-validation classification accuracy of 84% and 92%
on positive and negative sets respectively. It was encouraging that our model can distinguish
validated enhancers from those that were bound by P300 but failed to exhibit enhancer activ-
ity in transgenic mouse. Next, starting with a comprehensive set of 229 SNPs associated with
cardiac phenotypes in 36 GWAS studies, we identified putative enhancers harboring SNPs
in linkage disequilibrium (LD) with the GWAS SNP. We found that our predicted enhancers
are enriched for binding sites for all known core cardiac transcriptional regulators GATA,
MEF2, STAT, NF-AT, Nkx, and FOX. Using a novel approach we show that the predicted
enhancers are likely to regulate the nearby gene. Our predicted enhancers uniquely point to a
few genes highly relevant to the heart disease. Moreover, these tendencies of having enriched
cardiac transcriptional motifs and likelihood of regulating nearby genes are more favorable for
the predicted enhancers compared with an approach that uses P300 binding as a marker of
enhancer activity. Overall, we show that a SVM model trained exclusively on validated en-
hancers performs better than those that use P300 binding as gold standard and that GWAS
studies can be better interpreted in light of predicted polymorphic enhancers.

2. Results

2.1. SVM model for cardiac enhancers

2.1.1. Data

Heart tissue was chosen for our analysis because of the availability of both relevant epigenetic
data (H3K4me1, H3K27me3, P300 and DNase hypersensitivity) and validated human en-
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hancers. We collected 83 experimentally heart enhancers validated in mouse transgenic from
VISTA browse and split them into 1kb regions (step size 500 bps) to be used as positive
training set. Negative set was constructed by mixing random samples of 1 Kb long regions
from the genome and randomly selected promoters. H3K4me1, H3K4me3, H3K27me3, P300
and DNase-I epigenetic markers, which have previously been shown to be associated with
tissue-specific enhancers, were collected for the heart tissue from the GEO database. For each
epigenetic mark we calculated its average signal strength across every 1 Kb genomic region
as feature vector of the region. In order to normalize the feature vectors of the positive and
negative set to zero mean and unit variance, we randomly sampled 40,000 1 Kb regions across
the genome to estimate mean and variance of feature vector.

2.1.2. Training

Epigenetic marks relevant to enhancers are relatively sparse in the genome. If the negative
example in the training set only included random regions then SVM would choose subset of
these inactive regions as its support vectors and would create a classifier hyperplane sepa-
rating inactive regions from any epigenetically active region, resulting in high false positive
rate. Therefore, in our negative set, in addition to random genomic regions, we added gene
promoters as examples of epigenetically active non-enhancer regions. Figure 1 shows the effect
of varying the proportion of promoters region in negative training set. In general, we found
that a greater proportion of promoters in negative set improves positive set accuracy with
relatively smaller decline in negative set accuracy, at least initially. This suggests that includ-
ing a small fraction of promoters in the negative training set results in a better classification.
Therefore, we constructed the negative training set by mixing 1000 random genomic regions
and 250 randomly selected gene promoters.

Fig. 1: Effect of variation of proportion of promoter region on accuracy of model. Two fold
cross validation is used for positive set. Negative set accuracy is calculated by running the
trained model on large number of random 1 kb genomic regions not including those used for
training.
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2.1.3. Testing

We used 5-fold cross validation for positive set accuracy estimate. For negative test set we
randomly sampled 1000 1kb genomic regions. On performing grid search (see Methods) to
train the SVM model the average testing classification accuracy on positive set was 84.1%
and on negative set was 92%. The roc curve for the model prediction is shown in Figure 2.
The AUC of the model was 0.9231.

Fig. 2: ROC curve of SVM model

Despite some evidence to the contrary, a number of previous works have assumed P300-
bound regions to be active enhancers and used them as gold standards to train and evaluate
enhancer prediction tools. Next, we tested whether our model trained on validated enhancer
and oblivious of P300 binding can nevertheless distinguish active and inactive P300-bound
regions. We tested our model with 12 P300 peaks in human heart which were found not to
have enhancer activity.16 Interestingly, the model classified 10(83%) of these cases as non-
enhancers. Although based on a small set of examples, this suggests that our model can
distinguish inactive P300-bound regions from active enhancers.

Narlikar et al.17 proposed a model based on specific motifs as features for cardiac enhancer
identification. To compare performance of our model with their’s, 83 validated enhancers were
separated into 60 training and 23 testing instances. SVM was trained on the 60 instances. We
extracted the 1Mb regions flanking each of the 23 test enhancers and predicted enhancer in
those genomic regions using the trained SVM. We first checked how well P300 can retrieve
the validated enhancers. We found that there are only 69 P300 peaks in adult human heart in
the 23 genomic regions, out of which only one overlapped with a validated enhancer. In other
words, P300 peaks are poor predictor of enhancer activity in this context.

Using our trained SVM model we scored each 1 Kb region in the test set. Cardiac enhancer
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predicted in Narlikar et al. 17 are typically much shorter. For fair comparison with Narlikar et
al. 17 (1) we extended each of their enhancer to 1 Kb region flanking the reported location, and
(2) used a threshold on the enhancer score such that the predictions made by our SVM and
the Motif based model cover almost the same number of enhancers (same basepair coverage as
well due to extension) in the genomic test set. Among the 8522 enhancer regions predicted by
the SVM, 21 of the 23 validated enhancers were included, while among 8551 enhancer regions
predicted by Narlikar et al.17 only 13 were covered. we repeated the above comparison between
our method, P300 peaks and Narlikar et. al. 10 times with different sets of 60 training and 23
testing instances out of total 83 enhancers. Figure 3 shows the number of enhancer predicted
by each method across different iterations.

different runs
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Fig. 3: Number of enhancers (out of 23) predicted by SVM, P300 peaks and Narlikar et. al.

Taken together, these results suggest that the SVM model trained on epigenomic data is
more suitable for identifying cardiac enhancers than are P300 binding or motif based models.

2.2. Identification of cardiac enhancers near SNPs associated with cardiac
phenotypes

Next, we hypothesized that the causal variants underlying GWAS signals might lie within an
enhancer element and affect gene regulation. We tested this hypothesis on SNPs associated
with a variety of cardiomyopathies. Starting with NHGRI’s GWAS catalog,5 which includes
1332 studies revealing 6852 SNPs, we manually selected studies for cardiovascular disease
traits. This yielded 229 SNPs from 36 studies. We then extended this seed SNPs set to include
all other SNPs in Linkage Disequilibrium (LD) with a seed SNP using Broad Institutes SNAP
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server.18 We included all SNPs within 500kb from a seed SNP with r2 ≥ 0.3. The extended
SNP were merged from the 1000 Genome Project and multiple HapMap releases (Consortium
2003; Consortium 2010). For each of the resulting 14233 SNPs, we scored 1kb flanking region
using our SVM model to prioritize them as potential cardiac enhancers. Of all SNPs, the SVM
scored 1054 as having enhancer probability ≥ 0.8. We found that distance of these enhancers
from the corresponding GWAS SNP was significantly shorter than expected (Wilcoxon p-value
= 3.9E-05).

2.3. Cardiac enhancers near cardiac GWAS SNPs are enriched for
cardiac regulator motifs

Cardiac transcription is primarily regulated by members of GATA, MEF2, STAT, NF-AT,
Nkx, and FOX families of TFs.19–22 Next, we tested whether predicted enhancers near GWAS
SNPs are enriched for known cardiac TF binding motifs. We first constructed three SNP sets:
(1) eSNPs: comprised of the top 500 SNPs in LD with a GWAS SNP ranked by the SVM score,
(2) pSNPs: the top 500 SNPs in the LD with a GWAS SNP ranked by mean P300 tag density
(using bigwig summary tool from UCSC) in human heart, (3) gSNPs: The GWAS SNPs
themselves. For each SNP we extracted the 1kb genomic flanking region resulting in three
sets of sequences. For each sequence we determined the binding sites corresponding to 981
vertebrate motifs in TRANSFAC23 whose motif match score (using our own tool24) was in the
top 95th percentile of scores achievable by that motif. We then determined the enriched motifs
in one set of sequences relative to the other using Fisher Exact Test. Because enhancers have
distinctive compositions which can bias motif enrichment, we normalized the two sequence
sets for their GC composition via random sampling prior to motif enrichment analysis. When
comparing SVM SNPs to the GWAS SNPs, 50 motifs were enriched with p-value ≤ 0.05, 11 of
which corresponded to multiple representatives of GATA, STAT, NF-AT, Nkx families. When
we compared the P300 SNPs with GWAS SNPs, among the 34 enriched motifs with GATA,
Nkx and STAT families were represented by 4 motifs. Importantly, when we compare SVM
SNPs directly to the P300 SNPs, GATA, FOX, MEF2 families of TF motifs were found to
be enriched among the 32 enriched motifs. Figure 4 shows the top 50 motifs significantly
enriched in SVM SNPs compared to GWAS SNPs or P300 SNPs. When we restrict the motif
search to 20 bps flanking the SNP using same parameters, we still observe enrichment of NF-
AT and STAT motifs in SVM SNPs relative to GWAS SNPs. However similar enrichment is
also observed in P300 SNPs. It is possible that the SNP affect the formation of cis regulatory
modules indirectly. Further investigation is required. In summary, all core cardiac TF families
are enriched near eSNP loci, relative either to GWAS SNPs or to P300-bound regions. The
overall conclusion was comparable when we used top 200 SVM scores and top 200 P300 score
to be construct eSNP and pSNP sets. We note that because of small numbers, the p-values
were modest and did not qualify a strict FDR threshold.
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(a) SVM VS GWAS (b) SVM VS P300

Fig. 4: Significantly enriched motifs in SVM SNPs. The size of each TF label is proportionsal
to its significance. For instance, the p-value for GATA1 in (a) is 0.001 and in (b) is 0.004. The
largest p-value is 0.05.

2.4. Cardiac enhancers near cardiac GWAS SNPs are likely to regulate
the nearby genes

Next we tested whether the predicted enhancers are likely to regulate genes. While enhancers
can in principle regulate non-neighboring genes, a majority of them do regulate nearby genes,25

therefore, we focused only on the gene promoter closest to the SNP. For a SNP locus and a gene
promoter, we estimated the likelihood of SNP locus to regulate the gene as the correlation
between the DNase-I hypersensitivity (DHS) at the locus and the expression of the genes
across 15 cell types in which DHS and RNA-seq was performed in parallel (see Methods); this
approach to link a putative enhancer to a target genes is similar to Ref. 11. We constructed
three comparison SNP sets. gSNP comprised of 229 GWAS SNPs. To construct eSNP set, we
selected the SNP with highest SVM score in LD with each GWAS SNP as long as the SVM
score was ≥ 0.8, resulting in 115 eSNP, all of which were intronic or intergenic. Similarly, to
construct pSNP set, we selected the SNP with highest P300 mean tag density in LD with each
GWAS SNP as long as the P300 tag density was ≥ 1, resulting in 58 pSNP. For each SNP
we obtained the closest gene promoter. We then performed three pair-wise comparisons. For
instance, when comparing eSNPs with gSNPs, we focused on genes that were closest to both
an eSNP and a gSNP. Then we computed two DHS-expression correlations - between eSNP
locus and the gene and between gSNP and the same gene. Given all such pairs of correlations
we tested whether eSNP-gene correlation was greater than the gSNP gene correlation using
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paired one-side Wilcoxon test. We found that eSNP loci were more likely than gSNP loci to
regulate the closest gene (based on 124 genes, p-value = 0.03), eSNP loci were more likely
than pSNP loci to regulate the closest gene (based on 50 genes, p-value = 0.01), and pSNP
loci were not more likely than eSNP loci to regulate the closest gene (based on 23 genes, p-
value = 0.87). We also checked whether the distance of eSNPs from the closest gene promoter
was shorter than that for gSNP or pSNP and we did not observe a statistical difference. The
results suggest that SVM predicted enhancers are more likely to regulate the nearby genes
relative to both the original GWAS SNPs and P300 predicted enhancers.

2.5. Genes near cardiac enhancers are enriched for cardiac function

Next we tested whether the genes uniquely closest to the eSNPs provide greater insight into
the cardiovascular disease phenotype, relative to genes uniquely closest either to gSNPs or
the pSNPs. We used the same criteria as above to obtain the closest gene lists, but unlike
the expression analysis above we retained only the unique genes in each list. Unfortunately,
the uniqueness requirement greatly reduced the number of genes with 94 for gSNP, 17 for
eSNPs and only 2 for pSNPs. We then used ToppGene26 to compare enrichment of disease
categories in the three gene lists. ToppGene uses three sources for disease ontology terms -
GWAS, Comparative Toxicogenomics Database, and OMIM. We excluded GWAS to avoid
circularity. As expected, the pSNP gene list did not show any enrichment. At FDR ≤ 0.05 the
genes near gSNP also did not show enrichment for any disease term. The 17 genes in the eSNP
list include NOS3 and MYH7. NOS3 alone showed enrichment for 2 terms - “Hypertension,
Pregnancy-Induced” and “Coronary Vasospasm”. MYH7 alone was enriched for 5 distinct
terms from OMIM database, all immediately related to myopathy or cardiomayopathy. The
results are based on very limited dataset and one cannot draw general conclusion but they
suggest that SVM can uniquely lead to genes directly relevant to the phenotype.

3. Conclusion

Here we present a SVM model for human cardiac enhancers based on four epigenomic marks
H3K4me1, H3K27me3, DHS and P300, each of which have previously shown to be associ-
ated with enhancers in various cell types. While P300 is known to bind to tissue specific
enhancers,12 and have been used as the gold standard for estimating accuracy of previous
enhancer prediction approaches,14,15,17 many P300 bound regions fail to exhibit enhancer ac-
tivity.12,13 Our SVM trained specifically on experimentally human cardiac enhancers validated
in trangenic mouse, can not only predict other validated enhancers with high accuracy, it can
also distinguish validated enhancers from the regions that were bound by P300 but failed to
exhibit enhancer activity in transgenic mouse.

There are three prior approaches to predict enhancers. Narlikar et al. use clusters of known
cardiac TF motifs as predictor of cardiac enhancers.17 Lee at al. train a SVM model based on
genomic features based on cardiac P300 bound regions.14 Another SVM model for CD4+ T-cell
enhancers based on epigenomic features, again, using P300-bound regions as the gold standard
was proposed in.15 We have demonstrated the ability of our SVM model to distinguish between
active and inactive P300 bound sites. Additionally, direct comparison of prediction accuracy
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on novel validated cardiac enhancers of our SVM model with that of P30014 and Narlikar et
al.,17 explicitly shows that active enhancers have specific epigenomic properties not captured
just by P300 binding or by clusters of putative binding sites. Genomic regions bound by P300
may not be active. Therefore, use of additional features add the tissue specific context to the
model. Furthermore, kernel transformation of feature space used by SVM builds a non-linear
classifiers. Thus it captures a greater variety of enhancers by recognizing a wider combination
of epigenetic factors.

It has been previously suggested that a better knowledge of context-specific enhancers
can help interpret GWAS signals.8 However, this reasonable assertion has not been tested
explicitly on a specific disease area. Here we use our enhancer prediction tool to interpret
GWAS studies related to cardiovascular phenotypes. We found an enrichment of high scoring
cardiac enhancers near cardiac GWAS SNPs. Analysis of these putative enhancers suggest
that (1) they are enriched for known core cardiac transcription factor binding sites, (2) they
are likely to regulate nearby genes, and (3) they can uniquely point to certain genes involved
with cardiac function and heart disease.

4. Methods

4.1. Correlating DNase Hypersensitivity and Gene Expression

To assess correlation of chromatin accessibility at a putative enhancer to expression level of
a putative target gene, we extracted genome wide DHS as well as RNA-seq data from 15
cell types from a single study (GSE29692, GSE23316) representing a breadth of cell types
HepG2, GM12878, A549, HeLa-S3, AG04450, BJ, NHLF, NHEK, HUVEC, h1-Hesc, HMEC,
HSMM, K562, MCF-7, SK-N-SH RA. For the enhancer region we extracted the DHS tag
density in each of the 15 cell types using bigWigSummary tool. Correspondingly, for the
putative target genes we obtained the gene expression (RPKM) in the same set of cell types.
We then estimated the pearson correlation between DHS and gene expression as an indicator
of interaction between the enhancer and the gene.

4.2. More on SVM and grid search criteria

There are several references available for SVM.27–30 Here we give a brief review to appreciate
our criteria for cross validation and grid search on the parameter space. In SVM, vector in
original feature space is projected onto a higher dimensional feature space using kernel function
(usually non-linear). Because of this the data which in original space is not linearly separable,
becomes separable in transformed space, where the SVM tries to find a maximum margin
hyperplane that separates the positive and negative set in the kernel space. SVM, employs
a structural risk minimization (SRM) method31,32 to obtain the hyperplane, which tries to
balance complexity of the model while minimizing the empirical risk. Therefore, relative to
traditional methods based on empirical risk minimization, SVM is better suited to handle
the problem of overfitting. SVM chooses a maximum margin hyperplane by identifying subset
of training data (called support vectors), which would be closer to the optimal separating
plane. Support vectors are cases which are most difficult to classify as positive or negative.
Therefore to ensure good performance of SVM classifier, it is necessary to have a set of extreme
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examples (in both positive and negative example in the training set) that would qualify as
support vectors.

Our positive training set included 330 (80% of 415) regions while the negative training set
included 1000 regions. We weighted the positive and negative examples to accommodate for
the difference in sizes. An exhaustive search over the weight space was conducted to obtain
best possible cross-validation result. The weight used for negative and positive set respectively
was 1 and 1.2. Furthermore, we defined our criteria for grid search based on the observation
that randomly sampled negative set may contain enhancer regions and therefore, it is not
desirable to minimize false positive rate to extreme. In addition, we required that difference
between two rates is below a fixed threshold. This is equivalent to maximizing the F-score,
while keeping difference of true positive (TP) and true negative (TN) rate below a fixed
threshold.
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Overview

Biology has become an information science, with an increasing capacity to generate data
of great relevance to human disease. An important example is The Cancer Genome Atlas
(TCGA) [1], which generates data on well-characterized oncology samples and provides a
public portal for linking gene mutation and regulation to cancer therapies and outcomes.
These types of well-characterized data sets provide an opportunity for researchers from
many fields to contribute new ideas for computational analysis.

One theme represented in the 2013 Proceedings is analysis of such public data sets by
algorithms known from computer science but less often applied in computational biology
and bioinformatics. Previous types of algorithms have included support vector machines
[2], graph diffusion [3, 4, 5], and Steiner trees [6, 7]. Algorithms represented this year
include set cover (Przytycka and coworkers), color-coded paths (Kahveci and coworkers),
and regularized regression (Gevart and Plevritis).

A second theme is using known biological networks and pathways to organize calcula-
tions. Perhaps the most prevalent example is Gene Set Enrichment Analysis (GSEA) [8].
Lussier and co-workers describe extensions of GSEA to data sets from individuals rather
than groups, and Ritchie and coworkers use interactions to organize analysis of interaction
terms in genome-wide association studies (GWAS).

New algorithms from computer science

Przytycka and coworkers extend a set-cover algorithm from genes [9] to modules. These
cover algorithms work on bipartite graphs, here with one set of vertices representing disease
cases, a second set of vertices representing features (genes or gene modules), and edges
indicating that the gene or module is dysregulated in a specific disease case. The k-cover
optimization problem is to identify the smallest number of features so that each case has
edges to at least k features. The authors generalize this NP-hard problem by also assigning
a cost for each module that is reduced when the genes within the module have concordant
expression regulation. A fast, greedy forward selection adds modules incrementally, either
from a pre-calculated set or by defining modules on the fly. The method is effective in
recovering known subtypes of glioblastoma multiforme. This type of approach, based on
support, recalls approaches such as the Apriori algorithm for itemset mining [10] and the
Teiresias algorithm for pattern discovery [11].

Kahveci and coworkers investigate an algorithm to identify signaling pathways of defined
length. For a pathway desired to havem steps, a possible algorithm explored is to color each
vertex one of m colors, and then to search for paths that include one vertex of each color.
It remains to be seen whether this method is competitive with other related approaches,
such as prize-collecting Steiner trees [7] and flow-based methods [12] that have fast, optimal
solvers. The restriction to length m paths is motivated by a requirement that signaling
pathways include a membrane-bound receptor, cytoplasmic signaling proteins, and nuclear
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transcription factors; constraints based on this biology and directed interactions may also
perform better than path length restrictions.

Gevart and Plevritis also describe methods motivated by TCGA data. This approach
generally follows successful methods introduced by others that use genetic and epigenetic
features (copy number variation, methylation) to suggest driver genes, and then build
out downstream pathways using regularized regression [13, 14] or other network-based
association tests [15]. While predictions of expression perform better than random for
an ovarian cancer data set, the top drivers predicted for a gliobastoma multiforme data
set perform no better than a random collection. These results point to the uncertainty
of applying established algorithms to new data sets and the importance of randomization
tests for unbiased assessment of performance.

Pathways as a guide to analysis

Lussier and coworkers investigate personalized RNA-seq data by generalizing a single-
sample method they developed for microarray data [16]. The main idea is to generate
pathway scores by comparing expression levels between pathway and non-pathway genes.
The authors find that converting raw expression values to ranks improves performance for
many tasks. While the method is assessed to be feasible, traditional analysis of sample
groups still appears to out-perform single-sample analysis.

Ritchie and coworkers investigate interaction terms in genome-wide association stud-
ies. Gene-environment interactions are already addressed by conventional methods, but
gene-gene interactions are more challenging for both computational and statistical reasons.
Computing all gene-gene interactions, or more accurately SNP-SNP interactions, incurs a
large computational cost. Furthermore, the large number of tests requires an interaction
term to be large for adequate power. The method proposed by Ritchie and coworkers, and
also explored by others previously, is to restrict tests to SNPs to pairs in genes that have
prior evidence for participating in a shared biological process or pathway. The thresh-
old for evidence is increased until the candidate pairs are reduced to an acceptably small
number, for example equivalent to the number of single-SNP tests. One challenge with in-
cluding interaction terms is that tests for marginal effects may actually have greater power
even when the interaction term is non-zero. For example, dominant and recessive genetic
models are equivalent to interaction terms at a single locus, and a one degree-of-freedom
test of a linear model for phenotype versus allele dose can have greater power than a two
degree-of-freedom test that includes the interaction term. In an application to a cataract
phenotype, the authors test 57,376 two-SNP models, requiring a p-value of 8.7× 10−7 for
genome-wide significance. The best p-value is 3.4×10−6, however, typical of other searches
for that have failed to identify interactions with statistical significance. While it may be
feasible to identify interaction terms with greater power from larger population sizes, the
lack of significance sets an upper limit on the magnitude of interaction terms and hence a
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possible limit on the biological relevance. Furthermore, it remains unclear whether genes
identified through interaction terms would have been missed by conventional marginal tests
on individual SNPs.

Future perspective

The contributions to this Proceedings consider two types of network models: on the one
hand pre-calculated modules or curated pathways, on the other modules or pathways dis-
covered from biological data. An important future direction may be module searches that
use high-throughput data but are biased by existing network models. Generative models,
such as stochastic block models, may provide an appropriate framework for network anal-
ysis biased by empirical knowledge. These models have received increasing attention for
both static module discovery and dynamic network evolution [17, 18, 19, 20].

A critical limitation of network biology is the limited amount of high-quality network
data. High-throughput protein-protein interaction data sets are available for human [21]
but are incomplete [22, 23, 24]. Interactions between transcription factors to regulated
genes provide crucial links between protein signaling and gene regulation, but are even less
well mapped for human. Experimental progress here could result in dramatic gains for
computational methods that already exist but which have been limited by lack of data.
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Discovering signaling pathways in protein interaction networks is a key ingredient in understanding
how proteins carry out cellular functions. These interactions however can be uncertain events that
may or may not take place depending on many factors including the internal factors, such as the
size and abundance of the proteins, or the external factors, such as mutations, disorders and drug
intake. In this paper, we consider the problem of finding causal orderings of nodes in such protein
interaction networks to discover signaling pathways. We adopt color coding technique to address this
problem. Color coding method may fail with some probability. By allowing it to run for sufficient time,
however, its confidence in the optimality of the result can converge close to 100%. Our key contribution
in this paper is elimination of the key conservative assumptions made by the traditional color coding
methods while computing its success probability. We do this by carefully establishing the relationship
between node colors, network topology and success probability. As a result our method converges to
any confidence value much faster than the traditional methods. Thus, it is scalable to larger protein
interaction networks and longer signaling pathways than existing methods. We demonstrate, both
theoretically and experimentally that our method outperforms existing methods.

Keywords: protein interaction networks; signaling pathways; color coding; chromatic polynomial

1. Introduction

Studying interactions between proteins has been of utmost importance in understanding how
proteins work collectively to govern cellular functions.1,2 Such collection of interactions among
proteins is called a protein interaction network. The interactions are uncertain events. They may
or may not take place depending on the internal factors, such as the size and abundance of the
proteins, or the external factors, such as mutations, disorders and drug intake. Mathematically,
a protein interaction network is often modeled as an edge-weighted undirected graph where
each node denotes a protein and each edge represents an interaction between a pair of proteins.
The weight of an edge denotes the level of confidence that this interaction truly exists.

Computational analysis of protein interaction networks has been essential in identification of
signaling pathways. A signaling pathway is a series of proteins in which each protein participates
in transmitting biological information by modifying its successor through an interaction. Thus,
signaling pathways can be viewed as simple paths in protein interaction networks.3 One outcome
of the uncertainty of the interactions is that the pathway that transmits signals between two
specific sets of proteins (e.g., from membrane receptors to transcription factors) may differ as
the set of interactions change. Finding possible pathways in the presence of such uncertainty
has great potential in numerous applications including identification of drug targets, studying
complex diseases, drug-drug interaction and metabolic engineering.

The confidence value of an interaction between two proteins is often considered as the prob-
ability that a signal is transmitted between those two proteins. Scott et al. conjectured that a

Pacific Symposium on Biocomputing 2013

111



signal tends to move through the most probable pathway4 (i.e., the pathway with the highest
product of interaction confidence values). The following defines the Minimum Weight Path-
way Identification problem which is identical to the problem of identifying the most probable
pathway in a protein interaction network.
Problem. (Minimum Weight Pathway Identification) Consider a protein interaction
network G = (V,E,w) where V denotes the set of proteins and E denotes the set of interactions.
Let us denote the confidence for each interaction in E with function λ() : E ⇒ [0, 1]. We define the
function w() on the edges as w() = − log λ(). Assume that we are given a set of starting proteins
S ⊆ V and a set of target proteins T ⊆ V . Given a path length denoted by m, the problem is to
find a path Φ = v1 → v2 → . . . → vm with no repeating proteins, where

∑m−1
i=1 w(vi, vi+1) is the

minimum among all paths with v1 ∈ S, vm ∈ T and vi ∈ V , ∀i ∈ {1, 2, . . . ,m}.
Scott et al. showed that the traveling-salesman problem is polynomial-time reducible to the

problem above;4 therefore it is NP-hard. They developed a method using the color-coding tech-
nique of Alon et al.5 The idea of this method is to randomly assign each node in the graph one of
m different colors. A pathway is colorful if and only if all of its nodes are in different color. They
then search for an optimal colorful pathway. Finding a colorful path is computationally much
cheaper than finding a path without assigning colors. The drawback is that the optimal path
may not be colorful in a random color assignment, leading color coding to find a sub-optimal
result. To deal with this, it repeats the coloring process for several iterations. The confidence
in the optimality of the result monotonically increases with each iteration until it reaches a
given level of confidence. As we elaborate later in Section 2, the confidence value depends solely
on the pathway length m and does not capitalize on readily available information such as the
network topology and color assignment. As a result, the method provides a theoretically correct
but very conservative confidence value. Hence it requires many iterations in order to achieve a
given confidence level, leading to an unnecessarily inefficient running time performance.

Gülsoy et al.6 presented an enhanced color-coding technique called k-hop coloring. A colored
network is k-hop colorable if the shortest path between all pairs of same-color nodes is more
than k hops in length. This method exploits the network topology and the node colors to assign
the network a maximal value k such that the network is k-hop colorable. This additional piece
of information allows for higher success probability at each iteration, yielding fewer iterations
than that by Scott et al.4 However, subnetworks with high connectivity quickly diminish the
ability to k-hop color the whole network for large values of k. For example, a network containing
a clique of size m cannot be colored with (m− 1)-hop coloring using m colors.6

Our contribution. In this paper, we consider the problem of finding signaling pathways in
protein interaction networks. We develop a new coloring method that overcomes the bottlenecks
of existing coloring methods by Scott et al.4 and Gülsoy et al.6 Our contribution comes from a
deeper understanding of the relation between network topology, random color assignment and
confidence value. We assign a value that we call kmax to each node individually by studying the
colors of all the nodes in the network. kmax value of a node v at an iteration is the maximal value
of k such that there is no other node u that is reachable from v in k hops such that both u and
v have the same color. We also study how this reflects on the resulting success probability for
each iteration. Given different kmax values for each node on a pathway, we show how to obtain
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a bound on success probability. Based on these findings, we present a new method for detecting
signaling pathways in protein interaction networks using an enhanced k-hop coloring technique.
Given the parameter pathway length m, we start by randomly assigning one of m colors to each
node in the graph, we then extract the optimal colorful pathway. We then calculate our new
bound on success probability. We repeat this process until the cumulative success probability
is at least equal to a given confidence level. Our experiments demonstrate that our method
converges to high confidence values much faster than the existing methods including Scott et
al.4 This enables computational analysis of larger networks or longer pathways.

The rest of the paper is organized as follows. Section 2 discusses the background and related
work. Section 3 describes our method in detail. Section 4 presents experiments evaluation.
Finally, Section 5 concludes the paper.

2. Background

A number of methods have been developed so far to identify signaling networks from protein
interaction networks. Kelley et al.3 detected conserved signaling pathways between related
organisms by performing global alignment between their protein interaction networks. Shlomi
et al.7 introduced QPath, a method for querying protein interaction networks for pathways using
known homologous pathways as queries. Both Kelley et al.3 and Shlomi et al.7 are comparative
methods. They require knowledge of multiple interaction networks.

Lu et al.8 presented a divide-and-conquer algorithm to find signaling subnetworks in protein
interaction networks. They scored the resulting subnetworks based on the similarity of expres-
sion profiles of their nodes to the given source and destination nodes. This method aims to
detect paths whose proteins are highest in expression similarity, and thus it does not utilize the
confidence in the interactions. Steffen et al.9 used exhaustive search to list pathway candidates
in protein interaction networks, and scored each one based on how similar the expression pro-
files of its genes are. Bebek et al.10 presented a method for finding new signaling pathways using
association rules of known ones. The time complexity of exhaustive graph search is exponential
in terms of the network size, and hence is very inefficient. Gitter et al.11 presented a method
for discovering signaling pathways by adding edge orientation to protein interaction networks.
They selected an optimal orientation of all edges in the network that maximizes the weights
of all satisfied length-bound paths. They proved that this problem is NP-hard, and provided
three approximation algorithms for it. As shown in their results, these methods do not scale
well with increasing number of source and destination nodes and path length.

The closest studies to that presented in this paper are those by Scott et al.4 and Gülsoy
et al.6 The former detected signaling pathways in protein interaction networks using color
coding. The latter developed topology-aware color coding for network alignment. We describe
both methods in Section 1. Both methods run multiple coloring iterations. Let us denote the
probability that the coloring at an iteration is successful (i.e., true optimal path is colorful) with
Ps. The probability that at least one out of r iterations is successful is 1− (1− Ps)r. Following
from this, in order to ensure confidence of at least ε (0 ≤ ε ≤ 1), they run r iterations, such that
1− (1− Ps)r ≥ ε. Both methods calculate success probability as

Ps =
m!

Nc
(1)
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where Nc is the number of coloring assignments possible for the optimal pathway. They differ
in the way they compute Nc. Scott et al.4 calculated Nc = mm. Gülsoy et al.6 calculated
Nc ≤ (m− k)m−k

∏k−1
i=0 (m− i) where k is the value assigned to the network such that it is k-hop

colorable. Notice that in Equation 1, smaller values for Nc are desirable. This is because small
values for Nc increase success probability, and thus reduce the number of iterations needed to
attain a given confidence level ε. This paper develops a novel method that computes a much
smaller upper bound on Nc than both of these approaches, leading to higher bound on Ps.

3. Method description

This section describes our method in detail. Section 3.1 presents a high level description
of our method. Section 3.2 makes key definitions needed by our method. Section 3.3 defines
how we compute probability of success for our method. Section 3.4 theoretically shows why the
performance of our method is better than or the same as that of existing methods.

3.1. An overview of our method

Consider a weighted undirected graph G = (V,E,w), a path length m, a set of starting and
target nodes S and T respectively, with S, T ⊆ V . Scott et al. has shown that it is possible to
find the minimum weight path of a m nodes from S to T in G using dynamic programming.4

In principle, our method follows the same steps. Algorithm 3.1 presents our method at a high
level. The algorithm works iteratively. At each iteration we randomly color the network (Step
3). We then use dynamic programming to find the minimum weight colorful path (Step 4). The
dynamic programming works as follows. Let us denote a coloring function with c() : V =⇒ C.
We dynamically tabulate the minimum weight of a colorful path colored only using C ′, starting
within S and ending at v, using the following recurrence:4

W (v, C ′) = min
u:c(u)∈(C′\{c(v)})

W (u,C ′\{c(v)}) + w(u, v), |C ′| > 1 (2)

where W (v, {c(v)}) = 0 if v ∈ S and ∞ otherwise. Once we find the best colorful path in that
iteration, we store it in a min-heap according to the weight of the path (Step 5). We then
compute the probability that the current iteration was successful in finding the optimal path
(i.e., minimum weighted path regardless of being colorful or not) (Step 6) and update our
confidence in the best result seen so far (Step 7).

Algorithm 3.1 Compute the minimum weight path
Require: Input network G = (V,E,w), starting and target node sets S ⊆ V and T ⊆ V
Require: Color set C = {c1, c2, . . . , cm}
Require: Confidence cutoff ε
1: P ← 0 {Initialize overall success probability}
2: while P < ε do
3: Assign colors to the nodes in V randomly from the set C
4: Φ← Find the minimum weight colorful path of length m in G
5: Store Φ in the min-heap of solutions observed so far if it is a new solution.
6: Compute the probability of success Ps for the current coloring iteration.
7: P ← 1− (1− P )(1− Ps) {Update the overall success probability}
8: end while
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As we noted earlier, Algorithm 3.1 is very similar to the method by Scott et al.4 So, a
legitimate question is what is the big challenge addressed in this paper? The answer lies in
Step 6 of the algorithm where we compute the probability of success at each iteration. This
step is missing in all the color coding methods to the best of our knowledge, including Scott
et al.4 among others.5–7,12 All these existing methods precompute a probability of success prior
to the iterations and use the same probability value throughout the iterations (see Equation 1
and Section 2). As a result, they make extremely conservative assumptions which have to hold
regardless of which node gets which color. Our contribution is to eliminate those worst case
assumptions and recompute the probability of success at each iteration by carefully inspecting
the colors of all the nodes. We explain how we do this in the following sections.

3.2. Basic definitions and model

a b c

d e f

c1 , 3

c2 , 1 c3 , 0 c2 , 1

c3 , 0 c1 , 3

Fig. 1. A hypothetical protein inter-
action network with six nodes {a, b,
c, d, e, f}. The network is colored us-
ing three colors {c1, c2, c3}. Each node
carries two labels. The label on the left
denotes the color assigned to this node.
The one on the right is the node’s kmax

value. For instance node d is assigned
to color c2 and its kmax value is 1 (i.e.,
there is no other node assigned to color
c2 within 1-hop of node d).

In this section, we build the mathematical model that
will help us compute the probability of success in each
iteration. Assume that we are given a protein interaction
network similar to the one described in Section 1, denoted
by G = (V,E,w), where w(u, v) = −log λ(u, v). Also assume
that the colors of the nodes are already assigned in the
current iteration. We denote the set of possible colors with
C = {c1, c2, . . . , cm} and the color of node v ∈ V with c(v).
We start by discuss several key concepts.

Definition 1. (Simple path) Given a network G =

(V,E), a simple path from u to v (u, v ∈ V ) is an or-
dering < v1, v2, . . . , vk >, of a subset of the vertices of G
such that v1 = u, vk = v, (vi, vi+1) ∈ E and vi 6= vj for all
i 6= j.

Consider two nodes u and v in G. Let k be a positive integer. We say that v is reachable
from u in k hops if there is a simple path from u to v that contains k edges.

Definition 2. (k neighborhood of a node). Let v ∈ V be a node in G, and k be a
nonnegative integer. We define the k neighborhood of node v as the set of nodes in V \{v} which
are reachable from v in k hops or less. We denote this set using notation Ψk(v).

Figure 1 shows an example of a colored network. In this example, Ψ1(a) = {d} because the
node d is the only node that is reachable from the node a in 1 hop (or less). Similarly, Ψ1(f) =

{c, e}, Ψ2(a) = {d, e} and Ψ2(f) = {c, e, b, d}. Following definition establishes the relationship
between each node of the network and the rest of the network based on the colors assigned to
all the nodes.

Definition 3. (kmax value of a node). Let v ∈ V be a node in a colored network G. The kmax
value of v, denoted with kmax(v), is the maximal value of k such that the k neighborhood of v does
not contain a node with the same color as v. i.e., kmax(v) = argmaxk{∀u ∈ Ψk(v), c(u) 6= c(v)}.
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Figure 1 shows the kmax values for the nodes in the network. For example, the colors of all
the nodes in Ψ1(f) = {c, e} are different than the color of f . Expanding the neighborhood of f
to two, we get Ψ2(f) = {c, e, b, d}. In this set, c(d) = c(f) = c2. Therefore kmax(f) = 1. Similarly,
kmax(a) = 3 and kmax(b) = 0. Next definition characterizes a simple path of the network.

Definition 4. (kmax configuration of a path). Consider a simple path Φ = v1 → . . .→ vm
of m nodes in G. The kmax configuration of Φ is the vector [kmax(v1), . . ., kmax(vm)].

As an example, in Figure 1, the kmax configuration of the path Φ = a→ d→ e→ f is [3, 1,
0, 1]. That for a→ d→ e→ b is [3, 1, 0, 0].

3.3. Bounding the probability of success tightly

In this section, we focus on one coloring iteration and describe how we compute the prob-
ability of success in that iteration. Consider any colorful path with m nodes. The number of
ways to assign colors to the nodes of that path while keeping it colorful is m!. Notice that this
is equal to the numerator in Equation 1 for probability of success. The denominator in that
equation, denoted by Nc, is the total number of ways to color that path regardless of whether
it yields a colorful path or not.

Notice that there can be many different color assignments that yield the same kmax configu-
ration for the same path. Also, as we will show later, the number of possible color assignments
to the nodes of a path can be different for different kmax configurations. Indeed, the kmax con-
figuration of a path describes the constraints imposed on all the nodes of that path about how
many alternative colors can be assigned to them. Following from this observation, we first build
a new undirected and unweighted graph, called the constraint graph from the kmax configu-
ration. By utilizing the constraint graph we transform the problem of finding the number of
possible colorings to the chromatic polynomial computation problem. Next, we describe how
we build the constraint graph and how we utilize it to find the number of colorings.

a b c d e f

2 1 2 3 2 1

(a)

a

b

c

d

e

f

(b)

Fig. 2. (a) An example 6-node path
with its kmax configuration shown
above it. (b) The corresponding con-
straint graph GΦ.

Building the constraint graph. Assume that we are
given a simple path Φ = v1 → v2 → . . . → vm of m nodes
along with its kmax configuration [kmax(v1), kmax(v2), . . .,
kmax(vm)]. We build a constraint graph with m nodes {u1,
u2, . . ., um}. We denote the constraint graph as GΦ =

(V Φ, EΦ) where V Φ is its set of nodes and EΦ is its set of
edges. For each pair of nodes ui and uj in V Φ, we draw an
undirected edge between them if the following condition
holds:

j − i ≤ max{kmax(vi), kmax(vj)}.

Notice that the indices i and j above show the posi-
tions of the nodes on the given path Φ. As a result, an edge
between ui and uj in the constraint graph indicates that vi
and vj can not be of the same color according to the under-
lying kmax configuration. Consider any coloring instance I that obeys the kmax configuration. Let
vi and vj be any two nodes having the same color in I. Therefore j−i > max{kmax(vi), kmax(vj)}.
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Therefore, the corresponding ui and uj in GΦ are not adjacent. Hence, I also obeys the con-
straints of GΦ. A similar argument can be made in reverse. Thus, each possible coloring of
the given path Φ that obeys the kmax configuration corresponds to a chromatic coloring of the
constraint graph GΦ and vice versa. Figure 2 shows an example of a path, its kmax configuration
and the corresponding constraint graph.
Computing the number of colorings. Formally, the value of the chromatic polynomial
A(GΦ,m) is equal to the number of ways of coloring GΦ using m colors without any pair of
adjacent nodes having the same color. Applying chromatic polynomials on the constraint graph
of a path yields the number of possible colorings of that path. We use an edge-contraction
recursive rule based on the fundamental reduction theorem.13 To describe this, we first define
two contraction operators on graph GΦ. The first one removes one edge, (u, v) from the edge
set of GΦ. We denote this with GΦ − (u, v). The second one merges two nodes, u and v, into a
single node uv. To do this, we insert a new node uv to GΦ. We also insert an edge between uv

and all the nodes which are adjacent to either u or v. We then remove the nodes u and v along
with all the edges incident to them. We denote this merge operation with GΦ/{u, v}. Using this
notation, the chromatic polynomial is computed using the following recurrence relation

A(GΦ,m) = A(GΦ − (u, v),m)−A(GΦ/{u, v},m) (3)

Finally, an important question is: which path should we choose to use its corresponding
kmax configuration as input to our method? Ideally, this path should be the optimal path that
we don’t know and are looking for. Instead, we use the optimal colorful path we find at each
iteration. The main rationale behind this choice is that we expect that the local optimal path
of a random coloring instance will have common nodes and edges with the overall optimal
path. This is because the optimal path will contain edges with small weights. In Section 4.1 we
empirically show that this indeed yields a good approximation to the value of Ps in practice.

Now we are ready to compute the probability of success, Ps, for a coloring instance of our
method (i.e, Step 6 of Algorithm 3.1). At each iteration, we first build the constraint graph
GΦ of the best colorful path Φ found at that iteration. We compute the number of chromatic
colorings of GΦ as A(GΦ,m) as described above. We then set Nc = A(GΦ,m) and compute the
probability of success using Equation 1 as Ps = m!/Nc = m!/A(GΦ,m).

3.4. Analysis of the probability of success

One key question would regarding how we compute the probability of success is: Is it guar-
anteed to be better than existing methods including Scott et al.4 and Gülsoy et al.6? In this
section, we answer this theoretically. We start by defining a partial order between kmax config-
uration of a paths as follows: Consider two such configurations x = [x1, x2, . . ., xm] and y = [y1,
y2, . . ., ym]. We say that x ≤ y if and only if ∀i, xi ≤ yi.

Proposition 3.1. Consider two kmax configurations x and y of two simple paths each having
m nodes. Let us denote their corresponding constraint graphs Gx and Gy respectively. If x ≤ y

then A(Gx,m) ≥ A(Gy,m).

We omit detailed proof of Proposition 3.1 due to space limitation. However, briefly it follows
from the observation that x ≤ y implies that every edge in Gx also appears in Gy. However, the
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opposite may not be true. In other words, Gx has only a subset of the constraints imposed by
Gy. Thus, the chromatic polynomial A(Gx,m) cannot be less than A(Gy,m).

Proposition 3.1 has two important implications. First, traditional color coding method (such
as Scott et al.4) computes Nc = mm. This is the most conservative case in our model when the
kmax configuration is [0, . . ., 0]. Clearly, this will yield the worst (i.e., largest) possible value
for the chromatic polynomial since [0,. . . , 0] ≤ y for any kmax configuration y. Second, let t be
the smallest kmax value among all the nodes in the network. The formulation by Gülsoy et al.6

corresponds to kmax configuration is [t, . . ., t]. Let y be the kmax configuration of any m-node
path in the same network. We have [t, . . ., t] ≤ y since all the entries of y have value t or
more. We conclude from these two implications that our method is guaranteed to produce less
or same Nc value as the mentioned existing methods depending on the network topology and
the color distribution. Smaller values for Nc implies larger success probability, and thus, faster
convergence to the desired confidence value.

As an example, our method computes the value of Nc for the path shown in Figure 2(a) is
5,760, while Scott et al.4 and Gülsoy et al.6 yield Nc = 46,656 and 18,750 respectively for the
same example. According to Equation 1, such a decrease in the value of Nc leads 8.1 and 3.2
times larger success probability than the two above-mentioned methods respectively.

4. Experiments

In this section, we evaluate our method on real protein interaction networks. We imple-
mented our method in Java. We ran our experiments on Linux machines with 2.2-GHz dual
AMD Opteron dual core processors and 3 GBs of main memory.

Datasets We used the protein interactions of H. sapiens and R. norvegicus taken from the
MINT database.14 The first one is a large dataset of 15,472 interactions among 6,122 proteins.
The second one is a smaller dataset containing 806 interactions among 631 proteins. Each
interaction is described by two interacting proteins and a reliability score between 0 and 1 that
represents the level of confidence that this interaction exists. MINT calculates reliability scores
of interactions from available evidence, such as the size and type of the experiment reporting
the interaction, sequence similarity of ortholog proteins.15

We use the negative logarithm of MINT reliability scores as edge weights. In all experiments,
we find pathways starting within the set of membrane proteins and ending within the set of
transcription factors. We use the Gene Ontology database16 to identify these sets. We identify
membrane proteins as the ones annotated with the terms GO:0005886 and GO:0004872, and
transcription factors as those with GO:0000988, GO:0001071 and GO:0006351.

4.1. Performance assessment

In Section 3.4, we have already shown theoretically that our method is guaranteed to be at
least as fast as the traditional color coding methods. The gap however depends on the topology
of the underlying protein interaction network. In this section, we experimentally evaluate how
the performance of our method compares to Scott et al.4 as a leading method. We run both
methods on our datasets for 500 iterations. We repeat this experiment for pathway lengths =
{4, 5, 6, 7, 8, 9}. We measure the total time taken and the confidence value computed by each
method at each iteration. We run this process multiple times (at least 20 times) and report the
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Fig. 3. Total time needed to achieve a given level of confidence by our method and Scott et al. for H.sapiens
and R.norvegicus for path length = 8.
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Fig. 4. Confidence level achieved after a given number of iterations using our method and to Scott et al. for
H.sapiens and R.norvegicus when path length is fixed at 6. Empirical results denote the fraction of experiments
in which the optimal path is found at or before a given iteration.

average of these runs. Below, we report a small subset of these experiments due to page limits.
Figure 3 shows the time it takes to reach to various confidence levels for path length = 8.

Our method takes much less time than Scott et al. to achieve the same level of confidence. The
gap between the two increases as the confidence level increases. We observe that the gap is
significantly larger for the R. norvegicus dataset. This is mainly because this dataset is more
sparse than the other one. As a result, it often produces very dense constraint graphs leading to
high success probability values. Scott et al. is, on the other hand, oblivious to the density of the
network. It produces the same conservative success probability for both datasets. As a result, as
we can see in Figure 3, Scott et al. can only reach to around 70% confidence for both datasets
after 500 iterations. Our method, on the other hand, reports 85% and more than 99% confidence
for the H. sapiens and R. norvegicus datasets respectively after the same number of iterations.
The difference between the largest confidence we report for the two datasets can be explained
from the density of the two networks. As the network gets sparser, our method tends to gets
larger confidence value. In Figure 3(a), we see that our method takes more time to complete
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Table 1. Z-scores calculated for the optimal paths found by our method for H.sapiens
and R.norvegicus for different path lengths. Here, µ is the mean of the weight of a random
path in the same network with the same length. θ is the weight of the optimal path found
by our method. Z is the Z-score of our method.

Path Length
Dataset 6 7 8

µ θ Z µ θ Z µ θ Z
H.sapiens 5.906 0.129 5.409 7.074 0.130 5.477 8.341 0.221 5.764
R.norvegicus 4.975 4.540 0.889 7.307 5.025 1.453 8.457 4.858 1.467

500 iterations than Scott et al. This is because it spends additional time to build constraint
graph and solve a chromatic polynomial problem. Finally, we observed similar characteristics
for other path lengths (results not shown). The main difference was that the performance gap
between our method and Scott et al. further increases with larger path lengths.

In our next experiment, we evaluate whether our confidence computation is correct in prac-
tice. To do this, we computed an empirical confidence as follows. Recall that we repeated each
experiment many times. At each iteration we computed the fraction of the experiments in
which we were able to find the optimal result as the empirical confidence. Ideally, the theoret-
ical value should not be larger than the empirical one; the closer the two values are the better.
Figure 4 shows the empirical confidence value as well as the theoretical confidence value of our
method and Scott et al.. The results demonstrate that the gap between the empirical results
and our method is much smaller than that for Scott et al. This is because of the conservative
way they use to calculate success probability of an iteration as discussed in section 2. This gap
increases as the path length parameter increases (results not shown). Thus, we conclude that
both Scott et al. and our method produces correct confidence values. Scott et al. is, however
to conservative, and thus spends too many iterations to reach to the same confidence value.

4.2. Validation Experiments

So far we have shown that our method outperforms existing coloring strategies in terms
of the running time performance. In this section, we evaluate the biological significance of the
paths found using our method. It is worth mentioning that our method returns the same results
as Scott et al.4 when both of them are allowed to reach a high confidence value (such as 99%
confidence). The main difference is that our method scales to larger networks and longer paths.
Therefore, here we will only focus on the results obtained by our method.

4.2.1. Statistical significance of the results

In this section we assess the statistical significance of the paths found by our method.
We use Z-score to measure statistical significance. Z-score indicates by how many standard
deviations our optimal weight is better than the weight of an average random path, so higher
values are better. For each dataset and path length m, we run our method to get the path with
the minimum weight θ. We then generate 1000 random simple paths of length m, starting at a
membrane protein and ending at a transcription factor. We compute the average weight µ of
these random paths and their standard deviation σ. We then compute the Z-score as Z = µ−θ

σ .
Table 1 shows the results for H.sapiens and R.norvegicus for path lengths 6, 7 and 8. Our

results are always better than the random paths. Particularly, for the H.sapiens network we
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obtain very significant results. The Z-score for R.norvegicus is less. This is mainly because the
edge confidence values in this network have much less variation than those in H.sapiens. Our
Z-score increases with increasing path length. This is not surprising because increasing the
size of random selection leads to less chances of the selected path being better or closer to the
optimal path. This implies that there is a great potential that methods that scale to large path
length will yield important biological insights into signaling pathway identification.

4.2.2. Biological significance of the results
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Fig. 5. Functional enrichment of best colorful
paths found at different iterations of our method
for R.norvegicus in sorted order. Smaller values are
better.

Another important question is: how biologi-
cally significant are our results? To answer this
question, we validate our results using functional
enrichment. We use the Gene Ontology16 to
compute functional enrichment of paths found
at different iterations of our method. Let Φ be
the path being tested, T be the universal set of
GO terms, m be the path length, M be the to-
tal number of proteins in the dataset, Gi be the
total number of proteins annotated with the Go
term ti in the dataset, and gi be the number of
proteins annotated with ti in Φ. We compute
functional enrichment of Φ as minti∈T P (X ≥
gi|M,m,Gi) where X is a random variable un-
der a hyper-geometric distribution with these parameters. Lower enrichment values indicate
paths with common functions, and thus they are better.

Figure 5 plots the functional enrichment value of the best colorful paths found at different
iterations of our algorithm in sorted order for the R.norvegicus network. We omit results for
H. sapiens as it is very similar to those in Figure 5. We observe that as the distribution of the
enrichment values follows power-law distribution. That is only a minority of the observed paths
have very good enrichment while the majority tend to have bad ones. We observe that this
behavior is consistent for all path lengths we tested. This suggests the following: (i) There can
be multiple biologically interesting paths for the same start and end node sets. (ii) We need to
have sufficiently high confidence in the result to avoid biologically meaningless paths since the
enrichment drops quickly. (iii) Even long paths can be highly enriched. All of these observations
show the importance of improving the running time performance of pathway discovery methods,
and hence the importance of our contribution.

Next, we focus on a few of the most functionally enriched pathways our method finds on
the H. sapiens network. Figure 6 shows three examples each having length of six. All the six
genes in the path in Figure 6(a) regulate epidermal growth factor receptor signaling pathway.
Among these the leftmost four genes appear in the ErbB signaling pathway. They also affect
the development of various cancer types such as chronic myeloid leukemia, glioma and prostate
cancer. In Figure 6(b), all the six genes are ephrin receptor binding. They affect cell growth and
development and thus participate in cancer development. The five leftmost genes in Figure 6(c)
negatively regulate the epidermal growth factor receptor signaling pathway. Notice that all the
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three pathways in this example overlap with each other, yet they also contain several genes that
do not exist in others. For instance, the pathway in Figure 6(b) contains SRC unlike the other.
SRC takes part in same pathways as most of the other genes in this figure, such as the ErbB
signaling pathway. Thus, all of these significant paths reported by our method reveal different
parts of the signaling networks through alternative paths.

5. Conclusion
SHC1 GRB2 CBL SH3KBP1 UBCEGFR

(a)

SHC1 GRB2 CBL SRC PTPN1 INSR

(b)

HGS TSG101CBL SH3KBP1 UBCSPRY2

(c)

Fig. 6. Three sample pathways with functional enrich-
ment value less than 10−11 found by our method in the
H.sapiens dataset. The shaded nodes correspond to the
genes which have common gene ontology term leading to
the best functional enrichment. (a) The common term is
GO:0042058. (b) The common term is GO:0046875.(c)
The common term is GO:0042059.

In this paper, we presented an enhanced
color-coding technique. We presented a
novel way to calculate success probability
for a single coloring iteration. We explained
how to calculate the number of coloring
possibilities for a path with a given kmax
configuration. We also discussed the rela-
tion between configurations with different
kmax values. We used the enhanced color-
coding technique to find signaling pathways
in protein interaction networks. We empiri-
cally showed that our method produces cor-
rect results, and that it needs less time than
the leading method to produce these re-
sults. We also showed that the results of our method are of statistical and biological signif-
icance. Possible future extensions to the present work include extracting deregulated signaling
pathways using a cancer gene expression dataset. The subject PPI network could be built from
mRNA co-expression and high-throughput experiments.
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Vast amounts of molecular data characterizing the genome, epigenome and transcriptome 
are becoming available for a variety of cancers. The current challenge is to integrate these 
diverse layers of molecular biology information to create a more comprehensive view of 
key biological processes underlying cancer. We developed a biocomputational algorithm 
that integrates copy number, DNA methylation, and gene expression data to study master 
regulators of cancer and identify their targets. Our algorithm starts by generating a list of 
candidate driver genes based on the rationale that genes that are driven by multiple 
genomic events in a subset of samples are unlikely to be randomly deregulated. We then 
select the master regulators from the candidate driver and identify their targets by inferring 
the underlying regulatory network of gene expression. We applied our biocomputational 
algorithm to identify master regulators and their targets in glioblastoma multiforme (GBM) 
and serous ovarian cancer. Our results suggest that the expression of candidate drivers is 
more likely to be influenced by copy number variations than DNA methylation. Next, we 
selected the master regulators and identified their downstream targets using module 
networks analysis. As a proof-of-concept, we show that the GBM and ovarian cancer 
module networks recapitulate known processes in these cancers. In addition, we identify 
master regulators that have not been previously reported and suggest their likely role. In 
summary, focusing on genes whose expression can be explained by their genomic and 
epigenomic aberrations is a promising strategy to identify master regulators of cancer. 
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1.  Introduction 

Technologies exist to rapidly and affordably profile the genome, epigenome and transcriptome 
of cancer. For example, advances in high throughput analysis allow quantification of global DNA 
variation, DNA methylation or RNA expression of biological samples (1-4). The current challenge 
is to integrate these layers of complex molecular biology information to produce a more 
comprehensive view of cancer (5-9). Successfully dealing with this complexity will allow 
determining how much each of the different types of genomic variations, i.e. mutation, copy number 
alteration or DNA methylation affect gene expression of key cancer drivers. Answering this 
question should provide a deeper understanding of cancer and insights on its initiation, progression 
and treatment response. Previous integration efforts have focused on how to distinguish driver genes 
from passenger genes. For example, Ciriello et al. developed a method to identify driver genes in 
glioblastoma based on mutual exclusivity by modeling copy number and mutation data (10). Vandin 
et al. developed a method to identify driver genes in cancer by focusing on pathways with a 
significant enrichment of approximately mutually exclusive genes (11). Several other investigators 
have identified driver genes through network analysis, such as Akavia et al. who used copy number 
data to filter potential regulators in a Bayesian module network analysis (12).  

To identify master regulators of cancer and their targets, we built further on the network 
approach by filtering the candidate driver through a method that integrates copy number, DNA 
methylation, mutation and gene expression data. Our approach starts by generating a list of 
candidate driver genes based on the rationale that genes that are driven by multiple genomic events 
in a significant subset of samples are unlikely to be randomly deregulated. Examples of such 
genomic events for tumor suppressors are deletions, hyper-methylation or nonsense mutations. In 
the case of oncogenes, possible genomic or epigenomic events are amplification, hypo-methylation 
or a fusion with an active promoter region. Instead of using a statistical test on each genomic 
aberration separately, we developed a linear model that tests for concordance with three different 
types of genomic alterations simultaneously. We define these genes as candidate drivers because 
their expression can be significantly explained by the key mechanisms that drive oncogenesis: 
mutation, copy number alteration or DNA methylation. The second step of our algorithm selects the 
master regulators from these candidates and identifies their targets. This step applies a modified 
module networks analysis to computationally dissect the gene expression data into gene modules of 
co-expressed genes and assigning a regulatory program to each module (12-14). Our strategy has the 
advantage of using an informative way of selecting potential drivers and then focuses on those 
drivers that are likely to effect downstream targets.  

We applied our algorithm to identify master regulators and their targets in glioblastoma 
multiforme and serous ovarian tumors from The Cancer Genome Atlas (TCGA). We found that the 
expression of the selected cancer drivers are greatly influenced by their copy number and to a much 
lesser extent by DNA methylation. In addition, for some drivers, we show synergy between genomic 
and epigenomic events. The second step of our algorithm selects a small set of potential cancer 
drivers as master regulators that explain much of the global gene expression in the reconstructed 
module network. Our results show that using candidate drivers from the first step improves the 
predictive performance on an independent test set of our models developed in the second step. This 
indicates that focusing on genes that are explained by their genomic and epigenomic profiles is a 
promising strategy to select master regulators of cancer. 
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2.  Methods 

2.1.  Algorithm 

We developed a biocomputational approach to identify key genes that drive human cancer. Our 
approach involves generating a list of candidate drivers (Step 1), followed by selecting the master 
regulators from the candidate drivers and their downstream targets (Step 2).  

2.1.1.  Step 1: Identifying candidate drivers of cancer 

For a given gene to be considered a candidate cancer driver, we require that its gene expression be 
explained by its own genomic alterations, measured by its copy number, CpG DNA methylation 
and/or mutational variation. Our rationale is that cancer drivers whose expression can be explained 
by multiple genomic events are unlikely to be randomly deregulated. We used generalized linear 
models to predict the expression of each gene in terms of its own copy number, DNA methylation 
and mutation status. Our algorithm is initiated with a quality filter that removes copy number probes 
that are negatively correlated with gene expression and DNA methylation probes that are positively 
correlated with gene expression data. We reasoned that these probes have a higher chance of being 
associated with technical problems than a true underlying biological event. Next, we built a linear 
model to capture the effect of copy number, DNA methylation and mutation status on the expression 
level of a gene: 

 Expi = f (!1CGHi + !2Methylationi + !3Mutationi )  (1) 

with ßi the coefficients of the three predictors (i.e. CGH, DNA methylation or mutation status). We 
used sequential feature selection when adding multiple predictors by including a predictor only 
when it increases the R-square statistic more than expected by chance, based on the chi-square 
distribution with one degree of freedom. This model building procedure was wrapped inside a 10-
fold cross validation loop (10F-CV) to estimate the generalization performance of the model on 
unseen data. We required that a predictor – e.g. CGH status – was selected in all cross validation 
iterations. The performance of the model was estimated using the R-square statistic on unseen data 
in each cross validation loop. We used several thresholds on the R-square statistic ranging from 0.2 
to 0.5 and evaluated the number of genes at each threshold. We focused on genes with high R-
square values since for these genes the expression is significantly explained by their copy number, 
methylation or mutation status. Within this set of genes we identified genes that are identified as a 
transcription factor. We used several external sources of information to define a gene as a 
transcription factor such as HPRD, a census of human transcription factors (15) and Gene Ontology 
resulting in a final list of 3964 transcription factors. This results in a list of candidate drivers that 
will serve as input for step 2. 

2.1.2.  Step 2: Identifying master regulators and their targets 

The second step of our algorithm involves identifying the master regulators (as a key subset of 
cancer drivers from step 1) and determining their downstream targets by reconstructing a regulatory 
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module network. Our module network approach builds upon previous work (13, 14). The algorithm 
is initiated by clustering the gene expression data into gene modules of co-expressed genes and then 
assigns a regulatory program to each module. The regulatory program of each module is defined by 
a sparse linear combination of driver genes that predict the module’s mean expression and are 
chosen from the list of transcription factors among the candidate drivers. The sparseness of the 
regulatory program is induced using elastic net regularization. We extended the module network 
framework in three ways: (a) first, we developed an approach to deal with auto-regulation, which is 
a situation where a regulator is selected in the regulatory program and is also a member of the same 
module. We allow this event to occur but relearn the regulatory program after removing the gene 
from the cluster. The regulator only stays in the regulatory program when it is also selected after 
removal of its expression in the module. (b) Second, we add a 10F-CV strategy that determines the 
regularization parameter for each module through minimization of the error. (c) Third, we use an 
iterative algorithm when adding regulators to the regulatory program by using the LARS-EN 
algorithm which has the advantage that it updates the elastic net solution sequentially (16) and 
thereby allows to stop adding regulators early.  
After initial clustering of the data, the module network algorithm is run iteratively by learning the 
regulatory program and re-assigning genes to modules based on the updated regulatory program. 
Genes are reassigned to the module that they are closest to, based on Pearson correlation. We used 
k-means clustering with 100 clusters as the initial clustering algorithm. Next, our algorithm is run 
untill convergence corresponding to less than 1% of the genes being assigned to new modules. The 
module network is then interpreted using enrichment analysis using a hyper-geometric test to check 
for enrichment of gene sets in the gene modules to identify the key biological processes that are 
driven by the regulators. We used several databases of gene sets from MSigDB (17), GeneSetDB 
(18) and manually curated gene sets. 

2.2.  Data 

We used data from The Cancer Genome Atlas (TCGA) on glioblastoma and ovarian cancer (data 
downloaded in May 2011). Gene symbols were used to map different technologies. Normal samples 
were removed. We used Level 3 Agilent G4502A gene expression data and Level 2 27K CpG 
methylation data. CpG sites were mapped to its closest gene transcription start site.  The methylation 
probe level data was used since bi-modal signals were found for genes where multiple probes were 
present. Because averaging all probes for such a gene removed signal from the data, we defined 
methylation clusters based on a minimum Pearson correlation of 0.4 within a cluster. For the CGH 
data, two different platforms were used for the glioblastoma and ovarian project. For the 
glioblastoma project the CGH data was produced by the Agilent 244A platform and for the ovarian 
project the Agilent 1x1M platform was used. In both cases, we used the Level 3 CGH data. In the 
glioblastoma dataset, 251 patients had gene expression, DNA methylation and CGH data; these 
datasets were available for 511 ovarian cancer patients. For a limited number of patients, duplicate 
data was available however no averaging was done for these cases. We arbitrarily picked one case. 
When missing values were present, we estimated the missing value using 15-KNN (19). In most 
data sets a significant batch effect was observed and batch correction was done for all data sources 
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using Combat (20). Mutation data was present for 140 glioblastoma patients and 324 ovarian 
patients through exome sequencing and we extracted all novel non-silent mutations. Gene 
expression data was present for 426 glioblastoma and 560 ovarian patients and used to generate the 
modules of the regulatory network. For all genes that had gene expression data, 14041 had also copy 
number, 9987 had DNA methylation and 8619 had both for ovarian cancer. For glioblastoma the 
overlap with gene expression data resulted in 13113 genes with copy number data, 9107 genes with 
DNA methylation data and 7510 with both.  

3.  Results 

We used a two-step algorithm to identify the master regulators of cancer and their targets. We 
applied this algorithm on multi-dimensional TCGA ovarian cancer and glioblastoma datasets. 

3.1.  Identifying candidate drivers for glioblastoma and ovarian cancer 

To identify candidate drivers of cancer, we developed a linear model to estimate the effect of copy 
number alterations, DNA methylation and mutation on gene expression levels (Step 1, Methods).  
Figure 1 shows the number of genes that is significantly explained by copy number, methylation or 
both at different R-square thresholds. More than 5000 genes have an R-square value for copy 
number alone of at least 0.20 in ovarian cancer compared to 1137 genes for glioblastoma reflecting 
the massive amount of copy number alterations that is present in serous ovarian cancer (21). 
Interestingly, DNA methylation is less informative when explaining gene expression data and much 
less genes are significant at each R-square threshold for both ovarian cancer and glioblastoma. For 
both glioblastoma and ovarian cancer, we found adding mutation data did not significantly change 
the results. 

 

 
Figure 1 Number of genes whose expression is significantly explained by its own copy 

number, DNA methylation or both. 
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3.1.1.  Glioblastoma candidate drivers  

When focusing on the genes with high R-square values in glioblastoma, we verified that our 
algorithm discovered a number of interesting genes previously reported and validated on TCGA 
glioblastoma (22). For example the gene PDGFRA, part of the platelet-derived growth factor 
receptor, has an R-square of 0.38 when considering only its copy number, 0.29 when considering 
only its DNA methylation profile and 0.60 when considering both. This indicates that 60% of the 
expression of PDGFRA is explained by synergy between its copy number and DNA methylation. 
PDGFRA is a receptor tyrosine kinase and an important part of the RAS pathway. In addition, 
PDGFRA is also mutated in 3 out of 140 patients (2%). Other interesting examples for glioblastoma 
include the genes MGMT and GLI1. MGMT, well known for its association with glioblastoma 
sensitivity to alkylating agents (23), has an R-square value of 0.46 and is significantly explained by 
its DNA methylation and copy number profile. Similarly, GLI1, glioma associated oncogene 
homolog 1, has an R-square value of 0.46 and is mutated in 1 patient. 

3.1.2.  Ovarian cancer candidate drivers  

The ovarian cancer candidate drivers also included interesting genes with high R-square values. The 
gene BRCA1 is known to be associated with ovarian cancer due to mutations (21). In our analysis 
using copy number and DNA methylation data, we found that BRCA1 has an R-square of 0.10 when 
considering only its copy number, 0.41 when considering only its methylation profile and 0.49 when 
considering both. This indicates that besides mutation, DNA methylation is an important mechanism 
driving BRCA1 expression. This finding was also shown in the original TCGA ovarian results 
demonstrating that our method is able to recapitulate previous results (21). BRCA2 gene expression 
on the other hand is only explained by its copy number and is not significantly epigenetically 
regulated. Other interesting examples for ovarian cancer are KRAS, mutated in 2 out of 324 cases, 
with an R-square of 0.60 solely based on its copy number, and RAB25 with an R-square of 0.82 
solely based on its DNA methylation. RAB25 was shown to be highest ranked gene epigenetically 
silenced in the original TCGA ovarian results and this is also the case using our model (21). 

3.1.3.  Gene set enrichment  

We used several databases with gene sets to investigate the enrichment of known pathways and 
biological processes in the set of driver genes. We looked at gene set enrichment of the gene lists at 
an R-square of 0.3. The glioblastoma driver genes explained only by copy number were enriched in 
genes identified in the TCGA glioblastoma results as part of significant copy number changes (21). 
In addition, gene sets related to copy number changes in many other cancers were also in the top 
enriched gene sets (24-27). Interestingly the genes explained significantly by their DNA methylation 
at this R-square threshold were enriched in extracellular matrix genes and genes related to cell 
migration. For the ovarian cancer genes only explained by their copy number we observed 
enrichment of proliferation pathways, genes related to a BRCA1/CHEK1 network (28) and an 
ovarian cancer survival signature (29). Next, the top genes explained only by DNA methylation are 
enriched in genes affected by methylation in other cancers (30-32) validating our approach. 
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3.2.  Identifying candidate master regulators of gene expression 

To identify the master regulators of the network and their downstream targets, we apply a module 
network approach (Step 2, Methods). Our module network analysis is based on linear regression 
with elastic net regularization using the key transcription factors from the candidate drivers 
identified in Step 1 (13). For both glioblastoma and ovarian cancer we built a module network to 
associate transcriptional driver genes with their downstream targets. We used the gene expression 
data of 426 glioblastoma and 560 ovarian cancer patients but used only the top half most varying 
genes in all further analysis. As potential regulators for the modules, we selected genes with a high 
R-square as significantly regulated by a combination of copy number and DNA methylation and 
intersected this list with known transcription factors. This resulted in 431 and 469 genes for 
glioblastoma and ovarian cancer respectively that are defined as a transcription factor, show high 
variance and are regulated significantly by genomic alterations.  
 

Table 1 Master regulators for the ovarian and GBM network. Genes highlighted in the 
main text are in bold. 

Glioblastoma network Ovarian	  network 
Regulators Nr Modules Regulators	   Nr Modules 
ZNF300 10	   BATF	   13	  
TNFRSF1A 10	   HTATIP2	   9	  
PTRF 8	   PML	   9	  
WWTR1	   8	   NOD2	   8	  
MYT1 7	   JAK2	   8	  
PYCARD	   7	   HMGA2	   7	  
PATZ1	   7	   TGFB3	   7	  
BASP1	   6	   KLF12	   7	  
RAB32	   6	   AKAP8L	   7	  
SATB1	   6	   YWHAH	   6	  
ZMYND12	   6	   HLA-‐DQB1	   5	  
CDC45	   6	   JARID2	   5	  
ZNF217	   6	   RNF19A	   5	  
KCNIP3	   6	   MORF4L1	   5	  
ARNT2	   6	   SMAD4	   5	  
BTF3L4	   6	   ZNF500	   5	  
POGZ	   6	   NFKB1	   5	  
TOB1	   6	   TRIM29	   4	  
LGALS3	   5	   SPDEF	   4	  
KCNH8	   5	   SREBF1	   4	  
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3.2.1.  Glioblastoma module network 

The master regulators in the glioblastoma network are TNFRSF1A, an important partner in the TNF 
and NF-kB pathway and ZNF300, both predicted as a regulator of 10 modules. We focused on the 
top DNA repair module in our network because this process is an important pathway in both 
glioblastoma and ovarian cancer. In the glioblastoma module network, module 22 is the top DNA 
repair module and is regulated by 6 regulators including DNMT1 and PARP1 and contains 81 
genes. DNMT1 is a key player in regulation DNA methylation regulation and has been shown to be 
involved in inactivation of tumor suppressor genes and failure to maintain genomic stability (33). In 
addition PARP1 is known to regulate DNMT1 and forms a complex with DNMT1 (34, 35). Both are 
only explained by their copy number profile and are not driven by their own DNA methylation 
status. 

3.2.2.  Ovarian cancer module network  

The master regulator for the ovarian cancer module network is BATF a transcription factor with 
unknown function. BATF is part of the regulatory program of 13 modules and its expression is 
significantly explained by its DNA methylation status. Other important regulators are NFKB1 and 
TGFB3. Similarly to the glioblastoma module network, we also focused on the most highly enriched 
DNA repair module for ovarian cancer: module 89. Module 89 contains 86 genes and has 10 
regulators including EZH2, AURKA and CHAF1B. Interestingly CHAF1B was also predicted as a 
regulator of the top DNA repair module in glioblastoma. Other interesting regulators are CCNE1 
and RAB25. CCNE was identified as a low frequency amplification in the original TCGA results 
and is predicted as the only regulator of a module enriched in the focal adhesion pathway. Next, 
RAB25 is the top methylated gene (21) and in our module network is part of the regulatory program 
together with MAML2, a member of the NOTCH pathway, a pathway also identified in the original 
ovarian TCGA results. 

3.3.  Algorithm Performance 

To evaluate the performance of our algorithm, we investigated how well our candidate drivers 
perform compared to random sets of transcription factors. We used an independent test set for both 
glioblastoma multiforme and ovarian cancer (9, 36) to estimate the generalized performance of each 
module on unseen data. To limit the computational power required and to facilitate comparison of 
the results, we ran the second step of our algorithm only once. This essentially corresponded to 
learning a regulatory program for the initial clustering. First, we established a baseline performance 
by incrementally and randomly adding transcription factors to the list of potential regulators. This 
was repeated 5 times for each number of potential transcription factors. Figure 2 shows how the 
performance evolves when adding more transcription factors. The performance is measured by 
averaging the R-square over all modules on the test set. Figure 2 shows that for glioblastoma and 
ovarian cancer, the performance plateaus after adding more than 600 potential regulators indicating 
that increasing the number of potential regulators beyond this point does not improve the predictive 
performance of the model on unseen data. 
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Finally, we investigated the performance of using transcription factors that are also driver genes. We 
reasoned that focusing only on candidate drivers as regulators would increase the performance of 
only a subset of modules and therefore focused on modules with a minimum R-square value on 
unseen data and compared the performance of these modules with random sets of transcription 
factors. For glioblastoma we saw an increase in performance independent of R-square threshold 
while for ovarian cancer the performance improved starting at a minimum R-square of 0.10. Figure 
3 shows the average performance of modules with an R-square value of at least 0.20 on unseen data 
when adding incrementally regulators ranked by their own R-square value. Our results show for 
both glioblastoma and ovarian cancer that the generalization performance is comparable or better 
than random sets of transcription factors at several sizes of potential regulators (Figure 3). 
 

 
Figure 3 R-square performance of the module networks generated using candidate drivers 

vs. randomly drawn candidate drivers. 

Figure 2 Generalized performance of module networks generated from randomly 
selected candidate drivers. 
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4.  Discussion 

To identify master regulators of gene regulation in cancer, we developed a biocomputational 
approach that first creates a select list of candidate cancer driver genes by integrating multiple 
genomic datasets. From this list, we select the master regulators and identify their targets when 
reconstructing a regulatory module network of cancer. For a gene to be on the list, we require that its 
expression be explained by known genomic and/or epigenomic aberrations, measured in terms of 
copy number variation, DNA methylation and mutational events.  This requirement reduces the list 
of candidate drivers and improves the performance of the regulatory module network when applied 
to glioblastoma and ovarian cancer TCGA data.  
For each candidate driver, we can determine which genomic aberration explains more of the gene 
expression. In the case of both GBM and ovarian cancer, the candidate drivers appear to be more 
influenced by their copy number variations than DNA methylation. DNA methylation appears to 
have a more subtle effect on gene expression. In addition, we identified many genes that showed 
synergy between their copy number and DNA methylation showing that a cancer cell can deregulate 
gene expression using both mechanisms. Besides copy number and DNA methylation, we also 
investigated the addition of mutation data to our linear model and investigated if mutation data has a 
significant effect on the amount of variance in gene expression that can be explained. As expected 
adding mutation data did not significantly change the results due to sparseness of mutation data. 
More importantly, only a subset of mutations will have an effect on gene expression because many 
missense mutations will not effect gene expression but may disrupt protein function. Determining 
this computationally requires dedicated methods that specifically model the mutation data and their 
impact on the final protein product to estimate which mutations have or do not have an effect on 
gene expression. For example, we observed that TP53 was not correlated with gene expression even 
though it is known to be an important tumor suppressor in ovarian cancer. 
By focusing on candidate drivers as genes that are explained by their genomic and epigenomic 
profiles, we can identify more likely master regulators in the module networks analysis. We found 
that using transcription factors whose expression is determined by copy number or DNA 
methylation profile, had favorable performance on unseen data. In the context of the module 
networks generated from random sets of transcription factors, which were shown to plateau after 
adding more than 600 potential regulators, while our method provides a way of intelligently 
selecting regulators in module networks.  
By the virtue of applying module network analysis, the master regulators are associated with 
downstream targets. The master regulators in both the glioblastoma and ovarian cancer network 
belong to known pathways affected in these cancers. In addition, we found several unknown genes 
that are important regulators in our module networks. For example, CHAF1B is predicted as a 
regulator for the top DNA repair module in both glioblastoma and ovarian cancer. CHAF1B is 
predicted to have a function in DNA repair and is part of a 4-gene signature predicting survival in 
glioma (37). Moreover, CHAF1B has been shown to be correlated to proliferation in several 
epithelial cancers (38). Interestingly we found that CHAF1B expression is dominated by its copy 
number in ovarian cancer and by DNA methylation in glioblastoma, showing the flexibility of our 
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method. As more data comes available in the TCGA, such inter-cancer comparisons can be made 
with the potential to identify master regulators independent of cancer subtypes.  
In summary, we developed a biocomputational approach for integrating multi-dimensional cancer 
data that allows to study how genomic and epigenomic features influence gene expression. Next, we 
used our method to identify master regulators of cancer and their downstream targets. Our approach 
has the potential to provide new insights in the molecular biology underlying cancer. Moreover, it 
associates drivers with their downstream targets, thereby enabling new insight into the biological 
mechanism underlying cancer progression. 

5.  Acknowledgements 

This research was supported by the Center for Cancer Systems Biology (CCSB) at Stanford (U54 
CA149145). OG is a fellow of the Fund for Scientific Research Flanders (FWO-Vlaanderen), an 
Honorary Fulbright Scholar of the Commission for Educational Exchange between the United States 
of America, Belgium and Luxembourg, and a Henri Benedictus Fellow of the King Bauduin 
Foundation and the Belgian American Educational Foundation (BAEF).  

References 

 
1. W. Pao et al., Clin Cancer Res 15, 5317 (2009). 
2. C. Sotiriou, Annals of Oncology 20, 10 (2009). 
3. O. Gevaert, B. De Moor, Expert Opinion on Medical Diagnostics 3, 157 (2009). 
4. O. Gevaert, A. Daemen, B. De Moor, L. Libbrecht, BMC Med Genomics 2, 69 (2009). 
5. L. Chin, W. C. Hahn, G. Getz, M. Meyerson, Genes & development 25, 534 (Mar 15, 

2011). 
6. O. Gevaert, S. Van Vooren, B. De Moor, Annals of the New York Academy of Sciences 

1115, 240 (2007). 
7. A. Daemen, M. Signoretto, O. Gevaert, J. A. Suykens, B. De Moor, PLoS ONE 5, 

e10225 (2010). 
8. K. Leunen et al., Human mutation 30, 1693 (2009). 
9. L. Gravendeel et al., Cancer research 69, 9065 (2009). 
10. G. Ciriello, E. Cerami, C. Sander, N. Schultz, Genome Res,  (Oct 12, 2011). 
11. F. Vandin, E. Upfal, B. J. Raphael, Genome Res,  (Jul 11, 2011). 
12. U. D. Akavia et al., Cell 143, 1005 (Dec 10, 2010). 
13. S.-I. Lee et al., PLoS genetics 5, e1000358 (2009). 
14. E. Segal et al., Nature Genetics 34, 166 (2003). 
15. J. M. Vaquerizas, S. K. Kummerfeld, S. A. Teichmann, N. M. Luscombe, Nat Rev Genet 

10, 252 (Apr, 2009). 
16. H. Zou, T. Hastie, Journal of the Royal Statistical Society Series B-Statistical 

Methodology 67, 301 (2005). 
17. A. Subramanian et al., Proceedings of the National Academy of Sciences of the United 

States of America 102, 15545 (2005). 
 

Pacific Symposium on Biocomputing 2013

133



 
 

 

 

18. A. C. Culhane et al., Nucleic Acids Res 38, D716 (Jan, 2010). 
19. O. Troyanskaya et al., Bioinformatics 17, 520 (2001). 
20. W. E. Johnson, C. Li, A. Rabinovic, Biostatistics 8, 118 (Jan, 2007). 
21. D. Bell et al., Nature 474, 609 (Jun 30, 2011). 
22. R. McLendon et al., Nature 455, 1061 (2008). 
23. M. Esteller et al., N Engl J Med 343, 1350 (Nov 9, 2000). 
24. W. M. Lin et al., Cancer Res 68, 664 (Feb 1, 2008). 
25. W. W. Lockwood et al., Oncogene 27, 4615 (Jul 31, 2008). 
26. J. Greshock et al., Cancer Res 67, 3594 (Apr 15, 2007). 
27. I. Osman et al., Clin Cancer Res 12, 3374 (Jun 1, 2006). 
28. M. Pujana et al., Nature Genetics 39, 1338 (2007). 
29. T. Bonome et al., Cancer Res 68, 5478 (Jul 1, 2008). 
30. G. Heller et al., Cancer Res 68, 44 (Jan 1, 2008). 
31. L. G. Acevedo, M. Bieda, R. Green, P. J. Farnham, Cancer Res 68, 2641 (Apr 15, 2008). 
32. N. Sato et al., Cancer Res 63, 3735 (Jul 1, 2003). 
33. G. Rajendran et al., J Neurooncol 104, 483 (Sep, 2011). 
34. M. Zampieri et al., Biochem J 441, 645 (Jan 15, 2012). 
35. M. Zampieri et al., PLoS ONE 4, e4717 (2009). 
36. R. W. Tothill et al., Clin Cancer Res 14, 5198 (Aug 15, 2008). 
37. M. de Tayrac et al., Clin Cancer Res 17, 317 (Jan 15, 2011). 
38. S. E. Polo et al., Histopathology 57, 716 (Nov, 2010). 

 
 
 

Pacific Symposium on Biocomputing 2013

134



           MODULE COVER – A NEW APPROACH TO GENOTYPE-PHENOTYPE STUDIES1 

YOO-AH KIM, RAHELEH SALARI†, STEFAN WUCHTY, AND TERESA M. PRZYTYCKA 

National Center for Biotechnology Information, NLM, NIH,  
Bethesda, MD 2089, USA 

Email: {kimy3, wuchtys,przytyck} ncbi.nlm.nih.gov ; rahelehs@cs.stanford.edu;  

Uncovering and interpreting phenotype/genotype relationships are among the most challenging 
open questions in disease studies. Set cover approaches are explicitly designed to provide a 
representative set for diverse disease cases and thus are valuable in studies of heterogeneous 
datasets. At the same time pathway-centric methods have emerged as key approaches that 
significantly empower studies of genotype-phenotype relationships. Combining the utility of set 
cover techniques with the power of network-centric approaches, we designed a novel approach 
that extends the concept of set cover to network modules cover. We developed two alternative 
methods to solve the module cover problem: (i) an integrated method that simultaneously 
determines network modules and optimizes the coverage of disease cases. (ii) a two-step method 
where we first determined a candidate set of network modules and subsequently selected modules 
that provided the best coverage of the disease cases. The integrated method showed superior 
performance in the context of our application. We demonstrated the utility of the module cover 
approach for the identification of groups of related genes whose activity is perturbed in a coherent 
way by specific genomic alterations, allowing the interpretation of the heterogeneity of cancer 
cases. 

1.  Introduction 
Complex diseases, such as cancer, are typically caused by a combination of genomic 

alterations, epigenetic and environmental factors, and different combinations of such factors may 
result in the same disease phenotype. In addition, signals that are associated with each individual 
genetic perturbation might be weak and difficult to separate from background noise. 
Collectively, these obstacles render the identification of subtle genotype-phenotype relationships 
extremely challenging. 

Recently, pathway-centric methods have emerged as key approaches that empower studies on 
genotype-phenotype relationships. Such pathway-centric studies typically leverage large 
interaction networks inferred by high-throughput experiments. Projecting gene expression data 
on an interaction network, these approaches infer molecular activities on the level of biological 
pathways (subnetworks) rather than individual genes (1-5). Gene expression has been utilized to 
assess the activity of subnetworks (6), while genotypic data has lately been used to identify 
mutated subnetworks by exploring positions of mutated genes in interaction networks (7-9). An 
additional level of understanding of genotype-phenotype relationships can be obtained when 
both genotype and gene expression data are available. A recent study (10, 11) combined copy 
number alteration and gene expression data and applied a current flow approach to identify flow 
of information from potential genomic causes to differentially expressed disease genes.  

* This work was supported in part by the Intramural Research Program of the Health, National Library of 
Medicine. 
† Current address Computer Science Department, Stanford University Stanford CA 94305-5428 
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Generally, pathway-centric approaches are based on the premise that different genetic 
perturbations often dys-regulate the same pathway, leading to the same disease phenotype. 
Therefore, the identification of such dys-regulated pathways is important for the understanding 
of a disease, potentially guiding drug development efforts. However, complex diseases are 
usually vaguely defined, and typically what can be seen as a spectrum of diseases is annotated as 
one disease. In such a heterogeneous set, individual disease cases may be characterized by 
various combinations of dys-regulated pathways.  

Set cover approaches have been proven useful in the determination of disease markers in 
heterogeneous datasets (1, 2, 5, 11). In a set cover, a gene is considered to cover a disease sample 
if the gene is dys-regulated in the sample. The underlying assumption of the set cover approach 
is that each disease case has some dys-regulated (thus covering) genes but if the disease is 
heterogeneous, different cases will typically have different covering genes. In particular, a multi 
set cover approach aims to find a set of genes so that each disease case is represented (covered) 
by at least a certain number of differentially expressed genes while the total number of selected 
genes is minimized (11). However, current set cover approaches do not consider several 
important issues: (i) if two different disease cases are covered by two different sets of genes this 
does not necessarily means that they are caused by a dys-regulation of different pathways (ii) 
signals of associations from an individual gene to genetic alterations may be weak and noisy. 

Combining the strength of the set cover approach with the power and stability of network-
centric methods, we designed a new technique that extends the concept of set cover from single 
genes to network modules. In contrast to previous “connected network cover” approaches which 
strived to identify one connected subnetwork covering most disease cases (1, 2, 5), our approach 
allows us to identify multiple subnetworks (modules), so that each disease case is covered by a 
number of modules while the total “cost” of modules is minimized. In addition to network 
information, the definition of a module involves a similarity measure between pairs of genes that 
is based on eQTL association profiles. While modules can be comprised of singleton genes, the 
trade-off between module granularity and similarity of genes in the module is controlled by a 
cost function.  

Given the above definition of similarity, the module cover approach can be used to find 
covering subnetworks such that genes in each module are jointly regulated by the same genetic 
alterations. The problem of detecting subnetworks that are influenced by common genetic 
alterations has been recently approached with a variant of the LASSO method (12) and Bayesian 
partition methods (13) with different objectives in mind. In particular, none of the approaches 
was designed to deal with data heterogeneity while our set cover modules capture the 
heterogeneity of samples where each module covers a different subset of samples. In addition, 
the LASSO based method, GFlasso, in its current implementation does not scale to large datasets 
while the Bayesian approach does not utilize network information. 

To solve the module cover problem, we developed an integrated method that simultaneously 
determines network modules and optimizes the cover of disease cases. For comparison, we also 
implemented a two-step method where we first determined candidate network modules and 
subsequently selected a subset of modules that cover disease cases. While the performance of the 
integrated method is superior to the two-step method, the two-step approach still performed 
better than a naïve method that was based on a single gene cover.  
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We applied the module cover approach to discover modules associated with genomic 
alterations in cancer patients, utilizing genomic alteration and gene expression data. 
Representing each gene by its eQTL (expression Quantitative Trait Loci) association profile our 
algorithms harness profile similarities between genes and identify modules of genes with highly 
correlated eQTL profiles that collectively cover all disease cases.  

We start by introducing a mathematical formalization of the module cover problem and 
subsequently describe our two algorithms: Integrated Module Cover and Two-Step Module 
Cover. Next, we introduce rigorous measures to compare the quality of the modules obtained by 
the two algorithms. Finally, we analyze the modules obtained by the Integrated Module Cover 
that was applied to Glioblastoma Multiforme (GBM) and ovarian cancer data. We conclude with 
a discussion of a broader spectrum of additional applications of the proposed approach.  

2.  Methods 

2.1.  Introduction of the Module Cover Problem 

Here, we extended the concept of the minimum multi-set cover problem to a minimum multi-
module cover problem. The classical minimum multi-set cover is formally defined as follows: 
Given a set of elements E = {e1, e2, …, en}, a family of subsets S = {E1, E2, …,  Em| Ei ⊆ E} and a 
positive integer k, the goal is to select a subfamily of S so that each ei is included at least k times. 
In our problem formulation, disease cases are the elements, and a subset of disease cases Ei 
corresponds to a gene where it is differentially expressed in those disease cases. More 
specifically, a gene g covers a disease case c (cover(c, g)=1) if the gene is differentially 
expressed in the given case, and cover(c, g) = 0 otherwise. To obtain the most prominent disease 
genes, we aim to select the smallest set of genes to cover all disease cases at least k times (11). 
Fig. 1A shows an example of a multi-set cover where disease cases are elements to be covered 
by selected genes. An edge between a gene and a case exists if the gene covers the case. 

In the module cover approach, we select modules (instead of single genes) to cover disease 
cases (Fig. 1B). To ensure that genes in a selected module are coherent, the ‘cost’ of modules 
was defined so that we preferentially assigns low cost to modules with genes that are close to 
each other in the network and are coherent according to a given similarity measure, such as 
correlation of expression or eQTL association profiles. In eQTL analysis, gene expression is 
considered as a quantitative phenotype and controlled by genotypic information. Utilizing 
matching gene expression and copy number variation, we determined eQTL profiles of each 
gene by computing significance levels of associations of each gene to genomic alterations (See 
Section 5.3 for the details). 

Let sim(g1, g2) be the eQTL similarity of the two genes, which is computed based on the 
correlation of their eQTL profiles. We assume that 0 ≤ sim(g1, g2) ≤ 1. Let distance(g1, g2) be the 
shortest distance between the two genes in the interaction network. We first adjust the similarity 
by the distance as  

adjusted_sim(g1, g2)= sim(g1, g2)1+(distance(g1, g2)-1)/(avg_dist -1)         (1) 
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Figure 1. Set Cover vs. Module Cover. (A) In a classical set cover, an edge from a gene to a disease case exists if the gene is 
differentially expressed in the disease case (i.e. covering the case). Genes {B, C, E, F, G} are selected, and all cases are covered 
at least 3 times. (B) A module cover selects coherent modules. Red edges between genes represent the similarity between genes 
(e.g. based on the correlation coefficient of their eQTL profiles or gene expression patterns). In the example, modules {A, B, C}, 
{F}, {G, H} are selected, and all cases are covered at least 3 times. 
 
where avg_dist is the average distance between all pairs of genes in the network. Since our 
weight function adjusts the similarity value with interaction information we obtain higher weight 
if two genes have more similar eQTL profiles and are in close proximity in the network. We 
define the weight function as follows:  

w(g1, g2)= adjusted_sim(g1, g2) - θ           (2) 
where θ is a threshold parameter. The weight is positive (i.e. benefiting module cost) if the 
adjusted similarity is >θ . Consequently, we define the cost of a module M as 

Cost(M) = 𝛼 + |M| - ∑ ∑ 𝑤(𝑥, 𝑦)/(|𝑀| − 1)𝑦 ∈ 𝑀,𝑦 ≠𝑥  𝑥 ∈ 𝑀       (3) 
where 𝛼 is the module initializing cost when a new module is created. We include this initial 
module cost to minimize the number of selected modules. With a larger 𝛼, a smaller number of 
modules with larger average size will be obtained, since costs increase when a new module is 
created. The objective of the second term (i.e. the number of genes) is to minimize the total 
number of selected genes. Finally, we subtract the cost computed as the sum of average weights 
of genes in the module, ensuring coherence of modules since the cost of a module decreases as 
the weights (and similarities) between genes increase. 

Our goal is to find a minimum cost set of modules that cover all disease cases at least k times 
where the depth of coverage is a user defined parameter. More specifically, we search for a 
module set 𝑆′={M1, M2, …, Mt} that minimizes ∑ 𝐶𝑜𝑠𝑡(𝑀𝑖)𝑀𝑖 ∈𝑆′  with the constraint that 
∑ ∑ 𝑐𝑜𝑣𝑒𝑟(𝑐,𝑔) ≥ 𝑘𝑔 ∈𝑀𝑖𝑀𝑖 ∈𝑆′  for each disease case c. The minimum module cover problem is 
NP-hard as it is a generalization of the minimum set cover, which is known to be NP-hard. In the 
following two subsections, we describe two different heuristic algorithms: Integrated Module 
Cover and Two-Step Module Cover. In the integrated module cover algorithm, we discover 
modules on the fly while we select genes to cover disease cases. In the two-step module cover 
algorithm, we first cluster genes based on their similarity to obtain a candidate sets of modules 
and subsequently select a subset of modules to cover disease cases. 
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2.2.  Integrated Module Cover 

In this algorithm, we greedily select genes to cover disease cases and simultaneously create 
modules of ‘similar’ genes. In each iteration, we consider all unselected genes and compute the 
cost of adding each of those genes, assuming two ways to add a gene: 

1) add the gene as a separate module: the cost of adding the gene is simply 𝛼 + 1. 
2) add the gene to an existing module: To maintain the coherence of a module, we first check if 

for the candidate gene g the average weight w(g, v)  over all other genes in the module is 
positive. That is, we can add a gene g to a module M only if ∑ 𝑤(𝑔, 𝑣) 𝑣∈𝑀 > 0. The increased 
cost resulting from adding gene g to module M is Cost(M+{g}) – Cost(M).  

To find the best extension of the cover we proceed as follows: Let P(g) be the set of existing 
modules with a positive average edge weight with g as described in the case (2) The cost of 
adding a gene g is  

IC(g) = min(𝛼+1, minΜi ∈ P(g) (Cost(Mi U{g}) – Cost(Mi)))   
Since we want to cover disease cases to the largest degree, we also account for the ‘benefit’ of 
adding genes. Considering the set of disease cases C’ that were covered less than k times by the 
end of the previous iteration we define the benefit by adding gene g as 

Benefit (g) = ∑ 𝑐𝑜𝑣𝑒𝑟(𝑐,𝑔)𝑐 ∈ 𝐶′ .    
In each iteration, we greedily choose a gene with minimum IC (g)/Benefit (g). If the minimum 
cost of gene g is obtained adding gene g to an existing module M, the module is updated as M 
U{g}. Otherwise a new module {g} is created.  

2.3.  Two-Step Module Cover 

In the Two-Step heuristic, we first find a candidate set of modules by clustering genes based on 
their similarity and interaction data. Subsequently, we apply a covering algorithm to select the 
best set of modules. Specifically, we used Markov Cluster Algorithm (MCL), an unsupervised 
clustering algorithm based on simulation of stochastic flow in a network (14). Note, that a 
predefined set of modules/pathways may be used instead as well. Given a network of interacting 
genes, we weight each edge by the corresponding similarity value and obtain a candidate set of 
modules {M1, M2, …, Mm} using MCL. We then select modules with coherent/similar genes, 
covering as many samples as possible. The cost of selecting a module M is given by (3), and we 
define the benefit of selecting a module as the total coverage 

Benefit(Mi) = ∑ ∑ 𝑐𝑜𝑣𝑒𝑟(𝑐,𝑔)𝑐 ∈ 𝐶′𝑔∈ 𝑀𝑖  
Where, as before, C’ is the set of disease cases not covered k times by the end of the previous 
iteration. In each iteration, we greedily select a module with minimum Cost (M)/ Benefit (M). 

3.  Results 

We applied our module cover algorithms to two data sets: the first dataset includes the data for 
158 Glioblastoma Multiforme patients (GBM) and 32 non-tumor control samples. The data was 
collected by the NCI-sponsored Glioma Molecular Diagnostic Initiative (GMDI), which includes 
matching mRNA expression and copy number variation data for each patient 
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(http://rembrandt.nci.nih.gov/). The second dataset includes 489 Ovarian Cancer data samples 
from TCGA (The Cancer Genome Atlas). The technical details of data processing are described 
in the Materials section. 

3.1.  Analysis of Glioblastoma Multiforme Data from GMDI 

First, we wanted to estimate which of the two methods provides a better heuristic in the 
context of our application. Since our goal was to select modules whose members are associated 
in a coherent way with genotypic changes, we evaluated the two methods based on significance, 
strength, and coherence of the association.   

3.1.1.  Comparison of the Module Cover approaches. 

 We applied the integrated greedy module cover algorithm with k = 300 and 𝛼 = 1, 
allowing 5 samples (3%) to be covered less than k times to exclude outliers. We discuss the more 
detailed parameter selection in online Appendix Section 2. In particular, we found that the 
number of non-trivial modules (i.e. ≥ 3 genes) starts to level with k = 300, prompting us to 
choose this parameter value for our main analysis. We obtained 249 modules that contained a 
total of 513 genes including 41 non-singleton modules. The average distance between genes 
inside a module was 2.5.  

For the two-step module cover, we applied MCL to the network of molecular interactions 
that have been weighted by correlating eQTL profiles of interacting genes. Using inflation 
parameter = 4 we obtained 3,401 candidate modules (see Appendix Table A1 and Figure A1 for 
details of parameter selection). The average size of the candidate modules was 3.21 and 2,677 
modules were non-singleton. Subsequently, we greedily selected modules as described in Section 
2.3. The two-step cover algorithm selected 801 genes in 454 modules. 233 modules (of which 
171 modules are of size 2) were non-singleton. The average distance between genes inside a 
module was 1.1, indicating that the MCL cover provided more compact modules than the 
integrated module cover approach. 

Testing which of the two approaches provided modules whose members were associated in a 
more coherent way with genotypic changes, we evaluated modules with respect to significance, 
strength and coherence of the association.    

For each non-singleton module M, we first defined the significance of the association to 
each of tag loci as the average association significance of the genes in the module. Formally, 

si(M) = ∑ 𝑠𝑖(𝑔)𝑔 ∈ 𝑀 /|M|                                         (5) 
where si(g) represents –log10 p-value of the association provided by the linearly regressing between 
expression values of gene g and copy number variation of i-th tag locus (see Section 5.1 for more 
details). 

The upper panel of Fig. 2A shows such association significance profiles of the 10 largest 
modules. We found strong associations with tag-loci on chromosome 7 and 10. These 
chromosomes carry signature alterations of GBM, coinciding with the genomic locations of 
GBM related genes such as EGFR and PTEN. In the lower panel of Fig. 2A, we show 
association significance profiles of the 10 largest modules selected by the two-step algorithm. 
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Figure 2: Comparison of module covers approaches in GBMs (A) Manhattan plots of module associations show average 
association significance for each tag-locus for the 10 largest modules we obtained with both methods. Modules obtained using 
the integrated method had more significant eQTL associations.  In the upper panel, we also labeled associations that correspond 
to functionally coherent modules shown in Online Appendix Fig. A2. (B, C) Comparing the quality of modules, we observed that 
the Integrated method generated modules with higher strength, lower entropy and higher specificity Module size is indicated by 
the sizes of corresponding circles. The label “single” refers to modules we obtained using a set cover approach.  

  
We observed that associations obtained by the two-step algorithm were weaker based on several 
different measures of quality introduced below.  

To compare the approaches more quantitatively, first note that the total cost of modules 
selected by the integrated and two-step algorithms was 744 and 1439.05, respectively (Appendix, 
Table A1). The total weights between genes in modules (the third term in cost function (3)) were 
18.63 and -184.05, showing that the modules selected by the integrated algorithm were much 
more coherent compared to the modules obtained by two-step algorithm.  

To further quantify the quality of modules in terms of their association to genomic 
alterations, we devised several measures: The strength of association significance of a module 
was defined as the maximum significance of the associations of the given module over all loci:  

Strength (M) = maxi si (M).     (6) 
We also computed the entropy of association profiles for each module. Since entropy 

measures the uncertainty of data, a good quality module (with only a few strong associations) is 
expected to have low entropy while entropy increases as data is more uniformly distributed. 
Formally, for each module M, we partitioned the range from 0 to strength (M) into 10 bins of 
equal sizes and assigned loci according to their significance. In each bin, we computed the 
percentage 𝒑𝒋 of loci and defined the entropy as  

Entropy (M) =−∑ 𝑝𝑗 𝑗 ∈ 𝑏𝑖𝑛𝑠 log2𝑝𝑗      (7) 
For an association to be specific in a given module, only a few regulatory associations 

should have highly significant p-values while the remaining loci are expected to have 
insignificant p-values. Thus, we defined the specificity of a module M as the area of a 
cumulative histogram of association significance values. Specifically, we partitioned the range 
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from 0 to strength (M) into 10 bins of equal sizes and defined cj to be the cumulative percentage 
of j-th bin. Then the specificity is defined as: 

Specificity (M) = ∑ 𝑐𝑗𝑗 ∈ 𝑏𝑖𝑛𝑠 /|bins|        (8) 
Similar to entropy, specificity quantifies the distinction between significant associations and 

the remainder of the loci. However specificity approaches 1 only if a small number of significant 
loci exist whereas theoretically entropy can be low in the case when there is a few insignificant 
and many significant loci.  

We found that the integrated module cover outperformed the two-step module cover 
approach based on all three measures (as summarized in Online Appendix Table A1). The 
average strength of modules (size ≥ 3) selected by the integrated module cover algorithm was 
6.4, significantly outscoring an average of 3.6 of modules obtained by the two-step module cover 
algorithm (P < 10-8, Wilcoxon test). Similarly, the average specificity for the integrated module 
cover was 0.9 while the average was 0.83 for the two-step cover (P < 10-4, Wilcoxon test). The 
average entropy of modules selected by the integrated algorithm and two-step cover were 1.6 and 
2.2, respectively (P < 10-4, Wilcoxon test). 

Fig. 2B,C presents a detailed comparison of the performance of the module cover approaches 
with respect to the mentioned measures. In addition, we included results obtained by the basic set 
cover algorithm labeled “single” in Figs. 2 B,C using the same parameter k = 300 and at most 5 
outliers. In this case we defined the modules as the connected components of the subgraph 
spanned by the genes that were selected as the cover. We observed that modules of size ≥3 
obtained by the integrated module cover approach were on average larger than modules found 
with the two-step approach. Specifically, modules identified by the integrated approach had 
significantly smaller entropy compared to modules obtained by the two-step approach (Fig. 2B, 
P < 10-6, Kolmogorov-Smirnov test). In addition, these modules showed significantly higher 
strength (Fig. 2C, P < 10-5, Kolmogorov-Smirnov test). However, the quality of modules 
obtained with both approaches was still superior to results of a single gene set cover, 
demonstrating general benefits of the module cover approach.   

All alogrithms were implemented in Python and compute the solutions for the inputs of 
~10,000 genes in a few minutes on NCBI linux machines. 

3.1.2.  Analysis of GBM data  

We further analyzed modules provided by the integrated method. First, we determined enriched 
GO terms in modules using BINGO (15). Out of 21 modules with at least 3 genes, we found 14 
modules having at least one GO term that they significantly enriched with (FDR < 0.05). In 
addition to modules enriched with typical cancer-related processes such as cell division, cell 
cycle, and immune response we also obtained more glioma-specific modules such as the WNT 
signaling pathway and glial cell differentiation. For example, only some subsets show dys-
regulation of immune response or of WNT signaling while the cell cycle module is dys-regulated 
in almost all samples. Although our modules have been selected by using eQTL association 
profiles they allow us to recover GBM subtypes that previously were determined with expression 
profiles of single genes. Importantly, we observed that different modules were covering different 
sets of samples in a nonhierarchical (non-nested) way (Online Appendix, Fig. A2). This 
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overlapping pattern of covering modules might explain why the number of GBM subtypes has 
been difficult to establish (16, 17).  

 
3.1.3.  Analysis of Ovarian Cancer Data  

We also used the integrated module cover algorithm to analyze a set of 489 Ovarian Cancer 
samples from The Cancer Genome Atlas (TCGA). Applying the integrated module cover 
algorithm with k=70, 𝛼 = 1, and 25 outliers, we selected 485 genes grouped in 235 modules 
including 54 non-singleton modules. As in the analysis of GBM data, we choose k for which the 
number of nontrivial modules starts to level. Out of 12 modules of size at least 5, 9 modules were 
enriched with at least one GO terms significantly (FDR < 0.05).  

To visualize the coverage of disease cases by modules of size ≥5, we counted the number of 
genes covering each sample (Fig 3A). Similarly to GBMs, we found that different modules are 
covering different subsets of samples. Note that a gene may cover a sample when it is either 
significantly upregulated or downregulated. In Fig 3B, we investigated the expression patterns of 
individual genes in the modules. Performing hierarchical clustering of the genes based on 
expression level,  we obtained clusters consistent with the existing classification of cancer 
subtypes (18), in which  the gene expression profile of ~1,000 selected genes was used to define 
4 disease subtypes. Using only 185 genes in the 12 largest modules from our module cover, we 
successfully recovered these 4 subtypes (Fig 3B) despite the fact that these genes have not been 
selected explicitly to classify expression based subtypes. In the TCGA analysis (18), the authors 
attempted to identify genes whose differential expression helped to define each disease subtype. 
However, we found that our module-based analysis often provided a more informative picture. 
For example, in (18) one subgroup of the collagen gene family was found to support the 
Mesenchymal subtype  while another subgroup of this family as well as the LUM gene which 
binds collagen fibrils was associated to the Differential subtype. In contrast, our approach 
grouped all these genes into “extracellular matrix organization” module, also containing several 
matrix metalloproteinase (MMP) genes. We found that genes in this module had very similar 
expression and were overexpressed in the Mesenchymal subtype.  

4.  Discussion 

Uncovering modules that are associated with genomic alterations in a disease is a 
challenging task as well as an important step to understand complex diseases. To address this 
challenge we introduced a novel technique - module cover - that extends the concept of set cover 
to network modules. We provided a mathematical formalization of the problem and developed 
two heuristic solutions: the Integrated Module Cover approach, which greedily selects genes to 
cover disease cases while simultaneously detecting modules and a Two-Step approach that first 
detects modules and subsequently selects a cover.Using several quality measures, we established 
that the integrative approach outperformed the alternative two-step approach. However, both 
methods showed better performance than a naïve single gene based set cover approach. We also 
constructed modules utilizing gene expression rather than association profiles to define a 
similarity measure (data not shown). We observed that the modules obtained by the integrated 
approach based on gene expression showed lower association specificity/association strength 
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than modules that were provided by eQTL profiles. However, expression based modules would 
be clearly preferred for uncovering expression patterns that occurs regardless of the association 
to genetic variations. 

In general, the module cover approach is especially helpful in analyzing and classifying 
heterogeneous disease cases by exploring the way different combinations of dys-regulated of 
modules relate to a particular disease subcategory. Indeed, our analysis indicated that the gene 
set selected by module cover approach may be used for classification. Equally important, the 
selected module covers may help to interpret classifications that were obtained with other 
methods.  
 

 

 
Figure 3: Modules in ovarian cancer obtained by the integrated module cover method. (A) For each disease case (y-
axis) we displayed in the heat map the number of genes in each module that covered the sample (B) Expression based 
clustering of the genes in the modules provided clusters consistent with the existing classification of cancer subtypes. 
Arrows indicate genes of the extracellular matrix module discussed in the text. The fraction of genes assigned to a given 
cluster in (18) is shown next to the cluster name.  
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5.  Materials 

5.1 Data Treatment for Glioblastoma Multiforme Data from GMDI 

Differentially Expressed Genes: Briefly, all samples were profiled using HG-U133 Plus 2.0 
arrays that were normalized at the probe level with dChip (16, 19). Among probes 
representing each gene, we chose the probeset with the highest mean intensity in the tumor 
and control samples. We determined genes that are differentially expressed in each disease 
case compared to the non-tumor control cases with a Z-test. For a gene g and case c, we 
define cover(c, g) to be 1 if nominal p-value < 0.01 and 0 otherwise.  
eQTL Profiles: To detect copy number alterations, samples were hybridized on the Genechip 
Human Mapping 100K arrays, and copy numbers were calculated using Affymetrix Copy 
Number Analysis Tool (CNAT 4). After probe-level normalization and summarization, 
calculated log2-tranformed ratios were used to estimate raw copy numbers. Using a Gaussian 
approach, raw SNP profiles were smoothed (> 500 kb window by default) and segmented 
with a Hidden Markov Model approach (20-22). We first performed local clustering, 
allowing us to obtain 911 tag loci (11). For each gene/tag-locus pair, we computed nominal 
p-values by linearly regressing gene expression and genomic alteration for all samples. We 
then  define the eQTL significance profile for each gene, g,  as Assoc (g) = {s1(g), s2(g), … 
s911(g)}, where si(g) represents the –log10 p-value of the association given by the linear 
regression between expression values of gene g and copy number variation of locus i. Using 
such profiles, we defined the similarity of two genes g1 and g2, sim(g1, g2), as Pearson’s 
correlation coefficient of Assoc (g1) and Assoc (g2). 
Weights of Gene Pairs: We utilized human protein-protein interaction data from large-scale high-
throughput screens (23-25) and several curated interaction databases (26-29), totaling 93,178 
interactions among 11,691 genes. As a reliable source of experimentally confirmed protein-DNA 
interactions, we used 6,669 interactions between 2,822 transcription factors and structural genes 
from the TRED database (30). As for phosphorylation events between kinases and other proteins 
we found 5,462 interactions between 1,707 human proteins utilizing networKIN (31, 32) and 
phosphoELM database (33). Combining all interactions, the network contains 11,969 human 
proteins and 103,966 interactions.  We computed the weights of each gene pairs using equation 
(1) with avg_distance = 3.6 and θ = 0.63, a threshold that corresponds to the top 1%ile of 
weights of any pairs. 

5.2 Data Treatment for Ovarian Cancer Data from TCGA 

We utilized the unified expression data compiled in (18) based on expression values from three 
different expression platforms. Since there is no control (non-cancer data) in this dataset, we 
defined that a gene covers a sample if its expression in this sample was in the extreme 3% of the 
expression distribution. We then narrowed down the set of genes to 1,889 genes by considering 
genes that covered at least 5% of the samples. As for copy number variations, we used level 4 
data obtained with GISTIC (34) and selected 1,923 genes with copy number alterations (calls = 
±2) in at least 5% of all samples. For each differentially expressed gene we used linear 
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regression to compute associations of the expression of this gene with copy number variation of 
each of the 1,923 genes. We used p-values of these associations to compute association profiles 
as explained in 5.1. Edge weights in interaction graph were calculated as described in 5.1 with θ 
= 0.58, a threshold corresponding to the top 5% ile. 
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Investigating the association between biobank derived genomic data and the information of linked electronic 
health records (EHRs) is an emerging area of research for dissecting the architecture of complex human 
traits, where cases and controls for study are defined through the use of electronic phenotyping algorithms 
deployed in large EHR systems. For our study, 2580 cataract cases and 1367 controls were identified within 
the Marshfield Personalized Medicine Research Project (PMRP) Biobank and linked EHR, which is a 
member of the NHGRI-funded electronic Medical Records and Genomics (eMERGE) Network.  Our goal 
was to explore potential gene-gene and gene-environment interactions within these data for 529,431 single 
nucleotide polymorphisms (SNPs) with minor allele frequency > 1%, in order to explore higher level 
associations with cataract risk beyond investigations of single SNP-phenotype associations. To build our 
SNP-SNP interaction models we utilized a prior-knowledge driven filtering method called Biofilter to 
minimize the multiple testing burden of exploring the vast array of interaction models possible from our 
extensive number of SNPs. Using the Biofilter, we developed 57,376 prior-knowledge directed SNP-SNP 
models to test for association with cataract status. We selected models that required 6 sources of external 
domain knowledge.  We identified 5 statistically significant models with an interaction term with p-value < 
0.05, as well as an overall model with p-value < 0.05 associated with cataract status.  We also conducted 
gene-environment interaction analyses for all GWAS SNPs and a set of environmental factors from the 
PhenX Toolkit: smoking, UV exposure, and alcohol use; these environmental factors have been previously 
associated with the formation of cataracts. We found a total of 288 models that exhibit an interaction term 
with a p-value ≤ 1x10-4 associated with cataract status.  Our results show these approaches enable advanced 
searches for epistasis and gene-environment interactions beyond GWAS, and that the EHR based approach 
provides an additional source of data for seeking these advanced explanatory models of the etiology of 
complex disease/outcome such as cataracts. 
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1.  Introduction 

DNA biobanks coupled to electronic health records (EHR) have become a valuable resource 
for investigating the genetic architecture of complex traits, as EHR contain a wide array of 
medical information including billing codes and clinical laboratory measurements, often 
yielding a large sample size. Through carefully defining phenotypes, and using deployable 
algorithms that combine multiple sources of information in the EHR, cases and controls can be 
defined for association studies, such as defining age-related cataract cases and controls [1,2]. 
The Marshfield Personalized Medicine Research Project Biobank (Marshfield PMRP) and 
linked EHR, used for the study described herein, is one such resource [3]. The Marshfield 
PMRP is a member of the NHGRI-funded electronic Medical Records and Genomics 
(eMERGE) Network, a network of similar Biobanks coupled with EHR based data [4].  
Cataracts are a leading cause of blindness globally [5], and are believed to arise from a 
combination of age, environmental factors, and heritable factors [6]. Thus, understanding the 
genetic etiology of cataracts, coupled with the effect of environment as a modifier, could have 
a profound impact on human health.  For our study, algorithms proven for age-related cataract 
case identification [2] were deployed in the Marshfield PMRP EHR to identify 2580 cataract 
cases and 1367 controls, with further study details presented in Table 1. A total of 529,431 
single nucleotide polymorphisms (SNPs) were available after PMRP genotyping coupled with 
quality control filtering and selection for SNPs with a minor allele frequency > 1%.  

Single SNP-phenotype associations are a dominant study design used in most genome-wide 
association studies (GWAS), however, more complex models that include interactions may 
more accurately describe the relationship between genetic variation and complex outcomes. 
Investigating all gene by gene (GxG), and in extension, all SNP by SNP (SNPxSNP) pairwise 
models is possible depending on the number of SNPs that have been genotyped. 
Unfortunately, the multiple hypothesis testing burden and risk of Type I error is inflated when 
investigating all pairwise models. A different approach can be used, utilizing prior biological 
knowledge methods directing model development. Thus, to investigate more complex models 
beyond single SNP-Phenotype associations for the Marshfield PMRP cataract dataset, we used 
the prior knowledge accessible through Biofilter 1.0 (a new implementation of Biofilter after 
the original description in [7]) to direct the investigation of pairwise GxG interaction models 

Table 1.  Marshfield Cataract Study Description 

Age  ≥	 50 
Ancestry European American 
Total Sample Size 3947 

# Controls 1367 
# Cases 2580 

After QC & Allele Frequency Cutoff  
# Controls 1364 
# Cases 2576 
% Women Controls  59 
% Men Controls  41 
% Women Cases 59 
% Men Cases 41 
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based on the following resources: the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
[8], Reactome [9], Gene Ontology (GO) [10], the Protein families database (Pfam) [11], 
NetPath [12], Biological General Repository for Interaction Datasets (BioGrid) [13], and the 
Molecular INTeraction Database (MINT) [14]. Using the Biofilter, we developed 57,376 prior-
knowledge directed SNPxSNP models to test for association with cataract status.  
In addition, for this study we investigated gene-environment interactions (GxE), as there are 
clearly known environmental exposures that increase cataract risk, and when incorporated into 
analyses, may provide new models for the contribution of both environment and genetic 
architecture to cataracts. The Marshfield PMRP collected standardized Phenotypes and 
eXposures (PhenX) measures as a member of the PhenX Real-world, Implementation, 
SharingING (PhenX RISING) project.  PhenX has the goal of defining standard phenotypic 
measures through a framework of measurement protocols via a web-based toolkit [15]. 
Environmental exposures such as smoking, sun exposure, and alcohol use, have been 
associated with increased cataract rates [16]. Thus we used 12 PhenX defined environmental 
exposures to investigate GxE interactions for the Marshfield PMRP cataract data focused on 
smoking, UV exposure, and alcohol use measures.  

Through integrating EHR data, advanced bioinformatics tools, and PhenX, we can pursue 
advanced searches for epistasis and gene-environment interactions in genome-wide studies of 
common disease.  

2.  Methods 

2.1.  Marshfield EHR and Age-Related Cataract Case Identification 

The Marshfield PMRP is a population based biobank with ~20,000 subjects, aged 18 years and 
older, enrolled in the Marshfield Clinic healthcare system in central Wisconsin [3]. DNA, 
plasma, and serum samples are collected at the time the enrollee completes a written informed 
consent document, with allowance for ongoing access to the linked medical records.  PMRP 
participants also complete questionnaires, including responses regarding smoking history, 
occupation, and diet.  
To identify cataract surgery cases aged 50 years and older within the PMRP, Current 
Procedural Terminology (CPT) codes in the Marshfield Clinic EHR were used. A research 
coordinator manually abstracted additional information to identify the eye affected, the type 
and severity of the cataract, and the level of visual acuity prior to the cataract surgery.  This 
was also done to remove any cases with non-age related cataracts. 

To identify individuals with diagnosed cataracts but without surgery, and to identify the type 
of cataract, International classification of diseases, 9th revision (ICD-9) codes and CPT codes 
were used, coupled with Natural Language Processing (NLP) and Intelligent Character 
Recognition (ICR) of free-text in the EHR.  NLP and exclusion criteria were used to identify 
individuals with congenital and traumatic cataracts for omission from the study. Further details 
of the identification of cataract cases and controls and the efficacy of the EHR defined 
phenotyping can be found in Waudby et al., 2011 [2].  

All total, the procedures used on the EHR identified 2580 cataract cases and 1367 controls in 
the Marshfield PMRP data.  
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2.2.  Genotyping 

The eMERGE network and the Center for Inherited Disease Research (CIDR) at Johns 
Hopkins university performed the genotyping of the Marshfield PMRP samples, using the 
Illumina Human660W-Quadv1 A platform with total of 560,635 SNPs and 96,731 intensity-
only probes.  Bead Studio version 3.3.7 was used by CIDR for the genotyping calls.  The total 
cohort genotyped included 3947 samples from the Marshfield PMRP, 21 blind duplicates, and 
85 HapMap controls. The HapMap concordance rate was 99.8% and the blind duplicate 
reproducibility rate was 99.99%.  For quality control and data cleaning the eMERGE quality 
control (QC) pipeline developed by the eMERGE Genomics Working Group [17] was used. 
Any SNPs with a minor allele frequency > 1% , SNP call rate > 99%, Sample Call Rate > 99% 
were used in further analysis. After QC and allele frequency filtering using PLINK [18], a total 
of 529,431 SNPs were used for further analysis. 

2.3.  PhenX 

The standardized phenotypic and environmental consensus measures for Phenotypes and 
eXposures (PhenX) [15] were used to capture the environmental variables used in this study. 
The PhenX Toolkit (https://www.phenxtoolkit.org/) offers high-quality, well-established, 
standard measures of phenotypes and exposures for use in epidemiological studies. 

The Marshfield PRMP is part of the PhenX RISING consortium, which is comprised of seven 
groups funded by the National Human Genome Research Institute (NHGRI) and the Office of 
Behavioral and Social Sciences Research (OBSSR) to incorporate PhenX 
(https://www.phenxtoolkit.org/) measures into existing population-based genomic studies.  

Table 2.  The PhenX measures used for this study 

PhenX Measure  Survey Question 
PX030301 Alcohol 30Day Frequency During the past 30 days, on how many days did you drink one 

or more drinks of an alcoholic beverage? 
PX030301 Alcohol 30Day Quantity During the past 30 days, how many drinks did you usually 

have each day?  
PX030602 Cigarette Smoking 100 Have you smoked at least 100 cigarettes in your entire life? 
PX030602 Cigarette Smoking Current Do you now smoke cigarettes every day, some days, or not at 

all? 
PX030602 Cigarette Smoking Everyday 6Month Have you EVER smoked cigarettes EVERY DAY for at least 

6 months? 
PX030802 Everyday Smoker Quantity 1Day On the average, about how many cigarettes do you now 

smoke each day? 
PX030802 Someday Smoker Days 1Month On how many of the past 30 days did you smoke cigarettes? 
PX030802 Someday Smoker Quantity 1Day On the average, on those days, how many cigarettes did you 

usually smoke each day? 
PX030802 Former Smoker Smoking 6Month Have you EVER smoked cigarettes EVERY DAY for at least 

6 months? 
PX030802 Former Smoker Quantity 1DayA When you last smoked every day, on average how many 

cigarettes did you smoke each day? 
PX030802 Former Smoker Quantity 1DayB When you last smoked fairly regularly, on average how many 

cigarettes did you smoke each day? 
PX061301 Weekend Sun Hours Last Decade On a typical weekend day in the summer, about how many 

hours did you generally spend in the mid-day sun in the past 
ten years? 
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For this initiative, Marshfield PRMP subjects with GWAS data who were alive with known, non-
institutionalized addresses and who had given consent for re-contact were mailed a 32-page self-
administered questionnaire that contained 35 PhenX measures across a range of phenotypic 
domains including alcohol and tobacco use questions (McCarty et al. 2012, in preparation).   

For this study, we considered 12 of these measures, shown in Table 2.  

2.4.  BioFilter 1.0 

For the SNPxSNP analysis, Biofilter 1.0 was used. Biofilter has been upgraded from the initial 
Biofilter 0.5 [7], with the addition of more data sources, improved the handling of data, and 
the development of an eternal database for prior knowledge called the Library of Knowledge 
Integration (LOKI).  Biofilter 1.0 and LOKI are freely available for non-commercial research 
institutions. For full details see: http://ritchielab.psu.edu/ritchielab/software. 

Biofilter 1.0 utilizes prior biological knowledge through accessing the data of several 
publically available biological information databases, all compiled within the LOKI database 
developed specifically for Biofilter. The data sources selected for Biofilter contain information 
on networks, connections, and/or pathways that establish relationships between genes and gene 
products. Biofilter is a “gene based” approach, thus all the region information (such as genes) 
and position information (such as SNPs) are mapped to genes within LOKI.  

The following sources that are compiled within LOKI were used for the Biofilter model 
building: the Kyoto Encyclopedia of Genes and Genomes (KEGG) [8], Reactome [9], Gene 
Ontology (GO) [10], the Protein families database (Pfam) [11], and NetPath [12], Biological 
General Repository for Interaction Datasets (BioGrid) [13], and the Molecular INTeraction 
Database (MINT) [14]. The database source used in LOKI solely for the purpose of mapping 
SNPs to genes is the National Center for Biotechnology (NCBI) dbSNP [19] database. 

 
Figure 1. Simplified model for one Biofilter 1.0 database source with 2 pathways, 5 genes, and 8 SNPs 

 
The following process was used within Biofilter 1.0 to develop the SNPxSNP models used in prior 
knowledge directed association testing. Figure 1 shows a simplified example of how the Biofilter 
1.0 model generation process works. First, the input list of SNPs are mapped to genes within 
Biofilter. Next, comprehensive pairs of genes that are all terminal leaves of the graph for Pathway 
1 in Source 1, and Pathway 2 in Source 1 are generated, only for genes that contain SNPs in the 
input list of SNPs.  
 
Implication scores are used in Biofilter to give each pairwise model a “score” indicating how 
many sources have that connected pair of genes represented, the higher the implication score, the 

Pacific Symposium on Biocomputing 2013

152



 
 

 

more sources have indicated a connection between a pair of genes. The implication index is a 
measure of the number of data sources providing evidence of an interaction, a sum of the number 
of data sources supporting each of the two genes and the connection between them. In the case of 
our simplified example, for Genes 1-5, that all contain SNPs within the input list, the following 
pairwise Gene-Gene models would result, each with an implication score of 1: 
 

Gene1 – Gene 2 
Gene1 – Gene 3 
Gene 2 – Gene 3 
Gene 4 – Gene 5 

 
This process continues through all other sources used for Biofilter. Each time a pairwise 
combination of genes is found in another source (such as the pair Gene1-Gene2), the implication 
score for that pairwise model will be increased by 1. Lastly, the G-G models are broken into all 
pairwise combinations of SNPs across the genes, within P1 or P2.  The SNP-SNP models would 
look like the following: 
 

SNP1-SNP3  
SNP1-SNP4  
SNP1-SNP5 
SNP2-SNP3 
SNP2-SNP4 
SNP2-SNP5 
SNP3-SNP5 
SNP3-SNP4 
SNP6-SNP7 
SNP6-SNP8 

This same process was used within Biofilter 1.0 to develop the SNPxSNP models used for our 
prior knowledge directed association testing.  First, the 529,431 SNPs were mapped to their 
corresponding genes. Next, the genes corresponding to the SNPs of the dataset were mapped 
to the gene-relationship graphs for each LOKI source used. After this mapping process, gene 
pairs were exhaustively generated for each occurrence of two genes within a single pathway 
and single source. Implication scores were calculated for the pairwise models. After the gene-
gene models were developed in Biofilter, the models were divided into exhaustive SNP-SNP 
pairs for association testing.  
Table 3 indicates the number of models that were found at each implication score cutoff. An 
implication index cutoff of 4 actually incorporates all possible pairwise models for all SNPs 
we had for this study, a total of 603,032 models. We found an implication score cutoff of 6 
resulted in a balance between a large group of models for exploration (57,376 models), but still 
maintained a very computationally feasible set of associations to investigate, limiting our type 
1 error rate more than using all exhaustive pairs of SNP-SNPs or some of the less stringent 
implication score cutoffs. With a requirement for an implication index of 6, as we had in this 
study, the gene-gene relationship or known interaction had to be found in nearly all of the data 
sources we used within LOKI. 

Table 3.  Number of Resulting Models for Each Implication Score Cutoff 

Implication Index Cutoff Number of Models 
4            603032 
5            337113 
6 57376 
7             2479 
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2.5.  Statistical Analysis  

For the SNPxSNP models generated through the use of Biofilter, PLATO [20] was used to 
determine the significance of the interaction term (via a t-test), and the significance of the 
overall model (via an F test). The full model was: SNP1 + SNP2 + SNP1*SNP2, for all of the 
pairwise sets of SNPs generated by Biofilter with an implication index of 6.  
For the GxE (SNPxE) models, the full model was: SNP1 + ENV1 + SNP1*ENV1, for all the 
possible unique SNPxE pairs, from the set of 529,431 SNPs and the PhenX variables described 
earlier in methods.  Again, the outcome was case control status for cataracts. PLINK [18] was 
used, and results were maintained for further inspection that had an P-interaction term < 0.05. 
The GGPlot2 [21] package in R was used for Figure 2.  

3.  Results 

3.1.  GxE Results 
 
Figure 2 shows a Manhattan plot of the association results for the PhenX GxE models that had 
interaction p-values ≤ 1x10-2, a total of 288 models exhibited an interaction term with a p-value 
≤ 1x10-4 associated with cataract status.  The top five GxE interaction results for each PhenX 
measure are also presented in Table 4, sorted by chromosome to highlight results similar across 
SNPs and regions for multiple PhenX measures. The measurement “PX030802 Former Smoker 
Smoking 6Month” a survey question asking “Have you ever smoked cigarettes every day for at 
least 6 months?” with the SNP rs2058131, near the genes ZNF471 and ZFP28 on Chromosome 
19, that had an association interaction term p-value of 2.72x10-7

, was the most significant 
interaction term p-value found when compared to the other 12 PhenX measurements we used 
in our GxE analysis. 
 

 
 

Figure 2. Manhattan plot of the association results for the GxE interaction models. Displayed are the results for the 10 
PhenX measures that had interaction p-values < 1x10-2, two PhenX measures did not have an interaction p-value less 

than 1x10-2. 
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Table 4. Five most significant GxE results for each PhenX measurement, sorted by chromosome and gene 
 

 
Chr BP RSID PhenX variable P-value Gene 

1 38802669 rs4568792 Former Smoker Smoking 6 Month 4.67x10-6  1 233192767 rs7412124 Alcohol 30 Day Quantity 0.00022  2 52547408 rs6726893 Everyday Smoker Quantity 1 Day 0.00047  3 69335296 rs12494107 Someday Smoker Days 1 Month 0.019 FRMD4B 
3 99983201 rs13091236 Alcohol 30 Day Quantity 0.00028 ST3GAL6 
3 100016640 rs13059624 Alcohol 30 Day Quantity 0.00025 DCBLD2 
3 100092139 rs13084692 Alcohol 30 Day Quantity 0.00028 DCBLD2 
4 8423988 rs747580 Former Smoker Quantity 1 Day A 2.13x10-5 ACOX3 
4 8480717 rs2631731 Former Smoker Quantity 1 Day A 8.40x10-6 ACOX3 
4 37295333 rs2048257 Former Smoker Smoking 6 Month 8.29x10-6 RELL1 
4 42991353 rs17457584 Alcohol 30 Day Quantity 2.64x10-5  4 53149495 rs346005 Alcohol 30 Day Frequency 1.92x10-6  4 114190823 rs1026975 Cigarette Smoking 100 1.06x10-5 ANK2 
5 123324046 rs2250107 Everyday Smoker Quantity 1 Day 0.00049  5 123343048 rs2546839 Everyday Smoker Quantity 1Day 0.00044  6 4098136 rs653674 Former Smoker Quantity 1Day A 2.53x10-5  6 66776318 rs6899720 Cigarette Smoking Current 8.87x10-6  6 66776318 rs6899720 Cigarette Smoking Everyday 6 Month 3.83x10-6  6 66900502 rs12528760 Cigarette Smoking Current 7.93x10-6  
6 66900502 rs12528760 Cigarette Smoking Everyday 6 Month 4.36x10-6  
6 135370485 rs6929661 Cigarette Smoking Everyday 6 Month 6.78x10-6 HBS1L 
6 135376293 rs1014021 Cigarette Smoking Everyday 6 Month 5.74x10-6 HBS1L 
6 135407511 rs6569990 Cigarette Smoking Everyday 6 Month 5.26x10-6 HBS1L 
6 170414666 rs3012437 Cigarette Smoking 100 1.36x10-5 LOC285804 
7 97704227 rs3735258 Former Smoker Quantity 1 Day A 3.01x10-5 DKFZP434B0335 
7 144435178 rs10254774 Cigarette Smoking 100 1.26x10-5  
9 2449444 rs1006575 Former Smoker Smoking 6 Month 1.39x10-6  
9 6256440 rs2026991 Cigarette Smoking Current 1.22x10-5  
9 79252094 rs10116050 Alcohol 30 Day Frequency 1.09x10-5 GNA14 
9 79255890 rs4745639 Alcohol 30 Day Frequency 6.74x10-6 GNA14 

10 72815798 rs4747150 Alcohol 30 Day Frequency 9.41x10-6  12 96988908 rs11109339 Former Smoker Quantity 1Day A 1.22x10-5  13 59162465 rs1379518 Former Smoker Quantity 1Day B 0.0011 DIAPH3 
14 36400549 rs1325530 Weekend Sun Hours Last Decade 1.10x10-5 SLC25A21 
15 20596568 rs3812923 Cigarette Smoking Current 7.53x10-6 NIPA1 
15 22652931 rs752873 Alcohol 30 Day Frequency 6.23x10-6 SNRPN  
15 48790334 rs10519284 Someday Smoker Days 1 Month 0.018 SPPL2A 
15 48796548 rs12898588 Someday Smoker Days 1 Month 0.018 SPPL2A 
15 48797199 rs7165492 Someday Smoker Days 1 Month 0.018 SPPL2A 
15 59933890 rs17238096 Someday Smoker Quantity 1 Day 0.022 VPS13C 
16 50786246 rs2245948 Former Smoker Quantity 1 Day B 0.0019  
16 50794864 rs7200614 Former Smoker Quantity 1 Day B 0.0019  
16 64857219 rs233546 Someday Smoker Days 1 Month 0.018  
16 76582490 rs6564494 Former Smoker Quantity 1 Day B 0.0021  16 83259294 rs4783043 Former Smoker Quantity 1 Day B 0.0020  17 2685811 rs9747501 Everyday Smoker Quantity 1 Day 0.00055 GARNL4 
17 40022727 rs16970865 Someday Smoker Quantity 1 Day 0.021  
17 40035928 rs9904409 Someday Smoker Quantity 1 Day 0.020  
17 40057582 rs10451262 Someday Smoker Quantity 1 Day 0.019  
18 74848306 rs612829 Former Smoker Smoking 6 Month 3.52x10-6 SALL3 
19 61733570 rs2058131 Former Smoker Smoking 6 Month 2.72x10-7  
20 45927980 rs8121494 Cigarette Smoking Current 6.86x10-6  
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21 33511140 rs9978523 Everyday Smoker Quantity 1 Day 0.00059  
22 22564245 rs738807 Weekend Sun Hours Last Decade 5.14x10-6  
22 22564493 rs5751759 Weekend Sun Hours Last Decade 2.79x10-6  
22 22565198 rs4822443 Weekend Sun Hours Last Decade 3.21x10-6 MIF 
22 22567862 rs2000466 Weekend Sun Hours Last Decade 4.33x10-6 MIF 
22 26292517 rs723184 Cigarette Smoking 100 1.63x10-5  
22 26298208 rs5762257 Cigarette Smoking 100 1.57x10-5  
22 32107269 rs5998902 Someday Smoker Quantity 1 Day 0.022 LARGE 

 
Table abbreviations: 
Chr = Chromosome 
BP = Base pair location of SNP 
RSID = SNP ID 
P-Value = P-value of the interaction 
Gene = Gene symbol of gene the SNP is within (blank if not within a gene) 

3.2.  GxG Results 

The top Biofilter 1.0 derived GxG models are presented in Table 5. A total of 5 models had both a 
p-value for the interaction term and the overall model p-value < 0.05. A total of 7 genes were in 
the five models.  Of the five models, the most significant was for a model with EGF, which is 
epidermal growth factor, and EGFR, which codes for the cell surface receptor that binds to 
epidermal growth factor.  
 
Table 5: The 5 SNPxSNP models with an interaction p-value < 0.05 and a total model p-value < 0.05 after association 
testing of the Biofilter derived pairwise models.  Presented in Table 5 are the effect coefficients for the main effects 
(β1 and β2) and the interaction term (β3), as well as the P-value for the interaction term (Pixn) and the P-value for the 
model (Pmod).  
 

Gene 1 SNP1 Allele
/MAF Gene 2 SNP2 Allele

/MAF β1 β2 β3 Pixn Pmod 

EGF rs2298999  0.41 EGFR rs17172446  0.23 0.039 0.087 -0.086 3.37x10-6 3.93x10-5 
LCP2 rs2338872  0.40 VAV1 rs12979659  0.37 0.036 0.058 -0.072 8.28x10-6 6.18x10-5 
FYN rs1327200  0.34 DOCK1 rs10829597  0.40 -0.084 -0.049 0.067 4.53x10-5 2.56x10-5 
FYN rs1327200  0.34 DOCK1 rs2050305  0.37 -0.080 -0.046 0.066 7.56x10-5 4.24x10-5 

DOCK1 rs9418709  0.47 SRC rs6063022  0.15 0.019 0.061 -0.083 5.74x10-5 0.00036 

  

4.  Discussion 

The results presented herein are an exploration of the use of multiple novel approaches for 
investigating gene and phenotype associations within EHR based data. We performed an analysis 
with PhenX derived measures, seeking GxE interaction models for the Marshfield Cataract data 
set. The majority of the significant interactions were found for smoking related measures. We did 
find some highly correlated PhenX measures with significant interactions for SNPs within similar 
regions, such as the results on chromosome 6 for SNPs rs6899720 and rs12528760, for smoking 
related phenotypes. Through searches in the NCBI catalog [22], as well as the National Center for 
Biotechnology (NCBI) dbSNP [19], these two SNPs, as well the SNP in our most significant GxE 
model, did not show previous GWA level significant associations for any phenotypes.  
 
We also performed an exploratory analysis with Biofilter 1.0, an updated and improved 
implementation of the originally published Biofilter. The results are intriguing, and provide the 
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basis for hypotheses that can be investigated further, highlighting how Biofilter results have a 
biological context that provide additional information for resulting models. For instance, the most 
significant model contained EGF and EGFR, which are known to have a biological interaction as 
the gene product of EGFR is a receptor for the gene product of EGF. Epidermal growth factor is 
found in human tears [23], and ocular effects have been found after the administration of EGFR 
inhibitors administered to patients [24].  Interestingly, three of the models that passed our 
significance cutoff contained two of the same genes, FYN, a member of the protein-tyrosine kinase 
oncogene family implicated in cell growth, and DOCK1, dedicator of cytokinesis 1. These models 
as a whole implicate genes related to cell growth, the cell cycle, and epidermal growth.  
 
We are currently developing Biofilter 2.0 which will be include additional database sources and 
allow for the use of other position and region based information beyond SNPs and genes, such as 
copy number variation (CNV) data, evolutionary conserved regions, and regulatory regions, 
allowing users to incorporate additional sources of prior knowledge as well as utilize other sources 
of genetic variation measurement data, with a more user-friendly interface.  
 
Our results provide more complex models for an association between genetic variation and 
cataract outcome, moving beyond the more standard SNP-phenotype associations.  The models 
found we intend to investigate further and warrant additional investigation of the environment and 
genetic variables contributing to these more complex models. These bioinformatics approaches 
can be used with other datasets, to expand the investigation of the relationship between genetic 
architecture and phenotypic outcome. With these approaches that consider the complexity of the 
data and harness the power of novel bioinformatics tools, we will elucidate the missing heritability 
of complex traits. 
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Despite thousands of reported studies unveiling gene-level signatures for complex diseases, few of 
these techniques work at the single-sample level with explicit underpinning of biological mecha-
nisms. This presents both a critical dilemma in the field of personalized medicine as well as a 
plethora of opportunities for analysis of RNA-seq data. In this study, we hypothesize that the 
“Functional Analysis of Individual Microarray Expression” (FAIME) method we developed could 
be smoothly extended to RNA-seq data and unveil intrinsic underlying mechanism signatures 
across different scales of biological data for the same complex disease. Using publicly available 
RNA-seq data for gastric cancer, we confirmed the effectiveness of this method (i) to translate 
each sample transcriptome to pathway-scale scores, (ii) to predict deregulated pathways in gastric 
cancer against gold standards (FDR<5%, Precision=75%, Recall =92%), and (iii) to predict pheno-
types in an independent dataset and expression platform (RNA-seq vs microarrays, Fisher Exact 
Test p<10-6). Measuring at a single-sample level, FAIME could differentiate cancer samples from 
normal ones; furthermore, it achieved comparative performance in identifying differentially ex-
pressed pathways as compared to state-of-the-art cross-sample methods. These results motivate 
future work on mechanism-level biomarker discovery predictive of diagnoses, treatment, and ther-
apy. 
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1.  Introduction 

Interpreting differentially expressed genes at the biological scale using enrichment statis-
tics (Enrichment) or Gene-Set Analyses (GSA) has become routine for microarray and 
RNA-Seq studies. By design, these analyses require group assignment as well as derived 
mechanisms (e.g., Kyoto Encyclopedia of Genes and Genomes, i.e. KEGG pathways [1]) 
to reference differences of expression between these groups. While biologists are well 
served with such studies, evaluating individual patients in clinic necessitates single pa-
tient measures. Indeed, conventional single molecule biomarkers are popular because of 
their crisp thresholds that are interpretable as normal or abnormal. FDA-approved bi-
omarkers are often required to reveal clinically interpretable biological mechanistic in-
formation useful in diagnosis of disease and prognosis of therapeutic response. While 
gene expression classifiers (signatures) have been shown as accurate predictors, they par-
adoxically are not comprised of “driver genes” (known mechanisms of diseases) or thera-
peutic response [2]. When developed using different datasets, there is poor genetic con-
cordance between signatures. In contrast, we have shown mechanistic overlap at the pro-
tein interaction level between signatures predictive of clinical outcome in breast cancer 
[3] and in prostate cancer [4]. The lack of mechanistic underpinning prohibits in part the 
wide adoption and FDA approval of expression classifiers [5]. Indeed, MammaPrint® 
microarray [6] and of OncotypeDX [7] are both classifiers derived from mechanisms 
(wound healing signature from animal models, and curated breast cancer driver genes,).  

  Few genome-wide methods have been developed using gene-sets for imputing biolog-
ical mechanisms (most have been for microarrays measuring RNA expression). In these 
studies, scoring mechanisms by the median or mean expression of their corresponding 
gene-set were shown to be capable of generating classifiers but at a lower accuracy than 
single-transcript RNA expression-level signatures [8, 9]. More accurate mechanism clas-
sifiers can be derived from methods comparing phenotypic group assignments between 
samples to identify principal components (PCA) [10, 11] or by the expression of key 
genes to represent the whole pathway such as in CORG [12] and LLR [13]. We devel-
oped “Functional Analysis of Individual Microarray Expression” (FAIME), a weighted 
rank method that can impute mechanism-scores on each expression array sample and 
eliminate the group assignment requirement [14]. We have shown FAIME’s accuracy in 
generating classifiers predictive of outcome in independent expression array datasets of 
head and neck [14] and lung cancers [15]. We have also experimentally validated FAIME 
for predicting microRNA targets within cell lines and animal models [16]. We have addi-
tionally demonstrated that while the genetic overlap of RNA-level classifiers across three 
head and neck cancer datasets was ~3% at False Discovery Rate (FDR) <5%, more than 
46%-61% of the FAIME-anchored KEGG pathways classifiers overlapped in the same 
datasets (FDR<5%) [14]. We have also demonstrated that FAIME can be employed on 
continuous phenotypes such as survival in cox-regression [12]. These studies [10-14] 
transcend those using conventional gene enrichment or gene set enrichment analyses 
(GSEA) that cannot provide individual measurements of mechanisms on a single sample 
and require comparison between multiple samples groups (in distinct categorical pheno-
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types) to infer gene-set-level predictions. Recently, related work in mass spectrometry 
protein complexes (derived from interaction networks) were shown to be more accurate 
for designing classifiers than single proteins [17]. However, to our knowledge, no mech-
anism-level methodology has yet been designed specifically for interpreting individual 
RNA-sequencing samples. Such a methodology is a requirement to develop RNA-seq 
based, clinically predictive mechanism-level classifiers. To our knowledge, no method of 
mechanism imputation has been developed for RNA-seq at the single sample level. 
    We hypothesized that the FAIME weighted rank-based method we developed for ex-
pression arrays would be more accurate than the simpler ‘median expression’ and ‘mean 
expression’ methods. To confirm this for each method, we systematically compared the 
different false discovery rate thresholds for accuracy and for biological reproducibility 
across transcriptomic measurements using (i) proxy gold standards in the same datasets 
and (ii) validating in independent datasets (RNA-Seq vs array expression). 

2.  Methods 

2.1.  Data preparation and databases 

All datasets were obtained from the Gene Expression Omnibus (GEO) [18]. To demon-
strate the feasibility of the FAIME technique on RNA-seq data, the Asian gastric cancer 
dataset GSE36968 [19], consisting of 24 gastric cancers and 6 normal stomach samples, 
was used. GSE36968 was sequenced with Life Technologies SOLiD™ sequencing plat-
form. This dataset was already in Reads Per Kilobase of exon model per Million mapped 
reads (RPKM) format [20]. Since RPKM is a widely accepted standard for RNA-seq 
normalization by biologists, no additional pre-processing was performed. To validate and 
show concordance among RNA-seq and microarray data, the Asian gastric cancer micro-
array dataset GSE13861 [21], consisting of 71 gastric cancer and 19 normal samples, was 
used. This dataset was already quantile normalized [22] and log2 transformed.  

2.2.  Microarray platform annotation 

Microarray platform annotation was downloaded from the GEO website 
(http://www.ncbi.nlm.nih.gov/geo/) for the GSE13861 dataset using Illumina Hu-
manWG-6 v3.0 expression beadchip. 

2.3.  KEGG pathway annotations 

KEGG pathway annotations are embedded in Bioconductor database KEGG.db [23] ver-
sion 2.7.1. The 229 KEGG pathways with more than 3 annotated genes are studied. 

2.4.  FAIME pathway scoring of each sample 

From the methodologies in [1], to quantitatively assign a mechanism's “expression de-
regulation” via its gene members, whose expression is measured in RPKM, all expressed 
genes (set G) in each sample are sorted in a descending order according to their expres-
sion levels, and then, as shown in Eq. (1), an exponential decreasing weight (w) is as-
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signed to the ordered genes. The resultant weighted expression values are used to priori-
tize relatively highly expressed genes as in the first step of Bioconductor package Or-
deredList [24, 25]. Specifically, let rg,s be the expression rank for each gene g∈G in a 
sample s, let |G| be the total number of distinct genes measured and the weight assigned 
to each gene per sample (wg,s) is calculated as follows: 

 )()( ||
||

,,

,

G
Gr

sgsg

sg

erw
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⋅=  (1) 

A Normalized Centroid (NC) is defined as the uni-dimensional average of the weighted 
expression values of a gene-set. Specifically, the sum of the weighted expression of gene 
element in a gene-set is normalized according to its cardinality. For every KEGG path-
way, there is a gene-set KEGGi in which genes satisfy g∈KEGGi and a complement 
gene-set (G/KEGGi) comprised of all available measured genes that are not annotated to 
this KEGG pathway. Thus we calculate the normalized centroid of each gene-
set KEGGi in each sample s and that of its complement gene-set as follows: 
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Furthermore, Eq. (3) calculates the Functional FAIME Score (F in equations) of each 
gene-set of a KEGG pathway in every sample as the difference between the normalized 
centroid of its gene-set and that of its complement gene-set. We define functional scores 
as functional biological mechanisms of the gene-set associated with a KEGG pathway in 
a given example. 
 )/()()( ,,,, sisisiKEGG KEGGGNCKEGGNCKEGGFF

si
−==  (3) 

Eq. (4) calculates for a sample s, the FAIME Profile "FPs" defined as the set of all 
FAIME scores of sample s, FKEGGi,s, assigned to every term. 

 },,,,{
,,,1 snsis KEGGKEGGKEGGs FFFFP ……=  (4) 

where n is the total number of KEGG pathways. 
    In this way, patient-specific FAIME profiles of KEGG pathways are generated for 
each sample. Each sample has a continuous effective value for each category term which 
is the group difference between the genes annotated by the KEGG pathway and their in-
dividual complementary set of genes [16]. 
     Calculations were performed using the latest FAIME R package which has been im-
rpoved to compute scores concurrently and allow for custom transformations (available: 
https://bitbucket.org/lussierlab/faime-opensource).  Experiments were made with alternate trans-
formations such as uniform-weighted rank and median selection, but we found that the 
original methodology performed the most consistently. 
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2.5.  Simpler methods for scoring each sample pathways  

To evaluate FAIME against alternative single-sample pathway scoring methods, we de-
fined two unranked and two ranked methods. The unranked methods, RPKM mean and 
RPKM median, compute a sample’s pathway score as either the mean or median of the 
RPKM values of the pathway’s gene set respectively.  Analogous rank-based methods, 
Mean of Ranked RPKM and Median of Ranked RPKM, first convert a sample’s RPKM 
values into ranks and then score each pathway as the mean or median of the constitutive 
ranks respectively. 

2.6.  Unsupervised hierarchical clustering (Figure 1) 

As seen in Figure 1, FAIME scores for all 229 KEGG pathways were used in generating 
the unsupervised hierarchical clustering of RNA-Seq dataset GSE36968. Similarly, other 
ranked methods (RPKM mean, RPKM median, mean of ranked RPKM and median of 
ranked RPKM) were employed for clustering as comparison. The clustered heat map was 
generated using the heatmap function of R with Ward's method as the distance criterion. 

2.7.  Predicting deregulated pathways between two sets of samples using Wilcoxon 
parametric test (Figure 2&3, Table 1) 

In sections 2.4 and 2.5, we have described five methods (FAIME, RPKM mean, etc) that 
transform genome-wide RNA-seq or microarray-level measures of expression of a sam-
ple into pathway scores for this sample. Comparing samples of gastric cancer to normal 
gastric tissue, we calculate the deregulated pathways using the non-parametric Wilcoxon 
statistic and adjust for multiple comparisons using FDR. Thus, a set of deregulated path-
ways at different FDR thresholds can be imputed form the same dataset for each pathway 
scoring method. These can be compared to methods that calculate deregulated pathways 
directly from the gene-level expression such as GSEA and Enrichment studies (See sec-
tion 2.8, ROC: Receiver Operating Characteristic). 

2.8.  Evaluating pathway-scoring methods using ROC curves and proxy gold stand-
ards operating on the same RNA-seq dataset (Figure 2) 

Since it is unfeasible to biologically validate all predicted KEGG pathways, accuracy was 
determined using alternatively (i) GSEA [26] or (ii) conventional enrichment of differen-
tially expressed genes (R package for SAM [27] analysis at FDR<5%) as proxy gold 
standards. At a given FDR, the set positivesGSEA was calculated as the set of KEGG path-
ways found significantly differentially scored between cancer versus normal under GSEA 
(gene-set permutation); the set positivesFAIME was calculated as the set of KEGG path-
ways found significantly differentially scored between cancer versus normal by running 
SAM [27] on the FAIME scores of each sample (Wilcoxon-statistic); the set positivesEn-

richment was calculated by first using SAM to identify significantly differentially expressed 
genes (Wilcoxon-statistic, fixed gene level FDR < 5%) and then performing hypergeo-
metric enrichment on those genes for the KEGG pathways at the given FDR cutoff for 
pathways.  Using GSEA as a proxy gold standard (Figure 2, Panel A&B), positivesGSEA 
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was fixed at FDR < 25% as recommended by the authors. Then, at various maximum 
FDRs ranging from 0% to 35%, the set of true positives for FAIME was calculated as 
positivesGSEA ∩  positivesFAIME, the set of false positives as the set difference positivesFAIME 
- positivesGSEA, the set of false negatives as the set difference positivesGSEA - positivesFAIME, 
and the set of true negatives as the set difference KEGGALL - (true positives ∪  false posi-
tives ∪  false negatives). With these values, we could then create a receiver-operating 
characteristic (ROC) curve for FAIME by plotting the true positive rate according to Eq. 
(A.1), versus the false positive rate according to Eq. (A.2). To compare with FAIME, a 
similar procedure was used to create the ROC curve for hypergeometric enrichment 
(Figure 2, Panels C&D). To allow comparison of GSEA and FAIME, hypergeometric 
enrichment at FDR < 5% was instead used as a proxy gold standard and the correspond-
ing ROC curves were created. 

2.9.  Evaluating pathway-scoring methods in an independent dataset using concord-
ance of prediction (Table1) and clustering (Figure 3) 

For each of the five pathway-scoring methods (see 2.4-2.6; FAIME, RKPM mean, etc), 
the R package for SAM [27] was successively used to prioritize pathways deregulated 
between gastric tumors and normal gastric tissue at FDR<2.5% and at FDR<5% in RNA-
seq dataset GSE36968. The corresponding FAIME scores of those pathways in independ-
ent microarray dataset GSE13861 were then used as the basis for hierarchical clustering 
in Figure 3 (R's heatmap function with Ward's method as the distance criterion). Similar-
ly, differentially expressed pathways imputed from dataset GSE13861 at FDR 2.5% and 
5% were used to hierarchically clustering samples in RNA-seq dataset GSE36968 and 
reported in Table 1. Furthermore, these analyses were successively conducted on the four 
other pathway-scoring methods: RPKM mean, RPKM median, mean of ranked RPKM, 
and median of ranked RPKM. The reciprocal study was conducted as well: prioritizing 
pathways for each method in the microarray studies and clustering the RNA-seq samples 
using the pathway scores of each RNA-seq sample corresponding to those prioritized 
pathways. Clustering accuracies of each method are reported in Figure 3. Further, an 
additional evaluation was conducted: the Fisher Exact Test (FET) and odds ratio of the 
concordance between the prioritized pathways derived independently over microarrays 
and RNA-seq are reported in Table 1. 

3.  Results and Discussion 

To our knowledge, we present the first study of mechanism imputation at the single sam-
ple level for RNA-seq. This experiment differs from our previous ones in that we system-
atically also include as control intermediate geneset methods of computations such as 
mean, median, etc. In order to evaluate the feasibility to impute valid pathway scores at 
the individual sample level, we evaluated five distinct pathway-scoring methods in each 
of the following four experiments: (i) clinical phenotype clustering of individual RNA-
seq samples by their pathways scores, (ii) concordance between pathways predicted at the 
RNA-seq single-sample level against those predicted at the cohort-wide level (such as in 
GSEA), (iii) the predictive power of prioritized pathways in one dataset as classification  
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Figure 1. Unsupervised hierarchical clustering of all KEGG pathway-level scores imputed from RNA-
seq RPKM of individual samples. Panel A: clustering RNA-seq dataset GSE36968 by “RPKM median” 
measure on individual sample (“RPKM means” - not shown - is equally inaccurate). Panel B: clustering 
RNA-seq dataset GSE36968 by FAIME scores imputed from individual samples (every other ranked-based 
method provided equally good clustering, not shown). This illustrates the pathway level clustering possible 
with pathway scoring at the single sample level (note: GSEA and Enrichment are not designed for this pur-
pose). Legend: up-regulated pathways in cancer are blue and down-regulated ones are red. columns=30 
samples; rows=229 KEGG pathways (formatted for reading at high magnification). 
features for another dataset, and (iv) the concordance between pathway predictions con-
ducted in two independent datasets (Figure 1, Figure 2, Figure 3 and Table 1, respec-
tively). In Figure 1 Panel B, FAIME scores for the entire KEGG ontology (229 path-
ways[1] were used to perform unsupervised hierarchical clustering. Using Ward's method 
[28] as the distance criterion, all normal samples were found within the same cluster, as 
were gastric cancer samples in RNA-seq dataset GSE36968. Other rank-based methods 
(mean of ranked RPKM, median of ranked RPKM) achieved similar clustering results but 
unranked methods (RPKM mean, RPKM median) failed to cluster accurately (Figure 1, 
Panel A). Note that cross-sample methods GSEA and Enrichment cannot work on single- 
sample level. Top panels in Figure 2 demonstrate ROC curves for the KEGG pathways 
using GSE [26]as the proxy gold standard. For up-regulated pathways (Figure 2 Panel 
A), FAIME ROC performance compares favorably to hypergeometric enrichment. For 
down-regulated pathways (Figure 2 Panel B), FAIME and hypergeometric enrichment 
performed similarly. Bottom panels in Figure 2 demonstrate ROC curves for the KEGG 
pathways using hypergeometric enrichment as the proxy gold standard. For both up-
regulated (left) and down-regulated (right) pathways, FAIME ROC as the proxy gold  
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Figure 2: ROC curves of FAIME methods in identifying differentially expressed pathways as com-
pared to GSEA, Enrichment, RPKM mean, RPKM median, mean of ranked RPKM and median of 
ranked RPKM. Panel A and B: ROC curves using differentially expressed pathways of GSEA as a proxy 
gold standard (FDR<25%). Panel C and D: ROC curves using differentially expressed pathways by En-
richment as a proxy gold standard (FDR<5%). Up- and down- regulated pathways vary at each accuracy 
threshold for each method and calculated is available at: http://lussierlab.org/publications/FAIME-rnaseq. 

standard. For up-regulated pathways (Figure 2 Panel A), FAIME ROC performance is 
comparable to GSEA.     We also compared the FAIME ROC performance with simpler, 
single-sample measures such as RPKM mean, RPMK median, mean of ranked RPKM 
and median of ranked RPKM (dashed lines) for both down-regulated pathways and up- 
regulated pathways, using either GSEA or enrichment method as benchmark. FAIME 
yields either superior or similar ROC performance as compared to these single-sample 
methods. The exception is the RPKM median method which surpasses ranked methods as 
well as RPKM mean. 
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GSE13861: KEGG Pathways

  

Figure 3: Unsupervised hierarchical clustering of gastric cancer datasets using sample-level scores of 
differentially expressed KEGG pathways learned from another independent dataset. Panel A: Clus-
tering of microarray dataset GSE13861 by 53 significant different expressed FAIME pathways 
(FDR<0.025) learned from GSE36968 (large figure at http://lussierlab.org/publications/FAIME-‐rnaseq	  ). Panel B, C, D: As 
described in Methods (Section 2.6), deregulated pathways were prioritized in one dataset and their classi-
fication accuracies evaluated in an independent one (and vice-versa) producing accuracy scores reported 
here.  Rank-based methods (mean of ranked RPKM, median of ranked RPKM, and FAIME) achieved 
overall better predictive performance across datasets as compared to unranked mean and median methods. 

Figure 3a demonstrates hierarchical clustering of microarray dataset GSE13861 with 53 
significantly differentially expressed FAIME features (FDR < 0.025) found in RNA- seq 
dataset GSE36968. 84 out of 90 (93.3%) samples are classified correctly. In a second set 
of experiments, reciprocal clustering of RNA-seq dataset GSE36968 using 122 and 140 
differently expressed FAIME pathway features of microarray dataset GSE13861 (FDR 
<0.025 and FDR < 0.05 respectively). The overall accuracy, precision, and recall are 
shown in Figures 3b, 3d and 3c respectively. As shown from the three panels, RPKM 
median and RPKM mean methods achieved the worst results as compared to rank- 
basedmethods (mean of ranked RPKM, median or ranked RPKM, and FAIME). 

Pacific Symposium on Biocomputing 2013

167



 
 

 

Table 1. Pathway prediction concordance between the independent RNA-seq and microarrays da-
tasets for each pathway-scoring method (Sub-table A).	  Sub-‐table	  B	  shows	  the	  stringent	  concordant	  subset	  of	  
deregulated	   pathways	   prioritized	   by	   three	   techniques	   in	   both	   dataset	   (intersection):	  GSEA,	   Enrichment	   and	   FAIME	  
that	  respectively	  predicted	  29,	  10	  and	  12	  upregulated	  KEGG	  pathways	  and	  21,	  31	  and	  46	  downregulated	  ones.	  Path-‐
ways	   known	   involved	   in	   gastric	   cancer	   are	   highlighted	   in	   blue	   (e.g.	   gemcitabine[5-‐FU],	   a	   pyrimidine	   analog,	   	   is	   a	  
standard	  combination	  in	  treatment	  of	  gastric	  cancer).	  Detailed	  at:	  http://lussierlab.org/publications/FAIME-‐rnaseq 

Sub-table A pathways*  pathways*   

Ty
pe
 Sub-table B 

 Method odds 
ratio 

FET 
pvalue 

odds 
ratio 

FET 
pvalue 

 KEGG 
ID 

KEGG Pathways 

Dataset-
wide 

metrics 

GSEA  40  5x10-13  60 <2x10-16   04110 Cell cycle 

Enrichment  14  6x10-3 106  2x10-11   04115 P53 signaling pathway 

Single 
Sample 
Metrics 

Mean 
RPKM  12  2x10-4  17  1x10-13   00240 Pyrimidine metabolism 

Median 
RPKM  14  5x10-3  14  4x10-14   03040 Spliceosome  

Mean of 
ranked 
RPKM 

 15  4x10-15 no overlap  
  03013 RNA transport 

Median of 
Ranked 
RPKM 

  6  2x10-8 no overlap  
  03008 Ribosome biogenesis in 

eukaryotes 

FAIME  19 <2x10-16  ∞  1x10-6 

  00982 Drug metabolism –
cytochrome P450 

   00980 Metabolism of xenobiotics 
by cytochrome P450 

 Legend: * respectively	  down-‐	  and	  up-‐	  regulated	  pathways	  in	  gastric	  cancer;	  	  
Odds	  ratio	  from	  the	  intersection	  between	  RNA-‐seq	  &	  array	  predictions;	  	  	  	  ∞ :	  infinite	  (division	  by	  zero).	  

Evaluations conducted on the same dataset with proxy gold standards demonstrated that 
each method could produce modest to good accuracies - with the RPKM-mean method 
dominating.  Paradoxically, the RPKM-mean was the worst method in term of recall and 
modest in terms of precision.  This demonstrates that RPKM-mean is a volatile metric. In 
addition, the rank-based methods failed to identify up-regulated pathways in either 
GSE13861 or GSE36968 (Table 1). The FAIME method (which is a weighted rank-based 
method) achieved the most overall stable performance in reflecting the uniform underly-
ing mechanisms across distinct types of datasets of the same gastric cancer diseases. 

3.1.  Future Studies and Limitations 

While many studies have been completed in large RNA-seq datasets – they largely 
remain unavailable (either embargoed or simply not deposited in GEO).  We are complet-
ing additional studies to corroborate the findings of this report in (i) other cancers, (ii) 
other diseases, and (iii) for predicting response to therapy. Identifying key genes in each 
pathway would merit to be evaluated in RNA-seq as well (e.g. CORG, [12]). Finally, 
other type of gene-sets beyond KEGG pathways and curated pathways should be consid-
ered. Co-expression modules derived from large scale studies of multiple disease condi-
tions have provided insight in new biology and could be utilized as non-curated gene-
sets. Protein complexes, that worked well in mass spectrometry [17], could also be uti-
lized as gene-sets for pathway discovery in RNA-seq. 

Further, we are exploring other pathway scoring approaches at the single-sample level 
that would conserve the inherent vectorial structure of pathway expression, without the 
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requirement of cross-sample analyses. We are also evaluating FAIME in a prospective 
clinical trial in predicting therapeutic response to recurrent head and neck cancer. 

Additionally, FAIME exploits an exponential transformation algorithm that weights 
better highly expressed genes and thus rectifies (i) the saturation of microarray probes at 
high dynamic range and (ii) the high relative and absolute error rate (noise) on low ex-
pression measurements. Only the latter bias remains salient for RNA-seq.  However, 
RPKM may not be the optimal metric for correcting biases of oversampling longer gene 
in next-gen seq. Moreover, most RNA-seq datasets are measured after reverse transcrip-
tion on DNA-seq platforms, adding another potentially biased step to model. Thus, im-
proving on mechanism-scoring methods for requires integrating modeling of new biases 
of specific RNA-seq platforms (e.g. adjustments for RNA fragment length that vary be-
tween platforms, gene length biases, reverse transcription, etc).  

4.  Conclusion 

To demonstrate the feasibility of single-sample classification, we performed an entirely 
unsupervised hierarchical clustering of RNA-seq dataset GSE36968. This clustering does 
not rely on differentially expressed features found by a tool requiring multiple samples 
such as SAM [27] or GSEA. Instead, the FAIME scores for all KEGG pathways are used. 
Figure 1 demonstrates the success of this approach with 100% of normal samples being 
contained within the same cluster.  
  Accurate pathway-scoring techniques could conceivably be used as a single sample 
analysis mechanism whereby clinicians could establish a patient's pathway profile [14] as 
a diagnostic and prognostic utility. Identifying pathways with exceptionally high or low 
scores could also serve as a means to elucidate individualized drug targets. This could 
then allow for a personalized drug regimen based on transcriptomic analysis. However as 
shown with Mammaprint® and OncotypeDX®, the technologies adoption is complex 
and requires more than technical prowess. 
Software availability 
We provide a package allowing for high-throughput analyses of the five studied pathway-
scoring methods on individual samples (https://bitbucket.org/lussierlab/faime-opensource). 

Appendix 
The true positive rates and false positive rates used in the ROC plots for FAIME, GSEA, and hypergeomet-
ric enrichment were calculated as follows: 

 
||

||
negativesfalsepositivestrue

positivestrueratepositivetrue
∪

=  (A.1) 

 
||

||
negativestruepositivesfalse

positivesfalseratepositivefalse
∪

=  (A.2) 
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Introduction 
 
Sequencing, genotyping, and large-scale phenotyping are currently available for a  
number of important patient cohorts and will soon be available as a result of routine medical 
practice. These molecular data, in conjunction with electronic medical records and rich, on-line 
resources, are setting the stage for truly personalized medicine. Personalized medicine promises to 
yield better disease classification, enable patient-specific treatment, and also allow for improved 
preventive medical screening. This session explores technical challenges and new opportunities 
that arise from the application of genome-scale experimentation for personalized genomics and 
medicine. 
 
Realizing the promises of personalized medicine requires robust analysis approaches that handle a 
breadth of data, addressing key statistical challenges, and understanding how to leverage the 
wealth of information that is available. Examples of some of these challenges include hidden 
structure within the data that can confound analysis results and lead to loss of power; missing or 
incomplete information; data heterogeneity and limitations; and the burden of multiple testing. 
 
While these challenges are not new, per se, the scale of genomic datasets comes  
with added difficulties, but also offers new opportunities for methodological innovation. For  
example, genome-wide association studies (GWAS) generate millions of hypotheses, requiring 
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special consideration to reduce the burden of multiple testing so that the rate of false discoveries 
can be controlled [1] while retaining sufficient statistical power to detect true genetic associations, 
for example with single nucleotide polymorphisms (SNPs).  One can begin to tackle these issues 
by incorporation of prior information (e.g. Lee et al. [2] and Sun et al. [3]), or using multivariate 
modeling [4]. Tied in with these techniques are also methods that combine groups of candidate 
features (e.g., SNPs) in such a way as to obtain higher power, thereby attributing larger effect 
sizes, and uncovering a more complete picture of the underlying sources of heritability (e.g. Yang 
et al. [5] and Tatonetti et al. [4]). These challenges are magnified as personal genomics moves to 
using genome sequence data. 
 
Statistical genomics is further complicated by the fact that, in real world settings, multiple  
confounders are intertwined, affecting the data in ways which require complex models and the 
need for heterogenous data to be analyzed together rather than independently. For example, when 
relating genotype to phenotype in a GWAS, population structure and family relatedness can 
reduce power to detect true associations and cause spurious associations [6]. Most molecular 
phenotypes, such as gene expression, are additionally contaminated with experimental artifacts or 
environmental influences. Such confounding factors, sometimes termed expression heterogeneity, 
have been shown to severely corrupt results when naïve analyses are performed [7-8,12]. When 
seeking the genetic underpinnings of gene expression, such as in an expression quantitative trait 
loci analysis, problems of population structure, family relatedness and expression heterogeneity 
can be jointly present, and therefore models that address all of them simultaneously are required 
[12]. Additionally, individual readings of high-dimensional cellular phenotypes cannot be 
considered as independent, and thus hypothesizing and learning hidden regulatory causes of co-
expression, such as cell type or transcription factor activity, has been shown to shed light on 
otherwise incomprehensible expression patterns [13].  The trend we see in the problems and 
solutions just described is that large-scale data sets, while potentially problematic, also support 
analysis strategies not available on smaller datasets. In particular, they allow for us to deduce and 
then model hidden confounders from high-dimensional measurements, by way of Principal 
Components Analysis (e.g. Eigenstrat. [6]), Factor Analysis [7-8], and Linear Mixed Models [9-
11], for example. All of these approaches leverage high data dimensionality, assuming that 
confounders act similarly on a large fraction of SNPs or phenotypes, which allows these factors to 
be reconstructed solely from the observed data. 
 
Ultimately, personalized medicine needs to make its way into the clinic--results of  
statistical inference need to be communicated to both clinicians and patients. In such a setting, 
how knowledgeable do end-users need to be about statistics, molecular genetics, and machine 
learning in order to interpret results in a way that is useful to that user? Should software come with 
user-friendly tutorials on overfitting, multiple testing issues, p-values, false discovery rates and the 
‘winner’s curse’?  Although physicians and patients may be interested in inferences about health 
and disease, what they require assistance in acting on these inferences to guide medical and 
lifestyle decisions that maximize expected benefit to the patient. 
 
 
 

Pacific Symposium on Biocomputing 2013

172



 

 

 

Session contributions  
 
Our session explores these challenges within the context of personalized medicine. 
 
The keynote lecture will be from Atul Butte, who has extensively demonstrated how 
comprehensive information about impacts of genetic variation have an important role in the 
interpretation of individual genomes, with strong implications for the clinic. 
 
In Province et al., a statistical method is developed to allow for robust combination of analyzed 
data sets for meta-analysis. In particular, the authors develop a framework for combining the 
results from different genome-wide scans when hidden dependency structures (may) couple 
together the various data sets. For example, when the same individuals appear in multiple data 
sets, these data sets are not completely independent and should not be treated so. Similarly, if 
siblings appear across data sets, these data sets are not completely independent. The authors use 
the reported p-values from each data set to estimate the full pairwise correlation matrix between 
all data sets that are to be combined, and then use this correlation matrix to correct for the 
dependency structure. With increasing data set sizes, relatedness of individuals will become an 
even more pervasive problem than it currently is; the methodology introduced in this paper will 
enable more general meta-analyses of such data sets. 
 
Identifying clinical risk factors related to difficult-to-diagnose diseases remains a daunting 
problem. Such risk factors are important for early diagnosis, prognostics and preventative care. 
Using a case-study for one such disease, Alzheimer’s, Li et al., present a strategy to identify novel 
clinical markers using a manually curated database containing patient phenotype data and genome-
wide associations. The author’s driving hypothesis is that  
traits that share genetic underpinning with Alzheimer’s, as inferred by shared GWAS results, 
could serve as clinical risk factors. They find six clinical traits significantly associated with 
Alzheimers, of which one was not previously known as a clinical risk factor. This newly 
discovered association was then validated using electronic medical records, suggesting that it 
could be used as a new and effective prognostic marker. 
 
Although genome-wide association scans are now routinely turning up important and reproducible 
associations, finding the actual causal variants responsible for disease generally requires further 
genotyping. Crawford et al. describe the properties of a custom content BeadChip designed for 
fine-mapping metabolic diseases and traits. Through application of this chip to 360 HapMap 
samples of European, African, Asian and Mexican descent, they explore the allele frequency 
distribution of these SNPs in these populations, and overall population differentiation. Also, they 
were able to identify, by way of pathway enrichment, a single SNP which indicates a difference in 
the functional properties of glutathione and drug metabolism through cytochrome P450 between 
the European and Mexican populations. 
 
In addition to direct genetic factors, the state of microbiomes has also been shown to be predictive 
of phenotype and can help to understand patient well-being. To this end, it is necessary to extract 
useful information from metagenomic data, for example originating from the human gut. Biswas 
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et al. develop a hierarchical dictionary-based model to discover metagenomic units from pooled 
DNA-sequencing reads. The authors consider various likelihood models, including negative-
binomial models, which are well suited for overdispersed count data. The resulting model is able 
to outperform several state-of-the-art assembly methods, both on simulated data and human gut 
metagenome datasets.  
 
Several genomic analyses on health-related data require clustering of molecular data such as gene 
expression profiles. A key challenge in this context is to make an appropriate choice of the number 
of clusters. Huang et al. propose an efficient clustering approach that is suitable for 
heterogeneous molecular datasets as from disease studies. The developed approach is substantially 
faster than previous methods and does not require setting the number of clusters a priori. As a 
result, the approach yields clusterings that are better enriched for interpretable GO categories 
when applied to cancer genome data sets.  
 
Finally, once molecular patterns indicative of disease have been identified, the next step is to 
understand the mechanisms that lead to disease. Flores et al. consider mutations in telomerase 
complexes, which can disrupt either nucleic acid binding or catalysis, thereby causing numerous 
human diseases. The authors tackle the underlying process by building a partial model of the 
human telomerase complex. Several predictions can be made from the model, elucidating disease-
associated mutations.  
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Metagenomics, the study of the total genetic material isolated from a biological host, promises
to reveal host-microbe or microbe-microbe interactions that may help to personalize medicine or
improve agronomic practice. We introduce a method that discovers metagenomic units (MGUs) rel-
evant for phenotype prediction through sequence-based dictionary learning. The method aggregates
patient-specific dictionaries and estimates MGU abundances in order to summarize a whole pop-
ulation and yield universally predictive biomarkers. We analyze the impact of Gaussian, Poisson,
and Negative Binomial read count models in guiding dictionary construction by examining classifi-
cation efficiency on a number of synthetic datasets and a real dataset from Ref. 1. Each outperforms
standard methods of dictionary composition, such as random projection and orthogonal matching
pursuit. Additionally, the predictive MGUs they recover are biologically relevant.

1. Introduction

Advances in bioinformatics, refinements in DNA amplification, and the proliferation of compu-
tational power have greatly aided the analysis of DNA sequences recovered from environmental
microbiomes. Early metagenomic studies focused on the sequencing of the 16S-rRNA sequence
in an attempt to discover trends at a genus level.2 Most reported large species diversity even
between related hosts, and it is now becoming clear that metagenomic correlations may be
better studied in other units such as genes or functional groups.3 This requires the study of
the full metagenome, a more complex task than 16S sequence study. In general, comparative
metagenomics examines how the microbial composition of metagenomic samples correlates
with host properties. If we can identify bacterial taxa, genes, or operons that are consistently
predictive of disease, then these biological signatures could be used to build models that aid
in diagnosis and treatment. For example, such approaches would have medical implications
for diseases such as Inflammatory Bowel Disease (IBD) that may be treated via modulation
of the gut microbiota.4

Our approach to summarization of metagenomic datasets is based on adaptive dictionary
learning. In this framework, a signal (e.g. a set of DNA sequencing reads) is succinctly repre-
sented in terms of a small number of dictionary elements, sometimes called atoms or words.
The history of dictionary learning is rich and varied, tracing back to projection pursuit.5

Famous dictionaries, such as the Fourier basis and wavelets, have been successfully used to

∗Code and supplemental material available from: http://www.cs.unc.edu/~vjojic/amp
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decompose and denoise a variety of signals.6 Algorithms for efficient discovery of sparse rep-
resentations in such dictionaries have swept through the statistical, machine learning, signal
processing, and computer vision communities.7–9 The advent of locality sensitive hashing10

and random projection11 have additionally made the task of handling large datasets feasible,
if not trivial. Indeed, the name of the game is random projection as any projection of the data
seems to be informative. However, as we show, pure random projections do not always work
efficiently.

Here we demonstrate how short-read metagenomic sequencing data can be decomposed into
a sequence-based dictionary assembled on the fly. The dictionary contigs composed from reads
prioritized by our simple probabilistic models turn out to be discriminative. Patient-specific
dictionaries can then be merged together and processed to discover a short universal dictionary
that is predictive of phenotype across a population. Finally, we contrast the performances
of our Assembly Matching Pursuit algorithms with the performance of a standard Random
Projection method11 and the popular short-read assembler, SOAPdenovo.12

1.1. Notation and primitive sequence operations

We will denote the `2 norm as ‖x‖2 =
√∑

i x
2
i . Given a matrix D and an index set of its

columns, I, we will use DI to denote a matrix consisting of only those columns. Similarly, for
a vector w and an index set of its coordinates I we will use wI to denote a vector composed
only of those coordinates. Finally, Di,: denotes the ith row of D.

We define kmers(Seq,k) as the set of all k long contiguous substrings of Seq; we assume
that k is set ahead of time and simply use kmers(Seq).

We define overlap(Seq,Kmers,m) the subset of k-mers in the ordered set, Kmers, that
overlaps with at least m letters of either terminus of the sequence, Seq. A k-mer is also included
in this overlapping set if its reverse and complement overlaps with Seq. We assume that
overlap(EMPTY,Kmers,m) returns Kmers, and that overlap(Seq,K,m) returns EMPTY when
no k-mer in K overlaps with Seq.

We define count(Kmersi, Seq) as the number of times the ith k-mer ∈ Kmers occurs in
Seq.

We define extend(Seq,Kmer) to be the sequence constructed by appending Kmer – either
as given or reversed and complemented – to the overlapping end of Seq. This is done by
removing the overlapping segment of Seq, and concatenating the remaining part of Seq with
Kmer. We assume that extend(Seq,EMPTY) = Seq and extend(EMPTY,Kmer)= Kmer.

1.2. Dictionaries for metagenomic read sets

We introduce a representation of the read sets in terms of dictionaries meant to capture the
k-mer profile of the sample. Given k and bound on genome length of any given microbiome’s
member, S, we can construct an exponentially large matrix D : 4k × N(S) defined as Drs =

count(r, s), where r is a k-mer and s is a sequence of length S. Here N(S) = (4S+1−4)/(4−1),
the number of sequences with length at most S.

Given the dictionary matrix, D, and vector of abundances of sequences in the microbiome,
w, we can describe the observed k-mer profile, y, as a noisy version of the true k-mer profile
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Fig. 1. a) A sketch of a generative model of a read set profile of a metagenomic set using an exponentially
sized super-dictionary. b) Learning of a patient-specific dictionary from a single patient’s data discovers
dictionary elements that represent the most abundant MGUs. c) The patient-specific dictionaries from both
healthy and sick patients are aggregated into a population dictionary and a set of dictionary elements
predictive of phenotype are selected yielding a diagnostic dictionary. d) Prediction of a new patient’s
phenotype from abundances of diagnostic MGUs.

by noting that y = Dw + ε, see Fig. 1a.
In order to disambiguate from the later dictionaries, we call this exponentially sized dic-

tionary the super-dictionary. In fact, any MGU dictionary will be a subset of the super-
dictionary.

2. Methods

2.1. Dictionary hierarchy

We will be constructing dictionaries that are subsets of the super-dictionary. A patient-
specific dictionary is a set of MGUs used to represent a particular patient’s k-mer profile.
A population dictionary is an aggregate of patient-specific dictionaries meant to represent
k-mer profiles of multiple patients. We note that the MGUs found in one patient may be
representative of other patients’ k-mer profiles. Finally, a diagnostic dictionary is a subset
of the population dictionary that is relevant for predicting a phenotype.

2.2. Matching pursuit and greedy algorithms

The matching pursuit algorithm13 finds a representation of a signal by greedily selecting
dictionary elements that best explain the signal’s residual (see Algorithm 3.1). In our case, the
signal corresponds to the k-mer profile and dictionary elements correspond to MGU sequences.

The most relevant observation about the matching pursuit algorithms is that each dic-
tionary element is examined in order to find the one that best correlates with the residual.
Given the exponential size of the super-dictionary, the matching pursuit search requirement
is not feasible in polynomial time. Therefore, we turn to the area of weak greedy algorithms,
in which asymptotic convergence is guaranteed even if the chosen dictionary element in each
iteration does not correlate optimally with the residual.14 This permits the use of randomized
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schemes that sample and accept dictionary elements if they explain a prespecified fraction of
the residual signal.

The probabilistic matching pursuit (PMP) algorithm15 leverages this intuition by prob-
abilistically sampling dictionary elements. By avoiding an exhaustive search, PMP enables
the use of large dictionaries; however, PMP methods do not explicitly optimize a likelihood,
and sampling is restricted to conditioning on an element’s correlation with the residual. We
require a more flexible framework, and so present a generalized PMP (GPMP) algorithm (Al-
gorithm 3.2). GPMP iteratively chooses dictionary elements that increase the likelihood of
the data, p(y|D,w), by sampling from a proposal distribution, q(j|y,D,w).

3. Algorithm

Our patient-specific dictionary construction algorithm follows the GPMP framework. To spec-
ify the algorithm, we must select a likelihood p(y|D,w) to optimize and proposal distribution
q(j|y,D,w) for sampling the dictionary.

3.1. Likelihood

The Gaussian distribution with fixed unit variance is a common choice of likelihood in match-
ing pursuit applications,

log p(y|D,w) = −n
2

log(2π)− 1

2

n∑
i=1

(yi −Di,:w)2. (1)

This likelihood corresponds to linear regression, and its primary benefit is the computational
efficiency with which it can be optimized.

A second choice of likelihood, corresponding to Poisson regression, is

log p(y|D,w) =

n∑
i=1

yi(Di,:w)− exp {Di,:w} − log(yi!). (2)

In contrast to linear regression, which treats both positive and negative observations, Poisson
regression is meant to model non-negative data, such as read counts. Notably, the expected
value and variance of a Poisson random variable are equal.

A third choice of likelihood, corresponding to Negative Binomial regression, is

log p(y|D,w) =

n∑
i=1

yi(Di,:w) +
1

α
log(1− exp {Di,:w}) + log

Γ(yi + (1/α))

Γ(yi + 1)Γ(1/α)
. (3)

Like Poisson count models, Negative Binomial models have been used to model non-negative,
integral data; however, with the additional dispersion parameter α, they can model count data
with less constricted mean-variance relationships.16

3.2. Dictionary element proposal

We wish to propose a sequence j whose k-mer profile is likely to increase the objective
log p(y|DI∪j , wI∪j) compared to log p(y|DI , wI). Given this goal we can easily construct a for-
ward sampling algorithm that will produce a reasonable candidate sequence. Specifically, we
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Algorithm 3.1. Matching Pursuit

Input:D, c
Output:w, such that ‖y −Dw‖2 ≤ c
initialize wj = 0,∀j
while(‖y −Dw‖2 ≤ c)
R = y −Dw
cj =

∣∣∣ 〈R,Dk〉
〈Dk,Dk〉

∣∣∣ ,∀j
k = argmaxj cj
I = I ∪ {k} wk = ck

Algorithm 3.2. Generalized Probabilistic
Matching Pursuit

Input:D, y, c
Output:I and w such that log p(y|D,w) > c

I = ∅, wj = 0,∀j
while(log p(y|D,w) ≤ c)

sample {j} from q(j|y,D,w)

I = I ∪ j
wI = argmaxv log p(y|DI , v)

return I, w

Algorithm 3.3. Dictionary element pro-
posal

Input:D, y,w,m,Orthogonal,
set of all observed k-mers K

Output:a candidate dictionary element s
s = EMPTY, I = {i|wi 6= 0}
repeat
Ks = overlap(s,K,m) ∪ {EMPTY}
if(Orthogonal)

Ks = Ks − ∪i∈Ikmers(i)

foreach(l ∈ Ks)

s′ = extend(s,l)
I ′ = I ∪ {s′}
wI′ = argmaxw log p(w|y,DI′)

πl = p(y|DI′ , wI′)

sample l∗ from normalized π

s = extend(s, l∗)

until(l∗ = EMPTY)

initialize a new dictionary element (contig) by sampling a k-mer based on the increase in like-
lihood if that k-mer, alone, were to enter the model as an element. When extending a contig,
an overlapping k-mer is sampled according to the change in likelihood that would result if
it were added to the growing element. If no k-mer sufficiently improves the likelihood, then
the algorithm may sample the EMPTY k-mer (i.e. choose to terminate extension), and thus
complete an iteration. The likelihood biases the algorithm toward sampling k-mers that occur
with high frequency.

Another proposal distribution produces orthogonal dictionary elements, and is accordingly
used by orthogonal matching pursuit algorithms. Since the entries in our dictionary are always
nonnegative, two dictionary elements will be orthogonal, (

∑
kDk,iDk,j = 0), if and only if their

corresponding MGUs do not share any k-mers. Algorithm 3.3 implements both of these choices
specified by argument Orthogonal.

3.3. The AMP algorithms

We introduce four algorithms based on choices of likelihood and dictionary element proposal.
(1) Gaussian Assembly Matching Pursuit (GAMP) combines the likelihood from (1) and

the non-orthogonal dictionary proposal.
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(2) Poisson Assembly Matching Pursuit (PAMP) combines the likelihood from (2) and the
non-orthogonal dictionary proposal.

(3) Negative Binomial Assembly Matching Pursuit (NAMP) combines the likelihood from
(3) and the non-orthogonal dictionary proposal.

(4) Orthogonal Assembly Matching Pursuit (OAMP) uses the orthogonal dictionary pro-
posal.

Because the orthogonal dictionary proposal strongly constrains dictionary construction, the
choice of likelihood is irrelevant.

3.4. Population dictionary construction and patient summarization

Given a learned patient-specific dictionary we are tasked with constructing a dictionary that
can be used universally across the whole patient population, the population dictionary. We
can construct this dictionary by pooling all patient specific dictionaries, but here we face two
challenges:

(1) How do we estimate abundances of the population dictionary elements in each patient?
(2) Which of the population dictionary elements are diagnostically relevant?

Abundance estimation A patient’s k-mer profile may be regressed onto the population
dictionary in order to estimate MGU abundances. We utilize Negative Binomial (NB) regres-
sion due to its flexibility in modeling potentially overdispersed data, such as read counts.16

NB models have been fruitfully applied in RNA-Seq data analysis,17 and we have found that
abundances estimated by NB regression – regardless of dictionary origin – are more accurate
than those estimated using other likelihoods (data not shown).

Using abundances as predictors MGU abundance estimates can be directly used as pre-
dictors of phenotype. In terms of interpretability, logistic regression is most appealing. In our
experiments we use an efficient implementation of sparse logistic regression.18 The sparsity
inducing, `1-penalty selects only a small portion of the features to participate in phenotype
prediction from an otherwise large population dictionary. Because the optimal scale, λ, of the
`1-penalty is unknown, it must be estimated from the data. The data are therefore split into
training, validation, and test sets – the validation set is used to determine the λ parameter.
The sparsest model that classifies the validation set statistically as well as the best model is
chosen. The classification accuracy of this logistic regression model is then evaluated on the
test set.

The chosen set of MGUs that are predictive of phenotype correspond to parts of the
population dictionary that can be diagnostically useful. Thus, they compose the diagnostic
dictionary.

4. Implementation

We customized an implementation of a succinct suffix trie19 to store suffix and prefix k-mer
tries. The counts of each k-mer are also stored during trie construction. While the AMP
algorithms’ implementation is straightforward, here we draw attention to two issues relating
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to likelihood optimization and read storage and querying.
The AMP assemblers are string-based and rely on greedy extension. However, extension

is stochastic and is guided by the likelihood of the observed k-mer profile (Algorithms 3.2
& 3.3). When updating the weight of a growing contig to a conditional maximum likelihood
value (i.e. computing wj = argmaxvj

log p(y|D, vj)), GAMP equates the first partial derivative
of the likelihood (with respect to the contig’s weight) to zero and solves for w. NAMP and
PAMP, on the other hand, utilize Newton-Raphson updates to find a w that maximizes the
likelihood (a closed-form solution for wI does not exist when equating the gradient of the
negative binomial or Poisson likelihoods to zero).

5. Results and Discussion

To assess the ability of our methods to produce discriminative diagnostic dictionaries, we
turned to synthetic and real data experiments. We put particular focus on the efficiency with
which our AMP methods could produce representations relevant for phenotype prediction.b

In all synthetic experiments we worked with k-mers of fixed read length. The real dataset
consisted of a mix of 75bp and 44bp read datasets. Hence we used k-mer length of 44bp,
using shorter reads directly as k-mers. From each longer 75bp read we constructed 3 44-mers
with 16bp spaced starting offsets. In our dictionary element proposal algorithm we required
that a k-mer achieve an overlap of 20bp with a growing contig to be considered a candidate
for appending.c Finally, to estimate the classification accuracy we performed a 10-fold cross-
validation with an inner cross-validation on the training and validation sets to select λ (the
held out data in the outer fold were not used during training).

5.1. Baselines

For comparision, we chose to analyze the quality of dictionaries produced by SOAPdenovo12

and a pure random projection method.11

For synthetic experiments, SOAPdenovo was run on each sample using a single thread
and a minimum k-mer overlap (option -K) of 21 for extension purposes. For the real data
from Ref. 1, we used the SOAPdenovo contigs already generated in their paper.d Because
SOAPdenovo’s assembly is not likelihood driven, the order in which contigs are produced is
not interpretable. Thus, the longest SOAPdenovo contigs with high coverage were added in a
random fashion when evaluating successively larger population dictionaries.

Random projections (RP) summarize a set of points by projecting them into a lower
dimensional subspace defined by a intelligently chosen, but random basis. If done properly, the
relative distances between points before and after projection will be, on average, approximately
preserved. In the case of metagenomic samples, we treat each sample’s k-mer profile as a K
dimensional point. Application of RP produces a new, smaller set of features that are sums

bEfficiency refers to the size of the population dictionary required to produce a diagnostic dictionary capable
of achieving a particular classification accuracy.
cThis amounts to using m=20 in Algorithm 3.3.
dThey used -K 21 and -K 23 for 44bp and 75bp reads, respectively.
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of randomly weighted k-mer profiles, each with dimension C < K. If we have N samples then,
wRP = PY where Y is the K × N matrix of k-mer profiles from all samples, P is the C ×K
random projection matrix, and wRP is the resulting C × N projected form of Y . These new
C dimensional features are roughly akin to abundances produced by the AMP methods and
are treated as such during our classification step. Indeed, an implicitly constructed dictionary
matrix can be defined as matrix D that satisfies P = (DTD)−1DT . The matrix P is constructed
using the method described in Ref. 11 and refer to the algorithm as ARP.

5.2. Synthetic data generation

A/T SNP A 10Kb sequence was randomly generated and duplicated. The 5000th base in one
duplicated copy was changed to an ‘A’ and the 5000th base in the other copy was changed to a
‘T’. We then generated 100 synthetic metagenomic samples, 50 of which were phenotypically
‘sick’ and 50 of which were phenotypically ‘healthy’. For each of the 100 samples, 20000 75bp
reads with 2% noise were simulated from the 10Kb templates. A 50/50 and 33/67 ratio of the
two variants were maintained for ‘healthy’ and ‘sick’ sample, respectively.

Distinct species For this synthetic experiment 40 10Kb sequences were randomly generated.
From this true dictionary, we generated 100 synthetic metagenomic samples, 50 of which
were phenotypically ‘sick’ and 50 of which were phenotypically ‘healthy’. For each of the 100
samples, 40000 75bp reads with 3% noise were simulated from the 10Kb templates with varying
coverage. Average baseline mixing proportions of the templates followed an exponential decay;
however for ‘sick’ samples, the relative abundances of the 7th, 13th, and 24th most abundant
templates were altered by 1%, 0.67%, and 0.33%, respectively (see Supp. Info. Fig. 1 for exact
abundances).

Synthetic community The Genome Institute at the Washington School of Medicine has
produced many draft-quality genomes of various human gut microbes.e We selected 31 micro-
bial species’ genomes to represent actual genera and phyla found in the human gut. From this
true dictionary, we generated 100 samples, 50 ‘healthy’ and 50 ‘sick’, each with 10 million,
75bp reads with 3% noise. Baseline mixing proportions of each microbe in all samples were
set in accordance with relative abundances reported in Ref. 1 and Ref. 20 based on the genus
and phylum they represent; however, the relative abundances of 3 microbes in ‘sick’ samples
were altered by 1%, 2%, and 3% (see Supp. Info. Fig. 2 for exact abundances).

5.3. Synthetic data results

Fig. 2 shows the performance of the methods in classifying ‘healthy’ and ‘sick’ samples from
the synthetic experiments.

In the A/T SNP experiment, the discriminative abundances are driven by the reads span-
ning the SNP position. Without noise, all methods converge quickly and classification is trivial
for SOAPdenovo and OAMP as orthogonality requirements ensure that none of the shared

eFreely available from http://genome.wustl.edu/pub/organism/Microbes/Human_Gut_Microbiome/.
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c) d)

Fig. 2. a,b,c) Mean classification accuracies of the methods on synthetic datasets. The dashed red line cor-
responds the performance expected when always predicting ‘healthy’. Plots with confidence bands around
the mean can be seen in Supp. Info. Fig. 3. d) Performance comparison with respect to running time of
each method on the synthetic community experiment. SOAPdenovo performance is marked with a single red
diamond since the order in which it produces contigs is not interpretable.

reads between species are available for the second contig (data not shown). However, in a
more realistic, noisy setting contig construction is more difficult. Nevertheless, NAMP, PAMP
and GAMP begin to discover sequences containing the discriminative SNP within the first 8
contigs, before the other methods.

In the distinct species experiment, species’ k-mer profiles are nearly orthogonal. Without
noise, OAMP and SOAPdenovo reconstruct the true dictionary within the first 40 iterations
(data not shown). With noise, OAMP spends more iterations constructing subcontigs of the
true dictionary elements that are non-discriminitave. By exploring only well-supported edges
in its De Bruijn graph construction, SOAPdenovo better handles the noise, constructs longer
contigs, and thereby discovers significant features more quickly.

Interestingly, in all scenarios, including the synthetic community, there is a steady and
consistent difference in performance between GAMP, PAMP, and NAMP. This illustrates
clear ordering between the three choices of likelihood: NAMP � PAMP �GAMP. Additionally,
NAMP and PAMP discover discriminative features sooner than the other methods,f and with
the exception of the A/T SNP experiment, SOAPdenovo consistently outperforms GAMP.
These results suggest that given the appropriate read count model, likelihood driven assembly
can direct the early discovery of predictive features. Finally, the subpar performance of ARP
on all experiments demonstrates the benefit of computing abundances of sensible contigs in a
manner consistent with the nature of the data.

fThis comparison is not directly applicable to SOAPdenovo as its assembly is not order dependent.
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5.4. Human Gut Metagenome Analysis

In addition to synthetic experiments, we tested our method on data from Ref. 1. This data
set contains 576 gigabases of sequence data obtained from the fecal samples of 124 Spanish
and Danish individuals, 25 of whom have inflammatory bowel syndrome (IBD). Population
dictionary pools for the AMP methods were constructed by aggregating the first 1000 dictio-
nary contigs greater than 500 bp of each patient. For SOAPdenovo’s pool we took the longest
124000 contigs of the roughly 6.6 million contigs greater than 500 bp produced by SOAPde-
novo in Ref. 1. ARP’s pool was constructed by producing 1000 random projections for each
of the 124 patients, since ARP does not have a concept of a patient specific dictionary. From
each of their respective pools, successively larger population dictionaries were constructed in
order to evaluate each method’s classification accuracy. Length distributions for the contigs
used in each population dictionary can be found in Supp. Info. Fig. 4.

Fig. 3a) shows the method performances in classifying individuals based on their health
status (IBD or healthy). We see that all methods discover relevant contigs, but at a different
rate. The leading algorithm is NAMP, followed closely by PAMP, and thereafter SOAPdenovo.
We see that GAMP and OAMP are relatively close in terms of performance but for different
reasons. The OAMP is affected by the orthogonality requirement while Gaussian likelihood is
overly greedy, driven by the quadratic cost on the residual.

From the final GAMP, SOAPdenovo, PAMP, and NAMP dictionaries, 11, 18, 18, and
19 metagenomic units, respectively, were found to have non-zero weight, suggesting their
importance as potential biomarkers for IBD (Fig. 3b)). We obtained KO (KEGG orthologous
groups) numbers for each of these features using KAAS, an annotation server that queries the
KEGG database.21 For discovered enzymes we additionally mined the KEGG BRITE database
to obtain a functional annotation. Finally, as a measure of consistency between our method
and an independent biological study, we noted any commonalities between our annotations
and those of Ref. 22 (see Supp. Info., Fig. 5). Of our 48 features, 10 were found to be either
enriched or depleted in the Ref. 22 analysis. In particular, 4 were related to the PTS, a system
important for sugar transport into the cell and recently found to include biomarkers for IBD.23

We additionally found nitrate reductase among our significant features. Nitrate reductase plays
an important role in the conversion of nitrate to nitrite and nitric oxide, neither of which can
be synthesized by human DNA. Unsurprisingly then, elevated levels of nitric oxide have been
found to correlate with IBD.24 Finally, we noted the presence of vanillate monooxygenase, an
agent that may play a role in xenobiotic degredation of phenolic compounds, such as p-cresol,
another correlate of IBD.25

5.5. Time and memory

Fig. 2a,b,c) and 3 describe the efficiency of the various methods in terms of accuracy gained
per added dictionary element. To gauge computational efficiency, it is important to consider
efficiency with respect to running time.

Fig. 2d) illustrates the performance of the various methods with respect to time in the
synthetic community experiment and corresponds with the accuracies depicted in Fig. 2c). For
the AMP methods, time required to achieve a particular classification accuracy was calculated
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a) b)

Fig. 3. a) Mean classification accuracy of each method on the real dataset. Dashed red line is the performance
expected by always predicting ‘healthy’. Plots with confidence bands around the mean can be seen in Supp.
Info. Fig. 3. b)Most predictive dictionary element abundances for the healthy and sick patients stemming from
the different methods (GAMP, SOAP, PAMP, NAMP) as well as weights of these abundances in a sparse
logistic regression trained model.

as the sum total of the times required to generate each contig used in the corresponding
population dictionary. For the ARP the performance curve is parameterized by the number of
rows in the projection matrix. Each successive point on the AMP and ARP curves corresponds
to a two-fold increase in the number of contigs over the previous point. For SOAPdenovo
we measured the total running time required to assemble all synthetic samples (2.99 × 104

seconds) and noted how many contigs were produced (5.00× 106). Thus, we extrapolated the
time required to generate a final population dictionary of size 50000 to be 50000÷(5.00×106)×
(2.99× 104) = 299 seconds. SOAPdenovo’s performance is depicted as a single point since the
contigs it produces are not necessarily order dependent.

SOAPdenovo reaches its final 67% accuracy before NAMP and PAMP, and handily out-
performs GAMP and OAMP. The AMP methods are not as time efficient due to the expensive
floating point arithmetic (e.g. computing exponents and logarithms) associated with the likeli-
hood computations. However, NAMP and PAMP offset these inefficiencies by nearly reaching
the same accuracy as SOAPdenovo in the same time and with a dictionary 1/25th the size. Ul-
timately, with equally large dictionaries as SOAPdenovo, NAMP and PAMP provide superior
performance by classifying 4-5% more accurately.

The AMP methods additionally require less memory than SOAPdenovo. On average,
SOAPdenovo requires 2358 bytes per 75 bp read, whereas the AMP methods require 2037
bytes per 75 bp read (Supp. Info. Fig. 6). These reads were taken from the synthetic com-
munity experiment.

6. Conclusion

We introduced the Assembly Matching Pursuit family of methods for metagenomic dataset
summarization and analysis. Our AMP methods follow a novel generalized matching pursuit
paradigm, which guides dictionary construction using likelihood based principles. Within this
framework, we explored the appropriateness of popular likelihood choices for modeling read
counts and accordingly derived the GAMP, PAMP, and NAMP assemblers. In investigating
an alternative proposal distribution, we derived the OAMP assembler, which enforces orthog-
onality among its contigs.

We also introduced a simple abundance estimation protocol that directly regresses k-mer
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profiles of any read sample on a set of dictionary sequences. Indeed, a dictionary does not
have to be composed of contigs from our AMP methods. It may generated by SOAPdenovo,
any another assembler, or in the future, set to be a large sequence database.

By coupling AMP assembly with a negative binomial based abundance estimator, we have
put forth a simple method of aggregating sample dictionaries into a population dictionary
from which learned abundances can be leveraged as predictors of phenotype. In both syn-
thetic and real datasets we show that this new family of methods does significantly better in
phenotype discrimination than random projections. Further, due to their simplicity, the meth-
ods easily handle large scale datasets, such as in Ref. 1, which spans 0.6 terabases. Finally,
while we focused on medical applications as an illustration, the method is applicable to other
metagenomic, and in principle, RNA-seq studies.
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Genome-wide association studies (GWAS) have identified hundreds of genomic regions 
associated with common human disease and quantitative traits.   A major research avenue for 
mature genotype-phenotype associations is the identification of the true risk or functional 
variant for downstream molecular studies or personalized medicine applications.  As part of 
the Population Architecture using Genomics and Epidemiology (PAGE) study, we as 
Epidemiologic Architecture for Genes Linked to Environment (EAGLE) are fine-mapping 
GWAS-identified genomic regions for common diseases and quantitative traits.  We are 
currently genotyping the Metabochip, a custom content BeadChip designed for fine-mapping 
metabolic diseases and traits, in~15,000 DNA samples from patients of African, Hispanic, and 
Asian ancestry linked to de-identified electronic medical records from the Vanderbilt 
University biorepository (BioVU).  As an initial study of quality control, we report here the 
genotyping data for 360 samples of European, African, Asian, and Mexican descent from the 
International HapMap Project.  In addition to quality control metrics, we report the overall 
allele frequency distribution, overall population differentiation (as measured by FST), and 
linkage disequilibrium patterns for a select GWAS-identified region associated with low-
density lipoprotein cholesterol levels to illustrate the utility of the Metabochip for fine-
mapping studies in the diverse populations expected in EAGLE, the PAGE study, and other 
efforts underway designed to characterize the complex genetic architecture underlying 
common human disease and quantitative traits.  
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1.  Introduction 

In the last seven years, genome-wide association studies (GWAS) have been used 
extensively to identify common genetic variants associated with human diseases and 
quantitative traits.  While there are many replicated and mature, known relationships 
between genomic regions and phenotypes, very few individual genetic variants have 
been identified as the risk variant for downstream molecular studies or personalized 
medicine applications.  The lack of true functional variants revealed by GWAS stems 
from the fact that GWAS is based on linkage disequilibrium (LD), the non-random 
association of alleles at different variants along the chromosome.  That is, GWAS 
fixed-content products mostly assay presumably neutral common genetic variants that 
are in LD or “tag” other genetic variants not directly assayed resulting in GWAS-
identified regions that probably contain the true risk (unassayed) variant. 

To identify the true risk variant, a major proposed activity in the “post-GWAS” 
era is fine mapping.  In a fine-mapping experiment, the GWAS-identified region is 
densely interrogated via thousands of common and rare variants.  Fine-mapping 
experiments can also take advantage of the known LD differences observed across 
populations.  For example, populations of African-descent have lower levels of LD 
compared with populations of European-descent and therefore may be useful in 
identifying the risk variant masked by higher levels of LD in other populations.  Fine 
mapping across populations is also useful for identifying population-specific variants 
associated with phenotypes. 

In recognition for the need to fine-map mature GWAS-identified regions 
originally identified in European-descent populations, the National Human Genome 
Research Instituted established the Population Architecture using Genomics and 
Epidemiology (PAGE) study to genotype African American and Asian populations 
linked to phenotypes using the Illumina Metabochip, a custom iSelect BeadChip 
designed to fine-map GWAS-identified regions for metabolic diseases and traits.  We 
as Epidemiologic Architecture for Genes Linked to Environment (EAGLE) are 
genotyping ~15,000 DNA samples linked to de-identified electronic medical records 
in the Vanderbilt University biorespository (BioVU) for fine mapping within the 
PAGE study.  As the first step in quality control, EAGLE has genotyped 360 HapMap 
samples from European, African, Asians, and Mexican-descent populations.  This 
short report describes the quality control, variant properties, and the potential for fine 
mapping of GWAS-identified regions in the anticipated populations within EAGLE 
and the PAGE study. 
 
2.  Methods 

2.1.  Study populations 

DNA samples were obtained by the PAGE Coordinating Center from the Coriell Cell 
Repositories1.  A total of 360 samples overlapping the International HapMap Project 
collection were obtained, including 30 trios of Northern and Western European 
ancestry from Utah from the Centre d'Etude du Polymorphisme Humain (CEPH) 
collection (CEU; catalog ID HAPMAPPT01), 90 unrelated individuals representing 
45 individuals each from Tokyo, Japan and Beijing, China (ASN; catalog ID 
HAPMAPPT02), 30 trios from the Yoruba in Ibadan, Nigeria (YRI; catalog ID 
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HAPMAPPT03), and 30 trios from communities of Mexican origin in Los Angeles, 
California (MEX; catalog ID HAPMAPV13).  Samples were chosen to reflect the 
overall genetic ancestry of epidemiologic and clinical-based samples available in the 
PAGE study1. 
 
2.2.  Genotyping 

Aliquots of HapMap DNA samples were distributed by the PAGE Coordinating 
Center to individual PAGE study sites.  The Vanderbilt DNA Resources Core 
genotyped the Illumina Metabochip on the HapMap samples distributed by the PAGE 
Coordinating Center on the Illumina iScan (San Diego, California).  The Metabochip 
is a custom BeadChip targeting 196,725 genetic variants.  Common and less common 
genetic variants were chosen from among the first iteration of the 1000 Genomes 
Project and represent index GWAS-identified variants regardless of disease or 
phenotype as of 2009; regions targeted for fine-mapping for specific GWAS-
identified regions associated with coronary artery disease, type 2 diabetes, QT-
interval, body mass index/obesity, lipid traits, glycemic traits, and blood pressure; 
mitochondrial markers; HLA markers; sex chromosome markers; and ancestry 
informative markers2, 3.  Illumina software GenomeStudio (v1.7.4) was used to 
determine the genotype calls for each variant for each sample, and manual re-
clustering was performed on all mitochondrial and Y chromosome variants.  Data 
were stored and accessed by the Vanderbilt Computational Genomics Core for quality 
control and downstream analyses using BC Platforms (Espoo, Finland). 
 
2.3.  Statistical methods 

Standard quality control metrics were generated using PLINKv1.074 and 
PLATOv0.845.  FST calculations were based on the Weir and Cockerham algorithm6 
implemented in PLATO.  Allele frequencies and FST were calculated for CEU, YRI, 
JPN and CHB combined (ASN), and MEX unrelated samples separately.  Linkage 
disequilibrium (r2) was calculated using independent samples stratified by 
race/ethnicity using Haploviewv4.27. 
 
3.  Results 

We genotyped 360 DNA samples from the International HapMap collection including 
90 CEU, 90 YRI, 90 ASN, and 90 MEX on the Illumina Metabochip.  From the 360 
samples, 358 (99%) samples were successfully genotyped.  And, out of the targeted 
196,725 genetic variants on the Metabochip, we obtained data for 185,788 genetic 
variants for an overall pre-quality control call rate of 94.44%.  From this initial 
dataset, we then performed quality control as outlined by Buyske et al2 (Table 1). 
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Table 1.  Number of genetic variants removed from Metabochip dataset after quality 
control, by criteria and HapMap population.    We performed quality control steps 
appropriate for a single dataset as outlined by Buyske et al.2.  Lower genotyping call rates 
were observed for YRI compared with other HapMap populations consistent with our 
observations for targeted genotyping in EAGLE (data not shown).   

 
Criteria SNP Failure 

Determination 
# SNPs removed 

  CEU YRI CHB JPN MEX 
Call Rate < 0.95 14515 73445 11851 13585 14871 

Mendelian Errors > 1 (out of 30 
trios) 

97 10 0 0 144 

Replication Errors > 2 0 0 0 0 0 
Hardy-Weinberg 
Equilibrium p-

value 

< 1 × 10-6 11 1 
 

11 10 19 

Discordant calls 
versus HapMap 

database 

> 3 (out of 90 
samples) 

329 178 285 292 301 

 
 

Figure 1. Distribution of minor allele frequencies of genetic variants assayed by the 
Metabochip, by HapMap population.  Allele frequencies were determined in the founder 
(unrelated) samples of Northern and Western European ancestry (CEU; n=60), West African 
ancestry (YRI; n=60), Asian ancestry (ASN; n=90), and Mexican ancestry (MEX; n=60).   On 
the x-axis, genetic variant frequencies were binned as monomorphic, rare (0.1%-1-%), less 
common (1-2.5%), and common (2.5-5%, 5-10%, and 10-50%) by population.  Number of 
observations for each bin is given on the y-axis. 
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To examine potential population differences for genetic variants targeted by the 
Metabochip, we first determined minor allele frequencies for every variant by 
HapMap population.  As shown in Figure 1, the majority of variants for this custom 
BeadChip are polymorphic.  More than one half (58% for ASN) to up to three-
quarters (75% for YRI) of the alleles assayed by the Metabochip occurred at greater 
than 1% frequency.  Conversely, one quarter (24% for YRI) to more than one-third 
(38% for ASN) of the variants were monomorphic in this small sample set. 

We also calculated a fixation index, FST, for all pair-wise population comparisons.  
FST is an estimate of population differentiation ranging from 0 (no measureable 
genetic differentiation) to 1.0 (very great genetic differentiation), and its distribution 
for Metabochip-targeted variants in HapMap samples is given in Figure 2.  The 
majority (76%) of FST values are less than 0.15 for all genetic variant pair-wise 
population comparisons.  The most population differentiation was observed between 
YRI and ASN.  Conversely, the least population differentiation was observed between 
CEU and MEX. 

Figure 2.  Distribution of genetic differentiation (FST) by HapMap population pairwise 
comparison.  FST, a measure of population differentiation, was calculated per SNP in PLATO based on 
the Weir and Cockerham algorithm6 for each HapMap population pair.  Calculations were performed 
on unrelated samples of Northern and Western European ancestry (CEU; n=60), West African ancestry 
(YRI; n=60), Asian ancestry (ASN; n=88), and Mexican ancestry (MEX; n=60).   On the x-axis, FST 
values were binned no difference (zero), >0.0-0.25, >0.025-0.05, >0.05-0.10, >0.10-0.15, >0.15 by 
pair-wise population comparison.  Number of observations for each bin is given on the y-axis 

 

 We mapped the most highly differentiated SNPs (FST > 0.15) to dbSNP 
identifiers (143,750 successfully mapped to known SNPs), and examined the degree 
to which alleles altered the expression or function of genes using annotation resources 
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from the Genome-Wide Annotation Repository (http://gwar.mc.vanderbilt.edu).  We 
defined two categories of SNP annotation for this analysis: predicted changes to 
protein function via SIFT and PolyPhen2 algorithms 8, 9, and prior associations to 
expression levels of nearby genes 10, 11.  The total number of SNP and gene 
annotations is shown in tables 2 and 3.    

 
Table 2.  Number of differentiated SNPs showing functional effects 

Population 
Comparison 

SIFT 
(Deleterious) 

PolyPhen2 
(Possibly or 

Probably 
Damaging) 

Significant 
eQTL 

Total 
functional 

SNPs* 

Total 
Differentiated 

SNPs 
ASN/MEX 6 12 202 218 4059 

YRI/ASN 23 50 786 844 21565 

YRI/MEX 15 33 620 654 14716 

CEU/ASN 10 24 445 474 10641 

CEU/YRI 13 28 598 631 16405 

CEU/MEX 0 1 15 16 510 

*this total accounts for overlap between annotations 
 
 
Table 3.  Number of distinct genes affected by differentiated SNPs 

Population 
Comparison 

SIFT 
(Deleterious) 

PolyPhen2 
(Possibly or 

Probably 
Damaging) 

Significant 
eQTL 

Total 
Genes 

Affected* 
ASN/MEX 5 12 127 141 

YRI/ASN 24 49 610 663 

YRI/MEX 17 31 444 481 

CEU/ASN 9 24 260 285 

CEU/YRI 15 26 455 489 

CEU/MEX 0 1 15 16 

*this total accounts for overlap between annotations 

 
Using this collection of genes associated to differentiated SNPs through functional 

annotations, we performed gene enrichment analysis to identify specific biological 
mechanisms that likely have altered function between ethnic groups.  This analysis 
revealed multiple pathways showing differences between CEU and MEX and CEU 
and ASN populations.  KEGG pathways showing significant adjusted p-values (p < 
0.05) are shown in Table 4.   

Notably, the most significantly enriched pathways between CEU and MEX 
indicate a dramatic difference in the functional properties of glutathione and drug 
metabolism through cytochrome P450.  Enrichment of these three pathways is the 
result of a single SNP – rs1010167 -- altering expression of three genes, 
GSTM1(p=3.88e-7), GSTM2(p=1.54e-7), and GSTM4(p=8.44e-7)11.  This SNP falls 
within a region of chromatin that has been functionally categorized as an active 
promoter by the analysis of Ernst et al. in multiple cell types 12, and is confirmed to 
bind multiple proteins via ChIP-seq data as reported by the HaploREG database 13. 
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Table 4.  Pathways with significant enrichment for highly differentiated functional alleles. 

Population 
Comparison KEGG Pathway 

Reference 
Genes 

Observed 
Genes 

Expected 
Genes P-value 

P-value 
(adjusted 

for multiple 
testing) 

CEU/MEX 
Glutathione 
metabolism                                 

24 3 0.04 1.02E-05 9.47E-05 

CEU/MEX 
Metabolism of 
xenobiotics by 
Cytochrome P450            

30 3 0.06 2.03E-05 9.47E-05 

CEU/MEX 
Drug metabolism - 
Cytochrome P450                      

29 3 0.05 1.83E-05 9.47E-05 

CEU/ASN Allograft rejection                                    26 6 0.83 0.0001 0.0007 

CEU/ASN 
Graft-versus-host 
disease                              

22 6 0.7 4.70E-05 0.0007 

CEU/ASN 
Systemic lupus 
erythematosus                           

54 9 1.71 4.35E-05 0.0007 

CEU/ASN 
Arginine and proline 
metabolism                        

17 5 0.54 0.0001 0.0007 

CEU/ASN 
Autoimmune thyroid 
disease                              

26 6 0.83 0.0001 0.0007 

CEU/ASN 
Antigen processing and 
presentation                     

29 6 0.92 0.0002 0.0013 

CEU/MEX Asthma                                                 17 2 0.03 0.0004 0.0014 

CEU/ASN 
Type I diabetes 
mellitus                               

30 6 0.95 0.0003 0.0016 

CEU/MEX 
Intestinal immune 
network for IgA 
production            

24 2 0.04 0.0009 0.0018 

CEU/MEX 
Type I diabetes 
mellitus                               

30 2 0.06 0.0013 0.0018 

CEU/MEX Allograft rejection                                    26 2 0.05 0.001 0.0018 

CEU/MEX 
Graft-versus-host 
disease                              

22 2 0.04 0.0007 0.0018 

CEU/MEX 
Autoimmune thyroid 
disease                              

26 2 0.05 0.001 0.0018 

CEU/MEX 
Antigen processing and 
presentation                     

29 2 0.05 0.0013 0.0018 

CEU/ASN 
Intestinal immune 
network for IgA 
production            

24 5 0.76 0.0008 0.0039 

CEU/ASN Riboflavin metabolism                                  8 3 0.25 0.0016 0.007 

 
Remaining pathways showing high differentiation in the CEU/ASN and 

CEU/MEX comparisons are largely immune-related, and are driven mostly by 
functional changes to the Major Histocompatibility Complex (MHC) found on 
chromosome 6.  Interestingly, there were no significant pathways found for 
differentiated functional SNPs involving YRI comparisons. 
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Figure 3.  Extent of linkage disequilibrium (r2) for 50kb region targeted by the Metabochip 
containing genome-wide association study (GWAS)-identified CELSR2/PSCR1/SORT1 by 
HapMap population.  Pair-wise linkage disequilibrium (LD) was calculated on unrelated samples 
using HaploView for European-descent [a)CEU; n=60], African [b)YRI; n=60], Asian [c)ASN; n=88], 
and Mexican [d)MEX; n=60] HapMap populations.  For each LD plot, the genetic variants are labeled 
by chromosomal position at the top from 5′ to 3′.  Each square represents a pair-wise LD statistic and 
they are coded on a gray scale where black is perfect LD (r2=1) and white to gray is weak LD.  The 
numbers in select squares represent the LD metric for that pair-wise comparison (for example, 1 is 
r2=0.01). 
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To illustrate the fine-mapping potential of densely targeted regions on the 
Metabochip, we calculated linkage disequilibrium (r2) by HapMap population for the 
CELSR2/PSRC1/SORT1 locus known to be associated with low-density lipoprotein 
cholesterol levels from GWA studies in European-descent populations14-16.  
Consistent with the observations of Buyske et al17 in samples from African American 
and Swedish participants, we observed less LD in YRI compared with CEU for this 
genomic region.  To extend the observations made by Buyske et al, we examined LD 
for the same genomic region in HapMap samples of Asian and Mexican ancestry 
(Figure 3 c,d).  As observed with minor allele frequency and FST, the CEU and MEX 
populations displayed similar levels of LD for this genomic region.  In contrast, the 
ASN population had LD patterns that were distinct from CEU, YRI, and MEX LD 
patterns.  For the ASN population, the CELSR2/PSRC1/SORT1 locus contained 
strong pair-wise LD statistics punctuated by weak LD. 
 
4. Conclusions 

We demonstrate here that the Metabochip custom BeadChip produces high-quality 
data for diverse populations from the International HapMap Project.  We further show 
that the majority of variants observed in all populations considered were common and 
that a sizeable fraction of variants were monomorphic.  Finally, we demonstrate 
population differences in both allelic diversity and LD patterns, both of which will 
impact the effectiveness of fine-mapping efforts that employ this BeadChip in the 
post-GWAS era. 

Many of the observations reported here were expected based on population 
genetics theory and recent empirical genome-wide data from the International 
HapMap Project18, 19 and 1000 Genomes Project20.  That is, as expected, the greatest 
population differentiation (as measured by FST) was observed between African-
descent and Asian-descent populations21.  However, other observations such as the 
proportion of common and rare variants did not follow expectations given the bias in 
genetic variant selection for this custom BeadChip22.  From our FST analysis, we also 
observe significant differentiation of functional alleles within drug metabolism and 
auto-immune associated pathways between CEU and ASN/MEX populations.  These 
variants may explain some aspects of ethnic differences in HLA-based autoimmune 
disease susceptibility, and indicates that cytochrome P450 drug metabolism may be 
altered in individuals of Mexican ancestry. 

A major limitation of this study is sample size.   With only 60 to 90 independent 
samples per HapMap population, our ability to observe rare alleles targeted by the 
Metabochip was limited for any HapMap population.  Indeed, although the shape of 
the allelic distribution was similar, proportionally more variants in our dataset were 
classified as common or monomorphic compared with Buyske et al reflecting our 
limited ability to observe rare variants.  Larger sample sizes will be required to take 
advantage of the full range of the allelic spectrum targeted by the Metabochip for fine 
mapping. 

A final observation made here that will impact fine-mapping efforts is the extent 
of LD for an LDL-C associated region across populations.  As Buyske et al2 noted, 
the breakdown of LD in African Americans for this region (and West Africans here) 
will be useful in identifying the true risk variant in a region with high LD in European 
populations.  However, we note in ASN that the same genomic region has very high 
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LD and thus this custom BeadChip may not fine map equally well for all targeted 
GWAS-identified regions for all populations.  Because this custom BeadChip was 
designed using early iterations of the 1000 Genomes Project data, additional iterations 
of chips designed for fine mapping will be required to capture the latest genetic 
diversity data now emerging in non-European descent populations from later releases 
of the 1000 Genomes Project. 

 
Acknowledgements 
This work was supported by NIH U01 HG004798 and its ARRA supplements.  The 
Vanderbilt University Center for Human Genetics Research, Computational 
Genomics Core provided computational and/or analytical support for this work. 
 
 
References 

 
 1.  Matise TC, Ambite JL, Buyske S, Carlson CS, Cole SA, Crawford DC, Haiman 

CA, Heiss G, Kooperberg C, Marchand LL, Manolio TA, North KE, Peters U, 
Ritchie MD, Hindorff LA, and Haines JL (2011) The Next PAGE in 
Understanding Complex Traits: Design for the Analysis of Population 
Architecture Using Genetics and Epidemiology (PAGE) Study. American 
Journal of Epidemiology 174 (7):849-859 

 2.  Buyske S, Wu Y, Carty CL, Cheng I, Assimes TL, Dumitrescu L, Hindorff LA 
et al (2012) Evaluation of the Metabochip Genotyping Array in African 
Americans and Implications for Fine Mapping of GWAS-Identified Loci: The 
PAGE Study. PLoS ONE 7 (4):e35651 

 3.  Center for Statistical Genetics. MetaboChip SNP details. University of Michigan 
. 2012. 7-26-2012 

 4.  Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller 
J, Sklar P, de Bakker PI, Daly MJ, and Sham PC (2007) PLINK: a tool set for 
whole-genome association and population-based linkage analysis. Am J Hum 
Genet 81 (3):559-575 

 5.  Grady, B. J., Torstenson, E., Dudek, S. M., Giles, J., Sexton, D., and Ritchie, M. 
D. Finding unique filter sets in PLATO: a precursor to efficient interaction 
analysis in GWAS data. Pac Symp Biocomput , 315-326. 2010.  

 6.  Weir, B. S. and Cockerham, C. C. Estimating F-statistics for the analysis of 
population structure. Evolution 38(1358), 1370. 1984.  

 7.  Barrett JC, Fry B, Maller J, and Daly MJ (2005) Haploview: analysis and 
visualization of LD and haplotype maps. Bioinformatics 21 (2):263-265 

 8.  Ng PC and Henikoff S (2001) Predicting deleterious amino acid substitutions. 
Genome Res 11 (5):863-874 

 9.  Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, 
Kondrashov AS, and Sunyaev SR (2010) A method and server for predicting 
damaging missense mutations. Nat Methods 7 (4):248-249 

 10.  Veyrieras JB, Kudaravalli S, Kim SY, Dermitzakis ET, Gilad Y, Stephens M, 
and Pritchard JK (2008) High-resolution mapping of expression-QTLs yields 
insight into human gene regulation. PLoS Genet 4 (10):e1000214 

 11.  Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon 
R, Bird CP, de GA, Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavare S, 
Deloukas P, Hurles ME, and Dermitzakis ET (2007) Relative impact of 

Pacific Symposium on Biocomputing 2013

198



 
 

 

nucleotide and copy number variation on gene expression phenotypes. Science 
315 (5813):848-853 

 12.  Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang 
X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, and Bernstein BE 
(2011) Mapping and analysis of chromatin state dynamics in nine human cell 
types. Nature 473 (7345):43-49 

 13.  Ward LD and Kellis M (2012) HaploReg: a resource for exploring chromatin 
states, conservation, and regulatory motif alterations within sets of genetically 
linked variants. Nucleic Acids Res 40 (Database issue):D930-D934 

 14.  Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, Heath 
SC et al (2008) Newly identified loci that influence lipid concentrations and risk 
of coronary artery disease. Nat Genet 40 (2):161-169 

 15.  Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki 
M, Pirruccello JP et al (2010) Biological, clinical and population relevance of 95 
loci for blood lipids. Nature 466 (7307):707-713 

 16.  Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, Cooper 
GM et al (2008) Six new loci associated with blood low-density lipoprotein 
cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat 
Genet 40 (2):189-197 

 17.  Buyske S, Wu Y, Carty CL, Cheng I, Assimes TL, Dumitrescu L, Hindorff LA 
et al (2012) Evaluation of the Metabochip Genotyping Array in African 
Americans and Implications for Fine Mapping of GWAS-Identified Loci: The 
PAGE Study. PLoS ONE 7 (4):e35651 

 18.  The International HapMap Consortium (2005) A haplotype map of the human 
genome. Nature 437 (7063):1299-1320 

 19.   (2007) A second generation human haplotype map of over 3.1 million SNPs. 
Nature 449 (7164):851-861 

 20.   (2010) A map of human genome variation from population-scale sequencing. 
Nature 467 (7319):1061-1073 

 21.   (2010) Integrating common and rare genetic variation in diverse human 
populations. Nature 467 (7311):52-58 

 22.  Keinan A and Clark AG (2012) Recent Explosive Human Population Growth 
Has Resulted in an Excess of Rare Genetic Variants. Science 336 (6082):740-
743 

 
 

Pacific Symposium on Biocomputing 2013

199



	  

INSIGHTS INTO DISEASES OF HUMAN TELOMERASE FROM DYNAMICAL 
MODELING 

SAMUEL COULBOURN FLORES 
Cell and Molecular Biology Department, Uppsala University, Biomedical Center, Box 596, 75124  

Uppsala, Sweden 
Email: samuel.flores@icm.uu.se	  

	  
GEORGETA ZEMORA 

Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, 1030 
Vienna, Austria 

 
CHRISTINA WALDSICH 

Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, 1030 
Vienna, Austria 

 

Mutations in the telomerase complex disrupt either nucleic acid binding or catalysis, and are the cause of 
numerous human diseases.  Despite its importance, the structure of the human telomerase complex has not 
been observed crystallographically, nor are its dynamics understood in detail. Fragments of this complex 
from Tetrahymena thermophila and Tribolium castaneum have been crystallized. Biochemical probes 
provide important insight into dynamics. In this work we summarize evidence that the T. castaneum 
structure is Telomerase Reverse Transcriptase. We use this structure to build a partial model of the human 
Telomerase complex. The model suggests an explanation for the structural role of several disease-
associated mutations. We then generate a 3D kinematic trajectory of telomere elongation to illustrate a 
“typewriter” mechanism: the RNA template moves to keep the end of the growing telomeric primer in the 
active site, disengaging after every 6-residue extension to execute a “carriage return” and go back to its 
starting position.  A hairpin can easily form in the primer, from DNA residues leaving the primer-template 
duplex. The trajectory is consistent with available experimental evidence. The methodology is extensible to 
many problems in structural biology in general and personalized medicine in particular.  
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1. Introduction 

Telomere maintenance has broad implications for human health and longevity.  Positive lifestyle changes including 
exercise and smoking cessation result in increased telomerase activity in the immune system.(1) Cancer cells also 
have vigorous telomerase activity (1) as required for immortality. (2) Despite its importance, the human Telomerase 
complex has not been solved crystallographically.  However various components of the complex from other 
organisms are available.  We use these to predict the structure of key components of human Telomerase by a novel 
homology modeling approach and illustrate its functional mechanism. We also give a possible explanation for the 
role of several disease associated mutations.  
 
The primary enzymatic task of Telomerase is the extension of the leading telomeric DNA strand following the 
sequence of an RNA template.  This is done one DNA residue at a time at the active site of the Reverse 
Transcriptase (RT). The RT domain shares motifs with RNA and DNA polymerases, suggesting similar function and 
mechanism.(3)  The RNA Binding Domain (RBD) appears to help position the primer-template duplex for 
extension.(3) The carboxy-terminal extension (CTE) is implicated in DNA binding.(3)  
 
In this work we focus on the RT, RBD, and the primer-template duplex.  Key regions of RBD and most of the RT 
are conserved across organisms.  In particular a published multiple sequence alignment (MSE)(4) shows 
considerable sequence identity between human and T.castaneum (“beetle”) in a substantial portion of TERT.  A 
crystallographic structure of beetle TERT with a putative primer-template duplex now exists, but considerable 
debate exists as to whether it is truly telomerase;(5) in this work we present the evidence that it is.  We then use the 
beetle structure as the template for a partial homology model of human Telomerase. The model explains the 
probable role of disease associated residues and is consistent with biochemical probes of structure and dynamics.   
 
Considerable insight into the dynamics of primer elongation exists from biochemical experiments. The primer-
template duplex is always about 7 base pairs (bp) long as determined by dimethyl sulfate footprinting assays in 
yeast,(6) because bp’s are denatured at the distal end as they form at the proximal end.  In human, the template 
region is 6 bases long while an alignment region on the 3’ side adds 5 bases for a total of 11; however it is believed 
that 11 base pairs would never form simultaneously during elongation as subsequently denaturing multiple base 
pairs would require too much energy. (7) Dissociation would also be difficult for an excessively long duplex. (7) 
 
When the extending primer reaches the 5’ end of the template, the template disengages and reattaches to the primer 
having shifted by six residues, ready for another six-residue extension to be be added (6). Meanwhile as DNA 
residues exit the primer-template duplex, they queue to join a hairpin or quadruplex which may help drive 
processivity.(8)  
 
The N-Terminal domain (TEN) is a low-conservation region of TERT (3) known to be important for primer 
positioning and elongation. (9) T.Castaneum telomerase has no TEN domain, a point we will return to.  
Additional insight comes from prior structural  modeling. The TEN, RBD, RT and primer-template duplex domains 
were ambitiously predicted by homology modeling and docking by Steczkiewicz and collaborators. (10) However 
the primer-template duplex in that model is about 15  (10) rather than 7 bp long as it is in yeast (6) and is even 
longer than the 11 bp discussed above.  Also, TEN residues 170-175 which have been experimentally 
implicated in the active site (9) are about 9 RNA (not DNA) nt away from the active site in the model. (10) That 
model also includes the CTE, which we did not model due to the low sequence identity between beetle and human in 
that domain. Lastly, the mechanism of processivity proposed in that work is based on a low-order normal mode 
expansion. The RBD and RT domains of that model, on the other hand, agree with those presented in this work.  
 
In this work we thus present a knowledge-based structural and dynamical model of human telomerase, including 
much of TERT, the template, and a telomeric extension.  We generate the structural model of TERT by homology 
modeling. The dynamical model incorporates additional biochemical information.  We address the debate on the 
function of the beetle structure. (11) The results provide an explanation for the role of various disease associated 
mutations. Our model also supports a role  in processivity for the primer extension hairpin. We show that MMB 
(formerly RNABuilder) (12) is a structural  and dynamical modeling code with many potential applications in 
molecular biology. Its economy, versatility, and ease of use make it a good tool to use for examining the effect of 
individual genetic variation on disease phenotype.  
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2. Methods 

2.1 Validating human-beetle sequence alignment using secondary structure 

Generating the structure of the human TERT by threading to the existing beetle TERT structure (13) requires a 
multiple sequence alignment, which is available from the telomerase database.(4). Note that not all domains have 
sufficient sequence identity for alignment. As a first validation of the alignment, we predicted the secondary 
structure of the human TERT using the Jpred server, which is not biased by the use of the known T.thermophila or 
beetle TERT structures.(14)  

2.2 Aligning T. thermophila RNA Binding Domain to beetle TERT 

For further validation of the MSE and to support telomerase function of the beetle structure, we used the former as 
the basis for a rigid-body structural alignment (15,16) of the crystallographically observed T.thermophila RNA 
Binding Domain (RBD) (13) onto the beetle TERT. (11)    

 

Figure 1. Illustration of internal coordinate threading procedure.  
Threading is done as follows.  The template (here a fragment of the beetle RBD is used, in green) is made rigid. In 
the model (here the corresponding human peptide fragment, in blue), bond lengths and angles are fixed, but torsion 
angles are free to vary (except for proline which has additional freedom for ring closure). Springs connect backbone 

atoms in the template with backbone atoms in the model which correspond according to sequence alignment (a 
representative set are shown as black dashed lines). Collision detecting spheres (transparent cyan) prevent steric 

clashes within the model.  The system dynamics are allowed to proceed until the backbones are aligned. The final 
threaded model (inset) has a backbone RMSD of 1.002Å with respect to the template in this example. 
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2.3 Threading human to beetle TERT  
 

In prior work we showed how MMB/RNABuilder can be used for RNA threading. (16) In this work we show that 
the package can also do protein threading.(17)  The threading forces can be combined with other forces, constraints, 
and coordinate matching features available in this full-featured modeling package. We aligned a flexible human 
TERT protein backbone to the rigid beetle TERT(11) template by connecting corresponding backbone atoms with 
springs, while steric clashes were economically prevented by means of collision detecting spheres.(15) The 
approach of using internal coordinate dynamics(18) to align the backbone in this way is unique to this work;(17) 
most other protein threading algorithms work by rigid fragment assembly, segment matching, spatial restraint, and 
artificial evolution.(19)  The approach is preferred for this work because it is economical, gives us full control over 
the alignment, conserves chemistry and sterics, allows protein, DNA, and RNA(16) to be threaded simultaneously, 
and permits dynamical (16) rather than only static modeling of the mechanism of primer extension as we will show. 
An illustrative example of this process is shown in  Figure 1 above. 

The basis for the correspondence for all threaded TERT fragments was the Telomerase Database MSE.(4) Note that 
much of TERT is highly diverged and therefore not all residues are aligned (Figure 2). (4).  

 
525                  545 (RBD)         563    570   576 
GVGCVPAAEHRLREEILAKF LHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGIRQHLKRVQLREL 
------HHHHHHHHHHHHHH HHHHH--HHHHHH---EEEEEE----EEEEEEEHHHHHHHHHHHHHHHHH------- 
YDAIPWLQNVEPNLRPKLLL HNLFLLDNIVKPIIAFYYKPIKTLNGHEIKFIRKEEYISFESKVFHKLKKMKYLVEV 
---HHHHH-----HHHHHHH HHHHHHHHHHHHHHHHHEEEEE------EEEEEHHHHHHHHHHHHHHHHHH--EEE- 
 
602   617                    648                     681                704 
SEAEV LTSRLRFIPKPDGLRPIVNMDY EKRAERLTSRVKALFSVLNYERA LGLDDIHRAWRTFVLRVR PELYFVKVD 
-HHHH ---EEEEEE----EEEEEE--- --HHHHHHHHHHHHHHHHHHHHH ---HHHHHHHHHHHHHHH --EEEEEE- 
QDEVK PRGVLNIIPKQDNFRAIVSIFP DSARKPFFKLLTSKIYKVLEEKY KTSGSLYTCWSEFTQKTQ GQIYGIKVD 
----- --EEEEEEE----EEEEEEE-- ---HHHHHHHHHHHHHHHHHHHH ------HHHHHHHHHHH- ---EEEEEE 
 
713 
VTGAYDTIPQDRLTEVIASIIKP 
---EE----HHHHHHHHHH---- 
IRDAYGNVKIPVLCKLIQSIPTH 
E-------HHHHHHHHHH----- 
 
803     811                                                   865 869  
SGLFDVFLRFMCHHAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTPHLTH 
HHHHHHHHHHHH---EEE---EEEEE--------HHHHHHHHHHHHHHHHHH-------EEEEEE--EEEEE--HHH 
SEKKNFIVDHISNQFVAFRRKIYKWNHGLLQGDPLSGCLCELYMAFMDRLYFSNLDKDAFIHRTVDDYFFCSPHPHK 
HHHHHHHHHHHHHEEEE----EEEE---------HHHHHHHHHHHHHHHHHH-------EEEE---EEEEEE-HHHH 
 
880      889        898 902 
AKTFLRTL RGV        VNLRKTVVNFPVEDEAL 
HHHHHHHH HHH        E---EEEEE-------- 
VYDFELLI KGV        VNPTKTRTNLPTHRHPQ 
HHHHHHHH HHH        EEEEEEEE--------- 

 
Key: 
Black numbers: human residue number range of aligned fragment 
Dark green:  human sequence  
Light green: predicted human secondary structure (Jpred) 
Red: beetle sequence 
Orange: observed beetle secondary structure  
 
 
Figure 2. Alignment of human to beetle sequence and comparison of predicted human to observed beetle secondary 
structure.  Note wide agreement between the two secondary structures, in particular in the RBD. Human residues of 
special interest include the active site (712,868,869, cyan highlight – note conservation), positively charged disease 

associated residues (570, 811, 865, 901, 902, green highlight – note only 865 and 902 are charged in beetle), and 
highest OPRA propensity from beetle (563, 576, yellow highlight). 
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As mentioned the beetle telomerase has no TEN. We found it difficult to dock the Tetrahymena TEN to the beetle 
TERT. The beetle TERT has a very crowded RT active site, with little room for an additional protein to be involved. 
We found no clear shape complementarity with the T.Tetrahymena TEN; significant structural rearrangement would 
be needed just to get the crucial TEN residues 170-175 near the 3’ end of the primer. Our model for this reason does 
not include TEN.  
 

2.4 Predicting RNA binding interfaces on beetle TERT 

The correct position of the RNA component of Telomerase is unknown except for the location of the primer-
template duplex (11). We therefore used OPRA (Optimal Protein RNA Area)(20) to predict points of high RNA-
binding propensity on beetle TERT.     

2.5 Generating the primer elongation trajectory 

We used the available biochemical knowledge to generate a dynamical trajectory of elongation as follows.  
 
In a preparatory stage, we threaded (16) the human Telomerase RNA (TR) template portion spanning residues 53 to 
59 (18) onto the putative RNA component of the beetle primer-template duplex. (11) We attached a spring to pull 
the 5’ end of the modeled template flanking region (residue 38) so as to pass near the predicted RNA binding 
hotspot in the T-domain. This was motivated by biochemical evidence suggesting the double-helical template 
boundary element (which includes residues 32-37) binds to the RBD.  The T-domain is therefore one candidate for 
the location of the boundary element. We threaded seven residues of the modeled primer onto the DNA portion of 
the beetle duplex.   
 
To model the addition of a single residue, we then shifted the primer by one residue in the 5’ direction and attached 
a new residue at the 3’ end.  We shifted the template by one residue position in its 3’ direction. We released the most 
distal base pair of the duplex. We repeated this process for a total of seven residues. Once sufficient primer residues 
exited the duplex, we enforced a stem-loop.  
 
As a final step, following the addition of a nucleotide conjugate to the 5’-most template RNA residue, we released 
the template and reattached it 6 residue positions in the 5’ direction, ready for another round of extension. 
 
2.5 Functional assay   

The plasmids pcDNA6hTERT and pBSU1hTR were used for transient transfections of HEK cells and were a kind 
gift from J. Lingner. The hTERT mutations K570N, R865C and K902N were generated in the pcDNA6 vector as 
well. Cell extracts and direct telomerase assays were done as described in (21) and (22), respectively. 
 
3. Results 

3.1. Validating human-beetle sequence alignment  

We compared to the predicted human secondary structure(14) to the observed beetle secondary structure(11) and 
found that they agreed in 232 of 283 aligned residues (Figure 2). 
 
3.2. Aligning Tetrahymena RBD to beetle  

We found that the T.thermophila RBD T-domain was aligned incorrectly in the telomerase database(4) as evidenced 
by a lack of secondary structure correspondence and the failure of the sequence alignment to guide correct 3D 
alignment between beetle and tetrahymena TERT.   Once we corrected this the secondary structure aligned properly 
and we were able to align structurally (Figure 3) 
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CVPAAEHRLREEILAKF-LHWLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGIRQLKRVQLREL  
---HHHHHHHHHHHHHH HHHHH--HHHHHH---EEEEEE----EEEEEEEHHHHHHHHHHHHHHHHH------  
IPWLQNVEPNLRPKLLLKHNLFLLDNIVKPIIAFYYKPIKTLNGHEIKFIRKEEYISFESKVFHKKKMKYLVEVQDEVK 
HHHHH-----HHHHHHHHHHHHHHHHHHHHHHHHHEEEEE------EEEEEHHHHHHHHHHHHHHHHH--EEE------ 
TQKRKYYISDKRKILGDLIVFIINKIVIPVLRYNFYITEKHKEGSQIFYYRKPIWKLVSKLTIVKLEE 
-HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHEEEEE-------EEEEEHHHHHHHHHHHHHHHHH 

 
Dark green:  human sequence 
Light green: human predicted secondary structure (Jpred) 
Red: Beetle sequence 
Orange: Beetle observed secondary structure 
Yellow highlight: Tetrahymena sequence 
Gray:  Tetrahymena observed secondary structure 
 
 

Figure 3. Alignments of the T-motif 

Upper panel: Structural alignment of Tetrahymena T-motif (yellow) and remainder of Tetrahymena TRBD (gray). 
Beetle TERT is shown in transparent gunmetal.  Rigid structural alignment is based on the known beetle-

Tetrahymena sequence alignment.  The T-motif is a unique fold, and the close structural alignment is evidence that 
the beetle structure is TERT. Therefore, we should be able to predict human structure based on alignment to beetle, 

in regions of high sequence identity. 

Lower panel: Sequence alignment of the RNA Binding Domain T-motif.  Note that previously published alignments 
are incorrect for Tetrahymena in this region. 
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3.3. RNA binding interfaces on beetle TERT 

OPRA predicted a strong binding propensity in the RBD, in particular at the base of the β-hairpin. It also predicted a 
second binding region in the C-terminal domain (Figure 4) recapitulating its known DNA binding function.(3)  
 
3.4. Basic disease associated residues near the primer-template duplex 

A novel feature of MMB called “Physics where you want it” allows flexibilizing a selection of residues, leaving the 
remainder of the system fixed and rigid. An MD (in this case Amber99) force field is turned on for another 
(typically larger and enclosing) selection of residues.   We flexibilized residues 570, 902, and 865 and turned on 
physics for those residues and for the primer-template duplex.  We found that residues 570 and 902 rapidly 
gravitated towards the duplex, settling within 2Å of the DNA strand at the closest point. 901 was in a similar 
position to 902. Residue 865 came within 6Å and 8Å, respectively, of the RNA and DNA strands (Figure 4). 

	  
Figure 4. Human TERT charged disease-associated residues and OPRA RNA binding propensities in the vicinity of 

the duplex. 

Labeled green residues are disease associated. Residue 570 lies very close to the primer backbone and is very likely 
to coordinate it.  Residues 865 and 902 can come within a few Ångströms of the primer strand, and are also close to 

the active site residues (conserved ASP 712,868, and 869). 

OPRA propensities were calculated in beetle TERT (inset) and then transferred to human.  Highest propensities (red 
shading) were in the C-terminal extension (or Thumb) and RBD (see human residues 563 and 576).  Lowest 

propensities are in blue shading. 

3.5. Basic beetle residues near the primer-template duplex 

For the beetle structure (PDB accession: 3KYL) we found that of 20 protein residues within 5Å of the 7 DNA 
residues in the 7-bp duplex, seven (144,194,406,416,418,437,477) were basic. Further, they were mostly in range to 
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make contact.  On the other hand, we found that 30 protein residues were within 5Å of the 7 RNA residues in the 
primer-template duplex. Of the 30, only two (206,210) were within the 5Å range, but at its very edge and apparently 
interacting with a portion of the DNA strand outside of the 7-bp duplex (Figure 5).  
 

 

Figure 5 Basic residues within 5Å of the template-primer duplex in T. Castaneum. 

Seven basic amino acid residues (gold) coordinate the seven primer residues (also gold) of the duplex. Two 
additional basic residues (orange) are within 5Å of the template portion of the duplex (also orange), but appear to be 

coordinating a portion of the primer outside the duplex. Thus all residues within 5Å of the duplex In beetle are 
binding the primer, not the template. 

3.5. Functional assay 

The hTERT variants carrying mutations K570N, R865C, K902N had been identified in patients with DC, AA or IPF 
(23-25). Measuring the activity of these mutant telomerase complexes revealed that the K570N and K902N variants 
showed no telomerase activity, while R865C showed a 20% telomerase activity (25). We now attempted to rescue 
this strong phenotype by increasing the telomeric primer concentration 10-fold in the extension assay; however this 
did not significantly improve the activity of mutant telomerases (data not shown). 
 
3.6. The dynamical trajectory of primer elongation  

We noted several possible routes for the 5’ template flanking region to exit the primer-template duplex.  The route 
used in our trajectory follows the β -hairpin, contacting the RNA binding hotspot at its base, and takes a direction 
tangent to its duplex portion (supplementary materials).    
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There is sufficient space to form a harpin in bursts as sufficient residues emerge from the primer-template duplex. 
We note that one or more hairpins may form, each with 8 base pairs in the stem.  Alternatively, a single long hairpin 
may form, with its end loop migrating to 3’ in six-residue increments as the primer elongates, or some combination 
of the two may occur.  

4. Discussion 

4.1. Validating human-beetle sequence alignment  

Sequence identity alone does not necessarily imply structural homology; structural divergence is possible. In 
particular controversy surrounds the beetle structure used, with some authors pointing out that it may not be 
TERT(5).  We present evidence that the beetle-human sequence alignment is correct, that the beetle structure is in 
fact TERT, and that there is a basis for homology modeling.   

First, the beetle – T.thermophila sequence alignment was used as the basis for aligning the less controversial 
T.thermophila RBD to its putative beetle counterpart.  The key conserved T-motif, a β-hairpin with flanking α-
helices aligns well (Figure 4).  Since this motif has not been observed outside of TERT to our knowledge, this 
observation indicates that the beetle structure is likely to be TERT, and that the sequence alignment is correct in this 
region.  

Second, we ran the Jpred secondary structure prediction algorithm on the human sequence and found that the 
predicted human secondary structure matches the observed beetle secondary structure for 232 of 283 residues 
(Figure 2). Jpred(14) is not biased by the use of the beetle or T.thermophila TERT structures (C. Cole, personal 
communication).  Therefore there is probably considerable structural homology in the aligned regions. The human 
sequence and predicted secondary structure also aligns to that of T.thermophila in the RBD (Figure 3), further 
bolstering the structural and functional correspondence (non-telomerase reverse transcriptases do not have this 
RBD).    

As mentioned the TEN domain has been directly implicated in the active site (9) and yet is absent in beetle. We 
speculate that the role of the human TEN residues involved in elongation may be played in beetle by residues in the 
RT domain, leading to a crowded active site with little room for an additional protein subunit. This may explain why 
it is difficult to dock the Tetrahymena TEN to the beetle TERT. 

4.2. RNA binding interfaces on beetle TERT 

The results of the OPRA RNA binding interface prediction strengthen the case that the beetle structure is TERT. The 
binding hotspot in the CTE is consistent with its role in DNA binding.(3) The strong signal at the base of the β-
hairpin confirms that this is the RNA Binding Domain.   

4.3. Basic beetle residues near the primer-template duplex 

The evidence of DNA binding being more important than RNA binding near the duplex prompted us to examine the 
beetle structure (3KIY) more closely. The finding that 7 of the 20 residues near the DNA part of the 7-bp duplex 
were basic, while only 2 of 30 the residues near the RNA part were basic, is strong indication that DNA binding is 
more crucial in this region (Figure 4). Experimentalists may find it profitable to mutate beetle TERT residues 
144,194,406,416,418,437, and/or 477 to try to produce reduced DNA binding in vitro or, more interestingly, a beetle 
with a telomerase deficiency disease.   

4.4. Charged disease associated residues near the primer-template duplex 

Disease associated residue 570 is very likely in contact with the primer strand, a few residues from the terminus.  Its 
charge, location in a highly conserved RNA binding region, and clear proximity to the DNA backbone make this 
prediction strong.  
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Residue 902 (and by extension 901) is also positioned to contact DNA.  We verified this with a simple equilibration 
using MMB. 

Residue 865 is spatially near the primer strand.  It is also close in sequence to the active site residues, further 
suggesting a DNA binding role.  However an equilibration using MMB, shows that 865 could contact either DNA or 
RNA without significant backbone motion. 

4.5. Insight into disease from structure 

Our rather conservative model leaves out diverged regions of TERT such as the CTE, and for that reason contains 
only five basic disease associated residues: 570, 811, 865, 901, and 902. Of these, all except 811 are within 9Å of 
DNA. A very limited “Physics where you want it” simulation showed that 865 is positioned such that it could also 
be contacting RNA, but that 570, 901, and 902 are very likely binding DNA only. 811 is about 19Å from the duplex. 
Our model therefore predicts a likely DNA-binding role for disease-associated residues 570, 901, 902, and perhaps 
865. All basic residues within 9Å of the DNA in our model (with the exception of some at the periphery of that 
cutoff) are documented disease-associated residues, again suggesting that basic residues near the duplex have an 
essential DNA-binding function. If this model is correct, TERT with these mutations should have reduced affinity 
for DNA. A functional assay should show reduced activity, which should be recovered with a saturating 
concentration of DNA.  
 
Inspection of the Steczkiewicz model also leads to interesting findings. Due to differences in the modeling approach 
the findings are overlapping but not identical.  In particular, since their model included highly diverged regions, it 
includes many residues which ours did not.  First, of the seven basic residues known to be disease-associated (486, 
570, 811, 865, 901, 902, and 979), three (570, 865, and 979) are within 9Å of the DNA strand. Two of the latter 
(570 and 979) were also within 9Å of the RNA strand. Within 9Å of the DNA, there were 22 positively charged 
residues in total. In contrast, there were only 13 within the same radius of the RNA, again suggesting the greater 
importance of binding the stretch of DNA.  
 
One interpretation of our computational model is that basic residues which coordinate the DNA strand are more 
likely to be essential, while those coordinating the RNA may be dispensable. This could be explained by the fact that 
while TERT has many points of contact with RNA, it has very few with DNA. In accordance with this idea, other 
basic residues within about 9Å of the DNA strand, when mutated, could be as-yet undiscovered causes of telomerase 
diseases. However in that case saturating concentration of DNA would be expected to recover function in mutants 
K507N, R965C and K902N, and it did not. This may mean that the residues contribute to the stability of TERT, and 
that a loss of charge leads to misfolding. Alternatively, it may be that the contribution of the residues to DNA 
binding is very strong, and we did not reach saturating conditions of DNA.     
 
The Steczkiewicz model by our interpretation predicts that residues 499, 500, 570, 626, 631, 643, 646, 647, 649, 
650, 710, 865, 955, 962, 968, 971, 972, 973, 979, 981, 983, and 1011 are within 9Å of the DNA part of the 7 bp 
duplex; accordingly clinicians should be on the lookout for mutations in these residues. Note that these include 
known disease-associated residues 570, 865, and 979. For costlier experimental assays, we suggest starting with 
residues within 5Å: 643, 649, 962, 972, 973, 970, 979, and 981).  Note that the latter list includes known disease-
associated residue 979. However we remind experimentalists that the Steczkiewicz model aligns highly diverged 
domains. 

4.6. Primer elongation movie  

We created a movie and figure (supplementary material) which shows a single cycle of primer elongation.  One 
residue is added at a time, with the rest of the primer-template duplex shifting one residue position towards the distal 
end with each addition. Simultaneously, the distal base pair denatures.(6) Once sufficient residues emerge from the 
duplex, a hairpin forms.(8)  In our model there is room for a series of such hairpins, or for a single long hairpin with 
and end loop that migrates to 3’ in six-residue bursts, or for some combination of the two.  We look forward to 
future workers elucidating how this is denatured to extend the lagging strand of the primer. At the end of one cycle 
of elongation, the template shifts six residues in the proximal direction, like an old-style typewriter carriage 
preparing to write another line.(6,26) The trajectory shows that this mechanism is sterically and geometrically 

Pacific Symposium on Biocomputing 2013

209



	  

feasible and consistent with existing structural and biochemical data. It further provides a structural basis for 
designing focused experiments to test specific steps of this process.  We encourage other workers to modify the 
MMB/RNABuilder command file we provide to extend or modify our simulation or add more Telomerase subunits.  

 

5. Conclusion 

Considerable progress has been made on Telomerase structure and function, but this had not been turned into a 3D 
dynamical model. In this work we first presented the evidence that a recent T.Castaneum structure (3) is in fact 
TERT, addressing a topic of current debate. (11) We then built a threaded model of part of the RT and RBD 
domains and the primer-template duplex of human telomerase. We find that all four basic residues within 9Å of the 
primer-template duplex are disease associated, and further that at least three of them appear to be DNA binding. 
Similarly, we find that in the published beetle structure, basic residues cluster near the DNA and not the RNA strand 
of the duplex. This may suggest that several positively-charged, disease-associated residues are involved in 
coordinating DNA in human telomerase. We propose that such DNA-binding residues are more likely to be 
essential, whereas RNA-binding residues may be dispensable, since TERT has fewer points of contact with DNA 
than RNA. Our functional assay does not rule out the possibility that these residues also contribute to the stability of 
TERT. We used biochemical and biophysical results as constraints to generate a 3D kinematic model of primer 
extension as an illustration of this important process.  

6. Distribution and supplementary materials 

The telomere extension movie is distributed as a .mpg and a figure file at https://simtk.org/home/telomerase . The 
entire trajectory in .pdb format, the command file (in RNABuilder 2.2 syntax), and initial structure file are also 
available on request. RNABuilder 2.2 and more recent MMB distributions for Windows, OSX, and Linux are 
available for download from https://simtk.org/home/rnatoolbox . 
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Clustering of gene expression data simplifies subsequent data analyses and forms the basis of numerous 
approaches for biomarker identification, prediction of clinical outcome, and personalized therapeutic 
strategies. The most popular clustering methods such as K-means and hierarchical clustering are intuitive and 
easy to use, but they require arbitrary choices on their various parameters (number of clusters for K-means, 
and a threshold to cut the tree for hierarchical clustering). Human disease gene expression data are in general 
more difficult to cluster efficiently due to background (genotype) heterogeneity, disease stage and progression 
differences and disease subtyping; all of which cause gene expression datasets to be more heterogeneous. 
Spectral clustering has been recently introduced in many fields as a promising alternative to standard 
clustering methods. The idea is that pairwise comparisons can help reveal global features through the eigen 
techniques. In this paper, we developed a new recursive K-means spectral clustering method (ReKS) for 
disease gene expression data. We benchmarked ReKS on three large-scale cancer datasets and we compared it 
to different clustering methods with respect to execution time, background models and external biological 
knowledge. We found ReKS to be superior to the hierarchical methods and equally good to K-means, but 
much faster than them and without the requirement for a priori knowledge of K. Overall, ReKS offers an 
attractive alternative for efficient clustering of human disease data. 
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1.  Introduction 

The explosion of gene expression and other data collection from thousands of patients of several 
diseases has created novel questions about their meaningful organization and analysis. The Cancer 
Genome Atlas (TCGA)1 initiative for example provides large heterogeneous datasets from patients 
with different types of cancers including breast, ovarian and glioblastoma. However, unlike data 
from model organisms and cell lines that have uniform genetic background, and where 
experiments are conducted under controlled conditions, disease samples are typically much more 
heterogeneous. Differences in the genetic background of the subjects, disease stage, progression, 
and severity as well as the presence of disease subtypes contribute to the overall heterogeneity. 
Discovering genes or features that are most relevant to the disease in question and identifying 
disease subtypes from such heterogeneous data remains an open problem.  

Clustering, the unsupervised grouping of data vectors into classes with similar properties is 
a powerful technique that can help solve this problem by reducing the number of features one has 
to analyze and by extracting important information directly from data when prior knowledge is not 
available. As such, it has formed the basis of many feature selection and classification methods2,3. 
Hierarchical and data partitioning algorithms (like K-means) have been used widely in many 
domains4 including biology5,6. They have become very popular due to their intuitiveness, ease of 
use, and availability of software. Their biggest drawbacks come from the usually arbitrary 
selection of parameters, such as the optimal number of clusters (for K-means) or an appropriate 
threshold for cutting the tree (for hierarchical clustering).  

When applied to datasets from model organisms and cell lines, these clustering approaches 
have been quite successful in identifying biologically informative sets of genes5,6. However, the 
heterogeneity of the disease samples hinders their efficiency in them. Figure 1 shows an example 
of such a dataset; a dendrogram produced from the breast cancer TCGA data, in comparison to 
dendrogram generated from the less heterogeneous yeast expression data. It is obvious that the 
structure of the data makes it difficult to find a threshold to prune the tree to produce a satisfactory 
number of clusters, since every newly formed cluster is joined with a singleton node each time. 
Thus, despite its popularity, classical hierarchical clustering frequently performs poorly in 
discovering a satisfactory group structure within gene expression data. Tight clustering7 and fuzzy 
clustering8 attempt to build more biologically informative clusters either by focusing only on 
closely related genes while ignoring the rest, or by allowing overlap in cluster memberships. 
However, both methods suffer from long execution times. Similarly, Affinity Progation9 has been 
applied on gene clustering successfully but at a significant cost in execution time. . 

More recently, spectral clustering approaches have been used for data classification, 
regression and dimensionality reduction in a wide variety of domains, and has also been applied to 
gene expression data10. The spectral clustering formulation requires building a network of genes, 
encoding their pairwise interactions as edge weights, and analyzing the eigenvectors and 
eigenvalues of a matrix derived from such a network. To our knowledge, no systematic attempt 
has been made to-date to test and compare the performance of existing clustering methods in 
large-scale disease gene expression data, perhaps due to unavailability of suitable size datasets. In 
this paper, we evaluate the standard K-means and hierarchical clustering methods on three large 
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TCGA datasets. The evaluation is performed using intrinsic measures and external information. 
We introduce ReKS (Recursive K-means Spectral clustering), and compare it to the two 
aforementioned methods on the TCGA data. ReKS leverages the global similarity structure that 
spectral clustering provides, while saving on computing time by performing recursion. At each 
recursion step, we exploit the distribution of eigenvalues to select the optimal number of 
partitions, thus eliminating the need for pre-specifying K. We show that ReKS is very useful in 
deriving important biological information from patient gene expression data. Furthermore, we 
show how to add prior information from KEGG pathway to refine the cluster boundaries. 

 
Fig. 1. Clustering patient data is more difficult than cell-based data.  Partial views of dendrograms 
constructed from hierarchical clustering of the TCGA Breast Cancer expression data (top) and the yeast 
expression data (from Spellman et al.11). The dendograms suggest that it is easier to select a threshold to 
prune the tree and generate potentially meaningful clusters for the yeast data but not so for the breast 
cancer data.  

 

2.  Method 

2.1.  Spectral Clustering 

The spectral clustering formulation requires building a network of genes, encoding their pairwise 
interactions as edge weights, and analyzing the vectors and eigenvalues of a matrix derived from 
such a network. This procedure is well established in the literature12 so here we limit our 
discussion to the main points of the algorithm and use a Markov chain perspective to help us 
reason further about the idiosyncrasies of the algorithm when applied to cancer expression data. 
       A convenient framework for understanding the spectral method is to consider the partitioning 
of an undirected graph 𝐺 = (𝑉,𝐸) into a set of distinct clusters.  Here the genes are represented as 
vertices 𝑣! for 𝑖 = 1…𝑁 where 𝑁 is the total number of genes and network edges have weights 
𝑤!" that are non-negative symmetric (𝑤!" = 𝑤!") to encode the strength of interaction between a 
given pair of genes. Affinities denote how likely it is for a pair of genes to belong to the same 
group. Here we used as affinities a modified form of the correlation coefficient 𝜌!", calculated on 
the gene expression vectors:  

 𝑤!" = exp   −   sin !"##$%(!!")
!

!
 (1) 

This is distance measure previously found to give empirical success in the clustering of gene 
expression data9. Note that high affinities correspond to pairs of genes that are likely to belong in 
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the same group (e.g., participate in a pathway).  In this paper, we ensured that the network is 
connected so that there is a path between any two nodes of the network. Our goal is to group genes 
into distinct clusters so that genes within each group are highly connected to each other, while 
genes in distinct clusters are dissimilar.  

Spectral methods use local (pairwise) similarity (affinity) measurements between the nodes to 
reveal global properties of the dataset. The global properties that emerge are best understood in 
terms of a random walk formulation on the network13–15 .The random walk is initiated by 
constructing a Markov transition matrix over the edge weights. Representing the matrix of 
affinities 𝑤!" by 𝑊 and defining the degree of a node by 𝑑! = 𝑤!"! , a Markov transition matrix 
𝑀 can be defined over the edge weights by 

   𝑀 =𝑊𝐷!! (2)  

where 𝐷 is a diagonal matrix stacked with degree values 𝑑!. The transition matrix 𝑀 can be used 
to set up a diffusion process over the network. In particular, a starting distribution 𝑝! of the 
Markov chain evolves to 𝑝 = 𝑀!𝑝! after 𝛽 iterations. As 𝛽 approaches infinity, the Markov chain 
can be shown to approach a stationary distribution:  𝑀! = 𝜋  1! is an outer product of 1 (a column 
vector of 𝑁  1s) and 𝜋 (column vector of length 𝑁).  It is easy to show that 𝜋 is uniquely given by: 
𝜋! = 𝑑! 𝑑!!  and is the leading eigenvector of 𝑀:𝑀𝜋 = 𝜋 with eigenvalue 1. 
 We can analyze the diffusion process analytically by using the eigenvectors and 
eigenvalues of 𝑀. From an eigen perspective the diffusion process can be seen as14:  

   𝑝! = 𝜋 + 𝜆!
!𝐷!.!𝑢!𝑢!!𝐷!!.!𝑝!!

!  (3)  

where the eigenvalue 𝜆! = 1 is associated with stationary distribution 𝜋. The eigenvectors are 
arranged in decreasing order of their eigenvalues, so the second eigenvector 𝑢!  perturbs the 
stationary distribution the most as 𝜆! ≥ 𝜆! for 𝑘 > 2. The matrix 𝑢!𝑢!!   has elements 𝑢!,!  ×  𝑢!,!   , 
which means the genes that share the same sign in 𝑢!   will have their transition probability 
increased, while transitions across points with different signs are decreased. A straightforward 
strategy for partitioning the network is to use the sign of the elements in 𝑢!  to cluster the genes 
into two distinct groups.  

Ng et al16 showed how this property translates to a condition of piecewise constancy on the 
form of leading eigenvectors, i.e. elements of the eigenvector have approximately the same value 
with-in each putative cluster.  Specifically, it was shown that for K weakly coupled clusters, the 
leading K eigenvectors of the transition matrix 𝑀 will be roughly piecewise constant. The K-
means spectral clustering method is a particular manner of employing the standard K-means 
algorithm on the elements of the leading K eigenvectors to extract K clusters simultaneously. We 
follow the recipe in Ng et al where instead of using a potentially non-symmetric matrix 𝑀, a 
symmetric normalized graph Laplacian 𝐿 = 𝐷!!.!𝑊𝐷!!.!, whose eigenvalues and eigenvectors 
are similarly related to 𝑀, is used for partitioning the graph.   
        Spectral approaches have also some drawbacks. Their basic assumption of piecewise 
constancy in the form of leading eigenvectors need not hold on real data. Much work has been 
done to make this step robust, including the introduction of optimal cut ratios17 and relaxations18,19 
and highlighting the conditions under which these methods can be expected to perform well14. 
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Spectral methods can be slow as they involve eigen decomposition of potentially large matrices 
(𝑂(𝑛!)). Recent attempts at addressing this issue include implementing the algorithm in parallel20, 
speeding eigen decomposition with Nystrom approximations21, building hierarchical transition 
matrices22 and embedding distortion measures for faster analysis of large-scale datasets23. 

2.2.  Recursive K-means Spectral clustering algorithm (ReKS) 

In this paper, we will pursue a recursive form of K-means spectral clustering (ReKS), 
apply it on cancer expression data from patients and understand the intrinsic structure of the data 
by establishing a baseline clustering result. ReKS first defines an affinity matrix of all pairwise 
similarities between genes. We reduce the computational burden with sparse matrices, such that 
each gene is connected to a small number of its neighbors (default: 15) with varying affinities, and 
extract only a small subspace of eigenpairs (default: 20).  In each recursion step, we determine the 
most appropriate subspace in which to run K-means using the eigengap heuristic, which is to 
compute the ratio of successive eigenvalues and pick K that satisfies: max{i: λi / λi+1, for i = 1 to 
20}. We apply the eigengap heuristic at each recursion level to determine the optimal number of 
partitions at that level. In addition, to improve the convergence of the K-means algorithm we 
initiate the algorithm with orthogonal seed points. For each newly formed cluster, we extract the 
corresponding affinity sub-matrix and repeat the procedure.  

In Figure 2(a) we illustrate the top two levels of ReKS recursion on the GBM dataset. At 
level-1 an obvious partition exists for the original affinity matrix. The genes are split into two 
clusters at this node, and for each cluster, a new affinity matrix is computed.  

 

 
(a)                                                                                  (b) 

Fig. 2.  (a) Demonstration of the ReKS method on the GBM dataset at the first two iterations of K-means 
spectral decomposition recursions: two clusters are visible in the affinity map constructed from the entire 
dataset at the first level. From each, a new affinity matrix is constructed and spectral clustering repeated 
on the sub-affinity matrix.  (b) Complete tree obtained by ReKS iterations. Each leaf node corresponds to 
a gene cluster in the final partition. 
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ReKS performs this procedure iteratively stopping when further split would cause all clusters to be 
35 or smaller in size. The stopping threshold corresponds to the average number of genes that 
participate in a KEGG24 pathway. In the end, we arrive at a tree where each leaf node represents a 
gene cluster. Note that with this procedure clusters of smaller than 35 genes could be obtained, for 
example due to an early split off the tree, as long as there is a cluster that is large in size. Figure 
2(b) presents the full tree generated by ReKS on the GBM dataset.  
 
3.  ReKS evaluation on cancer patient data 

3.1.  Data 

We applied ReKS on the three most complete TCGA gene expression datasets to date: 
Glioblastoma multiform (GBM) with a total of 575 tumor samples, Ovarian serous 
cystadenocarcinoma (OV) with a total of 590 tumor samples, and Breast invasive carcinoma 
(BRCA) with a total of 799 tumor samples. The level 3, normalized and gene-collapsed data 
obtained from the TCGA portal were downloaded and no further normalization was performed.  

3.2.  Comparison of ReKS and other clustering strategies on TCGA data 

We compare our method against four other partition solutions: (1) average linkage hierarchical 
clustering, (2) average linkage hierarchical clustering on the spectral space, (3) K-means and (4) 
K-means on the spectral space. These algorithms are chosen to cover a range of common 
clustering techniques and clustering assumptions.  
 
Agglomerative clustering methods build a hierarchy of clusters from bottom up. It is perhaps the 
most popular on gene expression data analysis25, due to its ease of use and readily available 
implementations. We performed hierarchical agglomerative clustering using Euclidean distance 
and average linkage. A maximum number of clusters is specified to be comparable to the number 
of clusters 𝐾 obtained when running ReKS. Since this choice might be considered favorable to 
ReKS, we also performed hierarchical clustering on the top three eigenvectors in the spectrum, 
using cosine distances to measure the distance on the resulted unit sphere. Note that hierarchical 
clustering is done from bottom up, using local similarities, and does not embed the global structure 
in its tree.  
 
Similarly, standard K-means and K-means performed on the spectral space are included for 
benchmarking purposes. Given a number of clusters, K, the algorithm iteratively assigns members 
to centroids and re-adjusts the centroids of the clusters. K-means tends to perform well as it 
directly optimizes the intra-cluster distances, but tends to be slow especially as K increases. Here 
we used the default implementation of the K-means clustering algorithm in Matlab, with 
Euclidean distance, again using the 𝐾 obtained from ReKS. We also ran K-means on the spectral 
space, effectively performing ReKS only once without choosing an optimal number of 
eigenvectors to use, but instead using  𝐾 top eigenvectors.  
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Shown in Figure 3 are the distributions of the cluster sizes when applying the five methods to the 
three TCGA datasets. Hierarchical clustering, whether in the original or the eigenspace, produces a 
very skewed distribution of cluster sizes that is possibly an artifact of focusing on only local 
similarities. The K-means methods and ReKS produce cluster sizes that span roughly the same 
range. However, the K-means methods produce distributions that are artificially Gaussian, with 
relatively little clusters that contain small number of genes. 
.

 
Fig. 3.  Distribution of cluster sizes of ReKS and of other methods 

3.3.  Cluster quality evaluation 

We evaluate the quality of the clusters obtained from each of the five methods (ReKS, K-means, 
K-means spectral, Hierarchical, Hierarchical spectral) using both intrinsic, statistical measures as 
well as external biological evidence, as detailed in the sections below. 
 
3.5.1.  Calinski-Harabasz 
To evaluate the quality of the clusters, we used the Calinski-Harabasz measure26, defined by: 

 𝐶𝐻 = !"#$%&/(!!!)
!"#$%!/(!!!)

   (4)  

where 𝑡𝑟𝑎𝑐𝑒𝐵 denotes the error sum of squares between different clusters, 𝑡𝑟𝑎𝑐𝑒𝑊 is the intra-
cluster square differences, 𝑁 is the number of objects, and 𝐾 is number of clusters. This statistic is 
effectively an adjusted measure of the ratio of between- vs. within- group dispersion matrices. A 
larger value denotes a higher compactness of the cluster compared to the inter-cluster distances. 
Figure 4(a) shows the performance of ReKS compared across other methods. Not surprisingly, 
ReKS outperforms hierarchical clustering in both the original data space as well as the spectral 
space, as hierarchical clustering produces some very large clusters with no apparent internal 
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cohesion. The K-means based methods and ReKS are comparable in terms of cluster separation 
across the datasets. 
 

 
(a)                                                                                  (b) 

Fig. 4.  (a) Cluster validity comparison with other methods using the Calinski-Harabasz and the GAP 
statistics (b) Gene Ontology(GO) enrichment across different range of p-values 

 
3.5.2.  GAP Statistic 
The Gap statistic was proposed as a way to determine optimal cluster size27. In short, it is the log 
ratio of a reference within-cluster sum of square errors over the observed within-cluster sum of 
squares errors. The reference is usually built from a permutated set of genes that form K random 
clusters. Since we are comparing the (five) methods across the same dataset with the same K, it is 
fair to compare the performance of the observed within sum-of squares error only. With this direct 
proxy, ReKS performs at the same level as K-means based methods (shown in Figure 4(a)), and 
achieved a significantly lower sum-of-square distances than the hierarchical methods.  
 
3.5.3.  Gene Ontology Enrichment 
Since no ground truth exists for gene cluster partition, we examine the overall quality of the 
clusters in terms of the amount of enrichment for Gene Ontology (GO) annotations. For each 
cluster, we test for GO enrichment using a variant of the Fisher’s exact test, as described in the 
weight01 algorithm of the topGO28 package in R. The significance level of the test indicates the 
degree a particular GO annotation is over-represented in a given cluster. For a partition, we 
calculate the proportion of clusters annotated with a GO term at a p-value threshold. If a cluster 
has less than five members, the test is not performed. As shown in Figure 4(b), compared to 
hierarchical clustering, we observe that ReKS contains higher percentage of clusters that are 
significant at the specified levels, and especially so with more stringent p-value thresholds, and 
performs roughly the same as K-means methods. Finally, we observe that the spectral methods 
tend to perform better than their non-spectral counter-parts.   
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3.5.4.  Execution Time 
Table 1 shows the execution time of the five methods on a 3.4 GHz Intel Core i7 CPU. ReKS is 
slower than hierarchical clustering but compares favorably to K-means methods. 
 

Table 1: Average execution time of the five methods  

Methods ReKS K-means K-means 
Spectral 

Hierarchical Hierarchical 
Spectral 

Execution time 373s 6000s 1774s 90s 22s 
 

3.4.  Incorporation of Prior Information 

We use existing expert knowledge as prior information (from KEGG pathway24) to guide our 
clustering method, aiming to generate partitions that are even more biologically meaningful. The 
KEGG database includes a collection of manually curated pathways constructed from knowledge 
accrued from the literature. For the purposes of ReKS, we assume that the genes in a KEGG 
pathway are fully connected to each other (i.e., should belong in the same cluster). We code this 
prior knowledge in a constraint matrix 𝑈 in which each column 𝑈𝑐 is a pathway, and 𝑢!"= 1,  𝑢!"= 
-1 if a pair of genes 𝑖, 𝑗 participate in the same KEGG pathway 𝑐. Similar to what was detailed in 
Ji et al.29, where they supplied a prior for document clustering using K-means spectral 
decomposition, we apply a penalty term to the normalized graph Lapacian as follows: 

 𝐿′ = 𝐷!!.!(𝑊 + 𝛽𝑈!𝑈)𝐷!!.!   (5)  

where 𝛽 ≥ 0 controls the degree of enforcement of the KEGG prior knowledge. As shown in Ji et 
al., the eigenvectors of the 𝐾  smallest eigenvalues of 𝐿’  form the eigen-space represents a 
transformation of the affinity space embedded with prior information. We then proceeded to apply 
the K-means algorithm within the eigenspace, and iterate recursively as we did with ReKS. As 
shown in Figure 5(a), when we use a large amount of prior, not surprisingly the GO significance 
becomes very large. We observe the significance of the clusters do not drop very fast as 𝛽 
decreases. Therefore, small amount of prior at roughly 𝛽 = 0.2 may be enough to enhance the 
biological significance of the ReKS clustering results. 

We applied ReKS on the TCGA datasets at 𝛽 = 0.2. A total of 715, 639, and 610 clusters are 
obtained for BR, OV, and GBM respectively. As shown in Figure 5(a), we observe that there 
exists a slight anti-correlation between how early a cluster splits off the tree and how significant 
the cluster is (𝜌 = -0.2112, p <10-7). As a preliminary observation, how early a cluster is formed 
seems to imply the “tightness” of the cluster, this result seems to suggest that there is a slightly 
higher chance the clusters that form early to be more biologically significant. For example, in 
Figure 5(b) there is a tight histone H1 cluster that splits off the BRCA tree at the third level on the 
top. It has been shown that EB1089 treatment of breast cancer cell lines (MCF-7, BT20, T47D, 
and ZR75) is correlated with a reduction in CdK2 kinase activity towards phosphorylation of 
histone H1 and a decrease in DNA synthesis30. This cluster was not found in K-means spectral, K-
means, and spectral hierarchical clustering results, and only exists in a mega-cluster in hierarchical 
clustering partition. Additionally, upon examining the resulted tree closely, we found that a few 
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genes that have been implicated for breast cancer31 cluster together or close to each other on the 
tree, as shown in Figure 5(c). When considering a few of these sub-clusters together, the top 

 
(a) (b) 

 

 
(c)                                                                     

Fig. 5. (a) Effect of incorporation of prior information on the GO significance of the obtained clusters. 𝛽 
controls the degree of enforcement of the KEGG prior knowledge (b) A sunburst diagram for the BRCA 
dataset. In this alternative representation of the ReKS clustering results, each concentric circle represents a 
level of the tree. Each ring is sub-divided into clusters. The color of a leaf node denotes the GO 
significance of the cluster. There exists a small anti-correlation (𝜌 = -0.2112, p < 10-7) between the level 
from which a cluster splits off, and its GO significance (c) A part of the tree enriched with genes 
implicated for breast cancer (level 2 and down), and the GO significance and categories of the 169 gene 
super-cluster (grey box). 
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functional categories that emerged are indeed caner and p53 pathways. We found several of these 
examples throughout the tree, all within 12 levels up to which the composition of the clusters 
remains stable when splitting the data into training and test sets. We note that PIK3CA, RB1, and 
RUNX1 do not cluster together in any of the other methods we compared to, nor does the rest of 
the genes we examined. This example suggests that the tree structure could be useful for inferring 
additional previously unknown biomarkers.  
 
4.  Discussion 

In this study, we demonstrate the utility of a new recursive spectral clustering method we 
proposed as an alternative to traditional methods for clustering large-scale, human disease 
expression data. Consistent with previous findings25, hierarchical methods are faster but perform 
relatively poorly. K-means methods can be accurate when the number of groups K is known. 
However, in the case of gene clustering of disease samples we are rather agnostic as to the number 
of the clusters we should expect. ReKS does not require the number of clusters to be known a 
priori, and is an order of magnitude faster than the original K-means algorithm. Also, compared to  
K-means spectral, ReKS enjoy a considerable speed gain by performing the decomposition and 
clustering iteratively, while maintaining a comparable performance even without directly 
minimizing the overall inter- and intra- cluster distances(sec 3.4).  

By incorporating prior pathway information in the algorithm, ReKS additionally guides the 
clustering process toward a more biologically meaningful partition. We showed that the clusters 
obtained are biologically relevant in their enrichment in GO terms, and the size of the clusters has 
a more natural distribution than that of K-means or hierarchical clustering partitions. The clusters, 
being rather compact and constrained in size, could then be used in subsequent studies, where 
clusters of genes could potentially be used as predictors for disease classification. Not only does 
ReKS provide a partition of the gene space, the resulting tree structure provides a hint to the 
relative tightness of the clusters and potential targets. In the future, we wish to investigate the 
relationship between the relative position of the cluster in the tree and their potential strengths in 
classifying disease labels and other clinical variables. Also, it is possible to automatically calculate 
the optimal number of neighbors to be considered in each recursion level. For example, we can use 
an approach similar to eigengap, where the distribution of similarities for each node will be 
compared to the global distribution to identify the optimal number of informative neighbors. The 
above results indicate that, when applied to large clinical datasets, recursive spectral clustering 
offers an attractive alternative to conventional clustering methods. 
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Alzheimer’s disease (AD) is one of the leading causes of death for older people in US with rapidly 
increasing incidence. AD irreversibly and progressively damages the brain, but there are treatments in 
clinical trials to potentially slow the development of AD. We hypothesize that the presence of clinical 
traits, sharing common genetic variants with AD, could be used as a non-invasive means to predict AD or 
trigger for administration of preventative therapeutics. We developed a method to compare the genetic 
architecture between AD and traits from prior GWAS studies. Six clinical traits were significantly 
associated with AD, capturing 5 known risk factors and 1 novel association: erythrocyte sedimentation rate 
(ESR). The association of ESR with AD was then validated using Electronic Medical Records (EMR) 
collected from Stanford Hospital and Clinics. We found that female patients and with abnormally elevated 
ESR were significantly associated with higher risk of AD diagnosis (OR: 1.85 [1.32-2.61], p=0.003), 
within 1 year prior to AD diagnosis (OR: 2.31 [1.06-5.01], p=0.032), and within 1 year after AD diagnosis 
(OR: 3.49 [1.93-6.31], p<0.0001). Additionally, significantly higher ESR values persist for all time courses 
analyzed. Our results suggest that ESR should be tested in a specific longitudinal study for association with 
AD diagnosis, and if positive, could be used as a prognostic marker. 
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1. Introduction  

Alzheimer’s disease (AD) is the fifth-leading cause of death in older people and is the most 
common cause of dementia (up to 75%), with an approximately 26 million affected individuals 
worldwide estimated to reach 115 million by 2050 (1-3).  Of those with Alzheimer’s disease, an 
estimated 4% are under age 65, 6 % are 65 to 74, 44 % are 75 to 84, and 46% are 85 or older (2). 
Compared with men, women have a 1.54 fold increased risk for AD (95% CI, 1.21 to 1.96) (4).   

About 25% of all AD cases have familial history (i.e., with 2 or more persons in a family 
having AD). Nevertheless, the main cause remains unknown, which may due to genetic and 
environment factors (5). AD is an irreversible and progressive brain disease, which can be 
diagnosed using behavioral observations and the gold standard for confirmation rely on 
neuropathologic findings of beta-amyloid plaques and intraneuronal neurofibrillary tangles upon 
autopsy examination (6). Therefore, identifying clinical manifestations of risk factors related 
with AD are critically needed for early diagnosis, prognostics and preventive care of AD. 
Currently, the known risk factors of AD are advancing age, family history, gender, APOE ε4 
allelic variant, cardiovascular factors,  mild cognitive impairment, life style, and head trauma, 
which were investigated through large scale epidemiological studies (7-13). However, these 
factors have relatively weak predictive effects. It is still necessary to find more potential risk 
factors which may contribute to AD development (3).  

Over the past decade, Genome-Wide Association Study (GWAS) and candidate gene studies 
have identified genetic variants for thousands of diseases and traits (14-16).  A previous study 
has shown the “human disease network” where two diseases were connected to each other if they 
shared at least one gene from Online Mendelian Inheritance in Man (OMIM), however, they did 
not integrate GWAS studies (17). We hypothesize that traits from GWAS studies might serve as 
additional risk factors for disease, here specifically looking at AD.  We theorize that if a prior 
GWAS for a trait has identified a list of genes with variants that significantly match the list of 
genes with variants associated with AD, then that trait might serve as a predictive factor for AD.  

In this study, we used those variants and develop a method to systemically identify 
associations between clinical traits and AD in a fast and efficient way. We searched for traits 
sharing common genetic variants with AD that could serve as a means to prognose AD, and 
possibly provide opportunities for life-style interventions and preventive drug treatment. We 
validated our novel finding using Electronic Medical Records (EMR) through an independent 
large patient cohort with more than 15,000 patients from Stanford Hospital and Clinics (SHC) 
(18).  

2. Methods  

2.1 Utilizing VARiant Informing MEDicine (VARIMED)  

The overall experiment design is shown in Figure 1. GWAS have enabled the elucidation of the 
genetic architecture of hundreds of diseases, many of which are polygenic complex disorders. 
We have manually curated a unique database called VARiant Informing MEDicine (VARIMED) 
(19), holding manually curated, quantitative human disease-SNP associations extracted from the 
full text, figures, tables, and supplemental materials of human genetic related publications. 
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VARIMED is a comprehensive genetic association database with over 100 features stored 
including diseases (e.g. diabetes, lung cancer), clinical traits (e.g. blood pressure, creatinine 
levels), gene symbol, dbSNP, odds ratio, and published p-value of association from literature 
(19-22). Diseases are categorized and currently mapped to Concept Unique Identifiers (CUI) 
from the Unified Medical Language System. All the genetic variants (SNPs) were systematically 
annotated to the genes with the most recent NCBI Entrez gene identifiers using Entrez dbSNP by 
AILUN (23). At the time of this writing, VARIMED covers 8,962 human genetics papers from 
GWAS and candidate gene studies, including 87,553 SNPs annotated to 8,913 genes for 1,119 
diseases and 1,257 clinical traits.  

 
 

Figure 1: Work flow for entire experiment design 
 

2.2 Assessing shared genetic architecture for Alzheimer's disease (AD) and clinical traits 

We compared the shared genetic architecture for all available clinical traits in VARIMED with 
against Alzheimer’s disease (AD) by first collecting all genetic variants related with AD and 
1,257 traits. We selected only those variants associated at the gene level with AD and traits with 
p ≤ 1E-8 as a highly stringent threshold to reduce the chance of false positive results.   

As some genes could be shared solely between a few traits, and other genes shared across 
thousands, we needed an approach to capture the specificity and relevance of the genetic 
association. We used a Term Frequency–Inverse Document Frequency (TF-IDF) weighing 
method (24) to take into account the popularity of the genes. The detailed calculation procedure 
is as follows. First, we calculated a term frequency (TF) using:  
 

𝑡𝑓(𝑖, 𝑗) = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒 𝑖 𝑖𝑛 𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑗
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑔𝑒𝑛𝑒𝑠 𝑖𝑛 𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑗

                                        (1) 

where phenotype refers to a trait or the disease AD.  
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The tf score indicates the occurrence frequency level of gene i in phenotype j, similar to a 
precision measure. Then, we calculated the inverse document frequency (IDF) using: 
 

𝑖𝑑𝑓(𝑖) = log10( 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑒𝑛𝑡𝑜𝑦𝑝𝑒𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑔𝑒𝑛𝑒 𝑖

)                             (2) 
 

A larger idf score implies a lower popularity of gene i among the phenotypes (akin to a 
higher accuracy), which gives more weight to the gene as it might only be shared between these 
two phenotypes. Last, the TF-IDF score was calculated using: 

tf-idf(i, j) = tf(i, j) × idfi                                                                (3) 
A high weight in tf-idf is reached by a high gene frequency (in the given phenotype) and a low 
phenotype frequency of the gene across all phenotypes studied. 

Thus, for every AD-trait pairs a TF-IDF score for every shared gene was computed. The 
similarity between AD and all traits was then estimated by the cosine distance based on tf-idf 
scores.  

To evaluate the statistical significance of the distance scores obtained, we computed the False 
Discovery Rate (FDR) by random shuffling (1,000 times) the genes across all the traits and re-
computing the AD-trait distance. The q-value was calculated as the ratio of the expected number 
of false positive over the total number of hypothesis tested (25). Q-value ≤ 0.01 was selected as 
threshold of significant association between AD and trait pairs. 

2.3 Validation of novel finding from the independent electronic medical records    

To assess the clinical relevance of our novel finding, we used electronic medical records (EMR) 
data extracted from Stanford Translational Research Integrated Database Environment 
(STRIDE).  STRIDE is a research and development project at Stanford University to create a 
standards-based informatics platform supporting clinical and translational research (18). STRIDE 
contains a clinical data warehouse which is comprised of comprehensive clinical information 
such as ICD9 diagnoses codes, CPT procedure codes, and lab results on over 1.7 million 
pediatric and adult patients cared for at Stanford Hospital and Clinic. STRIDE has been 
implemented at SHC since 2005. We used patient data in STRIDE as an independent cohort 
specifically recruited for this study to validate the hypothetical associations observed between 
AD and traits at the genetic level. Patients with AD were retrieved using the ICD9 code = 331.0, 
the rest of the hospital population being considered as control.  

Chi-square test and Mann–Whitney U test were used to investigate the effect of the traits and 
AD. All statistics and graphs were carried out by SAS 9.2 (SAS institute Inc., Cary, SC) and R 
2.15.0 (26). 

2.4 Ethical statement   

Data collected from STRIDE did not contain any protected health information and thus the study 
was considered non-human subjects’ research, as determined and approved by the Institutional 
Review Board at Stanford. 
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3 Result 

3.1 Discovering genetic architecture related with Alzheimer’s disease   

From 8,962 GWAS and candidate genes studies implemented in VARIMED, we queried the 
number of unique SNPs, genes, and genetic studies associated with Alzheimer’s disease (AD). 
We used a stringent and well-accepted p-value threshold ≤ 1E-8 as genome wide significant, and 
identified 89 SNPs within 28 genes published across 44 genetic studies associated (Table 1).   

 
Table 1: Genes and number of genetic studies associated with Alzheimer’s disease 

 
Gene SNP 

Count P-value Study 
Count 

APOD 1 0 1 
SORCS1 1 0 2 
APOC1 1 1.00E-300 8 

TOMM40 9 1.28E-299 10 
PVRL2 18 5.65E-74 7 
APOE 2 1.83E-67 8 
BCL3 2 1.93E-21 3 

ABCA7 1 5.00E-21 3 
LRRC68 4 2.16E-20 2 
BCAM 1 5.54E-19 1 
CLU 2 1.10E-16 6 

MS4A6A 6 1.20E-16 2 
PCK1 1 2.00E-16 4 

ZNF224 1 2.00E-16 4 
CR1 7 3.70E-14 5 
PVR 1 6.17E-12 2 

NKPD1 1 1.04E-11 1 
MS4A4A 2 4.71E-11 1 

GAB2 3 9.66E-11 5 
MTHFD1L 1 1.90E-10 2 
CALHM1 1 2.00E-10 3 
CLPTM1 1 2.00E-10 1 

CEACAM16 1 7.68E-10 2 
PICALM 13 9.57E-10 1 

CD33 1 1.60E-09 2 
MS4A4E 5 1.98E-09 1 
MS4A2 1 2.94E-09 2 
CD2AP 1 8.60E-09 2 

3.2 Systematically identifying the significant traits with genetic architecture shared with AD    

We identified 249 traits where at least one gene was genetically associated. In our study, a trait 
was defined as a human-related physical or cognitive measurement, which was not explicitly a 
predisposition to another disease. To evaluate the significance of the shared variants in AD and 
all possible trait pairings, we attributed to each gene a measure based on their popularity using 
TF-IDF weight adjustment, and tested for significance using random permutation (see Methods 
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section 2.2). We identified 6 significant traits that paired with AD with q-value ≤ 0.01 (Table 2) 
based on the method we described above. All 6 traits originated from different published GWAS 
studies, suggesting that integrating different GWAS studies to discover underlying shared 
genetic architecture between diseases and traits can yield novel risk factors for the disease.     

Among the 6 traits, 5 were related lipid tests and all shared variants in APOC1, PVRL2, and 
TOMM40 genes in their genetics. APOE was shared in the lipid panel however was absent in 
Lipoprotein-Associated phospholipase a2 activity (Lp-PLA2) (Table 2). Erythrocyte 
sedimentation rate (ESR), a common immunology test to measure non-specific inflammation 
showed significant genetic association with AD through only one gene: complement component 
(3b/4b) receptor 1 (CR1). CR1 was associated with ESR and AD solely and not with other 
phenotypes in VARIMED.  CR1 is a receptor and binds to C3 and C4 complement genes, which 
have been shown an increase in chronic inflammation (27), in risk of developing a myocardial 
infarction (28), and in deceased donor who progressed poor graft function due to cold ischemic 
injury with potential inflammation after kidney transplantation (29).  

Among the 6 traits associated with AD, 5 associations were already known to be either risk 
factors or comorbidities of AD in the published literature (Table 2). Lipoprotein-Associated 
phospholipase a2 (Lp-PLA2) is a risk factor associated with the risk of dementia in the 
Rotterdam study, independently of cardiovascular and inflammatory factors (30). C-reactive 
protein (CRP) level is a risk factor where elevated CRP continues to predict increased dementia 
severity suggesting a possible proinflammatory endophenotype in AD (31). In addition, lipid 
level has been seen to increase in patients who have already developed AD. Apolipoprotein b 
(ApoB) level is increased in AD patients, suggesting that ApoE may not be the single factor in 
lipid metabolism to play a role in AD pathogenesis (32). Higher total cholesterol and LDL levels 
were significantly related to pathologically defined AD, which in turn suggests serum lipids have 
a role in the pathogenesis of AD and interventions may modify the progression of disease 
(33,34). Furthermore, the shared genes also explain the genetic cause between AD and these 5 
traits. 

 
Table 2: Clinical traits significant associated with Alzheimer’s disease 

 
Clinical Trait Gene 

Count 
Common 

Genes Gene Shared Q-
value Reference 

Lipoprotein-Associated phospholipase a2 activity 12 3 APOC1;PVRL2; TOMM40 < 0.001 30 

Apolipoprotein b levels 12 4 APOC1; APOE; PVRL2; TOMM40 < 0.001 32 

C reactive protein levels 17 3 APOC1; APOE; TOMM40 0.002 31 

LDL cholesterol levels 44 4 APOC1; APOE; PVRL2; TOMM40 0.002 34 

Erythrocyte sedimentation rate 5 1 CR1 0.004 Novel 
Cholesterol levels 50 4 APOC1; APOE; PVRL2; TOMM40 0.004 33 

3.3 Clinical validation for novel trait ESR association with AD in an independent cohort        

We identified ESR as a novel trait significantly sharing genes with genetic variants with AD. 
Since ESR is a well-known clinical measurement and non-specific marker of inflammation, and 
not known to be associated with AD, we evaluated the hypothesis that ESR might be abnormal 
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before the diagnosis of AD. We obtained all ESR lab results from Stanford Hospital and Clinics 
from 2005 until July 15, 2012 for patients with and without an AD diagnosis. Our case cohort 
was constituted of 212 patients who were ever measured for ESR and had at least one diagnosis 
code of AD (mean age 81±8; range [48-96]) with 135 females and 78 males. We considered 
patients older than age 50, having at least one measurement of ESR, and never having a 
diagnosis code of AD as the control group, resulting in 15,040 unique patients. Reference ranges 
for Erythrocyte sedimentation rate (ESR) lab tests were defined 0-20 mm/hr for female <50, 0-30 
mm/hr for female ≥ 50 years, and 0-20 mm/hr for male ≥ 50 years based on MedlinePlus 
(http://www.nlm.nih.gov/medlineplus/). 

As AD is known to exhibit a sex difference in prevalence (4), we evaluated each gender 
separately. First, we compare the abnormal high ESR percentage for AD and control patients 
across all available time points (ESR measurement irrespective of the AD diagnosis code(s)) to 
test the overall association. Then, we compared the abnormal high ESR percentage within 1 year 
prior to our first diagnosis code of AD in AD patients, and first diagnosis code of anything other 
than AD in control patients, to investigate whether changes in ESR could be a risk factor to 
predict the AD incidence.  Finally, we compared the ESR within 1 year after our first diagnosis 
code of AD in AD patients, and first diagnosis of anything other than AD in control patients, to 
evaluate whether ESR changes could be a consequence of the AD diagnosis.  

In female, patients with abnormally high ESR (45%) (> 30 mm/hr) were significantly 
associated with having a diagnosis code of AD irrespective of lab and diagnosis timing (OR: 
1.85 [1.32-2.61], p=0.0003). The effect was strengthened when looking at ESR measurements 
within 1 year prior to our first AD diagnosis for patients (OR: 2.31 [1.06-5.01], p=0.032), and 
within 1 year after our first AD diagnosis on patients (Table 3). Furthermore, ESR values were 
significantly higher across all time points (p<0.0001), within 1 year prior to diagnosis 
(p=0.0025), and within 1 year after diagnosis (p<0.0001) in AD versus controls by Mann–
Whitney U test (Figure 1A).  

 
Table 3: Clinical validation through electronic medical record from STRIDE by Chi-square test 

 

Time Frame Gender OR 
(95%CI) 

% in each cohort having 
an abnormal high ESR  

(%, AD vs. Control) 

P 
(Chi-

square) 

# of 
AD # of Control Total # 

All time points, 
irrespective of 

diagnosis timing 

F 1.85 (1.32-2.61) 53.33% vs. 38.15% 0.0003 135 8769 8904 

M 1.42 (0.91-2.23) 56.41% vs. 47.60% 0.1216 78 6271 6349 

ESR testing 1 
year prior our 
first diagnosis 

F 2.31 (1.06-5.01) 44.74% vs. 25.96% 0.032 38 104 142 

M 2.41 (0.94-6.18) 54.17% vs. 32.88% 0.0625 24 73 97 

ESR testing 1 
year after our first 

diagnosis 

F 3.49 (1.93-6.31) 69.23% vs. 39.20% <.0001 52 3194 3246 

M 1.79 (0.83-3.84) 52.79% vs. 66.67% 0.1302 30 2487 2517 
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In males, patient with high ESR (54%) (> 20 mm/hr) show a trend towards association with 
AD within 1 year prior to our patients’ first AD diagnosis code (OR: 2.41 [0.94-6.18], p=0.0625) 
(Table 3).  ESR values were overall significantly higher compared with control (p=0.0198) by 
Mann–Whitney U test (Figure 1B). 
 
 

 

 
 

Figure 1: Violin plots (combination a boxplot and a kernel density plot) for ESR associated with AD overall time 
points, within 1 year lab tested prior to the 1st diagnosis, within 1 year lab tested after the 1st diagnosis for female 

(1A) and male (1B). In the black box plots, the bold black line boundaries indicate the 25th, 75th percentiles of ESR 
values, and white center squares indicate the median value of ESR. The outside grey shapes indicate density of the 

number of samples. P-values are reported by Mann–Whitney U test. 
 
To match the ages of control patients to AD patients, we also performed a random sampling 

method to randomly select the same number of patients from controls whose ages fit the same 
distribution to the ages of the AD patients. As ESR is known to have values ranging from zero to 
higher, and with zero known to be the most frequently resulted normal value, we calculated a 
one-side p-value from T test by evaluating whether the mean of the lab value is higher in the AD 

B 

A 
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patients, and repeated the process 1,000 times to generate the p-value distribution. We again 
tested for ESR values measured within 1 year prior to the 1st diagnosis and after the 1st diagnosis 
using the random sampling method to match the ages between control and AD cohorts. For 
instance, we randomly selected 38 female control patients matching the ages in our female AD 
cohort, where both cohorts had a measurement of ESR within 1 year prior to the 1st diagnosis.  
For within 1 year lab tested prior to the 1st diagnosis, the median p-values are 0.002 for female 
and 0.016 for male.  For within 1 year lab tested after the 1st diagnosis, the median p-values are 
0.025 for female and 0.161 for male. The distributions of p-values for prior to the 1st diagnosis 
and after the 1st diagnosis were shown in Figure 2A and Figure 2B. With the ESR being higher in 
AD cohorts compared to selected age-matched controls, this suggests that ESR might not be 
significantly confounded by age in our study. 
  

 

A 
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Figure 2: P-value distribution comparing age-matched AD and control groups for female (black curve) and male 

(grey curve) with 1,000 random samplings. ESR lab values within 1 year prior to our 1st diagnosis (2A), and ESR 
lab values within 1 year after our 1st diagnosis (2B). Dash line with arrow indicates p-value = 0.05.  

4. Discussion  

We developed a systematic approach to identify genetic associations between traits and diseases 
susceptibility based on common genetic architecture, aiming at identifying potential novel 
prognostic or risk markers for disease. In this study we focused on traits associated with 
Alzheimer’s disease (AD) as a proof of concept, and we identified 6 clinical traits associated 
with AD. Five of these traits were known but one was a novel finding. We retrospectively 
validated our novel finding using EMR data from more than 15,000 patients at SHC. 

We observed a significant association between ESR and AD, especially in female patients 
above 50 years old. Female patients who had abnormally elevated ESR levels had 2.31 higher 
chance of developing subsequent AD within a year of that lab test, compared to control patients, 
indicating ESR is a risk factor to AD that could be tested in a prospective trial for AD prognosis. 
A previous study has also reported the increased trend for ESR in AD female, although it did not 
reach significance due to a very small sample size (35). Moreover, we found that ESR persists in 
its elevation in female patients diagnosed with AD, suggesting that inflammation may play a role 
in the pathophysiology of AD (36), but we cannot rule out its elevation as secondary due to 
therapy of AD. A possible mechanism involve the complement gene inflammatory pathway 
including C3, C4 and C1Q (27-29) as CR1 was in common with ESR, currently used as a non-
specific inflammation marker. If ESR proves to be a useful marker in specific prospective trials, 
we would also suggest that patients diagnosed with AD could be closely monitored for ESR as a 
trigger for intervention modification, such as adjusting non-steroidal anti-inflammatory 
medications (36).  We would suggest that a robust prediction model could be developed 

B 
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combining ESR and other current risk factors including age, lipid panel, and environmental 
factors and validated using multi-center EMR data, then further validated in a prospective study. 

Presently, the small sample size for the case cohort represents the limiting factor for a 
broader implication. We acknowledge that AD patients are relatively older than the control and 
the control are not exactly matched, as we used a retrospective study design based on our EMR, 
and not a randomized prospective trial.  

Though we showed 6 significant traits with q-value ≤ 0.01, we acknowledge that threshold 
parameters could be altered.  For example, the seventh trait on our list associated with AD would 
be high-density lipoprotein cholesterol (HDL-C) level, with q = 0.011. A recent study has shown 
that higher levels of HDL-C were indeed associated with a decreased risk of both probable and 
possible AD compared with lower HDL-C levels (37).We could increase our significance cutoff 
for more novel findings. However, in this study, we used a well-accepted stringent q-value cutoff 
from random shuffling to avoid identifying false positive.  

We do acknowledge that our discovered association and validation cannot fully distinguish 
the causal direction of the association or if a single associated mutation in a shared gene 
systematically influences both phenotypes.  Regardless, we do suggest that the strategy we 
adopted here captures and exploits relevant genetic association between disease and traits. The 
approach described here could in theory be applied to any disease in order to refine their risk 
factors model.  Investigating clinical traits that share genetic architecture with a disease, and 
validating these traits through EMR data is a powerful and efficient way to identify risk factors, 
prognostics, and diagnostic markers for complex disease.  
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Meta-analysis is becoming an increasingly popular and powerful tool to integrate findings across studies and OMIC dimensions.  But there is the danger that hidden dependencies between putatively “independent” studies can cause inflation of type I error, due to reinforcement of the evidence from false-positive findings.  We present here a simple method for conducting meta-analyses that automatically estimates the degree of any such non-independence between OMIC scans and corrects the inference for it, retaining the proper type I error structure.  The method does not require the original data from the source studies, but operates only on summary analysis results from these in OMIC scans.  The method is applicable in a wide variety of situations including combining GWAS and or sequencing scan results across studies with dependencies due to overlapping subjects, as well as to scans of correlated traits, in a meta-analysis scan for pleiotropic genetic effects.  The method correctly detects which scans are actually independent in which case it yields the traditional meta-analysis, so it may safely be used in all cases, when there is even a suspicion of correlation amongst scans.  
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1.  Introduction	Meta-analysis is becoming a common tool for integrating findings across multiple OMIC scans (e.g. Hsu et al., 2010; Moutselos et al., 2010).  The advantages are most obvious when investigators do not have access to all of the source data, but only to summary results from each study.  But such a meta analysis strategy is sometimes analytically preferred even when all of the individual level data are available, in situations where there is enough potential for study heterogeneity that a combined supermodel, mega-analysis would require estimation of many cross-study-by-covariate interaction terms (e.g. Ioannidis et al., 2002).   However, one potential problem with such meta-analyses is the danger of hidden non-independencies between elements of the scans that can occur when data are generated with overlapping subjects, related subjects, or other information.  For example, there are overlapping subjects in several large scale NIH sponsored genetic epidemiology studies, such as the Framingham Heart Study, the NHLBI Family Heart, the HyperGen study, ARIC study, etc.  Even if subjects are distinct across studies, if there are closely related subjects (e.g. siblings) across studies, this can cause non-independence of the observations and potentially inflate type I error in meta-analyses.  The reason is that such non-independence violates the basic i.i.d. (independent and identically distributed) random variables assumptions of most statistical tests and models, including traditional meta-analysis ones, so that if a type I error (false positive) occurs in one study, and there is overlapping information to another study, then the other study is more likely to reflect this same false-positive trend in its corresponding result.  A meta-analysis which ignores this fact, will take the reinforcement of “signals” between the two studies as a sign of independent replication, and overstate the significance of the meta-findings. Conneely and Boehnke (2010) provide a method of conducting meta-analysis of correlated SNPs within an LD region, on multiple correlated traits, but they assume that the multiple studies that are being meta-analyzed are strongly independent, and they do not consider the possibility of overlapping subjects or correlated information between the OMIC scans.  Riley et al. (2007) discuss the properties a bivariate random effects meta analysis model, in which they estimate what they call “between study correlation,” but it is clear from their hierarchical model that they are in fact making the assumption that studies are strongly independent of one another.  Their “between study correlation” is actually the correlation between the true parameter values within a study, as distinct from what they call the “within study correlation” which is the correlation between the pair of estimates of the parameters for each study.  So they are not modeling the kinds of across scans correlations that would arise from overlapping subjects or any of the other reasons that we consider in our correlated meta-analysis model.  Lin and Sullivan (2009) provide an efficient method for analyzing overlapping subjects in multiple GWAS to avoid inflation of type I error, but their approach is only applicable to case/control data, not quantitative traits, and it requires either having access to all individual level data or at least having a complete census accounting of the exact numbers of overlapping cases and controls.  Sometimes such information is not easily shared amongst studies, due to IRB concerns, and sometimes, such overlaps may not even be known to the investigators, as subjects may not always volunteer that they are participating in multiple studies.  Turchin and 
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  Hirschhorn (2012) have provided a clever way to forensically detect overlapping subjects using cryptographic hashes on GWAS data that preserves confidentiality of subjects.  But as stated above, overlapping subjects is not the only cause for non-independence.   Hartung (1999) proposed the first true correlated meta-analysis test, using an approach similar to ours based upon the inverse normal MVN.  But his approach estimates a single dependency correlation amongst all scans, assuming they are all equally correlated, which can be problematic when some pairs of OMIC scans are more related than others.  Additionally, his method estimates this single correlation for each hypothesis (or “OMIC unit”, below) separately.  This works well under the null hypothesis OMIC units, avoiding accumulation of evidence from correlated false-positives which results in inflation of type I error.  But this approach can overcorrect for those OMIC unit tests under either the complete alternative hypothesis or partial alternative (incomplete null), resulting in potential loss of power.  There, we want correlated true positive evidence to accumulate—we do not want to correct it out.  Our approach, first proposed by Province in 2005 for combining linkage scans, estimates the complete MxM correlation matrix for M OMIC scans, and thus allows for different scans to be correlated at different levels.  We also estimate the average study dependency correlation matrix across all OMIC units in a set of scans, exploiting the biological fact that most of the OMIC units will be under the null.  Thus, our method is more likely to only be correcting for dependencies under the null, retaining power under the alternative (or partial alternative) OMIC units. 
2.  Methods	

2.1.  OMIC	unit	of	inference	

Definition:  An “OMIC unit of inference” is the basic unit for which statistical testing is performed for a particular OMIC scan. For example, in a micro-array experiment, the OMIC unit of inference would be the gene, since the scan would consist of one statistical test for each of the 20,000 genes on the array.  In a proteomic scan, the OMIC unit would be “proteins”, since we have one statistical test for each measured protein.  In a linkage scan, the OMIC unit of inference might be the linkage markers themselves, or it might be centimorgan locations equally spaced throughout the genome, at which Identity-By-Descent (IBD) estimates have been made for each relative pair.  There, we would have one multipoint LOD-score for each cM location.  In a Whole Exome Sequencing (WES) experiment where the goal is to find rare variants, the OMIC unit of inference could be the variants themselves if power is sufficient to support individual testing of rare variants.  But often there is not enough power to detect rare variants at an individual variant level (unless the variants are unusually penetrant).  More commonly a statistical burden test is applied, so that the OMIC unit inference would be the gene, not the variant.  Even though the smallest unit of measurement in the WES is the variant, the statistical tests are conducted at the gene level not the variant level, by collapsing/weighting all exonic variants within the same gene into a single composite predictor for that gene.  So the gene is considered the OMIC unit of inference in this case.  In a GWAS, the most natural OMIC unit of inference would be SNPs genotyped on the GWAS chip.   But this might be reduced to a gene-level OMIC unit of inference, by taking, say, 
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 only the most significant SNP for each gene.  Or it might be expanded to include all SNPs catalogued in a standard reference panel, such as HapMap or 1000 Genomes, by first performing genetic imputation (estimating the unmeasured SNPs via haplotype matching) and then conducting statistical tests on each imputed as well as measured SNP.   
2.2.  Harmonization	of	OMIC	units	of	inference	and	missing	data	patterns	In order to conduct any meta-analyses of multiple OMIC scans we must first put them all on a common OMIC unit of inference scale, so that we can see if the combined evidence reinforces or destroys the overall signal at that particular OMIC unit.  Exactly how this is done depends very much on the scientific goals, the types of OMIC scans one wishes to meta-analyze, the granularity and extent of the available data, and many other factors which we will not address in this paper.  It is important to note that the methods we propose here do not depend upon the details of the process by which harmonization of OMIC units of inference across scans is accomplished.  Nor is it necessary that this is accomplished comprehensively with identical OMIC units of inference across all OMIC scans.  We can in fact have quite complex patterns of missing data within and across the OMIC scans, and our method will still apply.  We do not make the strong assumption that data are missing “at random”, but instead, we make the slightly weaker assumption that the missing data patterns are “ignorable.”  For example, we may wish to meta-analyze “I” different expression array experiments along with “K” different GWAS scans in combination with “J” linkage scans, and “M” WESs.  We can reduce each of these I+J+K+M scans at the gene OMIC unit of inference, by taking the “most significant” SNP/gene in the GWASes, the highest LOD score over each gene in the linkage scans, and use burden tests for each gene in the exome scans.  But we may also be interested in going beyond the genes into the intergenic regions, leaving out the expression arrays, and meta-analyzing the J+K+M GWAS+linkage+exome scans.  We might define intergenic OMIC units as contiguous regions of open chromatin defined in functional experiments, contiguous regions of high species conservation.  Or we might include some of the genes from the “I” expression arrays for those regions that are “known” to play regulatory role for the genes (e.g. eQTL regions for the gene).   
2.3.  Correlated	Meta‐Analysis	of	p‐values	Suppose we have conducted N different OMIC scans on M common OMIC units of inference.  Let PNxM=(pij) for i=1,…,N and j=1,…,M be the NxM matrix of p-values for the N scans of across the M OMICs units For each i, j let   Z = Φ-1(1-P)   denote the element-wise monotonic “complement probit” transformation of p-values to z-scores, where Φ(z) denotes the cumulative distribution function of the unit normal, N(0,1), i.e. Φ(z) = √  For each row “j,” corresponding to a particular OMIC unit of inference, we look at the Nx1submatrix formed by taking only the jth -row of PNxM , and denote this vector by P(j)Nx1.  It is this set of p-values that we wish to meta-analyze to test the combined effect of the jth OMIC unit across all N scans.   
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  We apply a theorem from multivariate normal (MVN) distribution theory, whose proof is found in Anderson (2003): 
Theorem	1:  If Zkx1 is a MVN random variable, Zkx1 ~ N[μkx1,Σkxk], and D1xk is any vector of constants, then the linear combination D1xk Zkx1 ~ N[D1xk μkx1, D1xk Σkxk D’kx1].  In particular, when k=N,  D1xN = 11xN (i.e. the 1xN vector of all “1”s) and μNx1 = 0Nx1 (i.e. the Nx1 vector of all “0”s), then out meta-analysis Z-value is given by Zmeta = ∑  =SUM(ZNx1) = D1xN ZNx1  ~ N[0, D1xN ΣNxN D’Nx1] = N[0, SUM(ΣNxN)]                     (1) We then convert back from the z-score scale back to the p-value scale using the monotonic inverse transformation to the one above, to get the meta-analysis p-value:  Pmeta = 1 - Φ(Zmeta) .  Note that if the jth OMIC unit does not have a significance test result for one or more of the N scans, then the corresponding entries in P(j)Nx1 will be missing (this will happen if data are low quality for that OMIC unit in one or more scans or if OMIC unit harmonization is not complete across scans for whatever reason).  In such cases, we may use the basic property of the MVN distribution that every sub-dimensional space is also MVN distributed.  Specifically, if Nj < N is the number of non-missing p-values for the jth OMIC unit, and we denote by P(j)*Njx1 the Njx1 submatrix of P(j)Nx1 with all missing p-value rows deleted, then Theorem (1) still applies to k=Nj, the corresponding sub-dimensional components of D(j)*1xNj, μ(j)*Njx1 and Σ(j)*NjxNj being the non-missing submatricies of D1xN, μNx1 and ΣNxN , respectively.   We illustrate the application of this theorem to the meta-analysis of OMIC scans with two extreme mathematical examples.  
Example	1:	 	k	 independent	OMIC	 scans.  For each common OMIC unit, j=1, 2, …, M we denote the “k” p-values at that jth OMIC unit by the kx1 vector p(j)kx1 = (p(j)1, p(j)2. …, p(j)k)’.  We transform these elementwise to z-scores via the complement probit transformation given in Eq uation (1), above, so that Z(j)kx1 = (Z(j)1, Z(j)2. …, Z(j)k)’.  Then ∀ j=1, 2, …, M  we have Z(j)kx1 ~ N(0kx1, ,Σkxk = Ikxk], where Ikxk is the kxk identity matrix, so that  ],0[~
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 These two examples represent the extreme cases and make sense.  In Example 1, when all scans are really independent, the Σkxk matrix is the identity, and our correlated meta-analysis method is the same as the traditional meta-method.  In the other extreme, in Example 2, when all scans are completely correlated, the Σkxk matrix becomes the 1kxk matrix, and there is really just one scan, so the meta-analysis should recognize this and just return the original scan, which our correlated meta-method does, with no inflation of type I error.   
2.4.  Estimating	Σkxk	from	the	tetrachoric	correlations	amongst	the	OMIC	scans	
themselves	Unlike the two simple examples above, in practice with real data, we will not know the values of the 
Σkxk matrix.  However, if entire OMIC scans are available to us, we can exploit this fact to estimate Σkxk , by making using of the following assumption: 
Assumption	1:  In any OMIC scan, by far (in fact, by several orders of magnitude) most of the statistical tests will be under the NULL hypothesis --.e. the OMIC units of inference are actually statistically independent of the phenotype being scanned.   With this assumption, we can use the observed correlations between OMIC scans to obtain our estimate of Σkxk., and then apply Theorem 1 to conduct our correlated meta-analysis. Note that this is a biologically motivated assumption, which stems from our understanding of the OMIC architecture of phenotypes and traits, i.e. that for any fixed trait, most of the genome, exome, proteome, etc. is neutral.  There may be (hopefully is) some “contamination” of the alternative hypotheses somewhere within the OMIC scan (otherwise, our scans are fruitless).  But OMIC analysis experience tells us (as does population genetic theory), that the number of true OMIC signals should be far outnumbered by the number of noise OMIC units of inference.  Nonetheless, if we simply estimate Σkxk across scans between corresponding OMIC units there are two problems.  The first is that the p-value scale is uniformly distributed under the null hypothesis and we are assuming that we are dealing with a MVN distribution in Theorem 1.  But this can be easily handled by making use of the complement probit transformation discussed above.  The second, bigger problem is that the contamination of the OMIC units that are under the alternative should not so easily be dismissed as trivial.  Yes, Assumption 1 tells us that they are small in frequency, but it says nothing about their impact on the estimate of Σkxk.  Correlated, highly significant true signal results may be small in number but highly influential on the estimate of Σkxk.  Worse, we do not want to over-estimate Σkxk. because we are downweighting the results of our meta-analysis by its magnitude.  Σkxk is supposed to be estimating the correlation between OMIC scans only for those OMIC units under the H0, because we want to avoid accumulating evidence across highly correlated scans that are only due to correlations of type I errors (due to overlapping subjects, relatedness, etc.).  But we do NOT want to down weight evidence at OMIC units that are under the alternative hypothesis.  In fact, we want the meta-p-values to be as significant as possible here.  But we do not know which OMIC units are under the null and which are 
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  under the H1 (or we would not be doing the meta-analysis in the first place).  We can minimize the impact of this contamination of the alternative hypothesis by using the tetrachoric correlation instead of the Pearson correlation in Σkxk.  To do this, we first truncate all of the individual scan Z scores into two categories (Z < 0) vs (Z > 0).  Then, at each common OMIC unit, if there are M scans, we form the M dimensional 2x2x…x2 table of scores across all scans, from which we estimate the tetachoric correlation matrix Σkxk.  The tetrachoric correlation is less sensitive to contamination from the alternative hypothesis, because it lumps them with all moderately significant and even non-significant findings at the P<0.5 level.  Thus, it provides some protection for over correction of the correlation amongst OMIC scans. 
3.  Results	

3.1.  Simulations	To validate the correlated meta-analysis method, we performed a series of simulation experiments.  We generated 100 simulation replications of 3 OMIC scans on 10,000 OMIC units each, with a known correlational structure.  For each replication, we conducted both the traditional meta-analysis (which assumes the 3 scans are independent) as well as our correlated meta-analysis procedure, which estimates the tetrachoric correlations between scans of the truncated p-values across the OMIC units of inference, and then uses that correlation matrix to correct the meta-analysis inference, as described above.  The results of our simulations are shown in Table 1, where we catalog the distribution of estimates across the 100 simulation experiments,  and Figure 1, where we show the Quantile-Quantile (Q-Q) plot for a typical (the first) replication’s meta-analysis of the 3 scans.   
Table	1:		Distributions	(Mean,	Min,	Max)	across	100	simultation	replications	of	parameter	

estimates	from	Traditional	vs.	Correlated	meta‐analyses	of	3	OMIC	scans	

Parameter	 Expected	
	Value	

Parameter	Estimates	using
Traditional	Meta	

Parameter	Estimates	using
Correlated	Meta	

 	 Mean Min Max Mean Min	 Max
3	Independent	OMIC	Scans 
ρ(Z1,Z2) 0 [0] [0] [0] -0.00082 -0.04044 0.04886
ρ(Z1,Z3) 0 [0] [0] [0] 0.00121 -0.04380 0.03524
ρ(Z2,Z3) 0 [0] [0] [0] 0.00066 -0.04143 0.03101
μ(ZMeta) 0 0.00016 -0.02125 0.02762 0.00160 -0.02127 0.02761 
σ(ZMeta) 1 1.00001 0.98363 1.01877 0.99977 0.97254 1.02056
3	Correlated	OMIC	Scans	
ρ(Z1,Z2) 0.5 [0] [0] [0] 0.50153 0.47154 0.52387
ρ(Z1,Z3) 0.2 [0] [0] [0] 0.20110 0.16289 0.23495
ρ(Z2,Z3) 0.9 [0] [0] [0] 0.89994 0.88774 0.91027
μ(ZMeta) 0 0.00015 -0.02820 0.04023 0.00011 -0.01961 0.02798
σ(ZMeta) 1 1.43792 1.40103 1.46045 0.99983 0.98170 1.01774 

Pacific Symposium on Biocomputing 2013

242



 As can be correlatedcorrelationevidencedexpected vcorrelationtransformbetween tsimulationthe top ha(dependencorresponany conditestimates reduces thaway,” insFigurFigure 1a:  

Figure 1c:

This resulttraditiona

seen in Tad meta-methns betweend by the factvalue of zerns betweened p-valuesthe tetrachon replicationlf of the tablnt scans).  nding Pearsotion.  Thus, of the corrhe impact oftead we ware 1:  Q-Q plotTraditional MOM

  Traditional OM

ts in little bil meta-anal

ble 1, whenhod correcn the scans t that the mro).  Not shon scans, to, which shouric and pearns were -0.0le (independ More impon correlatioin all cases relation betwf of correlatnt such evidts under the HMeta-AnalysisMIC Scans 

Meta-AnalysMIC Scans 

ias as well alysis (which

n the 3 scantly senses (ρ12, ρ13 anmean, min anown in the to the Pearuld be morerson correla001, 0.0004,dent scans),portantly, non estimate(not just onween scanstions betweedence to accH0 for replicas of 3 Indepe

sis of 3 Correl

as little loss h fixes the 3

ns are actuathis and and ρ23) are nd max  aretable, we alsrson correlae correct unation estima, and -0.000, and 0.001, no tetracho by more thn average), s under the en true posiumulate in fation 1 in a sindent 

lated Fig

in power in3 between 

ally indepenaccurately eall nearly e all roughlyso compareations on der the nullates betwee03 for ρ(Z1,Z-0.001, -0.0oric correlahan 0.037 inthe tetrachonull, but uitives (for wfavor of the imulation of aFigure 1b:Ind

ure 1d:  Corr

n our correlastudy corre

ndent (top hestimates thzero for aly equal to od the tetracthe continul.  The averan the 3 scan
Z2), ρ(Z1,Z3), ρ002 for the bation estiman any simulaoric correlatnlike the Pewhich we doalternative)a meta-analy  Correlated Mdependent O

elated Meta-AOMIC Sc

ated meta-teelations to z

half of the tahat the 3 l 100 replicone another choric estimuous (non-age pairwisens in Table 1
ρ(Z2,Z3), respbottom half oate differedation replication provideearson corro NOT want ).  sis of 3 OMICMeta-AnalysiMIC Scans 

Analysis of 3 cans 

est as compzero).  Thus

able), our tetrachoric cations (as and to the mates of the -truncated) e difference 1 across all pectively in of the table d from its ation under es accuraterelations, it to “correct
C scansis of 3 

Correlated 

ared to the s, both the 

Pacific Symposium on Biocomputing 2013

243



  tradtional and the correlated meta analysis produce meta-Z scores that are nearly normal and have mean nearly zero and variance nearly one, as expected.  The Q-Q plots in Figures 1a and 1b (for the 3 independent scans), verify that there is no inflation of type I error in this case, but more importantly from the correlated meta-analysis view, there is no over conservatism.  The p-values are just as true estimating the 3 correlations to be nearly zero as they are assuming them to be zero, so there is no harm in applying the correlated meta-analysis procedure even when the 3 scans really are independent.  The correlated meta will tell us what it thinks are the correlations, and will correct for them, regardless of their magnitude. For the 3 correlated OMIC scans (bottom half of Table 1), we generated the scans pairwise correlated at 0.5, 0.2 and 0.9, respectively, and then applied traditional as well as our correlated meta-analysis method.  As can be seen, our correlated meta-method accruately estimated the 3 correlations using the tetrachoric approach, across all 100 replications.  More importantly, our correlated meta-analysis method correctly produces Z-scores with the proper 0,1 first and second moments.  Whereas the traditional meta-analysis, yields a meta-Z-score with a badly inflated variance (Standard Error is approximately 1.4).  This results in the traditional meta being overly liberal, since it calculates P-values assuming it’s meta-Z score has a variance of 1, instead of 1.4.  The inflation is readily apparent in the Q-Q plot of Figure 1c, compared to 1d. 
3.2.  Example	Pleiotropy	Scanning	in	the	NHLBI	Family	Heart	Study	

Table 2:  Correlated vs. Traditional Meta-Analysis of GWAS SNPs to assess Pleiotropy of related 
traits in the NHLBI Family Heart Study 

Table 2a:  SNPS in the NEGR1 gene (chrom 1) for pleiotropy to BMI (Body Mass Index) and 
Waist Circumference (WC) 

SNP P-value 
BMI 

Beta 
BMI 

SE 
(beta) 
BMI 

P-value 
WC 

Beta 
WC 

SE 
(beta) 
WC 

P-value 
Traditional 

Meta 

P-value 
Correlated 

Meta 
rs577674 9.52E-06 0.58 0.13 8.38E-06 0.58 0.13 6.52E-10 1.59E-06 
rs522451 9.96E-06 -0.59 0.13 9.90E-06 -0.59 0.13 8.01E-10 1.80E-06 
rs473019 1.00E-05 -0.59 0.13 9.99E-06 -0.59 0.13 8.11E-10 1.81E-06 
rs580626 1.00E-05 -0.59 0.13 1.00E-05 -0.59 0.13 8.16E-10 1.82E-06 

Table 2b:  SNPs in the ABCF2 gene (chrom 7) to assess Pleiotropy for pleiotropy to HOMA (a 
measure of Insulin Resistance) and Waist Circumference (WC) 

SNP P-value 
HOMA 

Beta 
HOMA 

SE 
(beta) 
HOMA 

P-value 
WC 

Beta 
WC 

SE 
(beta) 
WC 

P-value 
Traditional 

Meta 

P-value 
Correlated 

Meta 
rs12538823 8.96E-06 0.24 0.05 1.77E-04 0.18 0.05 1.36E-08 9.75E-08 
rs7786151 9.84E-06 -0.24 0.05 1.92E-04 -0.18 0.05 1.61E-08 1.13E-07 
rs12113924 4.15E-06 -0.25 0.05 2.28E-04 -0.18 0.05 8.97E-09 6.77E-08 
rs3800794 4.04E-06 -0.25 0.05 2.29E-04 -0.18 0.05 8.84E-09 6.68E-08 
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Finally, we demonstrate the utility of our correlated meta-analysis procedure on a real data 

example, from a GWAS on the NHLBI Family Heart Study.  In Table 2, we show the results of 
combining two GWASes from the same study on two highly correlated traits to look for 
pleiotropy.  Note that this is an extreme example of overlapping subjects (ALL 2,767 of them 
overlap), so the Lin and Sullivan method would not be of much help here, but if we do the 
traditional meta-analysis, we are in real danger of having type I errors accumulate in this situation.  
For traits Body Mass Index (BMI) and Waist Circumference (WC), the tetrachoric correlation 
between the scans of these two highly correlated variables is estimated to be 0.70.  Ignoring this 
correlation with the traditional meta-analysis, results in meta-P~10-10 for the SNPS listed which 
are far above the GW threshold for significance.  However, the correlated meta-analysis method 
finds a more moderate level of evidence at P~10-6, suggesting that the traditional analysis is very 
much inflating the evidence.  On the other hand, for HOMA (a measure of insulin resistance based 
upon insulin/glucose levels) and WC, the estimated tetrachoric correlation is 0.14.  Here the 
traditional and correlated meta-analyses are in better agreement that indeed, there appears to be 
genome-wide significant pleiotropy at this locus for these two traits. 

4.  Discussion	Our correlated meta-analysis method provides a simple, robust approach to integrate information across multiple OMIC scans so as to avoid inflation of type I error due to hidden dependencies.  Our method makes few statistical assumptions.  It first estimates empirically the degree of non-independence between the OMIC scans, and then uses this estimate to corrects the meta-inference.  The method does not require any additional knowledge of numbers of overlapping subjects, nor any preliminary forensic analyses, and provides the correct type I error when scans are correlated, regardless of the number and character of its source causes, as part of the meta-analysis itself.  It is applicable for combining OMIC scans on quantitative, qualitative or any combinations of phenotypes.  It can even be used to scan for evidence of pleiotropic effects when subjects are completely overlapping.  When OMIC scans actually are independent, it estimates this correctly, and becomes the same as the traditional meta-analysis test.  Thus, the method can be safely used in any situation, when there is any doubt that there may be violations of study independence assumptions. 
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Advances in phylogenetics and population genetics have produced increasing awareness
of the existence of problems of interest to both fields, and of problems for which approaches
from one of the two areas can inform developments in the other. Phylogenetics and population
genetics examine similar topics, but at different biological scales. Both fields analyze genetic
similarities and differences among organisms, and the evolutionary processes that generate
those similarities and differences. Whereas population genetics considers individuals and pop-
ulations within species, phylogenetics focuses on relationships among species themselves. The
two fields share a number of overlapping tools, as well as similar data in the form of biolog-
ical sequences. Further, they come into direct contact in the analysis of populations that are
sufficiently distantly related that they differ as much as distinct species, or species that are
sufficiently closely related that they approach the level of population differences.

The increasing availability of genetic sequences within and among species has made the
connections between phylogenetics and population genetics all the more apparent. Phyloge-
nomics and population genomics have emerged as subjects concerned with phylogenetic and
population-genetic problems at a genomic scale. The interface of phylogenetics, population
genetics, and genomics has now generated significant research challenges, demanding new
evolutionary models for linking population-genetic and phylogenetic time scales, new algo-
rithms for analyzing data in contexts that involve both population-genetic and phylogenetic
perspectives, and new analytical tools for assessing properties of the algorithms. We are pleased
to present five papers that represent a range of topics that link phylogenomics and population
genomics, and that demonstrate a range of ways in which models, algorithms, and analytical
tools can be used to advance the subject.

The papers of James H. Degnan and Sebastien Roch address a traditional problem at the
intersection of phylogenetics and population genetics: the modeling and inference of species
phylogenies when incomplete lineage sorting generates discordance among gene trees. Roch
takes a modeling approach to the comparison of several algorithms for species tree inference.
In a three-species model, for each of the algorithms, Roch uses large-deviations theory to
analytically determine the rate at which the probability of failing to infer the correct species
tree decays for large numbers of loci. A higher decay rate indicates that a method has more
favorable performance. The paper, which uncovers a substantial difference among methods,
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produces an innovative analytical framework that can potentially be used for studying method-
ological performance in greater generality.

Whereas Roch presents a general perspective for assessing multiple methods, the com-
plementary paper of Degnan instead looks closely at a single species tree inference method,
the STAR approach (for Species Tree estimation using Average Ranks). In this method, the
internal nodes of each of a series of input gene trees are given discrete ranks. For two species,
the rank of their most recent common ancestor is averaged across all gene trees, and a species
tree is inferred from the matrix of average ranks for all pairs of species. Degnan determines
that the node-numbering scheme of the original STAR method is only one among many in a
family of sensible schemes. By allowing variations of STAR that select from among this family
of numbering schemes, Degnan finds that STAR can be generalized and enhanced. Together,
the Degnan and Roch papers provide advances in the development and evaluation of new
methods for inferring species trees in the presence of incomplete lineage sorting.

Two additional papers, one by Md. Shamsuzzoha Bayzid, Siavash Mirarab, and Tandy
Warnow, and the other by Yu Lin, Fei Hu, Jijun Tang, and Bernard M. E. Moret, study
species tree inference under another form of gene tree discordance. Gene trees can disagree
not only because of incomplete lineage sorting, but also as a consequence of gene duplications
and losses that lead to errors in assigning orthology across species. Duplications and losses
begin by a population-genetic process: a macromutation arises, carrying a duplication or loss,
and that mutation eventually spreads in a population. Once fixed, the duplication or loss
becomes a phylogenetic character useful for analyses of species relationships.

Bayzid et al. algorithmically investigate the inference of species trees in the presence of
discordance due to gene duplication and loss. They study a pair of optimization problems, one
considering only duplications, and the other also considering losses. These problems are known
to be NP-hard. The authors formulate solutions via a max (or min) clique problem, and they
provide theoretical results for solving certain constrained versions of the problems. They obtain
exact solutions for the constrained problems, providing algorithms that run polynomially in
the number of genes and the number of taxa. The max clique formulation has similarities to
work of Than & Nakhleh in the context of incomplete lineage sorting, thereby highlighting
connections among algorithms for different processes that generate gene tree discordance.

Lin et al. consider genome rearrangements and insertions in addition to duplications and
losses. They introduce a method for inferring species trees from genome sequences, accounting
for the various types of gene content and gene order differences observed across species. Their
method relies on an encoding of the spatial orientation of genes, and it performs inference with
maximum likelihood. Lin et al. test their method using simulations incorporating a variety of
factors, such as different simulated species trees, different combinations of evolutionary events
along the tree, and errors in genome assembly. After obtaining favorable performance in their
simulations, Lin et al. apply their approach to obtain a phylogeny of 68 genomes. As was
true for the Degnan and Roch papers, the Bayzid et al. and Lin et al. papers illustrate two
complementary components of the development and evaluation of phylogenomic algorithms,
with Bayzid et al. proving theorems pertaining to the performance of their method, and Lin
et al. examining simulations and an empirical assessment.
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The final paper, by Naama M. Kopelman, Lewi Stone, Olivier Gascuel, and Noah A. Rosen-
berg, presents an example of a different aspect of the intersection of phylogenomics and pop-
ulation genomics. Kopelman et al. investigate the consequences of using a method borrowed
from phylogenetics—the neighbor-joining algorithm—in a specific population-genetic context,
namely that of admixed populations. Motivated by peculiar observations seen for admixed
populations in neighbor-joining trees, they study neighbor-joining applied to populations that
follow an admixture model. Kopelman et al. provide a mathematical demonstration under spe-
cial cases of the model that admixed populations are expected to appear toward the middle of
neighbor-joining trees, often with short branch lengths. The paper illustrates how mathemat-
ical analysis of a phylogenetic algorithm can be performed in a population-genetic setting.

Together, this collection of five papers highlights both the variety of algorithmic, mathe-
matical, and statistical approaches now under development for investigating the interface of
phylogenomics and population genomics, and the variety of problems of interest to both sub-
jects. The proliferation of phylogenomic and population-genomic data will only increase the
attention given to these problems, and the importance of devising sound models, algorithms,
and analytical tools for addressing them is only likely to increase.
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Species tree estimation from multiple markers is complicated by the fact that gene trees can differ
from each other (and from the true species tree) due to several biological processes, one of which
is gene duplication and loss. Local search heuristics for two NP-hard optimization problems - min-
imize gene duplications (MGD) and minimize gene duplications and losses (MGDL) - are popular
techniques for estimating species trees in the presence of gene duplication and loss. In this paper,
we present an alternative approach to solving MGD and MGDL from rooted gene trees. First, we
characterize each tree in terms of its “subtree-bipartitions” (a concept we introduce). Then we show
that the MGD species tree is defined by a maximum weight clique in a vertex-weighted graph that
can be computed from the subtree-bipartitions of the input gene trees, and the MGDL species tree
is defined by a minimum weight clique in a similarly constructed graph. We also show that these
optimal cliques can be found in polynomial time in the number of vertices of the graph using a
dynamic programming algorithm (similar to that of Hallett and Lagergren1), because of the special
structure of the graphs. Finally, we show that a constrained version of these problems, where the
subtree-bipartitions of the species tree are drawn from the subtree-bipartitions of the input gene
trees, can be solved in time that is polynomial in the number of gene trees and taxa. We have
implemented our dynamic programming algorithm in a publicly available software tool, available at
http://www.cs.utexas.edu/users/phylo/software/dynadup/.

Keywords: Gene Duplication and Loss; Incomplete Lineage Sorting; Clique.

1. Introduction

The estimation of species trees typically proceeds by concatenating multiple sequence align-
ments together for many genes and then estimating a tree on the resultant “super-matrix”.
These “combined analyses” require that all sequences be orthologous (hence each taxon should
appear in each gene sequence alignment at most once), and assume that the true trees for the
different genes are topologically identical. These two conditions can easily fail to hold when
gene duplication and loss occurs, even when valiant efforts are made to estimate orthology.
Thus, the estimation of species trees from gene trees that can differ due to gene duplication
and loss,2–6 especially when these gene trees contain more than a single copy of each taxon,
requires more care.

Two of the most popular approaches for species tree estimation in the presence of gene
duplication and loss are methods, such as iGTP7 and DupTree,8 that employ local search tech-
niques to “solve” the NP-hard optimization problems MGD (Minimize Gene Duplication) and
MGDL (Minimize Gene Duplication and Loss). For example, analyses based upon MGD and
MGDL have been used in estimating species trees for snakes,9 vertebrates,10,11 Drosophia,12

and plants.13 These local search strategies are effective for relatively small numbers of taxa,
but their utility for very large numbers of taxa has not been explored. In addition to local
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search techniques, exact solutions14,15 and fixed-parameter tractable algorithms1,16 have been
proposed for addressing MGD and MGDL; however, to date these approaches have not been
used as widely as the heuristic searches.

In this paper we will present a new approach for MGD and MGDL that does not use local
search techniques or branch-and-bound techniques, but instead uses dynamic programming to
produce an optimal solution within a user-specified subspace of the set of candidate species
trees. Thus, by letting that subspace be all possible species trees we obtain a globally optimal
solution for MGD or MGDL, while constraining the set allows us to obtain good (even if not
globally optimal) solutions in polynomial time. While our dynamic programming approach is
similar to that of Hallet and Lagergren,1 our clique-based formulation of the problem is new,
and many of our theoretical results are not explicitly proven in Hallett and Lagergren.1

The algorithmic technique we present is also related to the approach used in Than and
Nakhleh17 (see also Yu, Warnow, and Nakhleh18) for the MDC (Minimize Deep Coalescence)
problem,5 an optimization problem for species tree estimation in the presence of incom-
plete lineage sorting. In these papers, the optimal solution for MDC is characterized graph-
theoretically, as follows. First, every binary rooted tree on n taxa can be represented by its
set of “clusters”, where a cluster is the set of taxa that appear below a node in the tree.
Furthermore, two clusters are said to be “compatible” if and only if they can co-exist in a
tree (equivalently, two clusters are compatible if and only if they are pairwise disjoint or one
contains the other). To solve MDC, each possible cluster is represented by a node in a graph,
and edges exist between pairs of nodes whose clusters are compatible. It is known that when-
ever a set of clusters is given that are all pairwise compatible, then a rooted tree exists with
precisely that set of clusters. Thus, a set of n− 1 pairwise compatible clusters, where n is the
number of species, defines a binary rooted species tree for that set of clusters.

Than and Nakhleh17 showed that it is possible to weight the nodes in the graph so that the
total weight of any (n− 1)-clique is the MDC score for the species tree defined by that clique,
so that solving the MDC problem is equivalent to finding a minimum weight n− 1 clique.

This problem formulation seems to be particularly expensive, since MaxClique is NP-hard
and the graph has an exponential number of vertices, but Than and Nakhleh also showed that
finding the minimum weight clique of size n− 1 can be obtained in time that is polynomial in
the number of nodes in the graph, using dynamic programming (DP). They also presented a
“heuristic” version that only uses clusters that appear in the input gene trees, and so runs in
polynomial time. This heuristic version produces highly accurate species trees,17–19 suggesting
that restricting the search space to clusters in the input trees is an effective strategy for MDC.

The approach we present here for optimizing MGD or MGDL builds on these ideas. We also
build a graph, but the nodes of our graph correspond to “subtree-bipartitions”, a generalization
of clusters that we define in this paper. We show how to define weights on vertices in the graph
so that the optimal solution to MGD is obtained by finding a minimum weight clique of size
n − 1, and we show how to find that clique using dynamic programming. This technique
directly allows us to solve the constrained MGD problem, in which we constrain the species
tree solution to have its subtree-bipartitions from a user-provided set; as with MDC, a DP
algorithm solves this in polynomial time. We then show how to extend this to the MGDL
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problem, using the same graph but with different weights on the edges.
The rest of the paper is organized as follows. In Section 2, we present the theoretical

foundations and terminology. We present theory and algorithms for solving MGD in Section
3, and results for MGDL in Section 4.

2. Basics

2.1. Prior Terminology and Theory

We begin by defining the MGD, MGDL, and MDC problems. The input to each problem is
the same: a set G = {t1, t2, . . . , tk} of rooted binary gene trees, with leaves drawn from the set
X of n taxa, and we allow the gene trees to have multiple copies of the taxa, and even to miss
some taxa. The output of each problem is a species tree T on X minimizing

∑
i d(ti, T ), where

d(ti, T ) is defined differently for each problem.
The original definitions for these problems assumed that the gene tree ti had at least one

copy of each taxon, and so these definitions need to be modified in order to handle incomplete
gene trees, which have no copies of some taxon.
Handling incomplete gene trees: Most of the literature has handled the case of incom-
plete gene trees ti as follows. Let T ′ be the tree obtained by restricting T to the leaf set of ti
and then suppressing all non-root nodes of degree two (i.e., T ′ is the homeomorphic subtree of
T defined on the leafset of ti). Then, T ′ is used instead of T when computing the MDC, MGD,
or MGDL score. We call this the restriction-based approach, and hence define the restriction-
based optimization problems MGDr, MGDLr, and MDCr. (See Bayzid and Warnow20 for
another approach for handling incomplete gene trees.)
Optimal Embeddings for MGDr, MDGLr, and MDCr.

An embedding of a rooted gene tree t into a species tree T is a mapping f from the nodes
of the gene tree to the nodes of the species tree that has some natural properties: first, f maps
leaves in the gene tree mapped to the unique leaf in the species tree with the same taxon
label, and second, f maintains the order relationships in the gene tree. This second condition
can be stated as follows: if v and w are nodes in the gene tree with v above w (meaning that v

is on the path from w to the root of the gene tree), then f(v) is above f(w) within the species
tree.

Let T be a rooted binary tree. We denote the set of vertices of a tree T by V (T ), the root
by root(T ), the internal nodes by Vint(T ), and the set of taxa that appear at the leaves by
L(T ). (Note that since T can have multiple copies of some taxa, it is possible for |L(T )| to be
smaller than the number of leaves in T .)

A clade in T is a subtree of T rooted at some node in T , and the set of leaves of the clade is
called a cluster. We denote the cluster at v by cT (v); however, when the tree T is understood,
we may also write c(v). We denote the set of clusters of a tree T by C(T ).

The most recent common ancestor (MRCA) of a set A of leaves in T is denoted by
MRCAT (A). Given a gene tree gt and a species tree ST , where L(gt) ⊆ L(ST ), we define
M : V (gt) → V (ST ) by M(v) = MRCAST (cgt(v))). In other words, M associates each node u

of gt to the MRCA in ST of the cluster below u.
The optimal embedding for each of the three criteria we discuss (MDCr, MGDr, and
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MGDLr) is obtained using M, even when the gene tree gt is incomplete (lacks some taxon)
or contains more than one copy of some taxon.5,6,17,21 Therefore, since the same reconciliation
of a gene tree into a species tree optimizes all three criteria, we may refer to an “optimal
reconciliation” without specifying the criterion. Also, for any given mapping, the calculation
of the three scores can be performed in polynomial time. Therefore, given a set of rooted gene
trees and a rooted species tree, we can calculate the MGDr, MGDLr, and MDCr scores of the
species tree in polynomial time.
Duplication nodes: For a rooted gene tree gt and a rooted species tree ST , where L(gt) ⊆
L(ST ), an internal node v in gt is called a duplication node if M(v) =M(v′) for some child v′

of v, and otherwise v is a speciation node.21–24

Given a rooted, binary gene tree gt and a rooted, binary species tree ST such that L(gt) ⊆
L(ST ), Dup(gt, ST ) denotes the number of duplications needed to reconcile gt with ST under
the M mapping. For a set G of rooted, binary gene trees, the notation Dup(G, ST ) extends in
the obvious way.
Gene losses: Let gt be a rooted, binary gene tree and ST a rooted, binary species tree such
that L(gt) ⊆ L(ST ). The restriction of ST to L(gt), denoted by RST (L(gt)), is the smallest
subtree of ST containing L(gt) as its leaf set. The homeomorphic subtree ST |L(gt) of ST

induced by L(gt) is a tree obtained from RST (L(gt)) by suppressing all nodes of RST (L(gt))
with indegree and outdegree 1. We denote by r and l the two children of an internal node u.
Then the number of gene losses for a given gene tree gt and species tree ST for a particular
internal node u (under the restriction-based analysis), denoted by lossu, can be calculated as
follows:21–24

lossu =


d(M(r),M(u)) + 1 if M(r) (M(u) =M(l),
d(M(r),M(u)) + d(M(l),M(u)) if M(r) (M(u) )M(l),
0 otherwise.

(1)

Here d(s, s′) is the number of internal nodes in the path in ST |L(gt) from s to s′.
The number of gene losses (under the restriction-based analysis) is given by loss(gt, ST ) =∑

g∈V (gt)

lossg, while for a set G of rooted, binary gene trees, the number of losses is given

by loss(G, ST ) =
∑
gt∈G

loss(gt, ST ). The number of duplications and losses (again, under the

restriction-based analysis), denoted by Duploss(G, ST ), is the sum of the number of duplication
and losses, i.e., Duploss(G, ST ) = Dup(G, ST ) + loss(G, ST ).

2.2. New Data Structures

Subtree-Bipartitions: Let T be a rooted binary tree and u an internal node in T . The
subtree-bipartition of u, denoted by SBPT (u), is the unordered pair (cT (l)|cT (r)), where l and
r are the two children of u. Note that subtree-bipartitions are not defined for leaf nodes. The
set of subtree-bipartitions of a tree T is denoted by SBPT = {SBPT (u) : u ∈ Vint(T )}.
Domination, containment, disjointness, and compatibility: Let BPi = (Pi1 |Pi2)
and BPj = (Pj1 |Pj2) be two subtree-bipartitions. We say that BPi is dominated by BPj (and
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conversely that BPj dominates BPi) if either of the following two conditions holds: (1) Pi1 ⊆ Pj1

and Pi2 ⊆ Pj2 , or (2) Pi1 ⊆ Pj2 and Pi2 ⊆ Pj1 . We say that BPi contains BPj if Pj1 ∪ Pj2 ⊆ Pi1

or Pj1 ∪ Pj2 ⊆ Pi2 , and that BPi and BPj are disjoint if [Pi1 ∪ Pi2 ]∩ [Pj1 ∪ Pj2 ] = ∅. We say that
two subtree bipartitions are compatible if one contains the other, or they are disjoint.
The Compatibility Graph CG(G): Let G be a set of rooted binary gene trees on the set X
of n taxa. The compatibility graph CG(G) has one vertex for each possible subtree-bipartition
defined on X , and there is an edge between two vertices if and only if the associated subtree-
bipartitions are compatible.

Note that if two subtree-bipartitions are compatible, then their associated clusters (pro-
duced by unioning the two parts of the bipartition) are also either disjoint or one contains the
other.

Observation 2.1. A set C of n − 1 subtree bipartitions is compatible (meaning all pairs of
clusters are compatible) if and only if there exists a binary rooted tree whose set of subtree
bipartitions is exactly C.

Proof. Follows from the definition of subtree bipartition compatibility, and the fact that a
set of n− 1 compatible clusters on n taxa defines a binary tree with that set of clusters.

We use the fact that (n−1)-cliques in the compatibility graph define rooted binary trees to
develop solutions for the MGDr and MGDLr problems. To do this, we define weights on nodes
in the compatibility graph to characterize the solutions to these problems as (n − 1)-cliques
with maximum weight (for MGDr or minimum weight (for MGDLr). As was done by Than
and Nakhleh17 for the MDCc problem, we will present a dynamic programming algorithm
that finds an optimal (n− 1)-clique in time that is polynomial in the number of nodes in the
compatibility graph.

2.3. Theorems

All results here are for rooted binary gene trees and species trees. We assume that the species
tree has exactly one copy of each taxon in X , but that the gene trees can have any number
(including zero) of each taxon in X . The total number of taxa in X is n.

Lemma 2.1. Let gt be a rooted binary gene tree, ST a rooted binary species tree, and u an
internal node of gt. Suppose the subtree-bipartition for u is dominated by the subtree-bipartition
of v in ST . Then M(u) = v.

Proof. Since SBPgt(u) is dominated by SBPST (v), it follows that cgt(u) ⊆ cST (v). Let w =
M(u). Hence, cST (v) ∩ cST (w) 6= ∅, and so v and w are comparable (that is, either they are
identical or one lies above the other in ST ). Suppose by way of contradiction that v 6= w. Since
cgt(u) ⊆ cST (v), it follows that v must lie above w. But then cST (w) is a subset of the cluster
of one of v’s children, and so disjoint from the cluster for the other child. Hence, SBPgt(u) is
not dominated by SBPST (v), contradicting the initial assumption.

The following corollary is then obvious:
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Corollary 2.1. Let gt be a rooted binary gene tree and ST a rooted binary species tree. Then
every subtree-bipartition of gt is dominated by at most one subtree-bipartition in ST .

Theorem 2.1. Let ST be a rooted, binary species tree, gt be a rooted binary gene tree, and
u an internal node in gt. Then the subtree-bipartition of u in gt is dominated by a subtree-
bipartition in ST if and only if u is a speciation node.

Proof. Suppose u is a node in gt such that its subtree-bipartition is dominated by a subtree
bipartition in ST . Let l and r be the two children of u in gt. Then SBPgt(u) = (c(l)|c(r)). Let v

be a node in ST such that SBPgt(u) is dominated by SBPST (v). Let l′ and r′ be the children
of v. Then, without loss of generality, c(l) ⊆ c(l′) and c(r) ⊆ c(r′). Therefore, under the MRCA
mapping, l and r will be mapped to a node in the subtree rooted at l′ and r′, respectively.
Moreover, by Lemma 2.1 M(u) = v. Therefore, M(l) 6=M(u), and M(r) 6=M(u). Hence u is
not a duplication node.

Next, assume that SBPgt(u) is not dominated by any subtree-bipartition of ST , and let
SBPST (M(u)) = (p1|p2). Then at least one of the following holds (1) c(l) 6⊂ p1 and c(l) 6⊂ p2 or
(2) c(r) 6⊂ p1 and c(r) 6⊂ p2. Without loss of generality, suppose (1) holds. Then l cannot map
to a node strictly below v. However, it is also equally obvious that l cannot map to a node
strictly above v, since M(u) = v and l is a child of u. Hence, it must be that M(l) = u. But in
this case, u is a duplication node.

We now define some functions:

• dominated(bp, ST ) ∈ {0, 1}, with dominated(bp, ST ) = 1 if bp is dominated by a subtree-
bipartition in SBPST , and 0 otherwise.

• dom(bp, bp′) = 1 if bp is dominated by bp′ and 0 otherwise.

Corollary 2.2. Let gt be a rooted binary gene tree and ST a rooted binary species tree. Then

Dup(gt, ST ) = |Vint(gt)| −
∑

u∈Vint(gt)

dominated(SBPgt(u), ST ).

Proof. Follows directly from Theorem 2.1.

3. Algorithms for MGDr on rooted binary gene trees

3.1. Graph-theoretic characterization of optimal solution to MGDr

Let G = {gt1, gt2, . . . , gtk} be a set of rooted, binary gene trees on the set X of n taxa, and let
ni be the number of leaves in tree gti. Note that ni does not refer to |L(gti)|, since L(gti) is
the set of taxa in X that appear at least once in gti, whereas ni is the total number of leaves
in gti. Since gti can have multiple copies of a taxon, ni can be larger than |L(gti)|.

We construct the compatibility graph CG(G) with one vertex for each possible subtree-
bipartition defined on X , as described in the previous section. We set the weight of each node
v, denoted by Wdom(v), to be the total number of subtree-bipartitions of G that are dominated
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by v. That is,

Wdom(v) =
∑
gt∈G
|{bp : bp ∈ SBPgt and dom(bp, v) = 1}|.

We then find a clique C of size n − 1 so as to maximize the weight Wdom(C) of the clique C,
where Wdom(C) =

∑
v∈C Wdom(v).

Theorem 3.1. Let G = {gt1, gt2, . . . , gtk} be a set of binary, rooted gene trees on the n taxa
in X . Let C be an (n− 1)-clique in CG(G) maximizing Wdom(C), and let ST be the species tree
defined by the clique (so that SBPST corresponds to C). Then ST is a binary species tree that
optimizes MGDr with respect to G.

Proof. Recall that any (n− 1)-clique in the compatibility graph defines a rooted binary tree
on X . Let C be a clique of size n− 1 and ST be the tree defined by C. By Corollary 2.1, every
subtree-bipartition in gti can be dominated by at most one node in C. Therefore, each node
of gti contributes either 1 (if the node is dominated) or 0 (if the node is not dominated) to
the weight of C. Let wi be the amount contributed by gti to the weight of C. Thus, wi is the
number of speciation nodes in gti with respect to the species tree corresponding to ST . Then∑

v∈C
Wdom(v) =

k∑
i=1

wi = Wdom(C).

Furthermore, by Corollary 2.2 and because a rooted binary tree with ni leaves has ni − 1
internal nodes, Dup(gti, ST ) = ni − 1− wi. Then,

Dup(G, T ) =
k∑

i=1

Dup(gti, ST ) =
k∑

i=1

[ni − 1− wi] = N − k −Wdom(C),

where
∑k

i=1 ni = N . Therefore, the clique with maximum weight defines a tree ST that mini-
mizes Dup(G, ST ).

3.2. The Dynamic Programming Algorithm for MGDr

The graph-theoretic characterization of the optimal solution for MGDr given in the previous
section suggests an algorithm for finding the optimal solution, in which a max weight clique
is sought in an exponentially large graph. However, we will show that this optimal solution
can be found in time that is polynomial in the number of vertices in the graph, using dynamic
programming. In addition, we will show that a constrained version of the MGDr problem, in
which the allowed subtree-bipartitions are given as input, can also be solved using the same
basic dynamic programming algorithm. Finally, when the set of allowed subtree-bipartitions
comes from the input set of gene trees, the result is an algorithm that runs in polynomial
time.

The motivation to restrict the attention to a subset of the subtree-bipartitions comes from
the observations made by Than and Nakhleh,17 who noted that that clusters in the species
tree that optimizes MDC tend to appear in at least one of the input gene trees. Therefore,

Pacific Symposium on Biocomputing 2013

256



we consider a constrained search problem, where instead of considering all possible subtree-
bipartitions, we only consider the subtree-bipartitions of the gene trees. When we do this,
instead of constructing a compatibility graph with one node for each subtree bipartition, the
compatibility graph will only have nodes for the (at most) N − k subtree bipartitions in the
input gene trees (where N =

∑k
i=1 ni). A clique of size n − 1 with the maximum weight will

define an optimal solution to the constrained version of MGDr where the species tree is only
permitted to have subtree bipartitions from the input gene trees.

Let SBP be any set of subtree-bipartitions, and let CLS be the set of associated clusters
(i.e. CLS = {p ∪ q : (p|q) ∈ SBP}. We will define the constrained MGDr problem by limiting
the solution space to those rooted, binary trees, all of whose subtree-bipartitions are in the
set SBP. Thus, by setting SBP to be the set of all possible subtree-bipartitions we obtain
the globally optimal solution, but setting SBP to be a proper subset of the set of all subtree-
bipartitions is also possible.

By Theorem 3.1, the binary species tree with a maximum total weight (as defined by
summing up the weights of its subtree bipartitions) has a minimum number of duplications,
because the duplication nodes are exactly those nodes whose subtree-bipartitions are not
dominated by any subtree-bipartition in the species tree.

We now show how to calculate that optimal binary species tree directly, using dynamic
programming. The DP algorithm computes a rooted, binary tree TA for every cluster A ∈ CLS,
such that TA maximizes the sum, over all gene trees t, of the number of subtree-bipartitions
in t that are dominated by some subtree-bipartition in TA. We denote this total number by
value(A).

We preprocess the data as follows. First, we compute the set CLS, and order its elements
based on size. We also calculate SBPG =

⋃k
i=1 SBPgti

, i.e. the set of all subtree bipartitions
in all gene trees, and we set count(x) for x ∈ SBPG to be the number of times x appears in
any of the gene trees. Recall that for a subtree bipartition x, we define Wdom(x) to be the
number of subtree bipartitions of the gene trees that are dominated by x. We define a partial
order for elements of SBP and SBPG based upon subtree-bipartition size. For every ordered
pair < x, y > such that x ∈ SBPG and y ∈ SBP, we determine whether x is dominated by y;
if y dominates x then Wdom(y) is incremented by count(x). At the end of this step, Wdom(y) is
calculated correctly for every y ∈ SBP. All this preprocessing can be computed in O(n|SBP|2).

We compute value(A) in order, from the smallest cluster to the largest cluster X . We set
value(A) as follows. For any cluster A with two taxa, we set value(A) = Wdom(a1|a2), where
A = {a1, a2}. For a cluster A with more than two taxa, we set value(A) as follows:

value(A) = max{value(A1) + value(A−A1) + Wdom(A1|A−A1) : (A1|A−A1) ∈ SBP}

If there is no (A1|A−A1) ∈ SBP, we set its value(A) to −∞, signifying that A cannot be further
resolved. At the end of the algorithm, if SBP includes at least one clique of size n−1, we have
computed value(X ) as well as sufficient information to construct the species tree having the
minimum number of duplications. If subtree bipartitions in SBP are not sufficient for building
a fully resolved tree on X , then value(X ) will be −∞, and our algorithm returns FAIL. Note
that for a specific cluster A, value(A) can be computed in O(|SBP|) time, since at worst we
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need to look at every subtree-bipartition in SBP. In other words, we have proven the following:

Theorem 3.2. Let G be a set of rooted binary gene trees, SBP a set of subtree-bipartitions.
Then, if subtree bipartitions of SBP define at least one binary tree on X , then the DP algorithm
finds the species tree ST minimizing the total number of duplications subject to the constraint
that SBPST ⊆ SBP in O(n|SBP|2) time. Therefore, if SBP is all possible subtree-bipartitions,
we have an exact but exponential time algorithm. However, if SBP contains only those subtree-
bipartitions from the input gene trees, then the DP algorithm finds the optimal constrained
species tree in O(d2n3k2) (since the number of subtree-bipartitions |SBP| in G is O(dkn)),
where n is the number of species, k is the number of gene trees, and d the maximum number
of times that any taxon appears in any gene tree.

4. Algorithms for MGDLr

4.1. Graph-Theoretic Characterization

We begin with some additional terminology and theorems. For any cluster A in gt and a cluster
B in ST , we say that A is B-maximal if (1) A ⊆ B, and (2) for any cluster A′ in gt, if A ⊆ A′,
then A′ 6⊆ B. We define kB(gt) to be the number of B-maximal clusters within gt, and Finally,
in a rooted tree T with cluster G, the unique edge e that separates G from the rest of the
leaves in T is called the parent edge of the cluster G.

Theorem 4.1. (From Than and Nakhleh17 and Yu, Warnow, and Nakhleh18) Let gt be a
rooted binary gene tree and ST a species tree on the same set of taxa. Let B be a cluster in ST

and let e be the parent edge of B in ST . Then kB(gt) is equal to the number of lineages on e in
an optimal reconciliation of gt within ST with respect to MDCc. Therefore, MDCc(gt, ST ) =∑

(kB(gt)− 1), where B ranges over the clusters of ST .

Theorem 4.2. Let gt be a rooted binary gene tree and ST a species tree on the same set of
leaves. Then MDCr(gt, ST ) =

∑
(kB(gt)− 1), where B ranges over the clusters of ST |L(gt).

Proof. By definition, MDCr(gt, ST ) = MDCc(gt, ST |L(gt)). However, gt and ST |L(gt) have the
same set of taxa. Therefore, by Theorem 4.1, MDCc(gt, ST |L(gt)) =

∑
(kB(gt)− 1), as B ranges

over the clusters of ST |L(gt).

Theorem 4.3. (From Zhang21) Let gt be a rooted binary gene tree and ST a rooted binary
species tree. Then, under the restriction-based analysis, Duploss(gt, ST ) = MDCr(gt, ST ) + 3 ∗
Dup(gt, ST ) + |V (gt)| − |V (RST (L(gt)))|.

Let v be a vertex associated with the subtree-bipartition (p|q), and let B = p ∪ q be the
cluster associated with v. Define Wxl(v, gt) to be 0 if p∩L(gt) = ∅ or q∩L(gt) = ∅, and otherwise
to be kB(gt)− 1. Set Wxl(v) =

∑k
i=1 Wxl(v, gti). Then, for any species tree ST and set G of gene

trees, MDCr(G, ST ) =
∑k

i=1 MDCr(gti, ST ) =
∑

v∈C Wxl(v), where C is the clique in CG(G) that
corresponds to ST .

Theorem 4.4. Let G = {gt1, gt2, . . . , gtk} be a set of binary rooted gene trees on set X of n

species, and let CG(G) be the compatibility graph with vertex weights defined by WMGDL(v) =
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Wxl(v) − 3Wdom(v). The set of bipartitions in an (n − 1)-clique of minimum weight in CG(G)
defines a binary species tree ST that optimizes MGDLr.

Proof. Let C be a clique of size n − 1 and ST be the rooted binary tree defined by the
subtree-bipartitions represented by the nodes in C. Let SBPdom(gt, ST ) be the set of subtree-
bipartitions in gt that are dominated by a subtree-bipartition in ST , i.e., SBPdom(gt, ST ) =
{bp : bp ∈ SBPgt and dominated(bp, ST ) = 1}. Note that |SBPdom(gt, ST )| is the number of
speciation nodes in gt with respect to ST . Therefore, the total number of speciation nodes in
G is

∑k
i=1 |SBPdom(gti, ST )| =

∑
v∈Vint(ST ) Wdom(v). Let N =

∑k
i=1 ni. Then,

Duploss(G, ST ) =
k∑

i=1

Duploss(gti, ST )

=
k∑

i=1

[MDCr(gti, ST ) + 3 ∗Dup(gti, ST )− (|V (gti)| − |V (RST (L(gti)))|)] (by Theorem 4.3)

=
k∑

i=1

[MDCr(gti, ST ) + 3 ∗Dup(gti, ST )]−
k∑

i=1

(|V (gti)| − |V (RST (L(gti)))|)

=
k∑

i=1

[MDCr(gti, ST ) + 3 ∗ ((ni − 1)− |SBPdom(gti, ST )|)]

−
k∑

i=1

(|V (gti)| − |V (RST (L(gti)))|) (by Corollary 2.2)

=
∑
v∈C

Wxl(v) +
k∑

i=1

3(ni − 1)− 3
∑
v∈C

Wdom(v)

−
k∑

i=1

(2ni − 1) +
k∑

i=1

|V (RST (L(gti)))| (since |V (gti)| = 2ni − 1)

=
∑
v∈C

(Wxl(v)− 3Wdom(v)) + 3
k∑

i=1

ni − 3k − 2
k∑

i=1

ni + k +
k∑

i=1

|V (RST (L(gti)))|

=
∑
v∈C

WMGDL(v) +
k∑

i=1

ni − 2k +
k∑

i=1

|V (RST (L(gti)))|

= WMGDL(C) + N − 2k +
k∑

i=1

|V (RST (L(gti)))|

Note that |V (RST (L(gti)))| does not depend on ST . Therefore, the clique C with minimum
weight defines a tree ST that minimizes Duploss(G, ST ).

4.2. Dynamic Programming Approach for MGDLr

We now show how to use dynamic programming to find the optimal solution for MGDLr

without having to explicitly search for the optimal clique. As we did for MGDr, we generalize
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the problem to allow the user to provide a set SBP of subtree-bipartitions, and the solution
space is restricted to those rooted, binary trees, all of whose subtree-bipartitions are in the
set SBP.

We compute value(A) for all clusters A with at least two species as follows. If |A| = 2,
we set value(A) = W (a1|a2), where A = {a1, a2}. For set A with more than two taxa, we set
value(A) as follows:

value(A) = min{value(A1) + value(A−A1) + Wxl(A1|A−A1)− 3Wdom(A1|A−A1) :
(A1|A−A1) ∈ SBP}.

The optimal number of duplications and losses is given by value(X ) + N − 2k +∑k
i=1 |V (RST (L(gti))|, where N =

∑k
i=1 ni, and ni is the number of leaves in gene tree gti.

By backtracking, we can find the optimal set of compatible clusters and hence can construct
the optimal tree. We now have the following theorem:

Theorem 4.5. Let G be a set of k rooted binary gene trees on the set X of n taxa. Let SBP
be an arbitrary set of subtree bipartitions on X . Then the DP algorithm finds the species tree
ST optimizing MGDLr, subject to the constraint that SBPST ⊆ SBP, in O(n|SBP|2) time.
Therefore, for the case where SBP is the set of subtree-bipartitions from the k gene trees, the
algorithm uses O(d2n3k2) time, where d is the maximum number of times any taxon appears
in any gene tree.
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Many methods for inferring species trees from gene trees have been developed when incongruence
among gene trees is due to incomplete lineage sorting. A method called STAR (Liu et al, 2009),
assigns values to nodes in gene trees based only on topological information and uses the average
value of the most recent common ancestor node for each pair of taxa to construct a distance matrix
which is then used for clustering taxa into a tree. This method is very efficient computationally,
scaling linearly in the number of loci and quadratically in the number of taxa, and in simulations
has shown to be highly accurate for moderate to large numbers of loci as well as robust to molecular
clock violations and misestimation of gene trees from sequence data. The method is based on a
particular choice of numbering nodes in the gene trees; however, other choices for numbering nodes
in gene trees can also lead to consistent inference of the species tree. Here, expected values and
variances for average pairwise distances and differences between average pairwise distances in the
distance matrix constructed by the STAR algorithm are used to analytically evaluate efficiency of
different numbering schemes that are variations on the original STAR numbering for small trees.

Keywords: Statistical consistency, phylogenetics, multispecies coalescent, incomplete lineage sorting,
sample size

1. Introduction

Numerous methods have been developed in recent years for inferring species trees (trees de-
scribing the history of speciation events for a set of species) from gene trees (trees on which
DNA sequences evolve).1–5 Methods that explicitly model the multispecies coalescent and ac-
count for uncertainty in the gene trees due to the mutation process can be the most accurate
when gene tree discordance is due to incomplete lineage sorting, but can also be computation-
ally very slow, particularly in the number of genes. In practice researchers sometimes have
difficulty with convergence of the MCMC algorithms for these methods due to the relatively
large number of genes.6 With whole genome sequencing becoming increasingly common, this
problem with the methods being able to keep up with the data is likely to increase in the
future and motivates the need for computationally more efficient methods that will still be
powerful enough to make accurate inferences. Methods that do not explicitly model the mul-
tispecies coalescent (e.g., rooted triple consensus,7 R*,8 STEAC and STAR,9,10 the quartet
version of BUCKY,11 and triplet MRP12 can still be robust under the model and can have
the advantages of performing well under model violations and being computationally efficient
enough to handle genomic levels of data.

A particularly promising method in simulations has been STAR,9 which stands for Species
Tree inference using Average Ranks. The method assigns a value to each node in an input gene

Pacific Symposium on Biocomputing 2013

262



tree. The pairwise distance between two leaves of the tree is interpreted as twice the value of
the node of their most recent common ancestor (MRCA) in the gene tree, and the pairwise
distances for every pair of species is averaged over all loci. The resulting distance matrix can
then be used to construct a tree using any clustering algorithm, for instance UPGMA or
neighbor joining.

A key issue for the algorithm to work is how to assign the node values. The original STAR
algorithm assigns a value of n to the root node, ρ, and the value of a node k is n minus the
number of edges separating the node from the root. These node values are called “ranks” in
Liu et al. (2009), where a higher rank means fewer edges separate the node from the root.
(This usage of “rank” is slightly different from the usage of ranked trees elsewhere, where real-
valued divergence times are sorted and their relative order is used to determine the rank of a
node13,14) The node numbering used by STAR can also be interpreted as replacing all branch
lengths on the gene trees with length 1 (extending external branch lengths as necessary to
make trees ultrametric), and computing the average distance for each pair of species on these
transformed gene trees. This numbering scheme leads to statistically consistent estimation of
the species tree topology in the sense that as more independent loci (gene trees) are used, the
probability that the method returns the correct species tree topology approaches 1.

Although the original numbering scheme used in STAR is statistically consistent, other
numbering schemes also lead to consistent inference, as is shown in.15 This naturally raises
the question of whether other numbering schemes could be better or worse than STAR, and
whether there is an optimal numbering scheme? This paper addresses this question by analyt-
ically determining expected values and variances of average distances between species in the
distance matrix constructed by generalized versions of STAR for 4-taxon trees. An additional
application of this approach is that sample sizes (numbers of independent loci) needed to con-
fidently reconstruct certain inequalities in pairwise distances between taxa can be estimated.

2. Generalized STAR

To generalize STAR, let the value assigned to an internal node of a gene tree be aj, where j

is the number of edges separating the node from the root, ρ. Thus, the root node gets value
a0, the two daughter nodes of the root get value a1 (assuming neither is a leaf), etc. There
are at most n − 1 distinct “ranks” in a gene tree, and each is only used if the gene tree is
completely unbalanced (a caterpillar topology in which only one internal node has two leaves
as its immediate descendants). Thus, a balanced four-taxon tree only uses a0 for the root and
a1 for the two internal nodes. Thus a numbering scheme can be specified as an (n− 1)− tuple,
(a0, a1, · · · , an−2). For the standard STAR algorithm, a0 = n and ai = ai−1 − 1, 1 ≤ i ≤ n − 2.
We define a generalized STAR numbering scheme for an n-taxon species tree to be any (n−1)-
tuple (a0, . . . , an−2) satisfying a0 ≥ a1 ≥ · · · ,≥ an−2, where at least one of the inequalities is
strict. The same numbering scheme is applied to each gene tree at each locus, and we assume
that all gene trees have the same taxa, although these assumptions can be relaxed somewhat
(see Allman et al. (2012)).

In the notation used in this paper, the STAR algorithm works by creating a distances
matrix, where the (i, j)th entry is the average distance between taxa i and j, Dij. Letting D

(ℓ)
ij

Pacific Symposium on Biocomputing 2013

263



T4,1 T4,2 T4,3 T4,4 T4,5

A B C D A B D C A C B D A C D B A D B C

T4,6 T4,7 T4,8 T4,9 T4,10

A D C B B C A D B C D A B D A C B D C A

T4,11 T4,12 T4,13 T4,14 T4,15

C D A B C D B A A B C D A C B D A D B C

Fig. 1. Four-taxon trees used to determine expected values of the STAR distance matrix in the four-taxon
case.

be the distance between taxa i and j at locus ℓ, if there are N loci, then Dij = (1/N)
∑N

i=1 D
(ℓ)
ij .

For the 4-taxon case, the standard STAR algorithm uses (a0, a1, a2) = (4, 3, 2). In the stan-
dard STAR numbering scheme, all internal branches are equal in length and external branch
lengths can be chosen to make the gene tree ultrametric (so that the distance from root to
tip is constant). Translating the distances (adding a constant to each distance) or multiplying
each by a constant factor should not affect the clustering applied to the distance matrix gen-
erated by STAR. Hence for the 4-taxon case, we can consider a generalized numbering scheme
(1, a, 0) and try to determine the optimal value of a, where a = 1/2 yields the same species tree
estimate as the original STAR numbering scheme. More generally, we can consider a number-
ing scheme a = (a0, . . . , an−2) to be equivalent to the numbering scheme (a − a0)/(a0 − an−2),
which fixes the smallest and largest values at 0 and 1, respectively. To determine consequences
of different choices of a for (1, a, 0), formulas for moments of STAR distances are shown next.

3. Expected values and variances of STAR distances

Explicit calculations of expected values, variances, and covariances of STAR distances can be
used to estimate sample sizes necessary for the STAR tree to have certain relationships over
others. For the 4-taxon species tree σ4,1 = (((A, B):x,C):y,D), we are particularly interested in
the sample size necessary for the STAR tree to have clade {ABC} as opposed to clade {CD}.
For notation, we let Dij be the distance between taxa i and j on a single random gene tree
occurring on the species tree. We let E[Dij ] be the expected distance between taxa i and j.
Thus, as the number of loci goes to infinity STAR tree has clade {ABC} as opposed to clade
{CD} for species tree σ4,1 if E[DAB] < E[DAC ] = E[DBC ] < E[DCD]. The greatest difficulty is in
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being confident (having enough loci) that the last inequalities, E[DAC ], E[DBC ] < E[DCD] hold.
We can determine expected values and higher moments for the random distances Dij for

a generalized star scheme by

E[Dk
ij ] =

(2n−3)!!∑

y=1

(dij(y))k pn,y(λ), (1)

where y indexes the gene tree topology, dij(y) is the observed value of the random variable
Dij (dij(y) depends on the topology y), pn,y is the probability of gene tree topology y in some
ordering of tree topologies for n taxa, and λ is the set of internal branch lengths on the species
tree. Four-taxon tree topologies are listed and enumerated as T4,y, y = 1, . . . , 15, in Figure 1,
so that p4,y is the probability that a gene tree has topology T4,y. The probabilities pn,y can be
computed symbolically using the software COAL.16

Additionally, we will need covariances, which can be obtained from

E[DijDkℓ] =

(2n−3)!!∑

y=1

dij(y) dk ℓ(y) pn,y(λ) (2)

where at least two of {i, j, k, ℓ} are distinct.
From the Central Limit Theorem, the random variables DBC , DCD, and DCD −DBC con-

verge in distribution to normal random variable as the number of loci goes to infinity. We
know that E[DCD − DBC ] > 0, so that given enough loci, C will be likely to be clustered with
B (and therefore also with A) rather than D. We therefore need the variance of DCD − DBC

to determine how many loci will be needed with a given probability for the inequality to be
positive. Here we have

V(DCD − DBC) = V(DCD) + V(DBC) − 2Cov(DCD, DBC), (3)

where V and Cov are the variance and covariance, respectively. These can be evaluated using
equations (1) and (2). Knowing the approximate normal distribution for DCD − DBC as a
function of the numbering scheme (a0, a1, a2) also allows us to compare the relative efficiencies
of different numbering schemes in terms of the sample size needed to have a high probability
of obtaining the correct species tree estimate.

Although the Central Limit Theorem applies asymptotically, in practice, the distances
DBC , DCD, DCD − DBC have detectable deviations from normality with 10 loci, and are
slightly left-skewed. Simulations were done with STAR to test the applicability of the Central
Limit Theorem for finite samples of size 10, 50, 100, and 500 loci on the species tree σ4,1. The
normality of DCD −DBC was tested using the Shapiro-Wilks test in R,17 and results are listed
in Table 1 for the numbering schemes (4,3,2) and (4,3,0). Statistically significant deviations
are detectable with a sample size of 100 or less, but are difficult to detect with samples of size
500 loci. We note that although deviations from normality are detectable, the power to detect
deviations is fairly high, since there are 1000 observations, and deviation from normality is
difficult to detect by eye using histograms.

Table 1 also lists the c.o.v. (estimated from the simulations), and the proportion of esti-
mated species trees that are correctly inferred using UPGMA implemented in Phybase18 on
the estimated distance matrix, both of which can be used as measures of the efficiency of the
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Table 1. Expected values, variances, tests of normality for DCD − DBC estimated from finite
numbers of loci, and proportion of times the correct species tree was estimated under the
STAR algorithm. The standard deviation and c.o.v. are based on the sample size, and are√

v(a)/n and
√

v(a)/n/e(a), respectively. P -values are for the normality of DCD − DBC .

Branch lengths DCD − DBC proportion
(x, y) (a0, a1, a2) loci mean sd c.o.v. p-value correct

(0.05, 0.05) (4, 3, 2) 10 0.047 0.325 6.919 0.023 0.170
(0.05, 0.05) (4, 3, 2) 50 0.056 0.140 2.337 0.076 0.253
(0.05, 0.05) (4, 3, 2) 100 0.061 0.098 1.619 0.190 0.363
(0.05, 0.05) (4, 3, 2) 500 0.063 0.046 0.718 0.868 0.793

(0.05, 0.05) (4, 3, 0) 10 0.107 0.570 5.350 0.000 0.145
(0.05, 0.05) (4, 3, 0) 50 0.118 0.246 2.093 0.349 0.275
(0.05, 0.05) (4, 3, 0) 100 0.120 0.173 1.438 0.555 0.394
(0.05, 0.05) (4, 3, 0) 500 0.122 0.079 0.646 0.225 0.849

(1.00, 0.05) (4,3,2) 10 0.052 0.273 5.234 0.000 0.452
(1.00, 0.05) (4,3,2) 50 0.055 0.122 2.204 0.004 0.535
(1.00, 0.05) (4,3,2) 100 0.053 0.088 1.651 0.069 0.619
(1.00, 0.05) (4,3,2) 500 0.055 0.034 0.707 0.604 0.894

(1.00, 0.05) (4,3,0) 10 0.076 0.380 5.022 0.000 0.452
(1.00, 0.05) (4,3,0) 50 0.075 0.176 2.273 0.070 0.551
(1.00, 0.05) (4,3,0) 100 0.077 0.125 1.617 0.137 0.652
(1.00, 0.05) (4,3,0) 500 0.079 0.056 0.708 0.340 0.905

two numbering schemes. For the species tree with branches (x, y) = (0.05, 0.05), for each given
number of loci, the scheme (4, 3, 2) has a higher c.o.v. than (4, 3, 0), although proportions of
correctly inferred trees are only statistically significantly better for (4, 3, 0) when sample sizes
reach 500 loci. Note, however, that both in simulation (Table 1) and based on theoretical
sample size calculations in Table 2, (4, 3, 2) and (4, 3, 0) are approximately equally good for
(x, y) = (1.0, 0.05). We note that (x, y) = (0.05, 1.0) leads to more gene tree discordance than
(1.0, 0.05)

4. Evaluation of variations on STAR

4.1. The 4-taxon case

To evaluate generalized STAR in the 4-taxon case, we let the numbering scheme be (1, a, 0).
To find an optimal value of a, set e(a) := Ea[DCD−DBC ] and v(a) = Va[DCD−DBC ], i.e., taking
means and variances parameterized by a. Using the normal approximation, the probability that

Pacific Symposium on Biocomputing 2013

266



Fig. 2. Coefficient of variation for DCD −DBC as a function of a using the STAR numbering scheme (1, a, 0)
for species tree σ4,1 with (x, y) = (0.05, 0.05), (0.05, 1.0), (1.0, 0.05), (1.0, 1.0).

DCD −DBC is greater than 0 is approximately Pa[Z < (0−e(a))/
√

v(a)/n] = Φ(
√

ne(a)/
√

v(a)),
where Z is a standard normal random variable and Φ is the standard normal cumulative
distribution function. Thus the sample size, N , needed to have confidence 1−α that E[DCD −
DBC ] > 0 is approximately

N = ⌈(Φ−1(1 − α)c.o.v.(a))2⌉ (4)

where c.o.v.(a) =
√

v(a)/e(a) is the coefficient of variation. We consider the optimal value of a

is the value that minimizes N in equation (4), or equivalently, that minimizes the coefficient
of variation,

√
v(a)/e(a). For species tree (((A,B):x,C):y, D), the coefficient of variation under

the scheme (1, a, 0) can be written analytically using

v(a) =
(
− e−2 x − 9e−2 y − 7 e−x−3 y + 6 e−4 y−x + 15 e−y + 2 e−2 x−3 y + 3 e−x

− 3 e−x−y − e−2 x−6 y
)
a2/9 +

(
− 30 e−y + 3 e−x−2 y − 1 e−2 x−3 y + 18 e−2 y

+ 10 e−x−3 y − 9e−4 y−x + e−2 x−6 y + e−2 x−y − e−2 x−4 y
)
a/9

− 1/3 e−x−2 y + 1/3 e−4 y−x + 1/18 e−2 x−4 y − e−2 y − 1/36 e−2 x−2 y − 1/36 e−2 x−6 y

+ 5/3 e−y − 5/18 e−x−3 y + 1/6 e−x−y

e(a) =
(
1/3 e−x − 1 + e−y − 1/3 e−x−3 y

)
a + 1 − e−y − 1/6 e−x−y + 1/6 e−x−3 y

where these values were computed symbolically using equations (1)-(3), using COAL for the
gene tree probabilities pn,i(λ), and simplifying in the software MAPLE.

The optimal value of a is difficult to find analytically as a function of x and y; however,
for fixed x and y, one can equivalently find the optimal value of v(a)/e2(a), which is a ratio-
nal function with both numerator and denominator being quadratic functions in a, and the
minimum of this function can be found analytically. For (x, y) = (0.05, 0.05), for example, the
optimal value is a ≈ 0.767. This value is close to a = 3/4, which is equivalent to the numbering
scheme (4, 3, 0). The coefficient of variation as a function of a is shown in Figure 2 for a few
choices of (x, y) and for species trees σ4,1.

We compute sample sizes required to get a 95% chance that a random sample of N loci
results in DCD −DBC > 0 for two choices of (x, y) in Table 2. In the table, the root is difficult
to resolve, and for x = 1.0, the fact that A and B form a clade is less to difficult to infer. We
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note that for (x, y) = (0.05, 0.05), the numbering scheme (4, 3, 1) does best among those listed,
while for (x, y) = (0.05, 1.0), the numbering scheme (4, 3, 0) does best amongst the same set of
numbering schemes.

We note that choosing a to maximize the probability that DCD − DBC > 0 does not nec-
essarily maximize the probability that the STAR tree matches the species tree. In particular,
for (x, y), if x is small and y is large, then DCD −DBC > 0 with high probability, and the more
difficult relationships to resolve will be those between taxa A, B, and C. In this case, it might
make sense to find a that maximizes the probability that DBC − DAB > 0, and sample sizes
sufficient for DCD − DBC > 0 are unlikely to be sufficient for DBC − DAB > 0 to obtain.

The sample sizes here are only for being 95% confident that DCD − DBC > 0, which does
not guarantee that the correct species tree will be estimated, although in practice, this is
often the case. For the scheme (4, 3, 0), a sample size of 548 is needed for 95% confidence that
DCD − DBC > 0 when (x, y) = (0.05, 0.05). In simulation, a sample size of 500 recovered the
species tree only 84.9% of the time, although by formula (4), a sample size of 500 should have
a 94% (= Φ(1.571)) that DCD − DBC > 0. It is not surprising that sample sizes needed to
recover the entire tree are somewhat larger than what is needed to estimate the inequality, as
for example, DCD −DBC > 0 does not guarantee that DAB is the smallest estimated distance,
although this is necessary to correctly estimate the species tree.

An alternative approach to guaranteeing that a particularly difficult inequality is estimated
correctly with high probability is to guarantee that all pairwise inequalities are estimated cor-
rectly. Given the lack of independence between pairwise distances, this is difficult to do exactly.
However, using Bonferroni’s inequality, k events (not necessarily independent or equiprobable),
that each have probability at least 1−ε/k, all occur with probability at least 1−ε.19 Thus, one
could choose, for example, the sample size needed to correctly determine DCD −DBC > 0 with
probability 1−α = 0.99, and conclude that all

(
4
2

)
= 6 pairwise relationships (and therefore the

correct tree) will be inferred with probability at least 1 − 6α = 0.94. In general, this approach
will be quite conservative (i.e., will overestimate the number of loci needed) if it is based on
the most difficult pairwise inequality. Sample sizes needed for 99% confidence can be obtained
from 95% values by multiplying by [Φ−1(1−0.99)/Φ−1(1−0.95)]2 = (2.326/1.645)2 ≈ 2.00. Thus,
this approach suggests that samples sizes being doubled (for the 4-taxon case) would give
approximately at least as much confidence that the entire tree was estimated correctly as well
as the inequality DCD − DBC > 0.

From the 4-taxon examples, the branch lengths (x, y) = (0.05, 0.05) are in the anomaly

zone, in which the most likely gene tree topology is ((AB)(CD)) rather than (((AB)C)D).20

However, (x, y) = (1.0, 0.05) is not in the anomaly zone (i.e., the most likely gene tree topology
matches the species tree topology) but requires similarly large samples (hundreds of loci) to
recover the species tree with high probability (Table 1). The results are similar to other studies
that have shown that hundreds of loci might be needed to accurately reconstruct the species
tree from gene tree topologies when gene tree discordance is this high.9,21

Pacific Symposium on Biocomputing 2013

268



Table 2. Samples sizes and c.o.v. needed for approximate 95% confidence that
DCD − DBC > 0. The c.o.v. is based on

√
v(a)/e(a) for a single locus.

(x, y) (a0, a1, a2) (1, a, 0) number of loci needed c.o.v.

(0.05, 0.05) (4, 3, 2) (1, 0.5, 0) 655 15.553
(0.05, 0.05) (4, 3, 1) (1, 0.67, 0) 564 14.428
(0.05, 0.05) (4, 3, 0) (1, 0.75, 0) 548 14.230
(0.05, 0.05) (4, 3.5, 0) (1, 0.875, 0) 567 14.474
(0.05, 0.05) (4, 2, 1) (1, 0.33, 0) 817 17.375

(1.00, 0.05) (4, 3, 2) (1, 0.5, 0) 726 16.371
(1.00, 0.05) (4, 3, 1) (1, 0.67, 0) 697 16.038
(1.00, 0.05) (4, 3, 0) (1, 0.75, 0) 725 16.358
(1.00, 0.05) (4, 3.5, 0) (1, 0.875, 0) 919 18.428
(1.00, 0.05) (4, 2, 1) (1, 0.33, 0) 791 17.097

4.2. A 5-taxon example

Another example of using different numbering schemes to distinguish difficult-to-resolve
relationships is for the two species trees σ5,1 = (((A,B):x, C):y, (D, E):z) and σ5,2 =

((A,B):u, (C, (D, E):v):w). For σ5,1, if x and y are small while z is relatively large, the most
likely gene tree could have the same topology as σ5,2. Similarly, if v and w are small, while u is
relatively large, a gene tree with the same topology as σ5,1 could be the most likely gene tree
when σ5,2 is the species tree. This example with these two candidate species trees is actually
the smallest example of a “wicked forest”, in which for each of two or more candidate species
trees, the most likely gene tree topology matches a different species tree.20,22 In this example,
the clades {AB} and {DE} might not be very difficult to estimate, and the greatest difficulty
is in deciding on which side of the root taxon C belongs. We note that this example was also
one of the more difficult cases for estimating rooted species trees from unrooted gene trees.23

To get a sense of sample sizes that might be needed to correctly place taxon C, and to
find an optimal numbering scheme (a0, a1, a2, a3) to use with STAR, we consider DCD − DBC .
Here we map the smallest and largest values of the numbering scheme to 0 and 1, respectively,
and consider schemes (1, a1, a2, 0) with 1 > a1 > a2 > 0. A plot of the coefficient of variation is
given in Figure 3 for the species tree (((A,B):x, C):y, (D, E):z) with (x, y, z) = (0.05, 0.05, 1.0),
which shows that larger values of a1 tend to be more efficient, although some efficiency is lost
with value of a1 too close to 1, and that the choice of a1 is more important than the choice of
a2.

Sample size calculations can be done as in the 4-taxon case, using a = (a0, a1, a2, a3) in place
of a in equation (4). Here, a near optimal choice for a is (1.0, 0.88, 0.50, 0.0). This is equivalent
to (5.00, 4.64, 3.5, 2.00) when the smallest and largest values are fixed at 2.0 and 5.0. Similarly,
the standard STAR numbering scheme of (5, 4, 3, 2) is equivalent to (1, 2/3, 1/3, 0). Estimated
expected values, standard deviations, c.o.v. (both estimated and theoretical), and proportion
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Table 3. Expected values standard deviation, c.o.v., and for E[DCD − DBC ] estimated from
finite numbers of loci, and proportion of times the correct species tree was estimated under
the STAR algorithm using species tree (((A,B):x,C):y, (D, E):z). The theoretical c.o.v. is√

V([DCD − DBC ]/n)/E[DCD − DBC ].

Branch lengths numbering loci mean sd c.o.v. proportion
(x, y, z) scheme (theoretical) correct

(0.05, 0.05, 1.0) (5,4,3,2) 10 0.0691 0.336 4.861 (4.841) 0.144
(0.05, 0.05, 1.0) (5,4,3,2) 50 0.071 0.150 2.105 (2.165) 0.255
(0.05, 0.05, 1.0) (5,4,3,2) 100 0.073 0.104 1.434 (1.531) 0.375
(0.05, 0.05, 1.0) (5,4,3,2) 500 0.068 0.046 0.670 (0.684) 0.800

(0.05, 0.05, 1.0) (5,4.64,3.5,2) 10 0.062 0.266 4.308 (4.439) 0.152
(0.05, 0.05, 1.0) (5,4.64,3.5,2) 50 0.054 0.106 1.964 (1.985) 0.273
(0.05, 0.05, 1.0) (5,4.64,3.5,2) 100 0.058 0.080 1.376 (1.403) 0.405
(0.05, 0.05, 1.0) (5,4.64,3.5,2) 500 0.055 0.034 0.611 (0.628) 0.865

Fig. 3. C.o.v. as a function of a1 and a2 for the numbering scheme (1, a1, a2, 0) for the species tree
(((A,B):x,C):y, (D,E):z) with (x, y, z) = (0.05, 0.05, 1.0). The drop along the plane a1 = a2 occurs because
of the assumption that a1 > a2.

of STAR trees matching the species tree are shown in Table 3. The sample size needed to
determine DCD − DBC > 0 with 95% confidence is roughly N = 534 with (a0, a1, a2, a3) =

(5.00, 4.64, 3.50, 2.00) and N = 634 with (a0, a1, a2, a3) = (5, 4, 3, 2).
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5. Discussion

This paper has shown a framework for investigating variations on the STAR numbering scheme
for the purpose of evaluating the relative efficiency of different schemes. The original STAR
numbering scheme is well-chosen in that it is simple and works well in a wide variety of
situations – i.e., for both long and short branches in the species trees investigated in this paper,
the original STAR numbering of equally spaced branches often had a relatively low coefficient
of variation, and optimal values for given species tree branch lengths are not necessarily
optimal for other branch lengths. Overall, there is no numbering scheme that is uniformly
optimal — that performs better than any other scheme for all species tree branch lengths.

If there is some knowledge of the species tree topology, in particular nodes that might be
especially difficult to resolve, alternatives to the original STAR numbering scheme can perform
better in some situations. In particular, if a node in the species tree is not very resolved, then
making genes more star-like in the sense of making internal nodes closer to the root than
under the standard STAR algorithm, can lead to improvements in estimating species trees in
terms of the number of loci needed. For a fixed number of loci, this could result in improved
bootstrap support for the problematic nodes. The sample size calculations used in this paper
assume approximately normal distributions for the distances between taxa averaged over many
loci. The normality assumption is more reasonable with large numbers of loci; thus, for branch
lengths for which equation (4) returns a small number of loci, the normality assumption is
less plausible. Instead, equation (4) is intended for use with difficult species trees for which
large sample sizes might be required, making the normality assumption more reasonable.

In this paper, only known gene trees have been used, although in practice gene trees are
estimated with some error. Because topologies can typically be estimated more reliably than
branch lengths, however, STAR and its variations should be less sensitive to misestimation
of gene trees than methods that use branch lengths.9 Although the effects of misestimation
on species tree inference can be simulated directly, we note that theoretical expected values,
variances, and covariances, and therefore sample size calculations do not assume that gene tree
probabilities are obtained directly from the multispecies coalescent. Instead, the probabilities
pn,i used in equations (1) and (2) can come from any model for the gene tree topologies,
including a model that includes error in the gene trees. In particular, if a distribution on
estimated gene trees is obtained, say {p̂i}, then this distribution can be used in equations (1)
and (2), and the relative efficiency of different numbering schemes can be compared on different
distributions of estimated trees. Similarly, effects of other processes, such as horizontal gene
transfer,24 gene duplication,25,26 and hybridization27,28 can be studied as long as distributions
of gene tree topologies can be obtained (either theoretically or estimated through simulations).

Some unanswered questions raised by this study is whether the original STAR numbering
scheme performs best “on average”, perhaps averaged over species trees generated on a Yule
model, and whether one STAR numbering scheme can dominate another — that is, could
one STAR numbering scheme always perform better than another for all possible topologies
and branch lengths in the species tree? The framework used in this paper of using expected
pairwise distances as well as their variances and covariances could be used to investigate these
questions further.
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12. Y. Wang and J. H. Degnan, Stat. Appl. Genet. Mol. 10, p. 21 (2011).
13. T. Gernhard, D. Ford, R. Vos and M. Steel, Evolutionary Bioinformatics Online 2, 285 (2006).
14. J. H. Degnan, N. Rosenberg and T. Stadler, Math. Biosci. 235, 45 (2012).
15. E. S. Allman, J. H. Degnan and J. A. Rhodes, http://www.arxiv/abs/1204.4413 , 23 (2012).
16. J. H. Degnan and L. A. Salter, Evolution 59, 24 (2005).
17. R Development Core Team, R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria, (2012). ISBN 3-900051-07-0.
18. L. Liu and L. Yu, Bioinformatics 26, 962 (2010).
19. S. Ross, A First Course in Probability, 5th edn. (Prentice-Hall, Upper Saddle River, NJ, 1998).
20. J. H. Degnan and N. A. Rosenberg, PLoS Genet. 2, 762 (2006).
21. Y. Wu, Evolution 66, 763 (2012).
22. N. A. Rosenberg and R. Tao, Syst. Biol. 57, 131 (2008).
23. E. S. Allman, J. H. Degnan and J. A. Rhodes, J. Math. Biol. 62, 833 (2011).
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Neighbor-joining is one of the most widely used methods for constructing evolutionary trees. This
approach from phylogenetics is often employed in population genetics, where distance matrices ob-
tained from allele frequencies are used to produce a representation of population relationships in the
form of a tree. In phylogenetics, the utility of neighbor-joining derives partly from a result that for
a class of distance matrices including those that are additive or tree-like—generated by summing
weights over the edges connecting pairs of taxa in a tree to obtain pairwise distances—application
of neighbor-joining recovers exactly the underlying tree. For populations within a species, however,
migration and admixture can produce distance matrices that reflect more complex processes than
those obtained from the bifurcating trees typical in the multispecies context. Admixed populations—
populations descended from recent mixture of groups that have long been separated—have been
observed to be located centrally in inferred neighbor-joining trees, with short external branches
incident to the path connecting their source populations. Here, using a simple model, we explore
mathematically the behavior of an admixed population under neighbor-joining. We show that with
an additive distance matrix, a population admixed among two source populations necessarily lies on
the path between the sources. Relaxing the additivity requirement, we examine the smallest nontriv-
ial case—four populations, one of which is admixed between two of the other three—showing that
the two source populations never merge with each other before one of them merges with the admixed
population. Furthermore, the distance on the constructed tree between the admixed population and
either source population is always smaller than the distance between the source populations, and the
external branch for the admixed population is always incident to the path connecting the sources.
We define three properties that hold for four taxa and that we hypothesize are satisfied under more
general conditions: antecedence of clustering, intermediacy of distances, and intermediacy of path
lengths. Our findings can inform interpretations of neighbor-joining trees with admixed groups, and
they provide an explanation for patterns observed in trees of human populations.

Keywords: admixture; neighbor-joining; phylogenetics; population genetics

1. Introduction

Distance matrix methods in phylogenetics construct trees of taxa using algorithms applied
to matrices that tabulate pairwise evolutionary distances between the taxa.1,2 Among these
methods, neighbor-joining3,4 is one of the most popular.5–7 One of its key features is its con-
sistency: if the distance matrix is additive, such that a tree of taxa exists that generates the
distances in the matrix, then neighbor-joining recovers this exact tree.5,8,9 Further, neighbor-
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Fig. 1. Properties observed for admixed taxa in neighbor-joining trees. Taxon t8 represents an admixture of
source populations t1 and t2. The admixed taxon appears on a short external branch incident to the path
connecting the source populations. Denoting distances on the tree by d̂ and topological path lengths that count
edges separating pairs of taxa by b̂, the tree illustrates the properties of intermediacy of distances (d̂t1,t8 < d̂t1,t2
and d̂t2,t8 < d̂t1,t2 , or equivalently, d̂u,t8 < d̂u,t1 and d̂u,t8 < d̂u,t2 , where u is the unique node that places t1,

t2, and t8 in different subtrees), and intermediacy of path lengths (b̂t1,t8 ≤ b̂t1,t2 and b̂t2,t8 ≤ b̂t1,t2).

joining is robust in that theoretical and simulation-based studies have found it to infer sensible
trees under a broad range of mathematical and biological conditions.7,9–13

As trees have long been used in population genetics to describe relationships among pop-
ulations,14,15 the neighbor-joining algorithm has been applied extensively as a population
clustering tool, using distance matrices calculated from population-level allele frequencies. In
humans, neighbor-joining trees have been and continue to be a regular feature of studies of
population relationships.16–20 In population-genetic studies, because migration and admixture
sometimes generate evolutionary histories that cannot easily be described by a bifurcating tree
of populations, a neighbor-joining tree is treated as a type of population clustering diagram
rather than a precise representation of the evolutionary history of the populations.

When neighbor-joining has been used with admixed populations—populations recently
descended from two or more source groups that have long been separated—particular charac-
teristics of the inferred trees have often been observed (Fig. 1). For example, one simulation
study based on human data identified a reduction in the external branch length leading to an
admixed population as the strength of gene flow with other populations was increased.21 It
has also been suggested on the basis of observed human population trees that a short external
branch for a population on a constructed neighbor-joining tree can imply recent admixture
of the population, and that admixed populations often appear in the “middle” of a neighbor-
joining tree, on branches incident to paths connecting possible source populations.21–25 This
pattern is evident in Fig. 2, in which admixed Mestizo populations from Latin America lie on
branches incident to the path connecting Native American and European populations. Here,
we seek to understand these results on the behavior of admixed populations in the application
of the neighbor-joining algorithm. We therefore apply neighbor-joining to populations that
satisfy a simple admixture model, first considering the case in which the distance matrix is
additive. Next, for the case of n = 4 taxa, we use a mechanistic mathematical investigation to
examine three specific properties of neighbor-joining trees involving an admixed population.
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Fig. 2. Neighbor-joining tree of admixed Mestizo populations together with Native American and European
populations that represent ancestral source regions for the admixed populations. The tree, obtained using
Neighbor and Drawtree in the Phylip package,26 uses data on 678 microsatellite loci in 13 Mestizo, 26 Native
American, and 8 European populations.27–29 Allele frequencies were computed from 872 individuals—249
Mestizo, 463 Native American, and 160 European—and distances were computed with Microsat30 using one
minus the proportion of shared alleles.31 Mestizo, Native American, and European branches appear in yellow,
purple, and blue, respectively. Mestizos lie in the “middle” of the tree, connecting to the path that links the
Native Americans and Europeans. External branches for Mestizo populations are shorter on average (0.102)
than for Native American (0.146) and European populations (0.109); Mestizo populations have 9 of the 15
shortest external branches.

2. The neighbor-joining algorithm

We briefly review the neighbor-joining algorithm.3,4 Consider a set of n taxa, together with a
distance function d computed for each pair of taxa, such that the distance between taxa i and
j is denoted dij. The algorithm takes as input the distance matrix D containing entries dij,
with i and j ranging from 1 to n, and it outputs a bifurcating unrooted tree. D is symmetric
(dij = dji), with zeroes on the diagonals (dii = 0) and nonnegative real entries (dij ≥ 0).

As in other agglomerative algorithms that construct bifurcating trees,2,32 at each of a series
of steps, the two nearest taxa according to a selection criterion are connected to a new interior
node, becoming “neighbors” on the constructed tree. Branch lengths from the new node to the
nodes it agglomerates, as well as the distances to all remaining nodes, are then calculated, and
a new distance matrix is obtained. This procedure is repeated iteratively until the last three
nodes remain, and these three nodes are then connected to a final interior node. Because the
last three nodes are always joined, the number of taxa must exceed three for neighbor-joining
to have a nontrivial decision at the first step.

At each step, the key decision is the choice of the pair of taxa that are agglomerated.
Neighbor-joining uses an n× n matrix Q, containing entries qij for pairs of taxa (i, j):

qij = (n− 2)dij −
n∑

k=1

dik −
n∑

k=1

djk. (1)
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The two taxa that are agglomerated are those with the minimal value of qij (choosing randomly
in case of ties). If taxa i and j are agglomerated, then their distances to the new node u become

diu =
1

2
dij +

1

2(n− 2)

(
n∑

k=1

dik −
n∑

k=1

djk

)
(2)

dju =
1

2
dij +

1

2(n− 2)

(
n∑

k=1

djk −
n∑

k=1

dik

)
. (3)

The distances of all remaining nodes k to node u are computed as

dku = (dik + djk − dij)/2. (4)

The next agglomeration then proceeds from an (n− 1)× (n− 1) distance matrix that replaces
distances involving nodes i and j with those involving the single node u.

3. An admixture scenario

We examine a scenario in which one of the taxa is admixed among two of the others. This
taxon can be viewed as having been formed from its two source taxa, such that individual
members of the taxon have ancestors in both source groups. We label the taxa t1, t2, . . . , tn.
Without loss of generality, let taxon tn be the admixed group, and suppose that it is an
admixture of taxa t1 and t2. The relationships among the remaining n−3 taxa (t3, t4, . . . , tn−1)
and between these taxa and t1, t2, and tn are not specified; we do not consider any additional
admixture relationships that might exist among these taxa. We assume n ≥ 4, so that at least
one taxon is considered in addition to t1, t2, and tn.

In a standard statistical model of admixture used in population genetics, allele frequencies
in an admixed taxon are given by linear combinations of the allele frequencies of the source
taxa.33–37 We denote by λ the proportion of the ancestry of taxon tn arising from t1 and by
1− λ the corresponding proportion arising from t2, where 0 < λ < 1. For any allelic type, if pti
denotes the frequency of the specified allele in taxon ti, then

ptn = λpt1 + (1− λ)pt2 . (5)

It follows that if for each of the taxa in a pair, a distance function d is linear in each component
of the allele frequency vector at a locus, then the distances between the admixed taxon and
other taxa are obtained as linear combinations of corresponding distances involving taxa t1
and t2. Therefore, for 1 ≤ i ≤ n− 1,

dtn,ti = λdt1,ti + (1− λ)dt2,ti . (6)

Eq. 6 continues to hold if for a series of loci, the distance function d is linear for each taxon
in each component of the allele frequency vector at each locus, as would occur if the distance
between a pair of taxa at a set of loci were computed as the mean of locus-wise distances that
were each linear in the components of the allele frequency vector at the specified locus.

We assume that the distance function supplied to neighbor-joining satisfies eq. 6, and that
it is symmetric, nonnegative, and zero if and only if it is computed between a taxon and itself;
we otherwise do not concern ourselves with the form of the function. While typical population-
genetic distance functions often involve nonlinear relationships with allele frequencies and do
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not necessarily follow eq. 6—consider the nonlinear graphs in Figure 3 of Boca & Rosenberg,38

which illustrate that for the FST measure and an admixed population tn whose frequencies
are linear combinations of those of populations t1 and t2, FST (tn, t1) ̸= λFST (t1, t1) + (1 −
λ)FST (t2, t1)—eq. 6 is a natural extension of the ubiquitous eq. 5 from allele frequencies to
distance functions. For FST , it can be shown from eqs. 1 and 7 of Boca & Rosenberg38 that
for small λ, FST (tn, t1) ≈ λFST (t1, t1) + (1 − λ)FST (t2, t1). Thus, we view eq. 6 as a reasonable
first approximation for examining properties of neighbor-joining in an admixture scenario.

4. The neighbor-joining algorithm in an admixture scenario

Our goal is to construct a distance matrix according to the admixture rule in eq. 6, mechanis-
tically apply neighbor-joining to the matrix, and characterize the properties of the inference
process and the resulting inferred tree. We examine two settings. In the first, arbitrarily many
taxa are considered, and their distances produce an additive distance matrix (and therefore
satisfy a tree metric39). In the second, a general matrix is investigated, with distances that do
not necessarily follow a tree metric, but the matrix includes only four taxa.

4.1. The additive case for n taxa

We first assume that the distance matrix is additive. In this case, by the consistency property of
the neighbor-joining algorithm,5,8,9 distances between taxa on the constructed neighbor-joining
tree exactly equal those of the input matrix. Denote by d̂ the distance function computed for
pairs of nodes in the inferred neighbor-joining tree, such that for taxa ti and tj, d̂ti,tj is the sum
of the lengths of the branches on the path connecting ti and tj. Recalling that d represents
distance in the input distance matrix, if the matrix is additive, then for all (ti, tj),

d̂ti,tj = dti,tj . (7)

Because dt1,tn = (1− λ)dt1,t2 and dt2,tn = λdt1,t2 by eq. 6,

d̂t1,tn = (1− λ)d̂t1,t2 (8)

d̂t2,tn = λd̂t1,t2 . (9)

It follows that d̂t1,tn + d̂t2,tn = d̂t1,t2 , from which we can infer that taxa t1, t2, and tn are collinear
in the inferred neighbor-joining tree, with tn in the interior of the path from t1 to t2.

We can obtain an even stronger result. Consider a case with at least four taxa: t1, t2, tn,
and, without loss of generality, t3 (Fig. 3A). In the inferred neighbor-joining tree, a path of
length c connects taxon t3 to some point P on the path from t1 to t2 (including the endpoints).
Without loss of generality, we can assume that P lies on the path from t1 to tn (including the
endpoints). We denote the distances d̂t1,P and d̂P,tn by nonnegative values y and z, respectively.
We denote d̂t1,t2 = dt1,t2 = x, for some nonnegative x.

By eq. 7, d̂t1,tn = y + z = dt1,tn = (1− λ)x. By eqs. 6 and 7,

dt3,tn = λdt3,t1 + (1− λ)dt3,t2 (10)

d̂t3,tn = λd̂t3,t1 + (1− λ)d̂t3,t2 . (11)

In other words, c+z = λ(c+y)+(1−λ)(c+x−y). Together with the relationship y+z = (1−λ)x

and the assumption that λ > 0, eq. 11 implies that y = 0. It then follows that taxon t3 lies on
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Fig. 3. The case of an additive distance matrix for n taxa. (A) Illustration of distances in the model. In the
text it is shown that y = 0. (B) The structure required for a tree. Taxa t1 and t2 lie at multifurcating nodes,
with tn on the line connecting them. The leaves connected to the multifurcations have labels t3, t4, . . . , tn−1.

a line with taxa t1, t2, and tn. Further, taxon t3 lies on the side of taxon t1 opposite to taxa t2
and tn; otherwise, by eq. 11, we would have (1 − λ)x − c = λc + (1 − λ)(x − c), which requires
c = 0. In turn, c = 0 implies d̂t3,t1 = 0, and hence, dt3,t1 = 0, contradicting the assumption that
all pairs of taxa are separated by positive distances in the distance matrix.

We have therefore shown that for an additive tree with taxon tn admixed between t1
and t2, any additional taxon beyond t1, t2, and tn must be collinear with t1, t2, and tn, and
must lie exterior to the path connecting t1 and t2. Thus, each additional taxon t3, t4, . . . , tn−1 is
connected to t1 or t2 by an external branch. The admixture model together with the assumption
of an additive distance matrix imposes such a strong restriction on the set of allowed distance
matrices that it forces all taxa onto a highly constrained tree (Fig. 3B). When we consider
the placement of each taxon t3, t4, . . . , tn−1, we find that this tree has two multifurcating nodes
separated by a line that joins taxa t1 and t2, with tn as the only intervening taxon.

The additive case can assist in explaining phenomena observed empirically with admixed
populations in the application of neighbor-joining:21–25 in the additive case, tn has external
branch length 0, a result compatible with the short external branches detected for admixed
taxa. Further, tn lies on the path connecting t1 and t2, compatible with the observation that
admixed taxa lie in the “middle” of inferred neighbor-joining trees, with external branches
incident to the paths connecting their source taxa. We can thus see that the empirical Fig. 2
resembles Fig. 3B, as the short internal branches among Native Americans and Europeans
give rise to a shape with near multifurcations on each side of the admixed Mestizo groups.

4.2. The case of n = 4 taxa, not necessarily additive

The additive case is restrictive and atypical of the population-genetic context, in which migra-
tion and admixture generate non-tree-like evolution. We can then consider the more general
setting of arbitrary genetic distance matrices with positive entries, examining the smallest
nontrivial case, with n = 4 taxa. In this case, the admixed taxon is t4, with source taxa t1 and
t2. We set the distances among taxa t1, t2, and t3 to be dt1,t2 = x, dt1,t3 = y and dt2,t3 = z, for
some positive x, y, and z. Employing eq. 6, the distance matrix D has the form:

D =


0 x y (1− λ)x

x 0 z λx

y z 0 λy + (1− λ)z

(1− λ)x λx λy + (1− λ)z 0

 . (12)
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Fig. 4. The three possible topologies for n = 4 taxa. Node u is the unique node that places t1, t2, and t4 in
different subtrees.

Using eq. 1 to calculate the matrix Q used in deciding which taxa will agglomerate, we obtain

Q =


0 q1 q2 q3
q1 0 q3 q2
q2 q3 0 q1
q3 q2 q1 0

 , (13)

where

q1 = −(x+ y + z) (14)

q2 = −(2− λ)x− λy − (2− λ)z (15)

q3 = −(1 + λ)x− (1 + λ)y − (1− λ)z. (16)

Examining the relationships among q1, q2, and q3, we have that

q1 < q2 ⇔ x+ z < y (17)

q1 < q3 ⇔ x+ y < z (18)

q2 < q3 ⇔ y < (1− 2λ)x+ z. (19)

As in the work of Eickmeyer & Yoshida,40 we partition the four-dimensional space of possible
values of (λ, q1, q2, q3) according to the tree topologies produced by neighbor-joining.

Three tree topologies are possible with the four taxa (Fig. 4). In Fig. 4A, taxon t4 is
separated by three edges from taxa t1 and t2, which themselves are separated by only two
edges. In Fig. 4B, t4 is separated by two edges from t2 and by three edges from t1; t1 and t2
are separated by three edges. Taxa t1 and t2 are also separated by three edges in Fig. 4C, but
t4 is instead separated by two edges from t1 and by three edges from t2.

Seven possibilities exist for the smallest entry of Q: (1) q1, (2) q2, (3) q3, (4) q1 and q2
(tied), (5) q1 and q3 (tied), (6) q2 and q3 (tied), and (7) q1, q2, and q3 (all tied). Each choice
leads to a particular outcome among the three tree topologies in Fig. 4, with two or more
topologies being possible outcomes in cases that involve ties. For each value among q1, q2,
and q3, two pairs of taxa produce the same value in the matrix Q. It can be shown that in
each case, either choice of which pair is first to agglomerate leads to the same inferred tree.
Without loss of generality, we choose the pair that does not include taxon t3.

Four of the seven cases are not possible. In case 1, summing x + z < y and x + y < z in
eqs. 17 and 18, we obtain x < 0. In case 4, setting q1 = q2 in eq. 17, x + z = y, from which
we obtain x < 0 using x + y < z in eq. 18. Similarly, in case 5, q1 = q3 in eq. 18 produces
x < 0 using x+ z < y in eq. 17. In case 7, eqs. 17-19 become equalities, leading to x = 0 when
x+ z = y is substituted into eq. 19. All of these cases contradict the assumption that x > 0.
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We consider the three allowable cases (cases 2, 3, and 6). For each of the possible inferred
neighbor-joining trees, denote by u the unique interior node that places taxa t1, t2, and t4 in
distinct subtrees (Fig. 4). Denote by d̂ the distance between nodes on the inferred tree. In
case 2, q2 is smallest, taxa t2 and t4 agglomerate first, and using eqs. 2-4, we obtain

d̂u,t2 = (λ/4)(3x− y + z) (20)

d̂u,t4 = (λ/4)(x+ y − z) (21)

d̂u,t1 = (1− λ)x. (22)

We can show that d̂u,t4 < d̂u,t2 and d̂u,t4 < d̂u,t1 . The first of these two inequalities is equivalent
to λy < λ(x+ z), which holds because λ > 0, and because y < x+ z by eq. 17. For the second
inequality, note first that y < (1− 2λ)x+ z by eq. 19. Substituting the right-hand side in place
of y in eq. 21, d̂u,t4 is less than [2λ(1−λ)]x/4, which in turn is less than d̂u,t1 because 0 < λ < 1.

In case 3, q3 is smallest, taxa t1 and t4 agglomerate first, and using eqs. 2-4, we obtain

d̂u,t1 = [(1− λ)/4](3x+ y − z) (23)

d̂u,t4 = [(1− λ)/4](x− y + z) (24)

d̂u,t2 = λx. (25)

Similarly to case 2, we show d̂u,t4 < d̂u,t1 and d̂u,t4 < d̂u,t2 . The first inequality is equivalent to
(1− λ)z < (1− λ)(x+ y), which holds because λ < 1, and because z < x+ y by eq. 18. For the
second equality, (1 − 2λ)x + z < y by eq. 19. Substituting the left-hand side in place of y in
eq. 24, d̂u,t4 is less than [(2λ(1− λ)]x/4, which in turn is smaller than d̂u,t2 because 0 < λ < 1.

Finally, in case 6, q2 and q3 are tied with the smallest values, and either t2 and t4 agglom-
erate first as in case 2, or t1 and t4 agglomerate first as in case 3. Neighbor-joining produces
the tree in Fig. 4C with probability 1/2, and the tree in Fig. 4B with probability 1/2. With
either choice, the same arguments used to demonstrate d̂u,t4 < d̂u,t1 and d̂u,t4 < d̂u,t2 in cases 2
and 3 apply, except that y is equal to (instead of greater than or less than) (1− 2λ)x+ z.

This collection of results demonstrates three phenomena for four-taxon trees built from
distance matrices formed according to our admixture model. (1) The admixed taxon agglom-
erates with one of its two source taxa before the sources agglomerate with each other. Cases
2, 3, and 6 are the only ones allowable, and in these cases, the first neighbor-joining step ag-
glomerates the admixed taxon t4 with one of the sources. (2) Denoting by u the unique node
for which the admixed taxon and its source taxa all lie in different subtrees, the distance on
the neighbor-joining tree of the admixed taxon to u is smaller than the distances to u of both
source taxa. We demonstrated this result in each of the allowed cases, and it therefore holds in
general. (3) The number of edges separating the source taxa on the inferred neighbor-joining
tree, for each source taxon, is greater than or equal to the number of edges separating the
admixed taxon from the source taxon. Only the trees in Figs. 4B and 4C are possible outcomes
of neighbor-joining in our model, and the result holds for each of these trees.

5. Properties

Using the four-taxon results, we can formally define three properties of a distance matrix and
its resulting neighbor-joining tree. The properties are well-defined for arbitrary n, and it is
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possible to evaluate whether a given n-taxon distance matrix satisfies them when neighbor-
joining is applied. All three properties are possessed by all matrices generated by the four-taxon
case of our admixture model.

Property 1: antecedence of clustering. The admixed taxon clusters with one of its source taxa
before the source taxa cluster together. Stated precisely, some clade containing t1 but not t2
or tn merges with some clade containing tn but not t1 or t2, or, some clade containing t2 but
not t1 or tn merges with some clade containing tn but not t1 or t2, before any clade containing
t1 but not t2 or tn merges with any clade containing t2 but not t1 or tn.

Here we allow a clade to have any size, and potentially only a single taxon. In identifying the
steps at which t1, t2, and tn merge into the neighbor-joining tree, as in our four-taxon case,
to ensure that these taxa do not all merge simultaneously at the final stage, we adopt the
convention that if a four-taxon stage is reached in which t1, t2, and tn lie in separate subtrees,
we choose to agglomerate two among these three subtrees rather than agglomerating the third
one with the unique available subtree that does not contain t1, t2, or tn.

Property 2: intermediacy of distances. The distance on the constructed neighbor-joining tree
between the admixed taxon and either of its source taxa is smaller than the corresponding
distance between the two source taxa. That is, d̂t1,tn < d̂t1,t2 and d̂t2,tn < d̂t1,t2 . Equivalently,
if u is the unique node in the constructed neighbor-joining tree for which t1, t2, and tn lie in
different subtrees, then d̂u,tn < d̂u,t1 and d̂u,tn < d̂u,t2 .

Property 3: intermediacy of path lengths. The number of edges separating the source taxa in the
constructed neighbor-joining tree is greater than or equal to the number of edges separating
the admixed taxon and either source taxon. If we define b̂ij as the number of edges in the path
separating nodes i and j in the inferred tree, then b̂t1,t2 ≥ b̂t1,tn and b̂t1,t2 ≥ b̂t2,tn .

We have already demonstrated that in our admixture model, Properties 2 and 3 hold for all
distance matrices in the n-taxon additive case; for Property 2, using eqs. 8 and 9 and 0 < λ < 1,
d̂t1,tn < d̂t1,t2 and d̂t2,tn < d̂t1,t2 . For Property 3, we have shown that for an n-taxon additive
distance matrix, taxon tn lies on the interior of the path connecting t1 and t2, and it is the
only taxon so located. Thus, b̂t1,t2 = 2, while b̂t1,tn = b̂t2,tn = 1, and Property 3 holds.

6. Discussion

We have examined neighbor-joining in a model in which an admixed taxon is produced from
two source taxa, finding that for a four-taxon scenario, distance matrices and their resulting
trees possess three properties: antecedence of clustering, in which the admixed population
clusters with one of the sources before the sources cluster with each other; intermediacy of
distances, in which the distance on the constructed tree between the admixed taxon and either
source taxon is less than the distance between the sources; and intermediacy of path lengths,
in which the number of edges separating the admixed taxon and either source taxon is no
larger than the number of edges separating the sources. We have further shown that for an
arbitrary number of taxa, the latter two properties hold when the distance matrix is additive.

By a mechanistic examination, we have found that our model has features seen in empirical
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Fig. 5. Two possible placements of tn with respect to t1, t2, and ti, illustrating how t1, t2, . . . , tn can have an
additive distance matrix when t1, t2, . . . , tn−1 have an additive distance matrix. For convenience, we illustrate
only one representative taxon ti from among {t3, t4, . . . , tn−1}.

observations of neighbor-joining trees that involve admixed populations. In particular, the
placement of admixed populations on short external branches incident to the paths connecting
their source populations21–25 matches the demonstration in the additive and four-taxon cases
of the intermediacy of distances and intermediacy of path lengths properties. The theoretical
approach validates the view that populations that are centrally located on neighbor-joining
trees and that possess short external branches might be recently admixed.

Our results suggest a broader investigation of the extent to which the three properties
hold with an arbitrary number of taxa. We have not reported a result regarding antecedence
of clustering in the n-taxon additive case, nor have we commented on any of the properties
for general n-taxon distance matrices that are not necessarily additive. However, we expect
that Properties 1-3 will be satisfied by our admixture model considerably more often than in a
model in which no special constraints are imposed on distances that involve the nth taxon. As
our model also involves an nth taxon with special features, the general analysis of the model
might benefit from the “rogue taxon” framework of Cueto & Matsen,41 in which the addition
of an nth taxon alters the tree produced for an initial group of n− 1 taxa.

An additional direction is to study alternative admixture models. Distance methods are
most sensible when a distance is nearly additive; however, eq. 6 severely restricts the distance
matrix, as it forces a structure with two multifurcating nodes. This aspect of the model can
be relaxed by assuming that the distance is additive for taxa t1, t2, . . . , tn−1, and that only
distances involving tn satisfy eq. 6. For 1 ≤ i ≤ n− 1, we can then apply the distance

dtn,ti =

{
dt1,ti − (1− λ)dt1,t2 if (1− 2λ)dt1,t2 ≤ dt1,ti

dt2,ti − λdt1,t2 if (1− 2λ)dt1,t2 ≥ dt1,ti .
(26)

With this distance function, tn is simply placed on the path from t1 to t2 in a preexisting tree
relating taxa t1, t2, . . . , tn−1 (Fig. 5). Properties 2 and 3 continue to hold.

To obtain eq. 26, we first suppose that t1, t2, . . . , tn−1 have an additive distance matrix. We
wish to place taxon tn on the tree that generates the matrix so that the matrix for t1, t2, . . . , tn
is additive. First, given λ, tn is placed on the path from t1 to t2 such that eqs. 8 and 9 are
satisfied. It remains to compute d̂tn,ti for i = 3, 4, . . . , n − 1. Denote by u the unique node of
the tree that places t1, t2, and ti in distinct subtrees (Fig. 5). Then

d̂t1,u = (d̂t1,t2 + d̂t1,ti − d̂t2,ti)/2 (27)

d̂t2,u = (d̂t1,t2 + d̂t2,ti − d̂t1,ti)/2 (28)

d̂ti,u = (d̂t1,ti + d̂t2,ti − d̂t1,t2)/2. (29)
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If d̂t1,tn ≤ d̂t1,u, then tn lies on the path from t1 to u (Fig. 5A), and

d̂tn,ti = d̂u,ti + d̂t1,t2 − d̂t1,tn . (30)

If, on the other hand, d̂t1,tn ≥ d̂t1,u, then tn lies on the path from t2 to u (Fig. 5B), and

d̂tn,ti = d̂u,ti + d̂t1,t2 − d̂t2,tn . (31)

Applying eqs. 8, 9, and 27-29 together with the fact that d̂ = d for additive distance matrices,
we produce the relationship in eq. 26.

Analysis of the three properties using this modified form for the admixture model, or
more generally using specific distance functions commonly employed in population genetics,
will further illuminate the features of neighbor-joining in admixed populations. Such analyses
might also facilitate investigations of the behavior with admixed populations of other tree-
building methods, or of phylogenetic network methods42 that are more directly designed to
accommodate taxa with non-tree-like evolutionary histories.
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The rapid accumulation of whole-genome data has renewed interest in the study of the evolution
of genomic architecture, under such events as rearrangements, duplications, losses. Comparative
genomics, evolutionary biology, and cancer research all require tools to elucidate the mechanisms,
history, and consequences of those evolutionary events, while phylogenetics could use whole-genome
data to enhance its picture of the Tree of Life. Current approaches in the area of phylogenetic analysis
are limited to very small collections of closely related genomes using low-resolution data (typically a
few hundred syntenic blocks); moreover, these approaches typically do not include duplication and
loss events. We describe a maximum likelihood (ML) approach for phylogenetic analysis that takes
into account genome rearrangements as well as duplications, insertions, and losses. Our approach
can handle high-resolution genomes (with 40,000 or more markers) and can use in the same anal-
ysis genomes with very different numbers of markers. Because our approach uses a standard ML
reconstruction program (RAxML), it scales up to large trees. We present the results of extensive
testing on both simulated and real data showing that our approach returns very accurate results
very quickly. In particular, we analyze a dataset of 68 high-resolution eukaryotic genomes, with from
3,000 to 42,000 genes, from the eGOB database; the analysis, including bootstrapping, takes just 3
hours on a desktop system and returns a tree in agreement with all well supported branches, while
also suggesting resolutions for some disputed placements.

Keywords : Maximum likelihood; Phylogenetic reconstruction; Genome rearrangement; Gene dupli-
cation; Gene loss

1. Introduction

1.1. Overview

Phylogenetic analysis is one of the main tools of evolutionary biology. Most of it to date has
been carried out using sequence data (or, more rarely, morphological data). Sequence data can

be collected in large amounts at very low cost and, at least in the case of coding genes, is rela-

tively well understood, but it requires accurate determination of orthologies and gives us only
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local information—and different parts of the genome may evolve at different rates or according

to different models. Events that affect the structure of an entire genome may hold the key to
building a coherent picture of the past history of contemporary organisms. Such events occur

at a much larger scale than sequence mutations—entire blocks of a genome may be permuted
(rearrangements), duplicated, or lost. As whole genomes are sequenced at increasing rates,

using whole-genome data for phylogenetic analyses is attracting increasing interest, especially
as researchers uncover links between large-scale genomic events (rearrangements, duplications

leading to increased copy numbers) and various diseases (such as cancer) or health condi-
tions (such as autism). However, using whole-genome data in phylogenetic reconstruction has

proved far more challenging than using sequence data and numerous problems plague exist-
ing methods: oversimplified models, poor accuracy, poor scaling, lack of robustness, lack of

statistical assessment, etc.

In this paper, we describe a new approach that resolves these problems and promises to
open the way to widespread use of whole-genome data in phylogenetic analysis.

1.2. Prior work

Rearrangement data was first used in phylogenetic analysis 80 years ago by Sturtevant and

Dobzhansky,1 but largely ignored for the next 45 years, until revived by Palmer and Thomp-
son2,3 and Day and Sankoff.4 In the last 30 years, models of whole-genome evolution, their

corresponding distance measures, and algorithms for reconstructing phylogenies under such
models, have been the subject of intense research, for which see the text of Fertin et al.5 As

in sequence-based phylogenetic reconstruction, approaches based on whole-genome data can
be classified in three main categories.

Parsimony-based approaches seek the tree and internal genomes that minimize the total
number of events needed to produce the given genomes from a common ancestor. Blanchette

et al. introduced the first algorithmic approach to the reconstruction of a phylogenetic tree to
minimize the total number of breakpoints—adjacencies present in one genome, but absent in

the other.6 Moret et al. reimplemented this approach in their GRAPPA tool and extended it
to inversion distances—inversions being the best documented of the hypothesized mechanisms

of genomic rearrangements.7 GRAPPA focused on unichromosomal genomes; to handle multi-
chromosomal genomes, Bourque and Pevzner proposed MGR,8 based on GRAPPA’s distance

computations. Whereas BPAnalysis and GRAPPA search all trees and report the one with
the best score (an approach that limits GRAPPA to trees of 15 taxa unless combined with

the DCM approach of Tang and Moret9), MGR uses a heuristic sequential addition method to

grow the tree one species at a time. This heuristic approach trades accuracy for scalability, yet
MGR does not scale well—in particular, it cannot be used to infer a phylogeny from modern

high-resolution data. These various methods are all limited to rearrangements—extensions to
handle genea duplications, insertions and losses appear extremely complex and would further

limit their scalability.

aWe use the word “gene” as this is in fact a common form of whole-genome data, but other kinds of markers
could be used; more generally, the constituents are syntenic blocks.

Pacific Symposium on Biocomputing 2013

286



Distance-based approaches first estimate the pairwise distances between every pair of

leaves, then apply a method such as Neighbor-Joining10 or FastME11 to reconstruct the phy-
logeny from the matrix of pairwise distances. For unichromosomal genomes under inversions,

transpositions, and inverted transpositions, Wang and Warnow showed how to estimate a
true evolutionary distance from the number of breakpoints.12,13 For unichromosomal genomes

evolving under inversions only, an experimental approach was used by Moret et al. to de-
rive an estimate from the inversion edit distance, yielding greatly increased accuracy in tree

estimation under both distance and parsimony methods.14 For multichromosomal genomes,
rearrangement operations can be modeled by a single operation called “Double-Cut-and-Join

(DCJ)”.15 Lin and Moret developed a procedure to estimate the true evolutionary distance
between two genomes under the DCJ model;16 Lin et al. then refined the estimator to include

gene duplication and loss events,17 although that estimator requires knowledge of the direction

of time, something usually missing in phylogenetic estimation. The accuracy of distance meth-
ods depends entirely on the accuracy of distance estimation and any distance estimator suffers

from the saturation problem: as the measured distance increases beyond a certain threshold,
the variance in the estimator grows significantly.

Maximum-likelihood (ML) approaches seek the tree and associated model parameters that
maximize the probability of producing the given set of leaf genomes. Theoretically, such ap-

proaches are much more computationally expensive than both distance-based and parsimony-
based approaches, but their accuracy has long been a major attraction in sequence-based phy-

logenetic analysis. Moreover, in the last few years, packages such as RAxML18 have largely
overcome computational limitations and allowed reconstructions of large trees (with thousands

of taxa) and the use of long sequences (to a hundred thousand characters). It was not until
last year, however, that the first successful attempt to use ML reconstruction based on whole-

genome data was published;19 results from this study on bacterial genomes were promising,
but somewhat difficult to explain, while the method appeared too time-consuming to handle

eukaryotic genomes.

2. Methods

Our approach encodes the whole-genome data into binary sequences using both gene adja-
cencies and gene content, then estimates the transition parameters for the resulting binary

sequence data, and finally uses sequence-based ML reconstruction to infer the tree. We call
our new approach Maximum Likelihood on Whole-genome Data (MLWD).

2.1. Encoding genomes into binary sequences

We represent the genome in terms of adjacency information and gene content as follows. De-

note the tail of a gene g by gt and its head by gh. We write +g to indicate an orientation
from tail to head (gt → gh), −g otherwise (gh → gt). Two consecutive genes a and b can be

connected by one adjacency of one of the following four types: {at, bt}, {ah, bt}, {at, bh}, and
{ah, bh}. If gene c lies at one end of a linear chromosome, then we have a corresponding sin-

gleton set, {ct} or {ch}, called a telomere. A genome can then be represented as a multiset of

adjacencies and telomeres. For example, a toy genome composed of one linear chromosome,
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adjacency information content information

{ah, ah} {at, bh} {at, ch} {bt, ct} {ah, dh} {bt, dt} a b c d

Genome 1 1 1 1 1 0 0 1 1 1 0

Genome 2 0 1 0 0 1 1 1 1 0 1

(+a,+b,-c,+a,+b,-d,+a), and one circular one, (+e, -f), can be represented by the multiset of ad-
jacencies and telomeres {{at}, {ah, bt}, {bh, ch}, {ct, ah}, {ah, bt}, {bh, dh}, {dt, ah}, {ah}, {eh, fh},

{et, f t}}. In the presence of duplicated genes, there is no one-to-one correspondence between
genomes and multisets of genes, adjacencies, and telomeres. For example, the genome com-

posed of the linear chromosome (+a,+b, -d,+a,+b, -c,+a) and the circular one (+e, -f), would
have the same multisets of adjacencies and telomeres as our toy example.

For data limited to rearrangements (i.e. for genomes with identical gene content), we
encode only the adjacency information. For a possible adjacency or telomere, we write 1 (or

0) to indicate its presence (or absence) in a genome. We consider only those adjacencies and

telomeres that exist in at least one of the input genomes. If the total number of distinct genes
among the input genomes is n, then the total number of distinct adjacencies and telomeres is(2n+2

2

)
, but the number of adjacencies and telomeres that appear in at least one input genome

is typically far smaller—in fact, it is usually linear in n rather than quadratic. For the general

model, which includes gene duplications, insertions, and losses in addition to rearrangements,
we extend the encoding of adjacencies by also encoding the gene content. For each gene, we

write 1 (or 0) to indicate the presence (or absence) of this gene in a genome. For the two toy
genomes of Figure 1, the resulting binary sequences and their derivation are shown in Table 1.

2.2. Estimating transition parameters

Since our encodings are binary sequences, the parameters of the model are simply the transition

probability from presence (1) to absence (0) and that from absence (0) to presence (1). Let
us first look at adjacencies. Every DCJ operation will select two adjacencies (or telomeres)

uniformly at random, and (if adjacencies) break them to create two new adjacencies. Each

genome has n+O(1) adjacencies and telomeres (O(1) is the number of linear chromosomes in
the genome, viewed as a small constant). Thus the transition probability from 1 to 0 at some

fixed index in the sequence is 2
n+O(1) under one DCJ operation. Since there are up to

(2n+2
2

)

possible adjacencies and telomeres, the transition probability from 0 to 1 is 2
2n2+O(n) . Thus the

transition from 0 to 1 is roughly 2n times less likely than that from 1 to 0. Despite the restrictive

assumption that all DCJ operations are equally likely, this result is in line with general opinion
about the probability of eventually breaking an ancestral adjacency (high) vs. that of creating

Fig. 1. Two toy genomes.
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a particular adjacency along several lineages (low)—a version of homoplasy for adjacencies.
In the general model, we also have transitions for gene content. Once again, the probabil-

ity of losing a gene independently along several lineages is high, whereas the probability of
gaining the same gene independently along several lineages (the standard homoplasy) is low.

However, there is no simple uniformity assumption that would enable us to derive a formula
for the respective probabilities—there have been attempts to reconstruct phylogenies based

on gene content only,20–22 but they were based on a different approach—so we experimented
with various values of the ratio between the probability of a transition from 1 to 0 and that

of a transition from 0 to 1.

2.3. Reconstructing the phylogeny

Once we have the binary sequences encoding the input genomes and have computed the tran-
sition parameters, we use the ML reconstruction program RAxML18 (version 7.2.8 was used to

produce the results given in this paper) to build a tree from these sequences. Because RAxML
uses a time-reversible model, it estimates the transition parameters directly from the input

sequences by computing the base frequencies. In order to set up the 2n ratio, we simply add
a direct assignment of the two base frequencies in the code.

3. Results

3.1. Experimental Design

We ran a series of experiments on simulated datasets in order to evaluate the performance of

our approach against a known “ground truth” under a wide variety of settings. We then ran
our reconstruction algorithm on a dataset of 68 eukaryotic genomes, from unicellular parasites

to mammalians, obtained from the Eukaryotic Gene Order Browser (eGOB) database.23

Our simulation studies follow standard practice in phylogenetic reconstruction.24 We gen-

erate model trees under various parameter settings, then use each model tree to evolve an
artificial root genome from the root down to the leaves, by performing randomly chosen evo-

lutionary events on the current genome, finally obtaining datasets of leaf genomes for which
we know the complete evolutionary history. We then reconstruct trees for each dataset by

applying different reconstruction methods and compare the results against the model tree.

3.1.1. Simulating phylogenetic trees

A model tree consists of a rooted tree topology and corresponding branch lengths. The trees

are generated by a three-step process. We first generate birth-death trees using the tree gen-
erator (from the geiger library) in the software R25 (with a birth rate of 0.001 and a death rate

of 0), which simulates the development of a model tree under a uniform, time-homogeneous
birth-death process. The branch lengths in such trees are ultrametric (the root-to-leaf paths

all have the same length), so, in the second step, the branch lengths are modified as follows.
We choose a parameter c; for each branch we sample a number s uniformly from the interval

[−c,+c] and multiply the original branch length by es (for the experiments in this paper, we

set c = 2). Thus, each branch length is multiplied by a possibly different random number.
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Finally, we rescale all branch lengths to achieve a target diameter D (the length of the longest
path, defined as the sum of the edge lengths along that path) for the model tree. (Note that

the unit of “length” is one expected evolutionary operation.)
Our experiments are conducted by varying three main parameters: the number of taxa , the

number of genes, and the target diameter. We used two values for each of the first two param-
eters: 50 and 100 taxa, and 1, 000 and 5, 000 genes. For the third parameter, the diameter of the

tree, we varied it from n to 4n, where n is the number of genes. For each setting of the param-
eters, we generated 100 datasets; data presented below are averages over these 100 datasets.

3.1.2. Simulating evolutionary events along branches in the trees

In the rearrangement-only model, all evolutionary events along the branches are DCJ opera-
tions. The next event is then chosen uniformly at random among all possible DCJ operations.

In the general model, an event can be a DCJ operation or one of a gene duplication, gene
insertion, or gene loss. Thus we randomly sample three parameters for each branch: the proba-

bility of occurrence of a gene duplication, pd, the probability of occurrence of a gene insertion,

pi and the probability of occurrence of a gene loss, pl. (The probability of occurrence of a DCJ
operation is then just pr = 1− pd − pi − pl.) The next evolutionary event is chosen randomly

from the four categories according to these parameters. For gene duplication, we uniformly
select a position to start duplicating a short segment of chromosomal material and place the

new copy to a new position within the genome. We set Lmax as the maximum number of genes
in the duplicated segment and assume that the number of genes in that segment is a uniform

random number between 1 and Lmax. In our simulations, we used Lmax = 5. For gene insertion,
we tested two different possible scenarios, one for genomes of prokaryotic type and the other

for genomes of eukaryotic type. For the former, we uniformly select one position and insert a
new gene; for the latter, we uniformly select one existing gene and mutate it into a new gene.

Finally, for gene loss, we uniformly select one gene and delete it.

3.2. Results for simulations under rearrangements

We compared the accuracy of three different approaches, MLWD, MLWD∗ and TIBA. MLWD
(Maximum Likelihood on Whole-genome Data) is our new approach; MLWD∗ follows the same

procedure as MLWD, but does not use our computation of transition probabilities—instead,
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Fig. 2. RF error rates for different approaches for trees with 50 species, with genomes of 1, 000 and 5, 000
genes and tree diameters from one to four times the number of genes, under the rearrangement model.
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it allows RAxML to estimate and set them; finally, TIBA is a fast distance-based tool to

reconstruct phylogenies from rearrangement data,26 which combines a pairwise distance esti-
mator16 and the FastME11 distance-based reconstruction method. We did not compare with

the approaches of Hu et al.19 or those of Cosner et al.,27 because both are too slow and because
the former is also limited by their character encodings to a maximum of 20 taxa. Figures 2

and 3 show error rates for different approaches; the x axis indicates the error rates and the
y axis indicates the tree diameter. Error rates are RF error rates,28 the standard measure of

error for phylogenetic trees—the RF rate expresses the percentage of edges in error, either
because they are missing or because they are wrong.

These representative simulations show that our MLWD approach can reconstruct much
more accurate phylogenies from rearrangement data than the distance-based approach TIBA,

in line with experience in sequence-based reconstruction. MLWD also outperforms MLWD∗,

underlining the importance of estimating and setting the transition parameters before applying
the sequence-based ML method.

3.3. Results for simulations under the general model

Here we generated more complex datasets than for the previous set of experiments. For ex-

ample, among our simulated eukaryotic genomes, the largest genome has more than 20,000

genes, and the biggest gene family in a single genome has 42 members. In our approach,
the encoded sequence of each genome combines both the adjacency and gene content infor-

mation, which makes it difficult to compute optimal transition probabilities, as discussed in
Section 2.2. Thus we set different bias values and compare them under simulation results. If

the transition probability of any gene or adjacency from 0 to 1 in MLWD is set to be m times
less than that in the opposite direction, we name it MLWD(m) (m = 10, 100, 1000). Figure 4

summarizes the RF error rates. Whereas the best ratio in the rearrangement model was 2n (as
derived in Section 2.2), the best ratio under the general model is much smaller. This difference

can be attributed to the relatively modest change in gene content compared to the change in
adjacencies: since we encode presence or absence of a gene, but not the number of copies of

the gene, not only rearrangements, but also many duplication and loss events will not alter
the encoded gene content.
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Fig. 3. RF error rates for different approaches for trees with 100 species, with genomes of 1, 000 and 5, 000
genes and tree diameters from one to four times the number of genes, under the rearrangement model.
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Fig. 4. RF error rates for different approaches for trees with 50 species, with initial genomes of size 1, 000
and 5, 000 and tree diameters from one to four times the number of genes in the initial genome, under the
general model of evolution.

3.4. Results for simulated poor assemblies

High-throughput sequencing has made it possible to sequence many genomes, but the fin-
ishing steps—producing a good assembly from the sequence data—are time-consuming and

may require much additional laboratory work. Thus many sequenced genomes remain broken
into a number of contigs, thereby inducing a loss of adjacencies in the source data. In addi-

tion, some assemblies may have errors, thereby producing spurious adjacencies while losing
others. We designed experiments to test the robustness of our approach in handling genomes

with such assembly defects. We introduce artificial breakages in the leaf genomes by “losing”

adjacencies, which correspondingly breaks chromosomes into multiple contigs. For example,
MLWD-x% represents the cases of losing x% of adjacencies, that is, x% of the adjacencies are

selected uniformly at random and discarded for each genome.
Figure 5 shows RF error rates for MLWD on different quality of genome assemblies under

the rearrangement model. Our approach is relatively insensitive to the quality of assembly,
especially when the tree diameter is large, that is, when it includes highly diverged taxa. Note

that this finding was to be expected in view of the good results of our approach using an
encoding that, as observed earlier, does not uniquely identify the ordering of the genes along

the chromosomes.
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Fig. 5. RF error rates for MLWD on different qualities of genome assemblies, for trees with 50 species, with
genomes of size 1, 000 and 5, 000. with tree diameters from one to four times the number of genes, under the
rearrangement model.
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3.5. Results for a dataset of high-resolution eukaryotic genomes

Figure 6 shows the reconstructed phylogeny of 68 eukaryotic genomes from the eGOB (Eu-

karyotic Gene Order Browser) database.23 The database contains the order information of
orthologous genes (identified by OrthoMCL29) of 74 different eukaryotic species. The total

number of different gene markers in eGOB is around 100, 000. We selected 68 genomes for
their size (the number of gene markers) varying from 3k to 42k; the remaining 6 genomes in

the database have too few adjacencies (fewer than 3, 000). We encode the adjacency and gene
content information of all 68 genomes into 68 binary sequences of length 652, 000. We set the

bias ratio to be 100, according to the result of our simulation studies from Section 3.3. Build-
ing this phylogeny (using RAxML with fast bootstrapping) took under 3 hours of computing

time on a desktop computer.

Fig. 6. The reconstructed phylogeny of 68 eukaryotic genomes

The tree is drawn by the tool iTOL;30 the internal branches are colored into green, yellow
and red, indicating, respectively, strong support (bootstrap value > 90), medium support

(bootstrap value between 60 and 90), and weak support (bootstrap value < 60). As shown
in Figure 6, all major groups in those 68 eukaryotic genomes are correctly identified, with

the exception of Amoebozoa. But those incorrect branches with respect to Amoebozoa do
receive extremely low bootstrap values (0 and 2), indicating that they are very likely to be

wrong. For the phylogeny of Metazoa, the tree is well supported from existing studies.31,32

For the phylogeny of model fish species (D. rerio, G. aculeatus, O. latipes, T. rubripes, and
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T. nigroviridis), two conflicting phylogenies have been published, using different choices of
alignment tools and reconstruction methods for sequence data.33 Our result supports the

second phylogeny, which is considered as the correct one by the authors in their discussion.33

For the phylogeny of Fungi, our results agree with most branches for common species in recent

studies.34,35 It is worth mentioning that among three Chytridiomycota species C. cinereus, P.
gramnis, and C. neoformans, our phylogeny shows that C. cinereus and P. gramnis are more

closely related, which conflicts with the placement of C. cinereus and C. neoformans as sister
taxa, but with very low support value (bootstrapping score 35).35 C. merolae, a primitive red

algae, has been the topic of a longrunning debate over its phylogenetic position.36 Our result
suggests that C. merolae is closer to Alveolata than to Viridiplantae, in agreement with a

recent finding obtained by sequencing and comparing expressed sequence tags from different

genomes.37

Finally, in order to explore the relationship between gene content and gene order, we ran

MLWD∗ on the 68 eukaryotic genomes using only adjacency information as well as using only
content information. The tree reconstructed from adjacency information only is poor, with

even major clades getting mixed—an unsurprising result in view of the huge variation in gene
content among these 68 genomes. The tree reconstructed from gene-content information only

correctly identifies all major groups except Amoebozoa; however, it suffers from some major
discrepancies with our current understanding of several clades. For example, X. tropicalis is

thought to be closer to mammals than to fishes.38 H. capsulatum, U. reesii, and C. immitis
are considered to be in the same order (Onygenales); together with A. nidulans and A. terreus

they are considered to be in the same class (Eurotiomycetes), but S. nodorum is thought to
belong to a different class (Dothideomycetes).35 In this particular dataset, which is a sparse

sampling of the entire eukaryotic branch of the Tree of Life, most genomes differ significantly
in gene content, so that we would expect the tree based on gene-content information to be

close to that obtained with both gene adjacencies and gene content. For a denser sampling or

for a tree of closely related genomes, adjacency information becomes crucial. A distinguishing
feature of MLWD is that it uses both at once and to good effect.

4. Conclusion

In spite of many compelling reasons for using whole-genome data in phylogenetic recon-
struction, practice to date has continued to use selected sequences of moderate length using

nucleotide-, aminoacid-, or codon-level models. Such models are of course much simpler and
much better studied than models for the evolution of genomic architecture. Mostly though,

it is the lack of suitable tools that has prevented more widespread use of whole-genome data:
previous tools all suffered from serious problems, usually combinations of oversimplified mod-

els, poor accuracy, poor scaling, lack of robustness against errors in the data, and lack of any
bootstrapping or other statistical assessment procedures.

The approach we presented is the first to overcome all of these difficulties: it uses a fairly
general model of genomic evolution (rearrangements plus duplications, insertions, and losses of

genomic regions), is very accurate, scales as well as sequence-based approaches, is quite robust

against typical assembly errors and omissions of genes, and supports standard bootstrapping
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methods. Our analysis of a 68-taxon collection of eukaryotic genomes, ranging from parasitic

unicellular organisms with simple genomes to mammals and from around 3,000 genes to over
40,000 genes, could not have been conducted, regardless of computational resources, with any

other tools without accepting severe compromises in the data (e.g., equalizing gene content) or
the quality of the analysis (by using a distance-based reconstruction method). Our analysis also

helps make the case for phylogenetic reconstruction based on whole-genome data. We did not
need to choose particular regions of genomes nor to process the data from the eGOB database

in any manner; in particular, we did not need to perform a multiple sequence alignment.
We were able to run a complete analysis on a “Tree of Life” of all main branches of the

Eukaryota, with very divergent genomes (and hence very large pairwise distances), without
taking any special precautions and without preinterpreting the data (and thus possibly biasing

the output). We could do all of this in a few hours on a desktop machine—in spite of the very

long sequences produced by our encoding. We could run the identical software on a collection
of organellar genomes or of bacterial genomes with equal success (and in much less time).

Naturally, much work remains to be done. In particular, given the complexity of genomic
architecture, current evolutionary models (such as the one we used) are too simple, although

even at that level, we need to elucidate simple parameters, such as the ratio of the transition
probabilities between loss and gain of a given gene. Using different transition probabilities for

adjacencies and for content, by running a compartmentalized analysis, should prove beneficial
on large datasets. Larger issues of data preparation also loom. For instance, moving from an

assembled genome to the type of data we used continues to require manual intervention—
gene-finding, or syntenic block decomposition, are too complex for fully automated proce-

dures. Determination of orthologies, necessary to the identification of syntenic blocks, should
be done on the basis of a known phylogeny: that is, the same interdependence exists at the

whole-genome level between reconstruction and preprocessing (orthology) as at the sequence
level, where it is between reconstruction and alignment. Indeed, most of the methodological

questions that the phylogenetic community has been studying in the context of sequence-

based reconstruction also arise, in suitably modified terms, in the context of whole-genome
data. Our new method provides a first means of empirical enquiry into these questions.
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Incomplete lineage sorting (ILS) is a common source of gene tree incongruence in multilocus analyses.
Numerous approaches have been developed to infer species trees in the presence of ILS. Here we provide
a mathematical analysis of several coalescent-based methods. The analysis is performed on a three-taxon
species tree and assumes that the gene trees are correctly reconstructed along with their branch lengths. It
suggests that maximum likelihood (and some equivalents) can be significantly more accurate in this setting
than other methods, especially as ILS gets more pronounced.

Keywords: Multispecies coalescent, incomplete lineage sorting, gene tree/species tree.

1. Introduction

Incomplete lineage sorting (ILS) is an important confounding factor in phylogenetic analyses based
on multiple genes or loci.1,2 ILS is a population-level phenomenon that is caused by the failure
of two lineages to coalesce in a population, leading to the possibility that one of the lineages first
coalesces with a lineage from a less closely related population. As a result, it can produce extensive
gene tree incongruence that must be accounted for appropriately in multilocus analyses.3

A large number of methods have been developed to address this source of incongruence.4 Several
such methods rely on a statistical model of ILS known as the multispecies coalescent. In this model,
populations are connected by a phylogeny. Independent coalescent processes are performed in each
population and assembled to produce gene trees. Several methods have been shown to be statistically
consistent under the multispecies coalescent, that is, they are guaranteed to return the correct species
tree given enough loci.5–8

The performance and accuracy of coalescent-based multilocus methods have been the subject of
numerous simulation studies.5,9 In this paper, we complement such studies with a detailed analytical
comparison in a tractable test case, a three-taxon species tree. We analyze 7 methods: maximum
likelihood (ML),10 GLASS/Maximum Tree (MT),7,11 R∗,12 STAR,5 minimizing deep coalescences
(MDC),1 STEAC,5 and shallowest coalescences (SC).1 Under the assumption that gene trees are
reconstructed without estimation error, we derive the exponential decay rate of the failure probability
as the internal branch length of the species tree varies. The analysis, which relies on large-deviations
theory, reveals that ML and GLASS/MT are more accurate in this setting than the other methods—
especially in the regime where ILS is more common.
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2. Materials and Methods

2.1. Multispecies coalescent: Three-taxon case

We first describe the statistical model under which our analysis is performed, the multispecies coa-
lescent. We only discuss the three-taxon case. For more details, see Ref. 2 and references therein.

A weighted rooted tree is called ultrametric if each leaf is exactly at the same distance from the
root. For a three-leaf ultrametric tree G with leaves a, b, and c, we denote by ab|c the topology where
a and b are closer to each other than to c, and similarly for ac|b, bc|a. The topology of G is denoted
by T [G].

Let S be an ultrametric species phylogeny with three taxa. We assume that all haploid popu-
lations in S have population size N . We denote the current populations by A, B and C (which we
identify with the leaves of S) and we assume that S has topology AB|C. The ancestral populations
are AB (corresponding to the immediate ancestor to populations A and B) and ABC (correspond-
ing to the ancestor of populations A, B and C). The corresponding divergence times (backwards in
time from the present) are denoted by τAB and τABC with the assumption τAB ≤ τABC. All times are
given in units of N generations. For a population X, we let τPX be the divergence time of the parent
population of X. Let X = {A,B,C,AB,ABC} be the set of all populations in S.

We consider L loci ` = 1, . . . , L and, for each locus, we sample one lineage from each population
at time 0. For locus `, we denote by I(`)X the number of lineages entering population X and by O(`)

X

the number of lineages exiting population X (backwards in time), where necessarily I
(`)
X ≥ O

(`)
X .

Similarly, for k = O
(`)
X +1, . . . , I

(`)
X , the time of the coalescent event bringing the number of lineages

from k to k − 1 in population X and locus ` is T (`,k)
X . We denote by G1, . . . , GL the corresponding

ultrametric gene trees (including both topology and branch lengths).
Then, under the multispecies coalescent, assuming the loci are unlinked, the likelihood of the

gene trees is given by

f(G1, . . . , GL|S) =
L∏
`=1

exp

(
−
∑
X∈X

{(
O

(`)
X

2

)(
τPX − T

(`,O
(`)
X +1)

X

)

−
I
(`)
X∑

k=O
(`)
X +1

(
k

2

)(
T
(`,k+1)
X − T (`,k)

X

)})
, (1)

where we let T (`,I
(`)
X +1)

X = τX for convenience.13

The parameter governing the extent of incomplete lineage sorting is the length of the internal
branch of S

t = τABC − τAB.

The probability that the lineages from A and B fail to coalesce in branch AB, an event we denote by
FAIL` for locus ` (and its complement by SUCCESS`), is

1− p = e−t.

Note that, in that case, all three gene-tree topologies are equally likely. Of course, 1−p→ 1 as t→ 0.
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2.2. Multilocus methods

A basic goal of multilocus analyses is to reconstruct a species phylogeny (including possibly esti-
mates of the divergence times) from a collection of gene trees. Here we assume that the data consist
of L gene trees G1, . . . , GL corresponding to L unlinked loci generated under the multispecies coa-
lescent. We assume further that the gene trees are ultrametric and that their topologies and branch
lengths are estimated without error.

We consider several common multilocus methods. In our setting, several of these methods are in
fact equivalent and we therefore group them below. Note further that we only consider statistically
consistent methods, that is, methods that are guaranteed to converge on the right species phylogeny
(at least its topology) as the number of loci L increases to +∞ in the test case we described above.
We briefly describe these methods. For more details, see e.g. Ref. 4 and references therein.

ML/GLASS/MT Under the multispecies coalescent, maximum likelihood (ML) selects the topol-
ogy and divergence times that maximizes the likelihood (1). ML is implemented in the software
package STEM.10

In the GLASS method,7 the species phylogeny is reconstructed from a distance matrix in which
the entries are the minimum gene coalescence times across loci. The equivalent Maximum Tree
(MT) method was introduced and studied in Refs. 8,11,14.

A key result in Ref. 8 is that, in the constant-population case, the term inside the exponential in
the likelihood (1) is monotonically decreasing in the divergence times. As a result, because GLASS
and MT select the phylogeny with the largest possible divergence times, maximum likelihood is
equivalent to GLASS and MT in this context. See Ref. 8 for details.

R∗/STAR/MDC In the R∗ consensus method,6,12 for each three-taxon set (here, we only have one
such set), we include the topology that appears in highest frequency among the loci (breaking ties
uniformly at random) and we reconstruct the most resolved phylogeny that is compatible with these
three-taxon topologies.

In the STAR method,5 the species phylogeny is reconstructed from a distance matrix in which
the entries are the average ranks of gene coalescence times across loci. Here the root has the highest
rank and the rank decreases by one as one goes from the root to the leaves.

The minimizing deep coalescences (MDC) method1,15 selects the species phylogeny that requires
the smallest number of “extra lineages,” that is, lineages that fail to coalesce in a branch of the species
phylogeny (breaking ties uniformly at random).

On a three-taxon phylogeny, there are only three distinct rooted topologies. In each case, the
most recent divergence is assigned rank 1 in STAR and the other divergence is assigned rank 2.
Hence selecting the topology corresponding to the lowest average rank is equivalent to selecting
the most common topology among all loci—which is what R∗ does. A similar argument shows that
MDC also selects the R∗ consensus tree in our test case.

Other common topology-based methods fall in this class, for instance, Rooted Triple Consen-
sus.16

STEAC/SC In the STEAC method,5 the species phylogeny is reconstructed from a distance matrix
in which the entries are the average coalescence times across loci. The shallowest coalescences (SC)
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method is similar to STEAC in that it uses average coalescence times. The difference between the
two methods is in how they deal with multiple alleles per population. Since we only consider the
single-allele case, the two methods are equivalent here.

2.3. Large-deviations approach

As mentioned above, we consider estimation methods that are statistically consistent in the sense that
they are guaranteed to converge on the correct species phylogeny as the number of loci L increases
to +∞. To compare different methods, we derive the rate of exponential decay of the probability
of failure. Let S be a species phylogeny with internal branch length t and assume that G1, . . . , GL
are unlinked gene trees generated under the multispecies coalescent. As we explain next, large-
deviations theory (see e.g. Ref. 17) allows us to compute the (exponential) decay rate

αM(t) = − lim
L→+∞

1

L
lnP[Method M fails given L loci from S],

that is, roughly

P[Method M fails given L loci from S] ≈ e−LαM(t),

for large L. As the notation indicates, the key parameter that influences the decay rate is the length
of the internal branch t of the species phylogeny. In particular, we expect that αM(t) is increasing in
t as a larger t makes the reconstruction problem easier.

To derive αM(t), we first need to express the probability of failure as a large deviation event of
the form

P[Method M fails given L loci from S] = P

[
L∑
`=1

Y` > yL

]
,

where y is a constant and {Y`}L`=1 are independent identically distributed random variables. The
particular choice of random variables depends on the method, as we describe below. Let

φ(s) = E[esY` ],

be the moment-generating function of Y` (which does not depend on ` by assumption). Then large-
deviations theory stipulates (see e.g. Theorem 2.6.3 in Ref. 17) that the decay rate is given by

αM(t) = ys∗ − lnφ(s∗), (2)

where s∗ > 0 is the solution (if it exists) to
φ′(s∗)

φ(s∗)
= y,

provided there is an s > 0 such that φ(s) < +∞, y > E[Y`] and Y` is not a point mass at E[Y`].

3. Results: Derivations of decay rates

3.1. A domination result

We first argue that, given perfectly reconstructed unlinked gene trees under the multispecies co-
alescent, ML/GLASS/MT always has a greater probability of success than R∗/STAR/MDC and
STEAC/SC—or, in fact, any other method. Indeed note that the probability of success can be di-
vided into two cases:
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(1) The case where SUCCESS` occurs for at least one locus `, an event of probability (1− (1− p)L).
In that case, ML/GLASS/MT necessarily succeeds whereas the other two methods succeed with
probability < 1.

(2) The case where FAIL` occurs for all loci `, an event of probability (1 − p)L. In that case, all
methods succeed with probability 1/3 by symmetry. For instance, for ML/GLASS/MT, any pair
of populations is equally likely to lead to the smallest inter-species distance. A similar argument
applies to the other two methods.

Hence, overall ML/GLASS/MT succeeds with greater probability.

3.2. Decay rates

We derive the decay rates for the methods above. The results are plotted in Figure 1. The asymptotic
regimes are highlighted in Figures 2 and 3. For lack of space, all proofs can be found in Ref. 18.

ML/GLASS/MT In this case, the decay rate can be derived directly without using (2). Following
the derivation in Ref. 7 (see also Ref. 8 for a similar argument), ML/GLASS/MT fails with proba-
bility

1−
[
(1− (1− p)L) + 1

3
(1− p)L

]
=

2

3
(1− p)L =

2

3
e−tL.

Then we get the following:

Claim 3.1 (ML/GLASS/MT). The decay rate of ML/GLASS/MT on S is

αML(t) = t.

R∗/STAR/MDC For a locus `, we let Z(`)
AB be 1 if FAIL` occurs and T [G`] = AB|C, and 0 otherwise

(where recall that T [G`] is the topology of G`). We let

ZAB =

L∑
`=1

Z
(`)
AB.

Similarly, we define Z(`)
AC, Z(`)

BC, ZAC and ZBC. Then R∗/STAR/MDC fails if

ZAB + (L−ZAC −ZBC −ZAB) < max{ZAC,ZBC}.

It can be shown that

αR∗(t) = − lim
L→+∞

1

L
lnP[2ZAC + ZBC > L].

Then we get the following:

Claim 3.2 (R∗/STAR/MDC). The decay rate of R∗/STAR/MDC on S is

αR∗(t) = − ln

(
2

√
1

3
e−t
(
1− 2

3
e−t
)
+

1

3
e−t

)
.

As t→ 0,

αR∗(t) =
3

4
t2 +O(t3),
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and, as t→ +∞,

αR∗(t) ≈ t

2
− 1

2
ln

4

3
.

STEAC/SC For a locus `, we let D(`)
AB be the time to the most recent common ancestor of A and B

in G` (in unit of N generations). We let

DAB =

L∑
`=1

D
(`)
AB.

Similarly, we define D(`)
AC, D(`)

BC, DAC and DBC. Then STEAC/SC fails if

DAB > min{DAC,DBC}.

It can be shown that

αSTEAC(t) = lim
L→+∞

− 1

L
lnP[DAB −DAC > 0].

Then we get the following:

Claim 3.3 (STEAC/SC). The decay rate of STEAC/SC on S is

αSTEAC(t) = − ln

(
3e−s∗t − s2∗e−t

3(1− s2∗)

)
,

where 0 < s∗ < 1 is the unique solution to the fixed-point equation

s∗ =
1

2
[6s∗ − 3t(1− s2∗)]e(1−s∗)t.

Further, as t→ 0,

αSTEAC(t) =
3

8
t2 +O(t3),

and, as t→ +∞,

αSTEAC(t) ≈ t− ln t− 0.1656.

4. Discussion

As can be seen from Figures 1 and 3 as well as from the asymptotics, ML/GLASS/MT does indeed
give a larger decay rate for all t. In fact, the decay rate of ML/GLASS/MT is significantly higher,
especially as t → 0 that is, under high levels of incomplete lineage sorting. For instance, to be
concrete, if L = 500 loci and t = 0.1 (in units of N generations), the probability of failure is
approximately: 1.9 × 10−22 for ML/GLASS/MT; 0.038 for R∗/STAR/MDC; 0.16 for STEAC/SC.
Intuitively, this difference in behavior arises from the fact that ML/GLASS/MT requires only one
successful locus, whereas R∗/STAR/MDC and STEAC/SC rely on an average over all loci.

Comparing R∗/STAR/MDC and STEAC/SCin Figures 1, 2 and 3, note that αR∗(t) is higher than
αSTEAC(t) for small t but that the situation is reversed for large t. In fact, in the limit t → +∞,
αSTEAC(t) grows at roughly the same rate as αML(t) (which is optimal by the domination result). At
large t, STEAC/SC has somewhat of an advantage in that the expectation gap in the failure event
increases linearly with t, whereas it saturates under R∗/STAR/MDC.
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Fig. 1. Decay rates.

The analysis described here ignores several features that influence the accuracy of species tree
reconstruction. Notably we have assumed that gene trees, including their branch lengths, are recon-
structed without error. On real sequence datasets, the uncertainty arising from gene-tree estimation
plays an important role. For instance, although GLASS/MT achieves the optimal decay rate in our
setting, these methods are in fact sensitive to sequence noise because they rely on the computation of
a minimum over loci—the very feature that leads to their superior performance here. See Ref. 5 for
simulation results. Extending our analysis to incorporate gene tree estimation error is an important
open problem which should help in the design of multilocus methods. It is important to note that,
under appropriate modeling of sequence data, ML is not in general equivalent to GLASS/MT and
comparing the sensitivity of these methods to estimation error is an interesting problem.

Other extensions deserve further study. Often many alleles are sampled from each population.
Note that the benefit of multiple alleles is known to saturate as the number of alleles increases.19

This is because the probability of observing any number of alleles at the top of a branch is uniformly
bounded in the number alleles existing at the bottom.

Further, the molecular clock assumption, although it may be a reasonable first approximation in
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Fig. 2. Decay rates as t→ 0. The dotted lines indicate the respective predicted asymptotics. The decay rate for ML is
not shown as it would be almost vertical.

the context of recently diverged populations, should not be necessary for our analysis. One should
also consider larger numbers of taxa, varying population sizes, etc.

Simulation studies may provide further insight into these issues. However an analytical ap-
proach, such as the one we have used here, is valuable in that it allows the study of an entire class
of models in one analysis. It can also provide useful, explicit predictions to guide the design of
reconstruction procedures.

5. Supplementary Material

For lack of space, all proofs can be found in Ref. 18.
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1.  Introduction 

Next generation sequencing has dramatically changed our view of what is achievable in 
genomics. In recent years, research has focused on using next generation sequencing data to 
characterize genomic content and many methods have been developed for de novo sequence 
assembly, identification of genomic variants, detection of splice variants etc. Now that the 
scientific community is equipped with efficient and reliable methods to characterize genomic 
content, it is natural to expect that the vast amount of information generated by these methods will 
be further analyzed to seek answers to fundamental biological and medical questions within the 
context of biological systems. Such questions range from the relationship between genotype and 
phenotype to regulatory mechanisms of development and principles of evolution.  
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Recently, large-scale projects such as the Cancer Genome Atlas (TCGA) Project or the 1000 

Genomes Project have utilized these technologies extensively, driving remarkable conclusions. 
However, the methods that have been utilized therein have been specific to these applications and 
limited in number. Further downstream analyses of NGS data require development of new 
computational techniques to derive biological knowledge from this vast pool of information. 
Importantly, there is great need for new methods for integrating these large datasets within the 
current and emerging research paradigms. From basic science to clinical applications, the –omes 
that are identified can steer research efforts in transformative directions.  

This session will provide a forum for methods and algorithms developed for analysis of 
finalized next-generation sequencing data. Motivated by the flourishing availability of genome 
sequences and related data, novel computational methods that interpret these data for research and 
clinical applications are included in this session. Developing innovative new methodologies and 
tools for analyzing post-NGS datasets will stimulate more basic and clinical investigation. The 
aim of this session is to raise awareness of these challenges in the biocomputing community and 
provide a forum for discussing and disseminating a broad range of computational methods that 
aim to construct this leap.  

2.  Session Summary 

This session includes an invited talk, three reviewed papers contributed as oral presentations, two 
contributed papers as posters and a tutorial prepared by the session chairs. The studies presented in 
this session focus on the development of computational methods to utilize next generation 
sequencing data to further study diverse biological and translational science problems. 

2.1.  Accepted Session Papers 

The following talks will be presented at the Post-NGS session: 
•  “ChIPModule: Systematic discovery of transcription factors and their cofactors from ChIP-

seq data” by Jun Ding, Xiaohui Cai, Ying Wang, Haiyan Hu, and Xiaoman Li. 
• “SHPlace: Fast phylogenetic placement using locality-sensitive hashing” by Daniel G. 

Brown and Jakub Truszkowski. 
•  “Detecting highly differentiated copy-number variants from pooled population 

sequencing” by Daniel R. Schrider, David J. Begun, and Matthew W. Hahn. 
 
The following papers will be presented as posters at the symposium: 

•  “MetaSeq: Privacy preserving meta-analysis of sequencing-based association studies” by 
Angad Pal Singh, Samreen Zafer, and Itsik Pe’er. 

•  “Using BioBin to explore rare variant population stratification” by Carrie B. Moore, John 
R. Wallace, Alex T. Frase, Sarah A. Pendergrass, and Marylyn D. Ritchie 

 
The breadth of research presented in the Post-NGS Session excites us, and we are hopeful that our 
session will help bring together researchers from various fields and lead to fruitful discussions. 
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We consider the problem of phylogenetic placement, in which large numbers of sequences (often next-
generation sequencing reads) are placed onto an existing phylogenetic tree. We adapt our recent work
on phylogenetic tree inference, which uses ancestral sequence reconstruction and locality-sensitive
hashing, to this domain. With these ideas, new sequences can be placed onto trees with high fidelity
in strikingly fast runtimes. Our results are two orders of magnitude faster than existing programs
for this domain, and show a modest accuracy tradeoff. Our results offer the possibility of analyzing
many more reads in a next-generation sequencing project than is currently possible.

Keywords: Phylogenetic placement; Nearest neighbour search;

1. Introduction

In the past few years, advances in sequencing technology have enabled the study of microbial
communities from diverse environments, such as soil,1 ocean,2 and the human body.3 Microbial
ecologists are interested in the diversity of bacteria in a given environment, their evolutionary
origins, and their metabolic relationships. They answer these questions by collecting sequence
data from environmental samples and then comparing them to reference sequences from known
microbial lineages.

Phylogenetics provides a natural framework for investigating the microbial diversity in
these environments. Most microorganisms can be approximately located on the tree of life
for bacteria, and then communities or environments can be characterized by the relative
abundance of certain taxa.4 Or, unusual sequences can be a focus for further investigation
and directed sequencing.5 The first step, however, is to locate each sequence on the tree.

While many phylogenetic algorithms have been developed over the years, the current flood
of sequence data from next-generation sequencing presents new challenges for traditional meth-
ods. The massive amounts of data generated by NGS make traditional phylogenetic inference
computationally prohibitive; indeed, in metagenomic contexts, a common first step is to clus-
ter a data set, possibly consisting of millions of reads and instead analyze just the hundreds
or thousands of cluster centres, which discards much valuable data.4 Another problem is that
environmental sequencing produces short sequence reads, instead of full gene sequences. This
is partly due to inherent difficulties of assembling reads in the presence of sequences from many
different species. For example, reads generated by Illumina have length ≈ 200 bp, which does
not provide sufficiently strong phylogenetic signal for full phylogenetic inference. Maximum
likelihood phylogenies from incomplete sequences tend to be biased towards grouping highly
overlapping sequences together.6

These problems have recently motivated researchers to focus on placing individual envi-
ronmental sequences into a fixed phylogeny, instead of performing full phylogenetic inference
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on the entire set of sequences. This has several advantages. The computational cost is greatly
reduced, as the number of topologies that need to be considered is linear in the size of the
tree for each sequence. By considering each query sequence separately, we also hope to avoid
the biases associated with sequence overlaps. There are currently several programs performing
this task, called phylogenetic placement .6–8 Unfortunately, their speed is insufficient to place
millions of reads, as we see in Section 4.3.

Recently, we have developed a fast and accurate phylogenetic reconstruction algorithm.9

Our algorithm uses hash tables to identify closely related sequences without having to estimate
all
(
n
2

)
distances between sequences. Here, we adapt our technique to phylogenetic placement.

More specifically, we develop the first algorithm that places sequences in a known reference
phylogeny with running time sub-linear in the number of taxa in the reference tree. We show
that our methods are both theoretically grounded and practically useful.

Our algorithm is based on several ideas. First, we use a hash table technique known as
locality-sensitive hashing10 to find a sequence in the tree that is close to the query sequence,
in sublinear time. To make sure that such a sequence exists in the tree, we infer ancestral
sequences at internal nodes of the reference tree. Finally, we use local search to find the optimal
placement of the query sequence in a neighbourhood of the tentative placement discovered by
locality-sensitive hashing. The running time of this procedure is determined by the number of
hash tables needed to find a close enough sequence in the tree, which in turn depends on the
lengths of the edges of the tree. Specifically, if p is an upper bound on the mutation probability
on any edge, and p < 1/2−

√
1/8, then we show that we can do the locality-sensitive hashing,

which is the runtime-determining step, in O(nγ(p) log2 n) time for each sequence to place, where
γ(p) is always less than 1; the overall runtime is thus O(mnγ(p) log2 n) to place m new sequences
onto a reference tree of n taxa. In practice, we choose to use a constant number of hash tables,
reducing this phase to O(log n) time, though there is some runtime required for local search.

A novel algorithmic idea in this paper is to build the hash tables from slowly-evolving
alignment columns. This reduces the probability of a mutation having occurred between two
sequences in one of the hash table columns, which causes the algorithm to require fewer hash
tables to guarantee a hash table collision.

We evaluate our algorithm on a number of synthetic and real data sets. The accuracy of our
algorithm is lower than that of pplacer,6 while its running time is around 2 orders of magnitude
faster, making it a useful tool for handling large data sets. The current implementation of the
local search phase of our method is distance based, and we expect that its accuracy could be
substantially improved using maximum likelihood, at modest cost in running time.

2. Related work

Many tools determine the taxonomic origin of environmental sequences. These tools can be
roughly divided into three categories: those based on phylogenetic modelling, those based on
sequence composition, and those based on homology search. Gerlach11 provides a recent survey
of these methods.

Recently, researchers have developed several tools for placing environmental sequences
onto a reference phylogeny. These methods generally take O(n) time to insert a sequence
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in a tree of n taxa. MLTreeMap8 was the first tool designed for this task. the Evolutionary
Placement Algorithm7 and pplacer6 offer more efficient implementations of the same approach,
which places a sequence optimally at each edge of the phylogeny, and then assigns the overall
maximum likelihood placement as the answer for each individual sequence.

Some software pipelines for analyzing metagenomic data sets employ full phylogenetic
reconstruction. These include TreePhyler12 and CARMA.13 While much progress has been
made in fast phylogeny reconstruction in recent years,9,14,15 reconstructing the full tree remains
much slower than other classification methods.

Another approach is to build a classifier to discriminate between taxonomic groups at dif-
ferent levels of the Linnaean hierarchy. These classifiers do not attempt to model phylogenetic
relationships between different taxa, but instead treat the problem as a supervised classifica-
tion problem at each level of the hierarchy. The features used are usually derived from the
k-mer composition of the sequence, which bypasses the need for aligning sequences. Many such
classifiers have been developed, including PhyloPythia,16 TACOA,17 and PhyMM.18 Taxy19

uses mixture models and k-mers to estimate the relative abundance of different taxonomic
groups in a set of sequences, without attempting to classify each sequence in detail. Taxo-
nomic classifiers are often faster than phylogeny-based methods, but they do not offer the
same explanatory power. Moreover, classifiers based on k-mers tend to behave badly on short
sequences, as they lack sufficient information to distinguish different clades.

Yet another class of approaches uses BLAST20 to determine evolutionary proximity of
sequence reads to known species. Here, environmental sequences are expected to generate
BLAST hits with the sequences they are closely related to. Several algorithms exist for map-
ping sets of BLAST hits to taxonomic classifications, including MEGAN21 and SOrt-ITEMS.22

Unfortunately, if the only close relatives to a sequence in a tree are internal nodes, this ap-
proach will fail; our method will avoid this problem due to our inference of internal sequences.
The BLAST-based approach is also very fragile to short reads.

3. The algorithm

3.1. Overview

The input to the algorithm consists of three parts: the reference phylogeny T , on n taxa,
which includes tree edge lengths; the multiple alignment A of the n sequences in the reference
phylogeny; and a set of m query sequences, each aligned to that reference alignment. Our goal
is to assign each query sequence to the edge where it joins the tree.

Our algorithm consists of the following steps. The first three are a preprocessing phase, and
the resultant data structures could be stored for use, if a given tree and multiple alignment
are going to be used to analyze many different sets of reads.

(1) Estimate evolutionary rates for each column of the reference alignment.
(2) Reconstruct ancestral sequences at each internal node of the reference phylogeny using

maximum likelihood.
(3) Build a collection of hash tables, keyed on slowly-evolving columns of A. Add the keys for

both leaf sequences and ancestral inferences into the hash tables.
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(4) For each query sequence y:

(a) Look for collisions between y and the hash tables. Choose the closest sequence x col-
liding with y.

(b) Examine the neighbourhood of x in T . For each edge e in that neighbourhood, estimate
the distance between e and y. Output the closest edge to y.

In what follows, we explain the details and the motivation behind each of these steps. For
a more detailed discussion of the theoretical issues in this method, the reader is referred to
our previous paper on phylogeny reconstruction.9

3.2. Locality-sensitive hashing

For a given query sequence y, we want to find sequences in T whose distance to y is small. We
use a classical result by Indyk and Motwani10 who solve a similar problem using a collection
of randomized hash tables. We design hash tables so that the probability of y colliding with
a similar sequence is high, and the probability of colliding with a distant sequence is low.
We independently construct many such hash tables so that the probability y collides with a
close sequence in at least one hash table is high. Locality-sensitive hashing has been applied
to many problems in bioinformatics, such as motif finding.23

Specifically, Indyk and Motwani solve a related problem, the (r1, r2)-approximate Point
Location in Equal Balls ((r1, r2)-PLEB):

Input: A set of n sequences P in {0, 1}k, a query sequence q, and radii r1 < r2
Output: Does there exist a sequence p ∈ P within Hamming distance r1k from q? If so,

output “yes” and a sequence within r2k of q. If there is no sequence in P within Hamming
distance r2k from q, output “no”. Otherwise, output either “yes” or “no”.

Indyk and Motwani’s solution constructs nr1/r2 hash tables, each keyed on c log n randomly
chosen sequence positions, where c depends only on r2. Given y, a point within distance r1 of it
has probability at least n−r1/r2 of colliding with y in each hash table, while points further than
r2 from q have O(1/n) probability of colliding. After inspecting a constant number of collisions
with q, we can find, with constant probability, a point whose distance from q is at most r2;
if we boost by running O(log n) times independently, the success probability is 1 − n−α, for
any choice of α. Finding an (r1, r2)-approximate near neighbour for a query point q with high
probability takes O(nr1/r2 log n) hash table lookups, each on a key of length O(log n) bits.

For large trees, parameter r2 can be very close to the expected Hamming distance of unre-
lated sequences.9 For binary characters, r2 converges to 1

2 ; similar constants can be computed
for other mutation models, alphabets, and baseline letter frequencies.

Finding all neighbours within r1 normalized Hamming distance of a sequence y thus takes
O(n2r1+ε log2 n) time with high probability. The additive constant ε, which converges to 0 as
n grows, accounts for error in distance estimates and that r2 converges to 1/2 as n grows. We
use O(n2r1+ε log n) hash tables, each of which requires O(log n) time to examine, and we take
O(log2 n) time examining the hash table hits.
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3.3. Ancestral states

For locality-sensitive hashing to work, we have to ensure that our hash tables contain sequences
sufficiently similar to the query sequence. If the query sequence branches out from an edge
in the reference phylogeny that is not adjacent to a leaf, its distance from any leaf sequence
may be too long for locality-sensitive hashing to work if we only index leaf sequences. We
reconstruct ancestral sequences in the reference tree, using maximum likelihood, and add
these reconstructions to the tables as well. The crucial question is how well the reconstructed
ancestral sequences resemble the actual historical sequences: if a query is near an internal node
in the true tree, and that node’s sequence has been reconstructed well, it will likely result in
a hash table hit, even with few hash tables.

There are several known upper bounds on the probability of incorrectly reconstructing an
ancestral character from the leaf characters. This error probability depends on the edge lengths
in the phylogeny. If most edges in T are very long, the number of errors in the reconstructed
sequences will grow with the level of the internal node, and the reconstructed states at deep
nodes of the tree will be junk, so adding them to the hash table will be pointless. On the
other hand, if the edges are short enough, speciation outpaces mutation, and it is possible to
reconstruct the ancestral state with guaranteed accuracy that does not depend on the size of
the tree.

Evans et al.24 have shown that for Cavender-Farris characters, if all the edge lengths

correspond to mutation probabilities less than 1
2 −

√
1
8 , then internal sequences will be re-

constructed with accuracy at least a constant strictly above 1
2 . Similar results exist for more

realistic evolutionary models, including the GTR model for DNA sequences.25 Gascuel and
Steel26 established a similar result for trees generated from the birth-death process. This is an
important complement to the result by Evans et al., since birth-death trees will usually have a
limited number of long edges. While the mathematical details of these results differ depending
on the evolutionary model and branch length distribution, they all suggest the possibility of
reasonably accurate ancestral sequence reconstruction for trees whose branches have moderate
lengths.

The following is a useful bound by Steel.27

Theorem 3.1. Let T be a phylogenetic tree where all mutation probabilities across edges are
equal to pg < 1/8. The probability perr of incorrectly reconstructing the root state using Fitch
parsimony is bounded by

perr <
1

2
−
√

(1− 4pg)(1− 8pg)

2(1− 2pg)2
< 1− 4pg

We have shown9 that this bound also applies to trees with variable edge lengths if Felsen-
stein’s maximum likelihood algorithm is used, rather than Fitch parsimony. Felsenstein’s algo-
rithm has optimal probability of correctly reconstructing ancestral states among all possible
algorithms.

With the bound on perr, we can determine the number of hash tables (and thus the runtime)
required to find a node in the tree that is close to the true placement of the query sequence
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y. Suppose sequences evolve according to the Cavender-Farris model. Let gerr be the distance
corresponding to a mutation probability of perr. If the evolutionary distance between y and
the node that joins it to the tree is gquery, the effective evolutionary distance between the
query and the nearest sequence in the tree is at most gquery + g/2 + gerr. This corresponds to
a mutation probability of 1

2 −
1
2(1 − 2pquery)(1 − 2pg)

1/2(1 − 2perr). The number of hash tables
required is thus bounded by

n1−(1−2pquery)(1−2pg)1/2(1−2perr)

Table 1 shows the running times of the hashing time for a single query, for different values of
pg, assuming for simplicity that pquery ≤ pg.

In practice, we do not know the upper bound on the distance of query sequences to the
tree. The values in Table 1 should be understood only as illustration of the theoretical basis for
our method. In the current version of the software, the number of hash tables per alignment
region is fixed at 4, as this value gave good results for phylogenetic tree reconstruction, and
maintains moderate memory use.

Table 1. Runtime of inserting a new taxon into a tree with n taxa, as a function
of the maximum edge mutation probability

pg 0.01 0.02 0.05 0.075 0.10

runtime n0.05 log2 n n0.10 log2 n n0.27 log2 n n0.43 log2 n n0.61 log2 n

3.4. Local search

Our near-neighbour search procedure finds sequences that are in the vicinity of the correct
placement for query sequence y, with high probability. However, it does not guarantee that the
optimal placement is one of the edges adjacent to the node found. We estimate the distance
between y and each edge e = (x1, x2) near of the colliding sequence x as:

d̂(y, e) =
1

2
(d̂(x1, y) + d̂(x2, y)− d̂(x1, x2)),

estimating d̂(a, b) via the probabilistic model of evolution.
If x1 and x2 are reconstructed ancestral sequences and reconstruction errors at x1 and x2

are independent, then they will not bias the estimate d̂(y, e), as the additive terms in distance
estimates associated with the reconstruction error will cancel out. We examine all edges within
distance d̂(x, y) of node x. The edge e∗ with smallest estimate is chosen as the placement of
y, with pendant edge length d̂(x, e∗). If T has many very long and very short edges, this will
prove slow; in practice this situation is quite rare. If we assume a minimum size for each edge,
and a maximum size beyond which we consider d̂(x, y) too long to be meaningfully estimated,
the neighborhood is of constant size.

For simplicity of implementation, the current implementation of the algorithm ignores
possible dependencies between reconstruction errors. These dependencies could be ameliorated
by using some of the techniques discussed in our previous paper.9 We leave that as future work.

Pacific Symposium on Biocomputing 2013

315



3.5. Accommodating for different read locations

In some cases, the sequences being placed are short reads, much smaller than the total length
of the alignment, and their positions are distributed randomly across the alignment.28 We need
multiple sets of hash tables to make sure that each read is covered by at least one set of LSH
tables. We solve this problem by using a sliding window approach. We construct groups of
hash tables, each corresponding to short regions of the alignment, so that each query sequence
maps to at least one set of hash tables. Specifically, if all reads have at least k′ bases, we divide
the alignment into blocks of length k′/2, and build a separate set of hash tables for each block.
We then sort the reads by their starting position in the alignment and progressively process
each block of hash tables, from the beginning to the end of the alignment. This ensures that
we never have to store more than one set of hash tables in memory. While the sorting process
adds a factor of logm to the running time per query sequence (where m is the number of query
sequences), in practice this cost is negligible, and can be avoided with counting sort.

3.6. Choosing slow-evolving sites

So far, we have assumed all sites in the alignment evolve at the same relative rate. This is
not true in practice, as genomes, proteins and RNAs contain conserved regions or individual
sites. Rate heterogeneity across sites poses both statistical 29 and computational30 challenges
for phylogenetic inference. However, in our case, we can take advantage of rate heterogeneity
across sites to improve the speed and accuracy of our algorithm. The running time of the
LSH procedure depends on the effective mutation rate between the query sequence and the
nearest sequence in the tree. By choosing hash table keys from slowly evolving columns, we
reduce the number of hash tables needed to ensure a collision with the same probability, or,
equivalently, we enable more distant sequences to be placed correctly using the same number
of hash tables. This is particularly important since biologists are often interested in detecting
previously unknown clades, many of whom are only distantly related to the known organisms.5

We identify slowly-evolving columns by estimating the maximum likelihood relative evolu-
tionary rate for each column in the reference alignment, using the classical Newton-Raphson
method. On the other hand, we also discard near-constant columns where the most common
character appears in more than 95% sequences, as these are not informative.

An important question is how many slowest-evolving columns to choose. If too many
columns are chosen, their average mutation rate will be relatively high. On the other hand, if
we choose too few columns, this will lead to a huge variance in the Hamming distances on these
columns, which will cause hashing to be less informative about the true evolutionary distances
between sequences. We choose to randomly choose from the 200 slowest-evolving columns (not
including the near-constant columns), or the bottom 50% slowest-evolving columns, for short
alignments.

4. Experiments

4.1. Data sets

Our experiments used both simulated and real data. We generated synthetic short read data
sets from a simulated 16S rRNA alignment on n = 78132 sequences from the FastTree paper.14
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The length of the alignment was m = 1287 bases. The data were generated as follows. First, k
taxa were chosen at random from the alignment, and the reference subtree induced by these
taxa on the true tree was recorded. We then generated 100,000 simulated short reads. Each
short read was generated by sampling with replacement from the n−k sequences not included
in the reference tree, and keeping m′ contiguous positions, starting at a uniformly-chosen
position. The read length m′ was chosen from a Gaussian distribution with mean 200 and
standard deviation 20.

For the real data set, we used a metagenomic 16S rRNA Illumina library from Alert,
Nunavut, Canada.31 The reads were located in the V3 variable region of the ribosomal RNA.
The sequences were clustered at 97% identity, which resulted in 27848 sequences with a mean
length of 152 bases, aligned to a reference alignment of 2759 sequences using Infernal.32 For
placement, we used a reference 16S tree from the Living Tree Project.33 The diameter of the
tree was 1.46 mutations per site, and the average distance between two nodes was 0.54.

4.2. Accuracy

Table 2 shows the results of our algorithm and pplacer on the synthetic data sets. Our al-
gorithm was less accurate than pplacer, but placed reads within 3 edges from the correct
location over 90% of the time. For larger trees, both algorithms tended to place sequences
farther from their correct edges in terms of the topological distance (TD). However, the evolu-
tionary distance (ED) between placements and correct locations tended to be lower for larger
trees. Larger reference trees contained more short edges which were hard to distinguish for
both algorithms. The magnitude of these effects was similar for LSHPlace and pplacer.

Table 2. Accuracy of LSHPlace and pplacer on three simulated data sets. LSHplace is less
accurate, but still reasonably close for all data set sizes.

data set
huge.1, 1000 taxa huge.1, 5000 taxa huge.1, 10000 taxa

method % correct ED TD % correct ED TD % correct ED TD
LSHPlace 51.2 0.054 1.12 48.6 0.033 1.17 46.1 0.028 1.34
Pplacer 79.0 0.011 0.30 74.0 0.007 0.39 69.1 0.006 0.51

The predictions of both programs disagreed much more on the real data set. Only 10% of
reads were placed on the same edge by both Pplacer and LSHPlace. The average topological
distance between a pplacer prediction and an LSHPlace prediction for the same sequence was
14 edges, with evolutionary distance 0.20 mutations per site. The medians of these distances
were 10 and 0.15, respectively. We suspect that the accuracy of our algorithm might have
been impacted by the presence of many near-constant sites in the alignment, which could
have had an adverse effect on the accuracy of distance estimates. Obviously, future work is
key to learning more about the accuracy difficulties we encounter with real data.

4.3. Running times and scalability

The running times for both programs are shown in Table 3. Each runtime corresponds to
placing 100,000 reads into a tree of the given size. In all cases, LSHPlace is around 1.5 to 2
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orders of magnitude faster than pplacer.

Table 3. The time to place 100000 taxa
into a tree, as a function of the number
of taxa in the tree

taxa 1000 5000 10000
our algorithm 7m 12m 17m

pplacer 3.8h 6.4m 18.8h

5. Conclusion

We have presented LSHplace, a new algorithm for phylogenetic placement. By using locality-
sensitive hashing, and including inferred ancestral sequences in the hash tables, our algorithm
allows us to approximately locate new sequences onto an existing phylogenetic tree extremely
rapidly; a local-search procedure allows us to then find an optimal placement quickly for each
new sequence. Our work can be used in a variety of domains, but we expect it will be especially
useful in the context of metagenomic sampling, where millions of sequence reads are generated
and analyzed at the same time to characterize environments. Experimental results, while
preliminary, are encouraging, and show that our algorithm speeds up the process of placement
by two orders of magnitude; we currently also take an accuracy penalty, but we expect this
may be ameliorated by incorporating maximum likelihood inference into the program, which
we are currently exploring. Future work will also explore the importance of alignment quality
in the placement process.
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We have developed a novel approach called ChIPModule to systematically discover transcription factors and their 
cofactors from ChIP-seq data. Given a ChIP-seq dataset and the binding patterns of a large number of transcription 
factors, ChIPModule can efficiently identify groups of transcription factors, whose binding sites significantly co-occur 
in the ChIP-seq peak regions. By testing ChIPModule on simulated data and experimental data, we have shown that 
ChIPModule identifies known cofactors of transcription factors, and predicts new cofactors that are supported by 
literature. ChIPModule provides a useful tool for studying gene transcriptional regulation.   

 

1.  Introduction 

Systematic discovery of transcription factors (TFs) and their cofactors is important for 
studying gene transcriptional regulation. During gene transcriptional regulation, TFs and their 

Pacific Symposium on Biocomputing 2013

320



 

 

cofactors bind short DNA segments to activate or repress the expression of genes nearby. In 
general, a TF can bind to a variety of similar DNA segments, called TF binding sites (TFBSs) of 
this TF. The common pattern of the TFBSs bound by a TF is termed a motif, often represented as 
a position weight matrix (PWM) or a consensus sequence. In eukaryotes, multiple TFs often bind 
their TFBSs in short DNA regions of several hundred base pairs long.1-3 These short DNA regions 
are called cis-regulatory modules (CRMs).1 CRMs are common in high eukaryotes.3 For instance, 
more than 110,000 CRMs have been predicted in the human genome and are supported by various 
sources of functional evidence.4,5 It is the interaction of multiple TFs and their TFBSs instead of 
individual TFs that determines the temporal spatial expression patterns of genes.1,4,5 It is thus 
critical to identify and study TFs and their cofactors. 

The chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq) 
experiments provide an unprecedented opportunity for computational methods to study TFs and 
their cofactors.6,7 In a typical ChIP-seq experiment, short DNA segments containing TFBSs of a 
TF are enriched by the chromatin immunoprecipitation (ChIP) using an antibody specific to the 
TF. These short DNA segments are then sequenced by the next generation sequencing 
technologies and mapped to a reference genome.8-11 Finally, genomic regions in the reference 
genome enriched with the mapped DNA segments are identified as ChIP-seq peak regions.12,13 
These ChIP-seq peak regions likely contain TFBSs of the TF under consideration.6,7,14 Compared 
with potential residing regions of the TFBSs of a TF for a gene,4,5 which is often several hundred 
million base pair long, a ChIP-seq peak region is typically no longer than 1000 base pairs. Such 
short regions thus significantly increase the signal to noise ratio and dramatically help to improve 
the efficiency of computational identification of TFBSs of a TF and its cofactors.  

Available computational methods have already started to provide useful prediction of TFs and 
their cofactors from ChIP-seq data.12,14-21 The majority of these computational methods identify 
motifs of individual TFs at a time.12,14-17,19-21 The underlying assumption of these methods is that 
motifs of individual cofactors of a TF are overrepresented in the ChIP-seq peak regions of this TF. 
However, given the fact that a TF has multiple cofactors and motifs of most cofactors only occur 
in a small portion of peak regions under a condition, motifs of individual cofactors may be often 
not overrepresented in the ChIP-seq peak regions of this TF.18,22 Because TFs and their cofactors 
often regulate their target genes by binding to CRMs in eukaryotes, one recent study has 
considered motif co-occurrence of a TF and one of its cofactors.18 However, a TF may bind 
regulatory regions together with more than one cofactor to regulate its target genes.1,4,5 

Here we developed a computational method called ChIPModule to systematically identify TFs 
and cofactors from ChIP-seq data. ChIPModule considers the co-occurrence of TFBSs of any 
number of different TFs in ChIP-seq peak regions. In brief, starting from all known TF motifs in 
public databases,23,24 ChIPModule scans the ChIP-seq peak regions with these motifs to define 
putative TFBSs of these TFs. ChIPModule then identifies frequently co-occurring TFBSs of a 
group of any number of TFs by frequent pattern mining methods.25,26 Finally, ChIPModule 
assesses the statistical significance of each group of TFs with frequent co-occurring TFBSs by the 
Poisson clumping heuristic.27 The significant groups of TFs are called interacting TF groups. The 
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TFs in the same interacting TF group with a given TF are designated as the cofactors of this TF. 
Tested on simulated and experimental data, ChIPModule has been shown to successfully predict 
known cofactors of TFs. It also predicts new cofactors that were supported by literature. 
Compared with other methods, ChIPModule shows superior performance in terms of dealing with 
large datasets and identifying known cofactors. We believe ChIPModule will be useful for future 
ChIP-seq data analysis and gene transcriptional regulation studies.   

2.  Materials and Methods 

2.1.  Framework 

To systematically discover TFs and their cofactors from ChIP-seq data, ChIPModule utilizes 
the known TF motif information in the TRANSFAC database.24 Instead of considering one or two 
TFs at a time, ChIPModule can consider any number of TFs simultaneously. Instead of assuming 
TFBSs of individual TFs are overrepresented in the ChIP-seq peak regions, ChIPModule assumes 
that TFBSs of a group of TFs (a TF and its cofactors) are overrepresented in the ChIP-seq peak 
regions. The framework of ChIPModule consists of the following three steps: prediction of 
putative TFBSs, identification of frequent co-occurring TF groups, and discovery of TFs and their 
cofactors. See Figure 1 for the flowchart of ChIPModule. The details are in the following sections. 

   

Figure 1. The flowchart of ChIPModule to discover TFs and their cofactors. 

2.2.  ChIP-seq Data and Vertebrate Motifs 

We tested ChIPModule on two ChIP-seq datasets and several simulated datasets. The two 
ChIP-seq datasets are corresponding to the two TFs ESR1 and E2F1, respectively. For ESR1, 
which is also called estrogen receptor alpha, the ChIP-seq peak regions defined at the p-value 
cutoff 0.001 were downloaded from the GSM365926 sample in the GEO database.28 In total, we 
obtained 3257 peak regions, with the average length of 595 base pairs. For E2F1, the peak region 
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at the p-value cutoff 0.001 were downloaded from the SYDH TFBS track at the UCSC genome 
browser.29 We obtained 10196 peak regions, with the average length of 878 base pairs for E2F1. 
For each ChIP-seq peak region, we extended it equally on the two sides such that it is at least 800 
base pairs long. This extension is to enhance the chance for cofactors to occur in peak regions, as 
TFBSs of certain cofactors may be not within the originally defined ChIP-seq peak regions. The 
known TF motifs used in the following study were obtained from the TRANSFAC 9.2 database,24 
where all 522 vertebrate PWMs were extracted. Pseudo counts were introduced to regularize each 
PWM, as in previous studies.30,31 

2.3.  Identification of Putative TFBSs in ChIP-seq Peak Regions 

To identify putative TFBSs of a TF in ChIP-seq peak regions, we scan the non-repetitive 
sequences in each peak region and calculate the score of each segment in a peak region by using 
the above regularized PWM of this TF. A slide window is used to define segments. That is, given 
a TF motif of length k and a peak region of length L, we consider all L – k+1 distinct segments. 
We calculate the score of a segment by the following formula:    
∑ log  , . Here  is the average frequency of the nucleotide  in the human reference 

genome, ,  is the frequency of the nucleotide  at the i-th position of the motif PWM, and k 
is the width of the motif. If the score is larger than a predefined cutoff for this TF, this segment 
will be claimed as a putative TFBS of this TF. In this study, the predefined cutoff for each TF is 
defined as the 99.99% quartile of the score distribution of DNA segments of length k, when using 
the PWM of this TF to scan 100 kb long random sequences. The random sequences were 
generated by permuting input sequences from ChIP-seq peak regions. Note that motifs of certain 
TFs may have the tendency to occur together, merely due to the similarity of their PWMs. To deal 
with it, we sort the putative TFBSs by their start positions and discard the overlapped TFBSs with 
the lower score, when the start positions of two putative TFBSs are smaller than 4 base pairs. We 
use 4 base pairs here to remove overlapping TFBSs as in previous studies.31,32 

2.4.  Identification of Groups of TFs with Frequently Co-occurring Motifs in Peak Regions 

We aim to identify groups of TFs whose putative TFBSs co-occur in more than a specified 
number of peak regions, say M peak regions. The rationale is that the chance that multiple TFs 
with their TFBSs co-occurring in a ChIP-seq region is much smaller than that of individual TFs. 
That is, if we observe a group of TFs with their TFBSs co-occurring in a large number of peak 
regions, it is likely their co-occurrence is not by chance and thus this group of TFs likely work 
together to regulate genes. To discover such a group of TFs, we use a tree to represent the above 
identified TFBSs and identify all groups of TFs with their TFBSs co-occurring in at least M peak 
regions (Figure 2). In brief, first, we count the number of peak regions containing TFBSs of each 
TF and sort these TFs according to the corresponding number, from the largest to the smallest. 
Second, we sort the TFBSs in each peak region, such that TFBSs of the TFs occurring in more 
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peak regions rank at the beginning. Third, starting from the first peak region until the last peak 
region, we build a tree to store the TFs whose TFBSs occurring in a peak region (Figure 2). At the 
beginning, a tree with only a root node is built. Next, the nodes for TFs in the first peak region are 
added in order. Finally, nodes for TFs in other peak regions are added, if there is no branch in the 
current tree matching the order of TFs in the peak regions under consideration (Figure 2). With the 
built tree, we will identify all groups of TFs with TFBSs occurring in at least M peak regions. In 
brief, starting from the TF that occurs in at least M peak regions and occurs in the smallest number 
of peak regions, we will obtain all the branches in the built tree that contains this TF. For instance, 
when M=2, we will start from the TF M1 or M6 in Figure 2. Assume we will start from the TF 
M1. In this case, we obtain two branches, M4:3-M3:3-M1:1 and M7:1-M1:1. We will then 
construct a tree using the obtain branches for this specific TF, by assuming each branch represent 
motifs in a peak region. In this case, we will have a tree with the above two branches. It is clear 
that no group of TFs that includes TF M1 and occurs at least M times. Next, we will obtain all 
branches and construct a tree for the TF that occurs in the second smallest number of peak regions. 
Since we already consider the TF M1, this time TF M6 occurs in the second smallest number of 
peak regions. This time we have only one branch that containing M6, which is M4:3-M3:3-M7:2-
M6:2. In this case, it is evident that the group of TFs (M4,M3,M7,M6) co-occur twice in the peak 
regions considered in Figure 2. We will keep considering a TF each time until we find the groups 
of TFs that co-occur at least M times for the TF occurring in the most peak regions. 

 
Figure 2. The procedure to construct a tree to represent TF co-occurrence. 

2.5.  Identification of TFs and Their Cofactors 

With groups of TFs identified above, we want to assess their statistical significance to obtain 
interacting TFs. As mentioned above, a TF in a group of interacting TFs is a cofactor of all other 
TFs in the same group and vice versa. We use the Poisson clumping heuristic27 to compute the 
statistical significance of a group of TFs with the assumption that each TF bind a ChIP-seq peak 
region independently according to a Poisson process. In brief, assume there are N1 ChIP-seq peak 
regions, and the average length of a peak region is L, the total number of known motifs is N2, and 
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λk is the rate parameter of the Poisson process for the k-th TF.  For a group of TFs composed of 
the m1, m2, . . . , mn-th TFs identified above, the probability that TFBSs of the n TFs occur in a 
peak region of length L is  ∏ 1  . The probability that this group of TFs with 
TFBSs co-occurring in at least K peak regions is 1 ∑ CN P   1 P N . Since N2 
TFs can produce CN  different group of TFs by chance, we require P2<0.05/ to claim a group of 
TFs as a group interacting TFs. With the groups of interacting TFs, we then treat each TF and all 
other TFs from the same group of interacting TFs as TFs and cofactors. The genes closest to the 
peak regions containing TFBSs of a group of interacting TFs are defined as the target genes of this 
group of interacting TFs. Similarly, genes closest to the peak regions containing TFBSs of a TF 
are defined as the target genes of this TF. 

3.  Results 

3.1.  ChIPModule Identified Implanted TFs and Their Cofactors in Simulated Data 

We tested ChIPModule on three simulated datasets with five different parameter setups (Table 
1). In each simulated dataset, we generated 2000 to 8000 random sequences, with the length 
distribution of these sequences the same as those in the E2F1 ChIP-seq dataset. We then randomly 
inserted TFBSs of 20 groups of TFs, using known TF PWMs in the TRANSFAC database.24 The 
number of TFs in a group varied from 2 to 13, the largest number of TFs in a TF group from a 
previous study.5 For each group of TFs, we inserted their TFBSs in only 10% randomly chosen 
sequences. We then applied ChIPModule to these simulated datasets with M as the 10% of the 
number of sequences. Recall that M is the minimal number of sequences (peak regions) required to 
contain TFBSs of each TF in a TF group. From Table 1, it is clear that ChIPModule identified as 
many as 17 of the inserted TF groups, which represents a sensitivity of 85% (the percent of 
inserted TF groups predicted). We also calculated the specificity of ChIPModule by checking how 
many percent of predicted TF groups are similar to the inserted TF groups. Note that we could not 
require the predicted TF groups are exactly as the inserted TF groups, since different TFs may 
bind similar motifs. A group of predicted TFs is claimed to be similar to a group of inserted TFs, if 
for each TF in one group, there is one TF in the other group that share a similar motif with the TF 
under consideration. A pair of TFs shares similar motifs if the STAMP p-value of the similarity of 
the two motifs is less than 1E-5, as in previous studies.33-35   

We also noticed that several inserted TF groups were not identified. We hypothesized that 
these TF groups were missed by ChIPModule because not all TFBSs of the TFs in these TF 
groups satisfied the required putative TFBS cutoff used in Section 2.3, or TFBSs of different TFs 
may overlap and some of them were thus discarded. If this hypothesis was true, ChIPModule 
could correctly identify even more inserted TF groups if one used a smaller M. We thus further 
tested two of the smaller datasets using a smaller M. From the last two rows in Table 1, it is clear 
that using a smaller M indeed improved the accuracy of ChIPModule. For instance, ChIPModule 
successfully predicted all inserted TF groups when we used M as 7.5% of the number of 
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sequences. This demonstrates that the developed tool, ChIPModule, can systematically identify 
TFs and their cofactors in ChIP-seq datasets. 
 

Table 1. Correctly Predicted TF groups by ChIPModule on simulated datasets. 
#total 
sequences 

#sequences with 
inserted TFBSs of 
a group of TFs 

M  #Correctly 
predicted TF 
groups  

Sensitivity  specificity 

2000  200  200  17  85%  88.8% 
4000  400  400  15  75%  93.6% 
8000  800  800  12  60%  95.8% 
2000  200  150  20  100%  79.9% 
4000  400  350  16  80%  74.2% 

3.2.  ChIPModule Identified TFs and Their Cofactors in Experimental Data 

We further tested ChIPModule on the two ChIP-seq datasets mentioned above. These two 
datasets were used because the two TFs, ESR1 and E2F1, are well studied. In addition, several 
cofactors are known for each TF. Similar to the simulated studies, we used M as 10% of the 
number of ChIP-seq peak regions we obtained for the two TFs, respectively, when applying 
ChIPModule to the two ChIP-seq datasets.  

In total, we identified 1334 and 6428 groups of interacting TFs in the ESR1 dataset and the 
E2F1 dataset, respectively. The number of TFs in these interacting TF groups is from 2 to 5 for the 
ESR1 dataset (average 2.16), and from 2 to 7 for the E2F1 dataset (average 4.8). To see whether 
ChIPModule predicted these interacting TF groups by chance, we permuted the input sequences 
from the ChIP-seq peak regions in each dataset and applied ChIPModule to these random 
sequences generated by permutation for each TF. We found that ChIPModule predicted 0 and 87 
interacting TF groups in the two permuted random datasets, respectively. The much lower number 
of predicted interacting TF groups demonstrates that ChIPModule has a low false positive 
prediction rate (87/6428=1.35%), which confirms a high specificity of ChIPModule and implies 
the functionality of the majority of the predicted interacting TF groups.  

 
Table 2. Several identified cofactors and their literature support. 

Dataset Known cofactors Supported new cofactors 
ESR1 FOXA36, OCT136, C/EBP36, 

AP-136 
p30037, VDR38 

E2F1 SP139, MYC40 NF-kappaB,41 YY142 
 
We next checked whether ChIPModule identified known cofactors of the two TFs. For the TF 

ESR1, we found a few known cofactors, such as FOXA, OCT1, C/EBP and AP-1 (Table 2).36 For 
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the TF E2F1, we also found several known cofactors, such as SP137 and MYC38 (Table 2). The de 
novo discovery of the known cofactors of the two TFs supports the fact that ChIPModule can 
identify cofactors of TFs from ChIP-seq data.   

Besides known cofactors, ChIPModule also identified new cofactors for the TF ESR1 (Table 
2). ChIPModule predicted that P300 and VDR are also cofactors of ESR1, which are supported by 
literature.37,38 For instance, ChIPModule identified a group of interacting TFs composed of three 
TFs, ESR1, VDR, and COUPTF. The TF VDR was reported to interact with ESR1.38 It is also 
known that ESR1 is regulated by COUPTF, through both direct DNA binding competition and 
protein-protein interactions.43 Moreover, it is suggested that COUPTF plays a master role in 
regulating the transactivation by VDR.44 Based on these studies,38,43,44 it is highly likely that TFs 
in the this predicted interacting TF group interact with each other, which supports the functionality 
of this group of TFs. We further investigated the function of the target genes of this group of TFs 
by the gene ontology (GO) enrichment analysis. The GO enrichment analysis is a common 
approach to test whether a group of gene significantly share functions based on their annotated GO 
terms.45 We found that the target genes of this group of TFs significantly share a function, in utero 
embryonic development (GO:0001701, corrected p-value= 9.66E-05).45 The sharing of functions 
by target genes suggests that these target genes are likely co-regulated, which further supports the 
functionality of this predicted interacting TF group.   

ChIPModule identified new cofactors for the TF E2F1 as well (Table 2). Several of the 
predicted cofactors of E2F1 are supported by literature, such as NF-kappaB and YY1.41,42 For 
instance, ChIPModule predicted a group of interacting TFs consisting of four TFs. These four TFs 
are YY1, E2F1, SP1, and BSAP. The TFs YY1 and SP1 are reported to be interacted with 
E2F1.39,42 It is also known that YY1 interacts with the TFs SP1 and BSAP.46,47 These studies 
suggest that the other three TFs in this group interact with E2F1 directly or indirectly, which 
supports the functionality of this group of interacting TFs. The GO enrichment analysis shown that 
the target genes of this group of TFs significantly share a function, positive regulation of 
transcription factor activity (GO: 0051091, corrected p-value=2.6E-4). Thus, the four TFs in this 
group of interacting TFs likely coordinately regulate their common target genes. 

  

3.3.  A Large Number of Predicted Interacting TF Groups do not Contain the TFs Used for 
the ChIP-seq Experiments 

In the above analysis, we found that a large percentage of predicted interacting TF groups do 
not contain the TFs used for the ChIP-seq experiments. For instance, in the E2F1 ChIP-seq 
dataset, 4782 out of the 6248 predicted interacting TF groups do not contain the TF E2F1. We 
hypothesized that the exclusion of the corresponding TFs in our predictions is most likely due to 
the indirect binding of the corresponding TFs to the ChIP-seq peak regions through the interaction 
with cofactors. In other word, there are at least two types of ChIP-seq peak regions, one bound by 
the corresponding TF directly, the other bound by the cofactor of the corresponding TF that 
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interact with the cofactors. To support this hypothesis, we examined the predicted interacting TF 
groups and found that this is the case for several interacting TF groups. We provided two of such 
supporting examples below.  

Example 1. An interacting TF group composed of the TFs GATA1 and SP1 was found in the 
ESR1 dataset. A previous study has shown that GATA1 interacts with SP1 to regulate their target 
genes.48 In addition, we found that the target genes of SP1 shared the function, synaptic vesicle 
(GO:000802, corrected p-value=9.0E-3). Meanwhile, the target genes of GATA1 shared a similar 
function, synaptic transmission (GO:0007268, corrected p-value=3.0E-2). Consistently, the target 
genes of this interacting TF group significantly shared the function, synaptic vesicle (GO:000802, 
corrected p-value =4.7E-3). The interaction of the two TFs and the consistency of the function of 
individual TFs and the TF group suggest that this group of interacting TFs is likely functional. In 
addition, the TF ESR1 was reported to interact with SP1 in breast cancer cells.49 It is thus likely 
that ESR1 interacts with this group of interacting TFs, which directly bind the ChIP-seq peak 
regions. 

Example 2. The interacting TF group with two TFs ETS and SP1 was identified from the 
E2F1 dataset. Although E2F1 was not included in this group, the two TFs in this group were found 
to interact with E2F1.39,50 A previous study has shown that E2F1 specifically interacts with ETS-
related TFs.50  The TF SP1 has also been found to interact with E2F1.39 Moreover, the ETS TF 
family cooperates with SP1 to activate the human Tenascin-C promoter.51 In addition, the target 
genes of this TF group significantly shared a function, RNA splicing (GO:0008380, corrected p-
value 5.29E-09). Therefore, E2F1 likely interacts with this group of TFs, which directly bind the 
ChIP-seq peak regions. These pieces of evidence support the above hypothesis that the 
corresponding TF indirectly bind the ChIP-seq regions through the interaction with its cofactors. 
 

3.4.  Comparisons with Other Methods 

We attempted to compare ChIPModule with coMOTIF18 and W-ChIPMotifs17. coMOTIF 
jointly considers two motifs in ChIP-seq peak regions, and W-ChIPMotifs is a web application 
tool for de novo motif discovery from ChIP-based high throughput data. Under default parameters, 
coMOTIF took more than a week to run on the ESR1 dataset (3257 peaks, each 595 base pair long 
on average). We could not make it work on the E2F1 dataset, which may be due to the much 
larger data size of this dataset (10196 peaks, each 878 base pair long on average). As to W-
ChIPMotifs, we were unable to obtain a local version of this tool and the online version of this 
tool cannot accept more than 3000 sequences. On the contrary, ChIPModule took about 533 
seconds on the ESR1 dataset and 1129 seconds to run on the E2F1 dataset on a desktop computer 
(Intel core 2 Duo CPU, 2.93 GHz, 4G RAM), which make it suitable for gene transcriptional 
regulation studies based on ChIP-seq experiments. We provide both the command line mode of 
the ChIPModule that can be run on the DOS, Linux, and OS environments and the GUI mode of 
the Windows version ChIPModule. Detailed information about ChIPModule is in the readme file 
on the download package at http://www.cs.ucf.edu/~xiaoman/ChIPModule/ChIPModule.html. 
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Because it is difficult to run W-ChIPMotifs and coMOTIF on the original datasets, we chose 
to compare ChIPModule with the two software tools on the top 100 peak regions of the ESR1 and 
E2F1 datasets. In the top 100 peak regions of ESR1, for the known cofactors FOXA, OCT1,C/EBP,AP-

1,p300, and VDR mentioned above, ChIPModule identified two known co-factors VDR and p300, W-
ChIPMotifs identified C/EBP, and coMOTIF did not identify any of the above co-factors. In the 
top 100 peak regions of E2F1, for the known aforementioned co-factors sp1, myc, NF-kappaB, 
and YY1, ChIPModule identified all four cofactors, W-ChIPMotifs identified sp1, and coMOTIF 
identified the TF combination E2F1 and sp1.  

We also compared ChIPModule with the two tools on simulated data. We inserted TFBSs of 
50 groups of TFs into 10 out of 100 random sequences. There are 43 TFs contained in the 50 
groups. W-ChIPMotifs identified motifs of 10 out of 43 TFs. coMOTIF correctly predicted two 
TFs in 11 out of 50 inserted TF groups. ChIPModule discovered 45 out of 50 inserted TF groups. 
In addition, motifs of 39 out of the 43 inserted TFs have been included in these predictions.  

 

4.  Discussion 

We developed a novel method, ChIPModule, to systematically discover TFs and their 
cofactors from ChIP-seq data. Tested on simulated datasets, ChIPModule identified the majority 
of all planted interacting TF groups. Applied to experimental datasets, ChIPModule identified 
known cofactors and predicted new cofactors, which were supported by literature. ChIPModule 
thus provides a useful method to study gene transcriptional regulation. 

A main assumption in the ChIPModule is that multiple TFs instead of individual TFs regulate 
their target genes under a given condition. This assumption is supported by the GO enrichment 
analysis45 of the target genes of the predicted interacting TF groups and those of individual TFs. 
We found that target genes of 119 out of 150 top groups of interacting TFs (79.33%) have smaller 
GO enrichment p-value than those of individual TFs in the same groups for the ESR1 dataset. 
Meanwhile, target genes of 149 out of 150 top groups of interacting TFs (99.9%) have smaller GO 
enrichment p-value than those of individual TFs in these groups for the E2F1 dataset. Moreover, 
the target genes of a group of interacting TFs often share functions while target genes of individual 
TFs may not share any function. For instance, for the interacting TF group composed of the TFs 
PAX4 and SP1 in the ESR1 dataset, we could find that its target genes significantly share the 
function, negative regulation of follicle-stimulating hormone  secretion (GO:0046882, corrected p-
value=8.18E-005). However, the target genes of PAX4 or SP1 share no similar function.  

In the above study, we found that the predicted interacting TF groups often do not contain the 
corresponding TFs used for the ChIP-seq experiments. We provided concrete examples to support 
the hypothesis that the corresponding TFs could interact with their cofactors, while the cofactors 
directly bind the ChIP-seq peak regions. Note that alternative explanation exists. For instance, if 
we lower the p-value cutoffs used to define putative TFBSs in Section 2.3, or choose a smaller M 
in Section 2.4, we could find more predicted interacting TF groups containing the corresponding 
TFs. However, our experience with the two ChIP-seq datasets and other ChIP-seq datasets5,52 
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suggests that the proposed hypothesis is likely the main reason for the exclusion of the 
corresponding TFs in the predicted interacting TF groups. 

Several options in our developed software make ChIPModule a widely applicable tool for 
studying gene transcription regulation. First, besides using the TF PWMs in public databases,23,24 
users can use self-defined TF PWMs. Second, users can choose different p-value cutoffs to define 
putative TFBSs in ChIPModule. This is necessary, as one wants to use more stringent p-value 
cutoffs for large datasets while use looser p-value cutoffs for small datasets. Third, the discovered 
TFs and their cofactors by ChIPModule are organized in four different formats, which help users 
to study these interacting TF groups at different scales. We believe ChIPModule will be a useful 
tool for future gene transcriptional regulation studies. 
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Rare variants (RVs) will likely explain additional heritability of many common complex diseases; however, 
the natural frequencies of rare variation across and between human populations are largely unknown. We 
have developed a powerful, flexible collapsing method called BioBin that utilizes prior biological knowledge 
using multiple publicly available database sources to direct analyses. Variants can be collapsed according to 
functional regions, evolutionary conserved regions, regulatory regions, genes, and/or pathways without the 
need for external files.   We conducted an extensive comparison of rare variant burden differences (MAF < 
0.03) between two ancestry groups from 1000 Genomes Project data, Yoruba (YRI) and European descent 
(CEU) individuals.  We found that 56.86% of gene bins, 72.73% of intergenic bins, 69.45% of pathway bins, 
32.36% of ORegAnno annotated bins, and 9.10% of evolutionary conserved regions (shared with primates) 
have statistically significant differences in RV burden.  Ongoing efforts include examining additional 
regional characteristics using regulatory regions and protein binding domains.  Our results show interesting 
variant differences between two ancestral populations and demonstrate that population stratification is a 
pervasive concern for sequence analyses.
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1.  Introduction and Background 

In the field of human genetics research, there has been increasing interest in the role of rare 
variation in complex human disease.   This is in many ways a response to changing technology, 
but more importantly a response to the inability to completely explain heritability in common 
complex diseases and recognition of the true multifactorial mechanisms of genetic inheritance. It 
is believed that rare variants (RVs) likely have a larger effect size (compared to genome-wide 
association study (GWAS) findings) and can act alone, in concert with other RVs, or together with 
common variants.  There is increasing evidence to support a role for RVs to contribute to 
common, complex disease.  Recent studies on obesity, autism, schizophrenia, 
hypertriglyceridemia, hearing loss, complex I deficiency, age-related macular degeneration, 
kabuki syndrome, and type-1 diabetes implicate RVs with moderate effect sizes.1–6  

Because of the frequency of RVs and thus the necessary sample size to gain reasonable power, 
association signals for RVs in a simple SNP-phenotype association study are harder to detect.  
Methods can be used to group the RVs and test for group association with disease status.  
Grouping, also known as binning or burden testing, better accounts for genetic heterogeneity and 
the possibility for multiple RVs to act in concert, which would have otherwise been overlooked in 
GWAS.  Collapsing methods are popular for many reasons: to reduce the degrees of freedom in 
the statistical test, easy application to case-control studies (not limited to family transmission 
filtering), applicability to whole-genome data, and an accessible way to enrich association signals 
by combining RVs (often otherwise undetectable).  Several collapsing methods have been 
published in the past five years.2,7–14  

Our BioBin approach meets a critical need for an improved binning algorithm through the 
advantage of prior biological knowledge and potential cumulative effects of biologically 
aggregated RVs. BioBin requires the Library of Knowledge Integration (LOKI), which contains 
diverse prior knowledge from multiple collections of biological data.  BioBin can be used to apply 
multiple levels of burden collapsing/testing, including: regulatory regions, evolutionary conserved 
regions, genes, and/or pathways without a need for an external feature file. Users can define the 
boundaries of a feature based on a specific hypothesis of interest; for example, is there a 
difference in RV burden in regions with known transcription factor binding sites between two 
groups? The adaptable design of BioBin and incorporation of prior biological knowledge provides 
the user with a flexible binning system and the opportunity to test a range of hypotheses. 

While BioBin was specifically developed to investigate RV burden in traditional genetic trait 
studies, this tool is useful for exploring the natural distribution of RVs in ancestral populations. 
Rapid population growth and weak purifying selection has allowed ancestral populations to 
accumulate low frequency variants, many of which are deleterious and potentially causal to human 
disease.15,16 These RVs exhibit ancestral heterogeneity and can be completely unique to a single 
population.  To demonstrate the magnitude of population stratification in RVs, Tennessen et al. 
identified more than 500,000 single nucleotide variants (SNVs) using 15,585 protein-coding genes 
from 2,440 individuals.  Of these SNVs, 86% had a MAF < 0.5% and 82% were population 
specific (European American or African American).16 Others have documented differences 
between ancestral populations using gene drug targets15 and ENCODE data.9,17 A thorough 
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understanding of the distribution of RVs across populations will help uncover unknown 
demographic and evolutionary forces acting on the genome.  Since RVs are likely essential in 
understanding the etiology of common complex traits, it is also critical to understand population 
stratification for the sake of sequence data analysis.  The magnitude of population stratification 
(and consequential inflation of type I error) is not yet known and adequate methods to correct for 
stratification have not been developed.18,19 

Herein we present the methodology of BioBin and the structure of LOKI that provides the 
prior knowledge for assignment of bins in BioBin.  We have tested BioBin using data simulations 
specifying RVs and applied BioBin to European descent (CEU) and Yoruba (YRI) individuals 
from 1000 Genomes Project Phase I data.  Our tests show BioBin is a flexible and effective 
method for biological knowledge directed binning of RV data and highlight the importance of 
investigating RV distribution differences across diverse populations. 

2.  Methods 

2.1.  General framework 

The rare variant analysis occurs in two steps: first, BioBin generates bins based on user-defined 
parameters and information from LOKI; second, the user applies an appropriate statistical 
association test.  To bin, the user can change options in the configuration file to select certain 
database sources, adjust feature types, and/or configure the minor allele frequency (MAF) binning 
threshold.  The MAF binning threshold determines the allele frequency limit under which variants 
are binned.  For example, if the threshold is 0.03, a locus with MAF 0.04 would not be included in 
a bin but a locus with a MAF of 0.029 would be included.  The minor allele at a given locus is 
determined from the second most frequent allele in the control group.  For a biallelic locus, this is 
always the rarer allele.  For a triallelic locus, the MAF reported by BioBin is calculated from the 
second most frequent allele, but all rare alleles are binned.  Common alleles (including loci with 
low frequency variants above the binning threshold) are not binned and are not considered in this 
analysis, but could be combined with RV bins in subsequent statistical analyses. An example of 
major and MAF inclusion/exclusion from a single group is shown in Table 1. 
 

Table 1. Variant binning with a MAF binning threshold < 0.05 

Major Allele (AF) Minor Allele(s) (AF) MAF Variants Binned 
C: 0.97 T: 0.03 0.03 T 
T: 0.80 A: 0.16, G: 0.04 0.16  
G: 0.95 C: 0.03, T: 0.02 0.03 C, T 

 
Although the major and minor alleles are designated by frequency in the control group, RVs in the 
case group also contribute to the variants binned. To simplify, “rareness” is calculated separately 
for cases and controls.  If a variant is considered rare (allele frequency less than the MAF bin 
threshold) in either group, it will contribute to the bin.  In this way, we are not only accumulating 
risk variants (higher frequency in cases than controls) but also potentially protective variants 
(lower frequency in cases than controls).  This reduces the number of false positive bins and 
reduces the correlation between bin size and significance. 
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2.2.  Software 

2.2.1.  BioBin 

BioBin is a standalone command line application written in C++ that uses a prebuilt LOKI 
database. Source distributions are available for Mac and linux operating systems and require 
minimal prerequisites to compile. Included in the distribution are tools that allow the user to create 
and update the LOKI database by downloading information directly from source websites. The 
computational requirements for BioBin are quite modest; for example, during testing, a whole-
genome analysis including 185 people took just over two hours using a single core on a cluster 
(Intel Xeon X5675 3.06 GHz processor).  However, because the vast amount of data included in 
the analysis must be stored in memory, the requirements for memory usage can be high; the 
aforementioned whole-genome analysis required approximately 13 GB of memory to complete. 
Even with large datasets, BioBin can be run quickly without access to expensive and specialized 
computer hardware or a computing cluster.  The number of rare variants is the primary driver of 
memory usage. 

2.2.2.   Library of Knowledge Integration (LOKI) Database 

Harnessing prior biological knowledge is a powerful way to inform collapsing feature boundaries.  
BioBin relies on the Library of Knowledge Integration (LOKI) for database integration and 
boundary definitions.   LOKI contains resources such as: the National Center for Biotechnology 
(NCBI) dbSNP and gene Entrez database information,20 Kyoto Encyclopedia of Genes and 
Genomes (KEGG),21 Reactome,22 Gene Ontology (GO),23 Protein families database (Pfam),24 
NetPath - signal transduction pathways,25 Molecular INTeraction database (MINT),26 Biological 
General Repository for Interaction Datasets (BioGrid),27 Pharmacogenomics Knowledge Base 
(PharmGKB),28 Open Regulatory Annotation Database (ORegAnno),29 and information from 
UCSC Genome Browser about evolutionary conserved regions.30 

LOKI is used as a means to provide a standardized interface and terminology to disparate 
sources each containing individual means of representing data. The three main concepts used in 
LOKI are positions, regions and groups. The term position refers to single nucleotide 
polymorphisms (SNPs), single nucleotide variants (SNVs) or RVs. The definition of region can be 
applied to a broader scope of biology.  Any segment with a start and stop position can be defined 
as a region, including genes, copy number variants (CNVs), insertions and deletions, and 
evolutionary conserved regions (ECRs). Sources are databases (such as those listed above) that 
contain groups of interconnected information, thus organizing the data in some way.   

LOKI is implemented in SQLite, a relational database management system, which does not 
require a dedicated database server.  The user must download and run installer scripts (python) 
and allow for 10-12 GB of data from the various sources.  The updater script will automatically 
process and combine this information into a single database file (~ 6.7 GB range).  A system 
running LOKI should have at least 50 GB of disk storage available.  LOKI runs locally wherever 
needed. 
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2.3.  Binning approach 

We chose NCBI dbSNP and NCBI Entrez Gene as our primary sources of position and regional 
information due the quality and reliability of the data, and clearly defined database schema. 
Intergenic regions are bins generated by BioBin to catch variants that do not fit into the user-
defined feature types.  For example, if one were testing RV burden differences between cases and 
controls across genes, all variants in genes would be collapsed into respective gene bins, and 
variants outside of gene boundaries would be binned corresponding to the intergenic regions. 
BioBin provides an option to generate intergenic bins of a user-specified size to catch intergenic 
variants.  Figure 1 shows an example of RV binning strategies; different knowledge applied to the 
same variants produces alternate bins. 

 
Figure 1. Binning strategies for three example burden analyses. 

2.4.  Statistical analysis 

BioBin is a bioinformatics tool used to create new feature sets that can be analyzed in subsequent 
statistical analyses.  We believe that statistical tests can and should be chosen according to the 
hypothesis being tested, the question of interest, or the type of data being tested. There are explicit 
situations that require the use of regression analysis (linear, logistic, polytomous), Fisher’s exact 
test, permutation of unique statistical test, etc.  For this reason, no specific statistical test is 
implemented into BioBin.  Unless otherwise noted, the results presented herein were calculated 
using a Wilcoxon 2-sample rank sum test implemented in the R statistical package.31 There was no 
need for adding covariates to the model and Wilcoxon provides simple implementation and 
interpretation.  All individuals (CEU and YRI) are ranked according to number of variants they 
individually contribute to a bin (variants must be under binning threshold).  Using a simple model, 
we assume the genotypes are independent and normally distributed. 
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2.5.  Data simulation strategy to assess type I error 

To test BioBin, genetic data was simulated using a forward time simulator, simuPOP.32 We used a 
constant distribution for the selection coefficient and a mutation rate of 1.8 x 10-8 per nucleotide 
per generation.  The population sizes were Ne = 8100, 8100, 7500, and 10000 with 5000 
generations, 10 generations, and 370 generations respectively.  A 10kb region and 50kb of genetic 
data were simulated using the standard parameters in the simuRareVariants.py script for simuPOP.  
This script simulates introduction and evolution of RVs and can allow complex fitness and 
selection modeling (http://simupop.sourceforge.net/cookbook/). 

To generate a sample data set evaluating type I error, all individual’s genotypes were 
generated by randomly choosing two haplotypes from a haplotype pool.  This process was 
repeated for three different scenarios: 1) sample size of 1000 individuals (500 cases and 500 
controls) on a 10kb region, 2) sample size of 4000 individuals (2000 cases and 2000 controls) on a 
10kb region, 3) sample size of 4000 individuals (2000 cases and 2000 controls) on a 50kb region.  
Phenotypes were randomly assigned to each individual to test the null hypothesis of no association 
between variants and disease status.  The type I error was calculated as the proportion of the 
10,000 replicates with a p-value <= 0.05.  In this case, an error rate above 5% would indicate a 
higher false-positive test and an error rate lower than 5% would indicate a conservative test. 

2.6.  1000 Genomes Project data: CEU and YRI comparison 

In a recent resequencing study of 202 drug targets, Nelson et al. reported the abundance of rare 
variants to be approximately 1 every 17 bases and most often population specific.15  To further 
investigate population stratification, we used 1000 Genomes Project data. The project was started 
in 2008 with the mission to provide deep characterization of variation in the human genome.  As 
of October 2011, the sequencing project includes whole-genome sequence data for 1094 
individuals, and aims to sequence 2,500 individuals by its completion.33  

We conducted a pairwise comparison of RV burden differences between two ancestry groups 
(YRI and CEU) of the 1000 Genomes Project (October 2011 release ftp://ftp-
trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/).  The data includes 87 CEU samples and 
88 YRI samples.  We implemented a minimum bin size of two variants and set the binning 
threshold to 0.03. We performed the following feature specific analyses:  
 

A. Gene and intergenic regions 
B. Pathways 

C. Regulatory regions 
D. Evolutionary conserved regions (ECRs) 

The NCBI Entrez source provided gene start and stop positions to form gene bin boundaries for 
the gene and intergenic region analyses (A). Intergenic bins (50kb) were generated to “catch” 
variants not collapsed into other source-informed bins; in this case, intergenic bins collapsed 
variants not binned into gene region bins.  For the pathway-based analysis (B), pathway and group 
information came from many LOKI sources and collapsed variants from all genes/regions in a 
specific pathway together in a bin.  The regulatory region analyses (C) bin boundaries used in this 
analysis were from ORegAnno, a database of regulatory region annotations.  For the evolutionary 
conserved region analysis (D), boundaries were calculated from PhastCons score output 
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downloaded from UCSC Genome Browser (http://genome.ucsc.edu/).  There are three groups of 
ECRS available within the UCSC Genome Browser, the first group is derived from multiple 
alignments of 45 vertebrate genomes to the human genome, the second group is a set of placental 
mammals (32 placental Mammal genomes) aligned to the human genome, and the third group is a 
set of nine primates aligned with the human genome (http://hgdownload.cse.ucsc.edu/goldenPath/ 
hg19/phastCons46way/).  For each group, we calculated segments of the genome with 70% 
identity, a minimum length of 100bp, and allowed for 50bp gaps.  These ECRs were clustered in 
bands according to the PhastCons output, which corresponded to an average of 13 ECRs per band.  
This was necessary since a single ECR is not large variable enough to generate a viable bin.  In 
this paper, reported p-values have been corrected for multiple testing using a Bonferroni 
correction (number of generated bins in each analysis). 

3.  Results 

3.1.  Type I error calculation 

It is important to investigate the level of type I error that might be present in any novel approach.  
Thus, using the script simuRareVariants.py from the simuPOP simulation algorithm, we simulated 
a 10kb genomic region with 31 RVs and 50kb genomic region with 154 RVs using the parameters 
described above in the methods section. Overall, 10,000 individuals were simulated, each with 
two haplotypes.  We created populations by sampling the haplotypes, and generated 10,000 
replicates of 1000 or 4000 individuals with balanced numbers of cases and controls.  The 
threshold for significance was p≤ 0.05.  We calculated the type I error rate as the number of 
replicates with Wilcoxon p-value less than or equal to 0.05 divided by the total number of 
replicates.  The Wilcoxon 2-sample rank sum test seems to control the type I error in BioBin, but 
the false positive rate nominally increases as the sample size or bin size increases (see Table 2). 

 

Table 2. Type I error calculation results. 

Population Size Simulated Region Size Type I Error Rate 
1000 10kb 0.0479 
4000 10kb 0.0533 
4000 50kb 0.0564 

3.2.  1000 Genomes Project data: CEU and YRI comparison 

We tested BioBin using whole-genome ancestral data from 1000 Genomes Project using 87 
CEU and 88 YRI individuals.   There are considerably more variants in the YRI samples than 
in the CEU samples.  Table 3 provides the total number of variants according to the Phase I 
generation of 1000 Genomes Project data for both populations.  Of note, while there is only 
one more YRI individual compared to the number of CEU individuals, there is almost a 7 
million variant difference between the two groups.  Figure 2 shows a density function, which 
indicates the density of variants at each MAF; overall, there is a higher density of low 
frequency variants in YRI.   
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Table 1.  1000 Genomes Project Phase I data characteristics for CEU and YRI 

Population Number of Variants Number of People 
CEU 11,198,921 87 
YRI 18,022,152 88 

Using a MAF binning threshold of 0.03, we binned genes and intergenic regions, pathways, 
regulatory regions, and evolutionary conserved regions as described above in the methods.  
The top result from each feature in these four analyses (labeled A-D) is shown in Table 4.34   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 2. Top result from each feature across the four analyses (A-D) 

 Feature Top Bin Adj. 
p-val 

Annotation/ 
Location Function 

A 
Genes CTXN2 7.18x10-29 Chr5:48483867-

48495951 Cortexin 2-Integral to membranes 

Intergenic 
regions chr15.638 5.13x10-28 Chr15:31900000

-31950000 
3’ to OTUD7A, a protease that cleaves 
ubiquitin 

B Pathways PF11057 1.76x10-29 Cortexin protein 
family 

Expressed in kidney and brain, involved in 
intra and extracellular signaling 

C ORegAnno OREG0003872 1.83x10-32 Chr5:142124712
-142125230 

Transcription Factor Binding site, 
expressed in the heart 

D 

ECR-
vertebrates 

Chr5:33951654
-33951791 3.24x10-33 SLC45A2 Melanocyte differentiation antigen. 

Substance transport for melanin 
biosynthesis. ECR-placental 

Mammals 
Chr5:33951651
-33951791 3.24x10-33 SLC45A2 

ECR-primates Chr15:4842644
4-48426724 1.94x10-33 SLC24A5 Cation exchanger involved in 

pigmentation, melanosome ion transport 
  

Next, we evaluated the prevalence of significant RV differences between CEU and YRI 
data.  Using the Bonferroni corrected threshold of significance specific for each analysis, we 
calculated the proportion of bins that were significant.  The results are shown in Figure 3.34 

Figure 2. Minor allele frequency density distribution for CEU (red) and YRI (green) 
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The height of each bar represents the total number of bins in each feature type; the dark blue 
indicates the proportion of significant bins.  For example, 9.10% of the bins generated from 
ECR-primate multiple alignment comparison was significant after correction for multiple 
testing (which accounted for all tests performed in analysis D).  

There are a surprising number of significant bins in each feature, but this can be explained by 
the difference in total number of variants between CEU and YRI.  The total number of variants 
binned by BioBin using a MAF-binning threshold of 0.03 was 16,145,128 variants.  Of these, 
65.5% were private to YRI ancestral population.    

  
 

4.  Discussion 

4.1.  Type I error calculation 

As shown in Table 2, the Wilcoxon 2-sample rank sum test is slightly anticonservative in large 
population sizes and seems to worsen when more RVs are binned together. This is interesting 
since Li et al. reported that increasing the number of variants binned in a type I error simulation 
decreased the type I error rate using a collapsing approach and a Pearson χ2 statistical test and 
others have reported conservative type I error rates using asymptotic statistical tests on relatively 
small sample sizes.8,35These methods were tested on simulated data with controlled RV allele 
frequencies and used different statistical tests, but highlights the importance and perhaps 
limitations of simulation testing.  Although, the type I error seems to be well-controlled in this 
experiment, further investigation should be done to assess strictly how the RV allele frequency 
distribution affects type I error, calculate the type I error using additional sample population sizes 
and alternative statistical tests, and examine if the number of variants in a bin consistently inflate 
the false positive rate. 

Figure 3. CEU-YRI pairwise comparison.  Dark blue indicates the proportion of significant bins. 
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4.2.  1000 Genomes Project data: CEU and YRI comparison 

Using 1000 Genomes Project whole-genome data, we used BioBin to identify features (genes, 
intergenic regions, pathways, regulatory regions, and ECRs) with significant differences in rare 
RV burden between two ancestral populations. A population-genetics approach retains natural 
qualities of data (compared to simulated data) and incorporates case/control status according to 
ancestry group.  Comparable approaches have been used by other groups.9,17 

We compared multiple feature types between two ancestral populations from 1000 Genomes 
Project to highlight a known issue in genomic studies, population stratification. BioBin explored 
RV burden differences between CEU and YRI ancestral populations.  In each RV burden test, 
there were a considerable number of statistically significant bins (after Bonferroni multiple testing 
correction).  Table 4 shows the most significant bins for each feature type.  The gene burden top 
result and the pathway burden top result corresponded to a Cortexin-2 gene and Cortexin pathway 
respectively.  According to PFAM, this group of proteins is important for intracellular and 
extracellular signaling in the kidney and brain (http://pfam.sanger.ac.uk/family/PF11057).  To our 
knowledge, Cortexin-2 has not been acknowledged in ancestry comparison studies.  However, 
another protein in the Cortexin family was identified as a candidate gene for non-diabetic forms of 
end-stage renal disease in African Americans.36 This is interesting since studies with admixed 
populations could contain a higher incidence of false positives due to RV population stratification 
and mixed ancestry.   

We could not find biological interpretation for the significant intergenic RV burden 
differences on chromosome 15 or the transcription factor-binding site on chromosome 5.  
However, the ECR analyses highlighted SLC45A2 and SLC24A5; both participate in pigmentation.  

Mutation rates vary across the genome.  They can vary according to specific sequence 
contexts, within regions on a chromosome, and between chromosomes.37 While mutation rates are 
commonly studied between orthologous sequences, polymorphisms collapsed by regions within 
species can also provide interesting insight into evolutionary history and mutation.  BioBin does 
not provide detailed sequence output to investigate mutation rate variation between CEU and YRI, 
but it does provide some information about higher rates of variation in regions (genes, intergenic 
regions, pathways, regulatory regions, and ECRs) and between chromosomes.  The results in 
Figure 3 show an interesting trend between functional regions of the genome and variant 
tolerance.  Approximately 57% of the gene bins had significant differences in RV burden, whereas 
approximately 73% of the intergenic region bins had significant differences in RV burden.  There 
is some weak evidence that genes undergo adaptive evolution, which explains why regions in the 
genome with potential for highly deleterious mutations evolve lower mutation rates.  There are 
two potential explanations: 1) additional level of repair of DNA damage in transcriptional active 
regions by transcription coupled repair (TCR), 2) approximately 3% of the genome is subject to 
negative selection, however it is estimated that functionally dense regions contain up to 20% sites 
under selection.37,38 In this analysis, gene bins are inclusive of intronic regions, thus it would be 
interesting to break down the gene bins into intronic and exonic bins to see how the variant 
tolerance differs between coding and noncoding regions.   
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There are far fewer regulatory region bins, but there appears to be smaller proportion of 

significant differences between CEU and YRI compared to genes or intergenic regions.  Again, 
perhaps mutations are less tolerated in these regions and we see overall less variability.  ECRs 
have been long known to be conserved among species, and in this analysis they are also the 
features least likely to have variation between CEU and YRI.  There is some debate about 
selection and functional significance in these regions.  It is unknown what factors have the largest 
effect on mutation rates,37 but it is possible that consistently low mutation rates in these sections 
have generated conserved regions throughout evolution.38   

We found that over 65% of the variant loci in dataset were fixed in CEU individuals.  This is 
not surprising since it is well known that individuals of African descent have more variation than 
individuals of other ancestral groups (see Table 3).  This difference in rare variation is driving the 
high percentages seen in Figure 3.   We should further investigate the effects of stratification in 
other ethnicities, and evaluate correction methods such as PCA and mixed models.18,19 

5.  Conclusion 

There is a global health, scientific, and financial motivation for understanding the genetic etiology 
of common complex disease.  It is imperative to consider genetic variants beyond common single 
nucleotide polymorphisms, as RVs may have larger phenotypic effects and can help us better 
comprehend the biology of a disease process.  BioBin is a novel collapsing method that uses allele 
frequency data and biological information to bin RVs.  It is unique because it is packaged with 
LOKI and is not coupled with any statistical method.  Access to integrated biological knowledge 
(pathways, groups, interactions, ECRs, regulatory regions, etc.) is valuable to researchers that do 
not want to spend considerable effort to combine this knowledge manually.  Freedom from 
implemented statistical methods provides users with the ability to apply association tests most 
appropriate for their data analysis.  In general, for any given bin, statistical tests from other 
published collapsing methods can be applied to BioBin output.  However, these other methods do 
not incorporate feature selection; therefore, the user must provide boundaries for each bin. 

In this paper, we evaluated RV burden differences between CEU and YRI populations.  
Although population stratification is often considered in genomic analyses, to our knowledge, no 
previous studies have quantified the magnitude of RV burden differences across multiple features.   
From the ancestry comparison results, we learned RV burden differences among features showed 
a pattern consistent with current mutation rate theory but also highlighted the magnitude of RV 
stratification between CEU and YRI populations from 1000 Genomes Project data.   

In summary, our results suggest that BioBin will be a useful tool to analyze sequence data.  
While no one can unequivocally guess the role RVs will play in uncovering hidden heritability for 
common complex disease, it seems that testing them in aggregate can provide valuable knowledge 
about the biology. Prerequisites for installation and running of BioBin and LOKI are documented 
in the manual, which is publicly available with the software and example statistical association 
scripts in R at https://ritchielab.psu.edu/ritchielab/software. 
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Copy-number variants (CNVs) represent a functionally and evolutionarily important class 
of variation. Here we take advantage of the use of pooled sequencing to detect CNVs with 
large differences in allele frequency between population samples. We present a method for 
detecting CNVs in pooled population samples using a combination of paired-end 
sequences and read-depth. Highly differentiated CNVs show large differences in the 
number of paired-end reads supporting individual alleles and large differences in read-
depth between population samples. We complement this approach with one that uses a 
hidden Markov model to find larger regions differing in read-depth between samples. 
Using novel pooled sequence data from two populations of Drosophila melanogaster along 
a latitudinal cline, we demonstrate the utility of our method for identifying CNVs involved 
in local adaptation. 
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1. Introduction  

Technological advancements over the last two decades have given researchers the ability to 
efficiently and accurately search for genetic differences between individuals across entire 
genomes. While initial efforts identified millions of single nucleotide polymorphisms (SNPs) 
within human populations [1], it was soon discovered that any two individuals also differ in copy-
number at many large genomic regions encompassing whole genes or parts of genes [2]. In recent 
years, many more such copy-number variants (CNVs) have been detected using microarray 
hybridization intensity or sequence read-depth [3-5], paired-end/mate-pair sequencing [6,7], or 
both types of evidence together [8,9]. These CNVs are ubiquitous across eukaryotes, with large 
numbers also present in chimpanzees [10], mice [11], Arabidopsis [4], fruit flies [12,13], yeast 
[14], and many other species. These polymorphisms have attracted a great deal of attention 
because their large size suggests that they could have a considerable functional impact [2]. This 
hypothesis has been borne out by the large number of CNVs found to cause or increase the risk of 
various diseases in humans, including autism [15], schizophrenia [16], Charcot–Marie–Tooth 
disease [17], Crohn’s disease [18], and Parkinson’s [19]. 

The availability of large population genomic data sets has also allowed for genome-wide tests 
of recent and ongoing adaptive natural selection on CNVs, especially in humans [20,21]. Methods 
that detect signatures of adaptive evolution—such as long haplotypes with reduced nucleotide 
diversity [22,23] or large differences in allele frequencies across selective environments [24]—
have been used to provide evidence for selection on CNVs [3,5]. These and other studies have 
identified a large number of putatively adaptive CNVs (>100 listed in [25]), with fitness benefits 
ranging from improved digestion of starches [26] to reduced HIV susceptibility [27]. Thus, CNVs 
appear to be an important source of adaptive as well as deleterious mutations in humans, and 
likely in other organisms as well. 

A cost-effective and powerful way to detect variants with large differences in allele 
frequencies among populations is to pool and sequence large numbers of individuals from each of 
several populations using next-generation sequencing technologies (e.g. refs. [28,29]). While this 
pooling approach does not provide information on individual haplotypes, it can be used to 
accurately estimate other important population-genetic parameters [30,31]. Such an approach is 
also very effective at detecting locally adapted alleles when interbreeding between the sampled 
populations is frequent, as allele frequencies at neutral loci (i.e. those not affected by spatially 
varying selection) are homogenized very rapidly and linkage disequilibrium between selected 
polymorphisms and nearby variants is quickly reduced [32]. This is an ideal scenario for 
identifying polymorphisms that facilitate adaptation to local environments because one allele is 
favored by natural selection in one population and another allele is favored in other populations.  

Searching for CNVs with a greater-than-expected difference in allele frequencies among 
populations has been particularly effective at identifying candidate adaptive CNVs in humans 
[25]. However, previous uses of pooled population sequences to detect highly differentiated CNVs 
has been limited to procedures examining the tails of distributions of differences in read-depth 
between two populations [28]. In this paper, we describe a principled method leveraging pooled 
sequencing data from two geographically dispersed but interbreeding populations in order to 
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detect differentiated CNVs with high resolution. This method combines information from paired-
end reads with a hidden Markov model designed to detect large differences in read-depth. We 
demonstrate the utility of this method on data from Drosophila melanogaster sampled from 
opposite ends of a latitudinal cline along the East Coast of the United States. Our search identifies 
140 CNVs with the most highly differentiated allele frequencies between the two ends of the cline. 
These data and functional enrichment analyses strongly suggest that many of these CNVs are 
experiencing spatially varying selection. 

 
2. Method for detecting CNVs with differentiated allele frequencies 

2.1. Method overview 

Here we describe in detail a method that leverages pooled paired-end next-generation 
sequence data to detect CNVs that differ substantially in allele frequency between two 
populations; in the data presented below these populations are at opposite ends of an 
environmental cline. Briefly, this method begins by searching for read pairs suggestive of 
deletions or tandem duplications. These read pairs are then combined into single putative events 
using a simple clustering algorithm, and putative events that are supported by many more read 
pairs from one population than the other are retained. For each of these putative duplications 
(Figure 1A) or deletions (Figure 1B), read-depth across the entire CNV region is examined in both 
populations, and those with a significant difference in read-depth between the two ends are 
considered CNV candidates for spatially varying selection. Because this paired-end approach may 
not detect all CNVs, we also use a hidden Markov model (HMM) to detect CNVs with 
differentiated allele frequencies based on read-depth alone. Both of these approaches will fail to 
detect CNVs segregating at low frequencies, depending on the depth of coverage to which pooled 
samples were sequenced.	  

2.2. Capturing and sequencing of D. melanogaster samples for test data 

Our method was tested on sequence data from two pooled DNA samples of Drosophila 
melanogaster from opposite ends of a latitudinal cline in temperature and seasonality along the 
East Coast of the United States. 36 flies were captured from Bowdoinham, Maine and 30 were 
captured from Homestead, Florida. DNA was extracted from these two populations and pooled 
into two samples that were each sequenced using the Illumina Genome Analyzer IIx using short-
insert paired-end libraries (~244 bp for Maine and ~213 bp for Florida on average) with 72 bp 
reads on each end. 60,730,268 read pairs were sequenced from the Maine sample and 48,771,223 
were sequenced from Florida. After mapping to the euchromatic portion of the genome, the Maine 
data had an average read-depth of 49.39X and Florida had an average depth of 38.10X. 

2.3. Detecting differentiated CNVs using paired-end sequencing	  	  

2.3.1.  Mapping reads and detecting paired-ends indicative of CNVs 
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 Figure 1: Detecting CNVs differing in allele frequency between two populations each sequenced from pooled DNA. 
A) Paired-ends spanning a tandem duplication are mapped to the reference genome in "everted" orientation. Thus, if 
one population has many more such reads than the other, then the duplication likely differs in allele frequency 
between populations (e.g., the excess of black versus grey reads in this example). Read-depth within the duplicated 
locus would also be much higher in the population in which the duplication appears at higher frequency (black line 
versus grey line). B) When paired-ends from a region with a deletion are mapped to the reference, those from 
chromosomes with the deletion allele that span the breakpoints of the deletion are mapped much further apart than 
expected. A deletion differing in allele frequency between two populations will exhibit far more of these read-pairs 
and lower read-depth (black) within the deletion in one population than the other (grey). 

 
Our first method to detect CNVs under spatially varying selection leverages paired-end reads 

mapped in a manner suggestive of a duplication or deletion relative to the reference genome. In 
order to find such read pairs, we first map reads to the reference genome. In the case of our test 
data, we used BWA [33] to map reads to release 5 of the D. melanogaster genome assembly [34]. 
Whenever a read can be mapped equally well to multiple locations, and the mapping location(s) of 
the other read in the pair do not resolve this ambiguity, BWA randomly selects one of these 
locations to place the read. Other strategies, such as mapping the read to each location or 
discarding the read, are also compatible with the approach we describe here. In order to detect 
putative duplications, we then search for read pairs mapping to the same chromosome but in 
“everted” orientation, where the two reads are oriented away from one another rather than toward 
one another as expected. Such read pairs are expected in the case of head-to-tail tandem 
duplications, when read pairs crossing from the end of the first copy into the beginning of the 
second copy can only map to the first copy, to the left of the first read in the pair (Figure 1A; also 
illustrated in Figure 3A from ref. [35]). While this approach will only successfully identify tandem 
duplications in head-to-tail orientation, the vast majority of duplication polymorphisms in D. 
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melanogaster meet these criteria [12,13]. For other species in which an appreciable number of 
duplication polymorphisms are non-tandem—such as humans [36]—this method would need to be 
extended to detect signatures of other types of duplications. Paired-end reads indicative of 
deletions relative to the reference are simply those that map in proper orientation but further apart 
than expected given the distribution of insert sizes [6]. We consider the most extreme 1% of read-
pairs with respect to mapping distance from one another as potentially indicative of deletions. 
Discordantly-mapped paired-ends can also be used to detect inversions [6]: indeed, using an 
approach analogous to that described here we find that at least two known large inversions, In(2L)t 
and In(3L)P, are differentiated along the East Coast of the United States in Drosophila (data not 
shown). 

2.3.2.  Clustering discordant read-pairs  

Sequenced read-pairs signifying copy-number variants (referred to as discordant read-pairs or 
discordant inserts) were clustered into distinct putative polymorphisms using a simple greedy 
clustering algorithm. Briefly, each discordant insert is initially assigned to its own cluster, and 
then pairs of clusters are examined and merged into a single cluster if any pair of inserts, one from 
each cluster, meets the following two criteria: 1) The coordinates of the reads must differ by no 
more than the largest expected insert-size (350 bp for our data); 2) For deletions, the inferred 
insert-sizes of the two inserts must differ by no more than the typical difference between insert-
sizes from the sequenced library (200 bp for our data). If these criteria are met, then it is possible 
that the two inserts support the same mutation. This process is repeated until no more clusters can 
be merged. All clusters containing only a single discordant read-pair were ignored. When 
clustering putative deletions with our Drosophila data, there were a large number of clusters 
containing only a single insert. This is because we sequenced a large number of inserts, resulting 
in hundreds of thousands of inserts in the upper 1% tail with respect to insert-size that are likely 
not the result of deletions. Because a normal insert misclassified as discordant may therefore 
appear near a deletion supported by true discordant inserts, when examining any pair of deletion-
supporting insert clusters <C1,C2> for overlap, we merged C1 and C2 only if 75% of all possible 
pairs of inserts (one insert from C1 and one insert from C2) met the merging criteria. Finally, after 
clustering was completed, any inserts within a cluster not appearing to support the putative 
mutation (according to the merging criteria) were removed from the cluster. Clustering is 
performed separately for each population.	  

2.3.3.   Detecting highly differentiated CNVs 

Once putative CNVs have been identified by clustering discordant paired-ends, we next search 
for polymorphisms differing in allele frequency between the two populations. This is done by first 
determining whether each polymorphism (i.e. each cluster of discordant inserts) present in one 
sample is present in the other using the merging criteria described in the previous section, and then 
comparing the numbers of distinct inserts supporting the event in each population; this number is 
zero when the event is not detected in a population. To reduce the number of false positive CNVs, 
we then removed all deletions supported by fewer than four paired-end reads. For each CNV, we 
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calculate the difference between the number of inserts (after correcting for the total number of 
read pairs mapped to the reference genome from each sample) supporting the mutation in each 
cline-end, and retain all CNVs with a large difference (i.e., in either of the 5% tails of the 
empirical distribution of insert-number differences for deletions or 2.5% for deletions, where more 
stringency is required). For these events we then counted in each sample the total number of read 
pairs mapped in proper orientation and within the expected distance range, correcting for 
differences in average read-depth across the euchromatic genome.  

The ratio of these corrected read-depths is then used as an independent mode of confirmation 
of highly differentiated CNVs detected by paired-ends. This was done in the D. melanogaster data 
by selecting roughly 10,000 random genomic regions of various lengths and calculating the read-
depth ratios between the populations for these regions, and then calculating the 5% tails for each 
length. A CNV was considered confirmed as differentiated by read-depth if the depth ratio was 
biased in the same direction as the numbers of paired-ends in the two samples, and more extreme 
than 95% of read-depth ratios within random genomic regions of approximately the same length. 

2.4. Detecting differentiated CNVs from read-depth using a hidden Markov model 

The method described above requires both discordant paired-ends and read-depth to show 
evidence of differentiation in allele frequency between cline-ends. Because the number of 
discordant-paired ends may be small due to chance, some events with biologically significant 
differences in allele frequency may be missed. Dispersed duplications will also be missed because 
we only examine paired-ends supporting tandem duplications. We therefore complement the 
above approach by using a hidden Markov model (HMM) to detect differentiated CNVs based on 
read-depth alone. The observations for this HMM are, for small adjacent windows, the ratios of 
the (corrected) number of mapped paired-ends from one sample within the window over the 
(corrected) number of mapped paired-ends from the other sample in the same window. When 
testing this approach on our pooled D. melanogaster data, we binned these ratios to produce 
discrete observation symbols, though continuous distributions can also be used. The HMM has 
three states: no difference in read-depth between pooled samples, higher read-depth in sample 1, 
and higher read-depth in sample 2. The initial, transition, and emission probability matrices, which 
model the density and length of differentiated CNVs, and the distribution of read-depth ratios 
appearing in each of the hidden states, can be trained in a supervised manner using results from 
the paired-end based method described above. Once the HMM has been trained, the genome can 
be segmented into regions that have higher copy-number in sample 1, higher copy-number in 
sample 2, or similar copy-number in both samples, using the Viterbi algorithm.  

2.5. Estimating allele frequencies 

The methods outlined above detect strongly differentiated polymorphisms not by using allele 
frequency estimates directly, but by searching for differences in the numbers of mapped inserts 
between the two populations. However, for many applications researchers may wish to estimate 
actual allele frequencies at putatively differentiated CNVs. For duplications relative to the 
reference genome, this is given by: 
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Figure 2: Estimating allele frequencies of CNVs from pooled DNA sequence data. A) For duplications, read pairs 
having one read flanking and one read within the duplicated locus (grey) are contributed from all chromosomes, while 
read-pairs mapped to the reference in "everted" orientation (black) are only sequenced from chromosomes with the 
duplication. B) For deletions, read pairs having one read flanking the deleted region and one read within the region 
(grey) are contributed only from chromosomes lacking the deletion, while read pairs spanning the entire deleted locus 
(black) are only derived from chromosomes with the deletion. Allele frequencies are estimated as shown in the 
examples using Equations 1 and 2, respectively. 
	  

𝑝 =   𝑁!  /  (𝑁!!!   /  2),	  
	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   (1)	  

where Np is the number of “everted” inserts supporting the duplications, and Np+q is the total 
number of inserts mapping across either of the breakpoints and not supporting the duplication (as 
both chromosomes with and without the duplication will have this sequence; Figure 2A). For 
deletions relative to the reference genome, 

𝑝   =   𝑁!  /  [𝑁! +   (𝑁!     /  2)] ,	  
	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   (2)	  

where Np is the number of inserts mapping across the deletion breakpoints and supporting the 
deletion, and Nq is the total number of inserts mapping across either of the breakpoints (Figure 
2B). In order to measure population differentiation, FST [37] can then be calculated using allele 
frequency estimates from the two samples. 

Because these allele frequency estimates may be calculated from a small number of inserts 
they can be quite noisy, and it may be preferable to estimate allele frequencies in the two 
populations from read-depth across the entire CNV. This can be done by modeling expected read-
depth across the genome as a response to variables such as GC composition [13,38] and density of 
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SNPs and indels [13]. We do not describe this approach in detail here, but instead refer readers to 
Appendix B of ref. [13] for a more detailed discussion of modeling expected read depths in order 
to detect copy-number variation. Once this is done, the allele frequency of biallelic CNVs (those 
with only one copy polymorphic for presence/absence across individuals) is simply the percent 
excess or deficit of reads compared to the expectation in a given sample. 
	  
3. Assessing the utility of the method using D. melanogaster data from a latitudinal cline 

3.1. Differentiated CNVs called from paired-ends and confirmed by read-depth 

We assessed the utility of the method described above by searching for highly differentiated 
CNVs in Drosophila melanogaster along the East Coast of the United States. We pooled and 
sequenced DNA samples from Maine and Florida as described in Section 2.2, and then mapped 
paired-ends to the reference genome and clustered paired-ends indicative of deletions or tandem 
duplications (Sections 2.3.1 and 2.3.2), referred to as discordant paired-ends. We identified 9,428 
putative deletions and 1,829 duplications relative to the reference genome. While the number of 
duplications is similar to those discovered in a recent examination of 37 whole-genome sequences 
of fruit flies captured from Raleigh, NC (2,588 duplications in [13]), we find substantially more 
deletions (only 3,336 in [13]), perhaps due to a large number of false positives in our set. 1,114 
deletions and 129 duplications showed a large difference in the number of discordant paired-ends 
supporting the event in the two samples; we also calculated average read-depth across these 
putative CNVs in each sample. 102 deletions and 29 duplications were confirmed as differentiated 
CNVs by read-depth (Section 2.2.3), far more than the 5% expected by chance given our 
confirmation cutoffs (P=1.95x10-10 for deletions; P<2.2x10-16 for duplications; χ2 tests). In order 
to further assess the accuracy of this approach, we asked how many of these CNVs were found in 
a recent examination of 37 whole-genome sequences from Raleigh, North Carolina [13]. Because 
CNVs in these Raleigh genomes were detected from read-depth alone, an approach that has lower 
sensitivity to detect smaller variants, we examined only events >500 base pairs in length. We find 
that 31 of 52 (59.6%) of our differentiated CNVs >500 bp in length are also found in the Raleigh 
genomes (based on mutual 50% overlap with events in [13], or with paired-end sequences 
collected from two of these genomes indicative of CNVs). This is likely a substantial 
underestimate of our accuracy because some highly differentiated CNVs may have very low 
frequency in Raleigh, and suggests that most false CNV calls are removed by our two 
complementary tests for differentiated allele frequencies. Furthermore, the high correlation 
between the difference in number of paired-ends supporting a CNV in each sample and the ratio of 
read-depths between the two samples (ρ=0.786; P<2.2x10-16) suggests that both of these 
independent measures are estimates of allele frequency differentiation, and that we are accurately 
detecting differentiated CNVs. The average lengths of these deletions and duplications relative to 
the reference genome were 1,985 and 5,506 bp, respectively. Larger duplications than deletions 
have been observed previously in polymorphism data [13]. 

Because this method is designed to use pooled data, with the goal of finding polymorphisms 
differentiated across pooled samples, its performance cannot be compared to previous CNV-
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detection methods (e.g., [7-9,39-41]) in a straightforward manner. Indeed, to our knowledge the 
only existing method for detecting structural variants from pooled data is designed to detect 
transposable element insertion polymorphisms [42]. Thus, while many existing methods for 
detecting CNVs could be extended to the problem we address here, a comparison of the 
effectiveness of these methods with ours is beyond the scope of this paper.  

3.2. Differentiated CNVs detected from read-depth using an HMM 

Because the discordant paired-end approach may not detect all differentiated CNVs (Section 
2.4), we supplemented this search using a hidden Markov model (HMM) examining only read-
depth. Briefly, this HMM was used to segment the genome into three hidden states: differentiated 
CNVs with higher copy-number (and substantially higher read-depth) in Maine (State 1), regions 
with no differentiated CNVs (approximately equal read-depth; State 2), and differentiated CNVs 
with higher copy-number in Florida (State 3). It should be noted that this approach can only 
identify regions that differ in copy-number between the populations, and which population has 
higher copy-number—it does not determine whether the CNV is a duplication or deletion relative 
to the reference genome. It also does not detect regions with CNVs that do not differ in frequency 
between the two pools, unlike the paired-end method. 

Observations for the HMM were ratios of read-depths of the two samples (Florida:Maine) in 
100 bp windows, binned into one of the following categories of ratios: [0, 0.67), [0.67, 0.8), [0.8, 
1), [1, 1.25), [1.25, 1.5), [1.5, ∞). We estimated the initial probabilities (the probability of the first 
genomic window lying within a differentiated CNV or not), transition probabilities modeling the 
average length of differentiated CNVs and the average distance between them, and emission 
probabilities (modeling the distribution of Florida:Maine read-depth ratios both within and outside 
of differentiated CNVs) from the properties of differentiated CNVs detected via the discordant 
paired-end method, yielding the following vectors/matrices (with minor manual adjustment based 
on prior expectations): 
	  
Initial probabilities, Π = 𝜋!   =   0.005 𝜋!   =   0.99 𝜋!   =   0.005  
 

Transition probabilities, Φ =  
𝜑!,!   =   0.90025 𝜑!,!   =   0.0995 𝜑!,!   =   0.00025
𝜑!,!   =   0.90005 𝜑!,!   =   0.9999 𝜑!,!   =   0.00005
𝜑!,!   =   0.00025 𝜑!,!   =   0.0995 𝜑!,!   =   0.90025

 

 
Emission probabilities, Θ = 
𝜃!,!!.!" = 0.025 𝜃!,!!.! = 0.06 𝜃!,!!.! = 0.11 𝜃!,!!.!" = 0.15 𝜃!,!!.! = 0.36 𝜃!,!! = 0.30
𝜃!,!!.!" = 0.15 𝜃!,!!.! = 0.12 𝜃!,!!.! = 0.21 𝜃!,!!.!" = 0.27 𝜃!,!!.! = 0.13 𝜃!,!! = 0.12
𝜃!,!!.!" = 0.28 𝜃!,!!.! = 0.10 𝜃!,!!.! = 0.30 𝜃!,!!.!" = 0.12 𝜃!,!!.! = 0.06 𝜃!,!! = 0.14

 

	  
In order to infer the most likely sequence of hidden states across the genome, we ran the Viterbi 

and traceback algorithms on windowed Florida:Maine read-depth ratios, finding 11 highly 
differentiated CNVs, or stretches of genomic sequence assigned to either State 1 (elevated copy-
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number in Maine) or State 3 (elevated in Florida), with an average length of 5,776 bp. We found 
that two of these calls were also detected using paired-ends, implying that the remaining nine are 
either highly differentiated CNVs that the paired-end approach failed to detect or false positives. 
Of these nine CNVs, two were identified in previous analyses of highly differentiated genomic 
regions (containing Cyp12d, and Ace, respectively; Turner et al. 2008), and another two were 
detected in the Raleigh genomes [13]. Thus, these events may be true positives, underscoring the 
complementarity of the HMM approach to the paired-end approach discussed above.  

3.3. Evidence of natural selection acting on differentiated CNVs 

Although we have several lines of evidence that the vast majority of the putatively 
differentiated CNVs described in the sections above are true variants, additional evidence is 
required to show that these CNVs are not evolving neutrally with respect to the environmental 
cline. We estimated FST and found that many of these CNVs have high estimates (30 have FST > 
0.2), but we cannot assess the significance of this given that the neutral expectation for our data is 
unknown (synonymous SNPs may be linked to nearby selected polymorphisms), and our FST 
estimates may have considerable variance. Thus, the best way to evaluate the impact of natural 
selection on these CNVs may be to search for enrichment of certain genes and functional 
categories. We noticed that several CNVs contain complete or partial cytochrome P450 genes, 
including Cyp28d2, Cyp12d1-p, Cyp12d1-d, Cyp6a17, Cyp6a22, Cyp6a23, Cyp12c1, Cyp313a4, 
and Cyp12a4. This is more than are expected by chance (P=0.0032; permutation test of the 140 
most differentiated CNVs; P<0.0001 when testing for an excess of CNVs containing at least one 
Cyp gene—both of these tests control for spatial clustering of related genes). Members of this 
superfamily are often involved in insecticide resistance [43], and overexpression of Cyp12d1 [44] 
and Cyp12a4 [45] have been shown to increase insecticide resistance; this selective pressure may 
therefore be the cause of the extensive differentiation seen at these genes. In addition, Cyp6a17 
has been shown to affect temperature preference [46], implying that insecticide resistance may not 
be the only geographically dependent fitness effect conferred by cytochrome P450s in Drosophila. 
Ace (acetylcholinesterase), another gene involved in insecticide resistance [47] and previously 
identified as lying partially within a CNV differentiated along this cline [48], was also found in 
our analysis. 

We searched for overrepresented Gene Ontology (GO) terms associated with genes lying 
within differentiated CNVs, using the hypergeometric distribution as our null hypothesis for each 
term. It is important to note that GO enrichment analyses conducted on CNVs or other large 
regions can be biased away from the null distribution by the clustering of functionally related 
genes [48,49]. We therefore allowed each term to be counted at most once per CNV before 
calculating significance. In order to correct for multiple testing, we calculated the false discovery 
rate (FDR) following ref. [50]. We identified a large number of terms with FDR <0.1, including 
67 biological process terms. In addition to terms involved with response to pesticides (e.g., 
response to organophosphorus, response to carbamate), this set of enriched terms included several 
related to neuronal development and activity, including regulation of short-term neuronal synaptic 
plasticity, synaptic transmission, and synaptic target attraction. The enrichment of these terms is 
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not driven by the overrepresented insecticide resistance genes discussed above, suggesting that 
CNVs confer distinct spatially dependent fitness benefits related to nervous system development 
and insecticide tolerance. 

The overrepresentation of the functional categories listed above lends further confidence to our 
assertion that a substantial fraction of the CNVs detected by the method described here are under 
spatially varying selection. Although the results of this type of enrichment analysis should not be 
taken as proof of the action of natural selection [49], they do support our assertion that natural 
selection is driving differentiation of CNVs in D. melanogaster along the East Coast, thereby 
demonstrating the utility of our method for identifying CNVs under spatially varying selection. 
	  
4. Discussion 

The method presented here accurately detects differentiated copy-number variants from pooled 
DNA sequence data, and we show that many of the CNVs identified likely reside in regions 
experiencing spatially varying selection. Because of the high level of gene flow between the two 
Drosophila samples examined here, differentiation at neutral variants is short-lived, and regions 
with polymorphisms differing in allele frequency between the two samples are quite small, often 
on the order of 5 kb or less [48]. Thus, while it is difficult to be certain that any given CNV 
identified by the approach described here is indeed responsible for allele frequency differentiation, 
it is likely that many of the CNVs identified by our method are indeed beneficial mutations. We 
believe this approach has the potential to identify CNVs under spatially varying selection in other 
species and environmental gradients, and significantly improve our understanding of the 
contribution of copy-number variation to adaptive evolution. 
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Human genetics recently transitioned from GWAS to studies based on NGS data. For GWAS, small effects 
dictated large sample sizes, typically made possible through meta-analysis by exchanging summary statistics 
across consortia. NGS studies groupwise-test for association of multiple potentially-causal alleles along each 
gene. They are subject to similar power constraints and therefore likely to resort to meta-analysis as well. 
The problem arises when considering privacy of the genetic information during the data-exchange process. 
Many scoring schemes for NGS association rely on the frequency of each variant thus requiring the exchange 
of identity of the sequenced variant. As such variants are often rare, potentially revealing the identity of their 
carriers and jeopardizing privacy. We have thus developed MetaSeq, a protocol for meta-analysis of genome-
wide sequencing data by multiple collaborating parties, scoring association for rare variants pooled per gene 
across all parties. We tackle the challenge of tallying frequency counts of rare, sequenced alleles, for meta-
analysis of sequencing data without disclosing the allele identity and counts, thereby protecting sample 
identity. This apparent paradoxical exchange of information is achieved through cryptographic means. The 
key idea is that parties encrypt identity of genes and variants. When they transfer information about 
frequency counts in cases and controls, the exchanged data does not convey the identity of a mutation and 
therefore does not expose carrier identity. The exchange relies on a 3rd party, trusted to follow the protocol 
although not trusted to learn about the raw data. We show applicability of this method to publicly available 
exome-sequencing data from multiple studies, simulating phenotypic information for powerful meta-
analysis. The MetaSeq software is publicly available as open source. 

 
1.  Introduction 

Human genetics has recently undergone a transition from genomewide association studies 
(GWAS) based on genotyping common polymorphisms1-4 to studies based on next generation 
sequencing (NGS) data5-7, that ascertains common and rare variants across individuals8. For 
GWAS, low effect sizes of most of the causal common alleles on common diseases and 
quantitative traits dictated large sample sizes to achieve statistical power9. In many studies, such 
sizes were made possible by consortia of multiple collaborating groups, each contributing 
hundreds or thousands of samples, together amassing tens or hundreds of thousands of genotyped 
samples to detect minute effects on various phenotypes10. Computational methods for meta-
analysis of such collated GWAS datasets have been instrumental in facilitating their joint 
analysis11. 
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NGS studies met initial success using only a handful of samples for sequencing exomes12,13 or 
whole genomes14,15 to detect novel, fully-penetrant alleles that disrupt genes and cause disease. 
Yet, detecting disease genes with rare alleles of partial penetrance, that explain only a small 
fraction of the cases, is more challenging. First, the limited power to detect such alleles on their 
own motivates testing for association of multiple alleles along the gene 16. Indeed, multiple 
methods for groupwise testing of alleles have been developed to optimize power of detecting such 
multiply disrupted genes17-22. Second, the tautological problem with rare variants is their low 
frequency. Large numbers of samples are still required in order to observe such alleles and detect 
their significant association. Fortunately, the cost of NGS keeps dropping, and the throughput 
keeps increasing. Sequencing exomes now require reagent-cost and labor resources comparable to 
early GWAS, with genomes likely to soon follow. This paper is motivated by the assumption that 
these power constraints along with throughput opportunities will lead to large-scale disease 
sequencing studies23 that would be more rapidly, and therefore more competitively executed by 
groups operating in parallel, but jointly meta-analyzing their data. 

Privacy had been a thorny issue in genetics research24-26. The irreversible labeling of 
individuals if their genetic information is known requires broad consent by study participants in 
order for researchers to have the ethical right and legal permit to expose their genotype data or 
even to share it with peers and collaborators27,28. This, along with some investigators’ sense of 
ownership of their data and cohorts typically makes data-access in human genetics (unlike other 
fields29,30) restricted, at least initially, often to the investigator. In GWAS, large consortia had 
preserved such access restriction, as meta-analysis required only exchange of summary statistics 
across collaborating groups and institutional barriers, rather than sharing explicit genotype data31. 
Such summary statistics typically include essentially allele frequencies (and their confidence 
levels) per marker. Although formally individuals and their relatives can be identified as members 
of a cohort just based on these summary statistics32, this identification requires expert 
computation, and may be underpowered, depending on study parameters such as number of SNPs, 
sample size and allele frequencies33. 

Meta-analysis of sequencing data poses unique challenges in terms of subject privacy. 
Specifically, such data includes hundreds of thousands of rare alleles per genome34, among them 
de novo mutations35, one or two of which can uniquely identify an individual among the entire 
world population. Even exome sequences typically include thousands of alleles that are currently 
novel13. Even assuming future expansion of variant databases, a typical human exome will have 
thousands of very rare (frequency < 10-4) alleles, typically singletons within a cohort of size in the 
low thousands. Such alleles, alone or in concert, readily provide unambiguous identification of 
carrier of the sample. The classical summary statistic for meta-analysis, which is the list of allele 
frequencies in a sample, therefore provides clear indication of membership for each and every 
sample in the cohort if applied genomewide with the exception of monozygotic twins, simply by 
virtue of including the singleton alleles carried by this sample. A similar rationale would decide or 
rule out membership in an exome-sequenced cohort based on presence of rare mutations. Yet, 
allele frequencies in cases and controls across the entire set of analyzed samples are a key 
ingredient in multiple methods for association to rare alleles18,19,21. Exchange of allele frequencies 
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between consortium members in order to tally alleles across datasets is instrumental for meta-
analysis of sequencing data, posing an apparent conflict with ethical requirements to protect 
against identification of samples. 

This paper tackles the challenge of facilitating the tally of frequency counts of rare, 
sequenced alleles between consortium members, thus enabling meta-analysis of sequencing data 
while not disclosing the allele identity and counts, therefore providing considerable protection of 
sample identity. This apparent paradoxical exchange of information is achieved through 
cryptographic means. The key idea is that parties hide the identity of the variants. When they 
transfer information about frequency counts in cases and controls, it does not convey the identity 
of a mutation, therefore not exposing the identity of the carriers. The parties do use an identical 
encryption key, thus identical variants will be encrypted identically. One could therefore sum up 
the counts for identical variants, without knowing the identity of the alleles whose counts are 
being tallied. 

2.  Methods 

2.1.  Notation 

We hereby describe MetaSeq, a privacy preserving protocol for meta-analysis of sequencing data 
coming from C collaborators such that: 
 
• Each collaborator c has data on a set S[c] of samples.  
• Such data includes a set Vm[c] of positions along each gene gm among the M ~ 20,000 genes 

g1, g2 ... gM. Vm[c] specifies all positions where variant (no-reference) calls had been made for 
at least one sequenced individual i ∈ S[c].  

• The data further includes for each individual i ∈ S[c], and each variant position v ∈ Vm[c] the 
actual genotype of i at v: heterozygote or non-reference homozygote, denoted by hm[c](v,i), 
represented in a standard vcf format36. We define Hm[c] to be full matrix of genotype values, 
across all rows v ∈ Vm[c], and columns i ∈ S[c]. Effectively, Hm[c] is a matrix of values 0,1, 
or 2 for each position and individual. 

• For each individual i ∈ S[c], the data also includes the affection status or the phenotype value 
of i, denoted by p(i) ∈ {1,0} for cases and controls, respectively. We denote P[c] as the list of 
phenotype values p(i) for each i ∈ S[c]. 

 
We assume Vm[c] is listed as genomic coordinates: chromosome and position along the 
chromosome. For each such position x, we define the coordinate, ϕm(x), which is its offset from 
the start of the chromosome. We naturally extend ϕm(.) to operate on sets of positions. In practice 
we assume ϕm(x) is a 32-bit integer. 

We define the set of all variable positions along the chromosome for gene, gm, and the total set 
of individuals respectively, as follows: 
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 Vm = Vm[c]
c  (1) 

 S = S[c]
c   (2)      

 
We further define the full listing P of phenotype values for all individuals across all cohorts and 
the full set G of genes, g1 .. gM | M ~ 20000. Hm is defined as the genotype matrix across all 
cohorts, with columns for all i ∈ S, and rows for all v ∈ Vm.  Hm[c] is the minor of Hm induced on 
Vm[c]×S[c]. The data for gene m is Dm = {Vm, Hm}, and the entire genetic dataset is given as:  
 

 D = Dm
m   (3) 

2.1.1.  Association score 

Let F(Dm =(Vm,Hm), P) be the scoring function used for testing association of gm. We assume F has 
certain properties that are shared by standard methods for testing association18. 
Specifically, F remains fixed when swapping rows (variants) of Hm along with Vm , if we assume 
all variants considered by the test are similarly likely to be causal (this assumption can be 
relaxed). Also, the set of scores for all genes by definition remains fixed when swapping genes gm. 
 

 F (D,P) ={F (Dm,P)}m=1
M   (4) 

 
The goal of the protocol is to encrypt the data using a secret key k, such that gene labels and 

variant labels are swapped (or permuted). Specifically, we define key-dependent permutations gk
andρk on gene labels and potential coordinates (32-bit integers), respectively. The permuted data 
for each gene is denoted by the following equations: 

 

 ρk(Dm) = (ρk(Vm),ρk(Hm))  (5) 

 ρk(Vm) = ρk(ϕm(v)) |v ∈Vm   (6) 

 

where, ρk(Vm) is the set of permuted coordinates and 𝜌! 𝐻!   is the matrix of genotype calls with 
permuted rows, i.e., with valueshm[ρk(ϕm(v)),i] for all v ∈Vm,i ∈ S . We observe that the score is 
unchanged by this transformation: F (ρk(Dm),P) = F (Dm,P) . Yet, if one were to observe only a 
minor of ρk(Dm) , corresponding to a subset of individuals and the corresponding subsets of 
variants that they carry, one does not obtain any information on the individuals not in this subset, 
nor on the variants not carried by these individuals. Specifically, for each cohort c, the relevant 
subset of the data, Dm[c] = (Vm[c], Hm[c]), when encrypted into ρk(Dm)[c] , does not provide 
information regarding any other cohort !c ≠ c , nor on any variants not in Vm[c]. In this sense, the 
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encryption is privacy preserving. Finally, if gene labels are permuted, then receiver of the 
permuted data Dg (k ) ={Dgm(k ) |m∈1..M} cannot learn anything about the identity of any gene. 

We have developed a 5-step protocol for meta-analysis of genomewide sequencing data, 
computing association scores for pooled rare variants. The protocol is presented here in simplified 
form, with the following leniencies: 
 

1. We discuss only two-way meta-analysis, where two investigators (collaborators), Alice 
and Bob (or c1 and c2), each have their own sequenced association cohorts. 

2. We consider case-control association testing. 
3. We present the calculation of a simple variable allele-frequency threshold score21. 
4. Alice and Bob rely on the assistance of a semi-trusted third party, Trent, to help compute 

the score. 
 
The protocol preserves privacy of the subjects in the following respects: 
 

1. The only information Alice and Bob learn about each other’s cohort is the scores of top-
associated genes. 

2. Trent does not have direct or practical information that could expose the identity of the 
subject in Alice and Bob’s cohorts. Specifically, Trent does not learn which genes harbor 
which mutations in each cohort, and given an exome of an individual, cannot determine 
whether that individual is a member of any of the cohorts. Even upon publication of the 
research results by Alice and Bob, the information that Trent learns, is limited. 

2.1.2.  Protocol 

The protocol proceeds as follows: 
 

1. Key Exchange: 
Alice and Bob choose a shared secret key k, that can serve as an encryption key 

2. Annotation and Encryption: 
Alice and Bob each encrypt their data as follows: 

a. Variants are annotated for the genes they belong to and variant classification, e.g. 
known or nonsense, needed for scoring. Such classification is kept unencrypted. 

b. Alice and Bob generate a secret permutation g(k) over the set of genes g1…gM, 
creating permuted gene identifiers, g1(k)…gM(k). 

c. They further secretly permute the set of variants Vm, creating Vm(k). 
3. Data Transfer: 

Alice and Bob send Trent their encrypted gene names g1(k)…gM(k) and variant positions, 
Vm(k) along with the (unencrypted) (frequency) counts fVm(k )[ci ] . 

4. Merging and association testing: 
Trent computes, for each (permuted) gene gm(k) a total count for each (encrypted) variant, 
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Vm(k) by summing the two counts fVm(k )[c1] and fVm(k )[c2]  if both Alice and Bob report the 
variant in gm(k) or collapsing the association score for the variants otherwise. 

5. Decrypt results: 
Trent sends Alice and Bob the (top) association scores assigned to specific (encrypted) 
gene names, that they are able to decrypt. 

 
Note that many rare-variant association tests focus on particular type of variants, e.g. non-
synonymous, or loss-of-function variants. Such information is lost upon encryption, and Trent will 
thus be unable to restrict analysis to a particular class of variants. A convenient workaround is to 
communicate a set of per-variant weights by both Alice and Bob. Weights depend on 
classification of variant type that is agreed upon in advance, i.e. Alice and Bob decide on a weight 
function W:T→[0,1] on the domain of all variant types T = {missense, synonymous coding …..}. 
Each variant v is assigned type t(v) ∈ T and therefore a real-valued weight W(t(v)) ∈ [0,1], is 
communicated to Trent in clear text. We make note of the fact that since both gene names and 
variant positions are encrypted, for a sufficiently large class of variant types it becomes difficult 
for Trent to make any concrete inferences on variant identities using this information. 

2.1.3.  Implementation: MetaSeq 

We implemented this protocol as MetaSeq, an open source PERL package. A step-by-step 
illustration of the protocol as is in the MetaSeq code is given in Figure 1. We assume that the 
collaborators have their data stored on a server that is remotely accessible using the server name. 
We also require tools for annotation and encryption of the data on the server. MetaSeq works on 
variant call files  (*.vcf format) that include genotypes and phenotypes for each collaborating 
party, and is available as open source at https://github.com/angadps/Rare-Variant-Association. 

We provide implementation details regarding specific steps of MetaSeq: 
 
Step 1: Registration & key exchange 
MetaSeq guides the collaborating parties through the key exchange procedure using the PERL 
encryption modules Crypt::DES37, Crypt::CFB38 and Crypt::CBC39, and allows an arbitrary 
number of collaborators, instead of just the pair of Alice and Bob. In detail, the collaborators 
register with Trent using their server names. Communication between the servers is via the use of 
sockets. A specific port is designated on the servers for all data exchange and communication 
between the servers. Trent signals the key generation process after registration. All collaborators 
contribute a seed towards the generation of the key, of which Trent has no information about or 
contributes in any way towards the generation of either. We use the MD5 algorithm to generate a 
32-bit key.  
 
Step 2: Annotation & encryption 
Each party then encrypts the data, which are first annotated by the vcfCodingSnps tool40 on a per 
gene basis. The purpose of annotation is two-fold. Firstly, it helps us prepare the genotype and 
phenotype files separately for every gene as required by the association test. Secondly, it helps us 
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in restricting the analysis to certain class of variants, or in assigning different weights to different 
classes. For that purpose, additional input to MetaSeq is a file of weights that needs to be agreed 
upon in advance. Variant data is encrypted per the protocol, and communicated as numeric 32-bit 
dumps – sufficient to uniquely index positions along any chromosome. At the same time we 
would like to point out that we have tested MetaSeq to work with gene level annotations only, 
although the idea could be extended to any general definitions of region for annotations as long as 
it is consistent across studies. 
 
Step 4: Merging and association testing 
MetaSeq is implemented with the Variance Threshold (VT) test21 of association, but can in 
principle include other tests as well. The encrypted files received by Trent from Alice and Bob are 
first merged by their (encrypted) gene names. This prepares the data from all collaborators for the 
pooled association test. 

Figure 1 Flow diagram of 
MetaSeq: Two Investigators, 
Alice and Bob compute per-gene 
scores on their pooled data 
without revealing the data to one 
another nor to a third party, Trent, 
who computes association scores 
“blindfolded”. The figure 
describes a simple scenario using 
three genes, one of which, 
including a single variant in it, is 
common to Alice and Bob. The 
gene name and variant position for 
this is encrypted to the same text, 
thus being merged together by the 
3rd party before association 
testing. This gene scores higher 
compared to other genes, as 
shown in the results decrypted by 
individual collaborators on their 
servers. Note that the generation 
of the key to be used for 
encryption is coordinated between 
Alice and Bob, excluding Trent in 
the process. Also note that while 
the figure does not point out 

phenotype information explicitly, the association testing step of the protocol receives the frequency data segregated 
for case and control cohorts, respectively. 
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2.2.  Simulation Testing 

We used simulation to evaluate the power of meta-analysis assuming different numbers of causal 
variants in a single gene. Power here is defined as the fraction of successful association tests. 
Specifically, for each such number, we simulated 100 datasets of 50 cases and 50 controls 
collected by each of C=10 collaborators. We tested association by each single-collaborator vs. 
pooled across collaborators in a privacy-preserving manner. We tallied the fraction of successful 
association tests, but note that reporting a success requires more care in this study than usual. In 
detail, a conservative definition of success is when the true gene is the unique top-scoring gene 
(for either single-collaborator or pooled testing modes). A more lenient definition allows other 
top-scoring genes to tie with the true gene (again, for both modes). Finally, without privacy-
preserving data analysis, one can consider independent PIs running the association test, and then 
decide about the associated gene based on the individual results of all of them, by taking a 
majority vote. We report power based on each of these 5 modes of analysis. We repeated this for 
1,2,22, …210 causal variants for the causal gene, in addition to 1000 neutral variants for each gene. 
We simulated the case and control sequencing data using an implementation of the Wright-Fisher 
model41, that allows setting particular numbers of causal and neutral variants. The Wright-Fisher 
Model gives the probability density function f(p), of the probability of encountering a mutation, p 
as follows: 
 

 f ( p) = c *  pbs−1 *  (1− p)bn−1 *  es(1−p)   (7) 

 
Here, f(p) is the probability function of the mutation-probability p, bs is the scaled mutation rate of 
disease mutations, bn is the scaled back-mutation rate, s is the scaled selection rate and c is the 
constant that normalizes the integral of f(p) to 1. 

3.  Results 

3.1.  Power of pooled-collaborators vs. single-PI testing 

We report results from all the variants of the power tests stated above. Plots for the same are 
shown in Figure 2. Throughout the range of parameters, pooled tests are better powered compared 
to single-PI tests. This advantage is most pronounced when there are only few causal variants 
along the truly causal gene. At the extreme, 1-8 causal variants in a gene, we observe decently 
powered pooled test (up to 55% power for the conservative test) compared to a severely (<5%) 
underpowered single-PI test, an improvement of up to 50 percentage points or 10 – 30 times with 
the pooled tests. Naturally, lenient reporting of success enjoys higher power, but would potentially 
require following up multiple promising genes, rather than only one. 

We note that the number of causal, case-only variants is a natural parameter here – the rare-
allele analog of the size of effect to be detected. Power is further influenced by nuisance 
parameters, such as the span of a gene in basepairs (hence, the number of neutral variants along it, 
here normalized to be 1,000), and the genetic length of a gene in centimorgans (hence, the 
effective number of independent variants along it). This explains some of the genes being hard to  
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Figure 2 Log-scaled power plot for pooled and single-PI 
tests. Results are plotted for all three definitions of 
success (unique and non-unique causal gene for pooled 
and single-PI tests, majority vote for single-PI tests 
only). In the unique and non-unique gene plots for the 
single-PI tests, the final success rate is calculated by 
averaging the number of successes across all PIs per 
dataset. In the majority vote plot, a majority vote of the 
number of successes is taken per single-PI per dataset. 
The different nature of success here explains the region 
in the figure where the plot for single-PI unique gene 
tests is higher than the majority vote plot. 
 
 

find as associated, even with many rare case-only variants simulated. Potential false positives or 
false negatives in the context of meta-analysis alone are expected to be minimal (otherwise, the 
same concerns may apply as in the case of single cohort tests). Since variant frequencies are 
collapsed across all cohorts and for all variants in a gene, such loss of data, which is the primary 
input for the protocol is not expected. Also, encryption is performed in a loss-less manner i.e., no 
genes or variant ids are expected to be lost in the due course of execution of the protocol. 

3.2.  MetaSeq requirements of computing resources 

We state the time and space requirements for MetaSeq in Table 1. The tests were run on a Sun Grid 
Engine controlled cluster with sufficient number of compute cores and maximum 8GB of RAM 
given to a single test at any time. We state the time and space that was required for a single run of  
 
Table 1 Space and time requirements of MetaSeq. The benchmark runs included 10 collaborators, with each one 
contributing 100 samples to the pooled analysis including 1000 neutral variants per gene. Runs include all ~20,000 
genes along the genome. Steps performed by the collaborating parties (“Alice & Bob”, though in this benchmark also 
8 other collaborators) are evaluated for resources required per party. Also time taken for the association test 
mentioned is with a parallelism of 20. A total of 20 CPU hours were effectively needed for the association testing, 
although total memory required is less than 1MB. Note that decryption takes negligible time as opposed to encryption 
since the parties only need to decrypt the list of top-scoring gene names. 
 

Step Performed by Elapsed time 
[min] 

CPU time 
[min] 

Memory 
[MB] 

1.1 Register 

Alice & Bob 

Nil Nil Nil 
1.2 Generate key Nil Nil Nil 
2.1 Annotate 18 180 15 
2.2 Encrypt 27 270 12 
3 Transfer data 1 10 12 
4.1 Merge 

Trent 
80 80 105 

4.2 Test association 60 1200 1 
5.1 Transfer results Nil Nil Nil 
5.2 Decrypt Alice & Bob Nil Nil Nil 
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MetaSeq with 1000 neutral variants per gene, broken down by small steps of the protocol. Some 
of the steps, i.e., registration, key generation, transfer of results, and decryption are insignificant 
both in terms of time and space. Yet, these steps are reported here for completion. In total,  
MetaSeq can be completed in 3.5 hours of elapsed time using less than 30 hours of CPU 
resources, using at its peak 150MB of space in total. Network footprint is even smaller, as 
transmitted files are archived and zipped. The most intensive parts in terms of computing 
resources are the annotation and encryption stages that need to I/O information in 200,000 files 
(one per gene per collaborator). The most CPU is used during association testing, for permuting 
the data 100,000 times to assess significance. We parallelize this stage over 20 cores. 

4.  Discussion 

We developed MetaSeq, a protocol that relies on a trusted third-party to compute the association 
scores over the intersection of the variant set. We implemented the protocol in PERL and have 
made it available as an open source package. Our protocol is designed to be robust in securing 
private genetic information, while at the same time making only minimal assumptions about 
compliance of the parties to the protocol. 

In securing private genetic information, we try to preserve privacy against participating 
collaborators knowing individual-level identifying information, such as private mutations. This is 
achieved by computing an association score, not by one of the parties, but rather by a designated 
third-party, who also needs to stay in the dark and not learn the identity of the study participants 
and their private mutations. The third-party, after collating data and performing the desired 
computations, is assumed to follow protocol, and not to share variant information with any of the 
collaborators. The third-party is considered to be “trusted” in this regard. At the same time we 
need to secure information from the third-party as well. We achieve this by this party only 
working with encrypted data, never having access to the secret key that was used to encrypt all the 
genetic information. Hence, while the third-party has access to all the data, it is still meaningless 
to that party, since the data is in encrypted form and the encryption key is not available to it.  

We make the assumption that no collaborator conspires with the third-party to share the key, 
as that would violate the desired privacy requirements.  Another potential breach that can arise is 
when more than one collaborator plan to collate their datasets so as to draw inferences regarding 
the data from the remaining collaborators. However, such estimations can only be effectively 
made only if all but one of the collaborators get together and conspire against the remaining one. 
Even then, the coalition would, at best, learn limited information about the cohort of the 
conspired-upon collaborator, e.g., presence of variants that they already have in their cohort. The 
coalition will not learn the identity of private variants.  

Another way that collaborators can violate protocol to learn the alleles is to send 
monomorphic data to the third-party for their own dataset. In this way they are sure that any 
identified carrier alleles are coming only from the datasets of other collaborators. This is possible 
only if all but one of the collaborators is sending monomorphic data, and we assume the parties 
follow protocol. At the same time it is assumed that there may be (approximately) a minimum of 5 
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collaborators in any run of the protocol. Under this assumption it is difficult for a single 
collaborator to learn the datasets of any other single collaborator by employing such mechanisms. 

Finally, a collaborator may try to estimate datasets by computing a prior distribution of the 
results obtained from the final computation of scores, which is OK, and then use their own dataset 
to obtain a better posterior distribution. However, they only have a chance to learn about variants 
that are shared, rather than private to a cohort, and only within the top-scoring genes. A theoretical 
analysis of the privacy guarantees of the protocol may resemble the one by Sankararaman42 to 
some extent although we are now working in the MAF < 0.5 range. A complete analysis however 
remains out of scope for this paper and will be considered for future work. 

Privacy preserving protocols of this sort have been investigated in the cryptography literature 
as secure multiparty computation43. Over the last decade, protocols have been proposed for joint 
computation of the intersection of two or more subsets44 that can be employed to compute the 
intersection of the variant set. More generally, theoretical results guarantee the ability to simulate 
any privacy-preserving protocol that uses a third trusted party without the need of such a party45. 
Similar to meta-analysis techniques in GWAS, the application of similar techniques for NGS 
studies is expected to reveal the role of many rare variants in Mendelian diseases. 
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The biggest challenge for text and data mining is to truly impact the biomedical discovery 
process, enabling scientists to generate novel hypothesis to address the most crucial 
questions. Among a number of worthy submissions, we have selected six papers that 
exemplify advances in text and data mining methods that have a demonstrated impact on a 
wide range of applications. Work presented in this session includes data mining techniques 
applied to the discovery of 3-way genetic interactions and to the analysis of genetic data in 
the context of electronic medical records (EMRs), as well as an integrative approach that 
combines data from genetic (SNP) and transcriptomic (microarray) sources for clinical 
prediction.  Text mining advances include a classification method to determine whether a 
published article contains pharmacological experiments relevant to drug-drug interactions, 
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a fine-grained text mining approach for detecting the catalytic sites in proteins in the 
biomedical literature, and a method for automatically extending a taxonomy of health-
related terms to integrate consumer-friendly synonyms for medical terminologies.  

1.  Introduction 

The explosion of genomic data available to researchers from countless gene expression and 
sequencing experiments, coupled with the abundance of knowledge in the published literature and 
curated databases, fuels the need for novel and transformative methods for knowledge extraction, 
visualization, and analysis that take advantage of all of these sources to elicit new and meaningful 
hypotheses. The biggest challenge for text and data mining is to truly impact the biomedical 
discovery process, enabling scientists to generate novel hypothesis to address the most crucial 
questions. Formulation of a flexible and general approach for integrating heterogeneous data and 
knowledge sources for discovery is elusive and highly dependent upon the specific underlying 
scientific question. The true impact of text and data mining is only realized if it goes beyond a 
focus on the methods for extraction and storage, and into the true impact they can have on 
enabling understanding of the molecular underpinnings of biological processes. 

This session seeks to bring together researchers with a strong text or data mining background who 
are collaborating with bench scientists for the deployment of integrative approaches in 
translational bioinformatics. It serves as a unique forum to discuss novel approaches to text and 
data mining methods that respond to specific scientific questions, enabling predictions that 
integrate a variety of data sources and can potentially impact scientific discovery.  

In order to find the optimal way to integrate relevant information that will help translational and 
clinical researchers pinpoint novel findings, a thorough understanding of the decision process 
through which active researchers vet the discoveries proposed by automated systems is required. 
However, very little is presently known about how scientists actually interpret this information. 
Cohen and Hersh argue that the "major challenge of biomedical text mining over the next 5-10 
years is to make these systems useful to biomedical researchers" [1].  Langley notes the tendency 
for such tools to be developed for the use of professional data-miners rather than active 
researchers, and argues for the development of discovery systems with a greater degree of user 
interactivity [2].  

There have been increased efforts to develop such systems and approaches, but there is no single 
place to present them. This session attracted cross-discipline collaborators with focused 
applications of discovery and prediction methods. Given the ever increasing deluge of data and 
knowledge that overwhelms bench scientists around the world; interest in such systems will only 
increase over time. Some examples of topics of interest to this session include novel approaches 
that integrate empirical data with knowledge extracted from the literature, curated databases or 
ontologies to perform discovery-related tasks such as:  

• Gene prioritization  
• Binding site prediction 
• Gene/protein function prediction,  
• Prediction of associations (protein-protein, gene-drug, gene-disease, drug-drug)   
• Pathway generation or validation 
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for translational applications such as pharmacogenomics,  genome-phenome validation, or 
detection, diagnostic and prognosis of disease.   

2.  Challenges 

Improving text and data mining methods for any task requires careful consideration and 
evaluation. The biomedical domain presents specific challenges given the diversity, complexity 
and volume of the information being mined. This section presents a brief overview of the 
fundamental challenges faced by researchers in these areas. 

2.1.  Text Mining 

Although in general there are challenges such as summarization and question answering, for the 
type of applications focus of this session, two text mining tasks seem to be specifically relevant: 
named entity recognition and association extraction.  

Named entity recognition (NER) is the problem of finding references to entities (mentions) such 
as genes, proteins, diseases, drugs, adverse reactions, or organisms in natural language text, and 
tagging them with their location and type. NER is also referred to as “entity tagging”. This is a 
basic building block for all other extraction tasks. While there has been significant progress into 
named entity recognition in the biomedical domain, research has been primarily focused on genes 
and proteins. Attempts to recognize other entities of interest have concentrated on dictionary 
matching or statistical approaches. Machine-learning based systems overcome this limitation to a 
certain extent, given it is possible to retrain such systems to recognize different entity classes. 
Retraining requires, however, considerable effort in annotation to create a suitable corpus for 
training the engine, as well as some feature analysis. 

Tagging specific entities is of interest as a fundamental step towards the true goal: extracting true 
associations between terms, such as genes and diseases. Information extraction (IE) from the 
biomedical literature is usually developed around the extraction of such relationships of interest 
from text. A typical architecture is composed of special-purpose programs that perform a pipeline 
of processing modules, including sentence splitters, tokenizers, named entity recognizers, shallow 
or deep syntactic parsers, and finally extraction based on a collection of patterns. Such systems are 
usually file-based, so large amounts of processed data can be passed from one module to the next. 
Relational databases would play a limited role at the end of the extraction pipeline to store the 
extracted relationships. 

This session includes specialized examples of entity recognition and association extraction, 
showing the trend towards finer granularity in the type of information needed for meaningful 
applications of text mining for biomedical discovery, requiring a tighter collaboration between the 
text mining community and domain experts. 
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2.2.  Data Mining 

In 2006, a paper in the International Journal of Information Technology & Decision Making 
explored “10 Challenging Problems in Data Mining Research” [3], based on the replies of 14 
experts (organizers of the most prestigious Data Mining conferences). It is interesting to note that 
not only “Data mining for biological and environmental problems” is listed specifically as one of 
these challenging problems, but that 8 out of the 9 other challenges apply specifically to 
biomedical data, namely: 
 

§ Scaling up for high dimensional data and high speed data streams 
§ Mining sequence data and time series data 
§ Mining complex knowledge from complex data 
§ Data mining in a network setting 
§ Distributed data mining and mining multi-agent data 
§ Data Mining process-related problems 
§ Security, privacy and data integrity 
§ Dealing with non-static, unbalanced and cost-sensitive data 

Of particular interest to this session is the recognized need, when mining complex data, ”for 
integrating data mining and knowledge inference” and to “to incorporate background knowledge 
into data mining”.  Included in this session are works that address precisely these aspects. 

3.  Overview of Contributions 

Holzinger et al present an integrative approach, ATHENA, used to combine data from genetic 
(SNP) and transcriptomic (microarray) sources to predict a clinically important feature (HDL-C 
level).  The combined data are capable of predicting HDL-C levels better than either of the 
individual data sources.  Methods capable of connecting measurements of the genome to 
measurements of transcript and protein abundance for prediction of a clinically relevant phenotype 
are expected to play a key role in precision medicine. 

Hu et al explores the application of the statistical epistasis networks (SEN) approach as filters in 
the discovery of 3-way genetic interactions. Genetic epistasis is considered an important factor 
that is related to the etiology of complex diseases. Exhaustive search for high-order interaction is 
unrealistic due to the large data volume. The authors show that SEN can significantly reduce the 
number of candidates that need to be considered in a high-order interaction model with improved 
accuracy.  

Kolchinski et al describe a document triage task (binary text classification) for biomedical 
(Pubmed) articles to determine whether the article contains pharmacological experiments relevant 
to drug-drug interactions. This joint work between a BioNLP lab (Rocha’s) and a lab doing 
research in pharmacokinetics (Li’s) exemplifies the type of collaborations likely to result in 
fruitful advances in biomedical discoveries. The approaches used are variations of approaches 
known to perform well on similar tasks. The sort of dimensionality reduction and feature 
transforms performed in the paper are not used as often in BioNLP as they probably should be.  
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Verspoor et al discuss a fine-grained text mining approach for detecting the catalytic sites in 
proteins in the biomedical literature. The authors create a silver standard corpus, apply a machine 
learning technique, and achieve reasonable results. The work has application in computational 
prediction of the functional significance of protein sites as well as in curation workflows for 
databases that capture this information. 

Bush et al describe workflows for the analysis of genetic data in the context of electronic medical 
records (EMRs).  Using EMR data in conjunction with genetic data is an important step in the 
study of both genetic and environmental factors related to complex human diseases, but analyses 
combining these data pose substantial privacy concerns.  This contribution discusses such 
concerns, as well as a system that has been developed to allow such analyses via a web server 
while maintaining appropriate privacy for individuals participating in the study. 

Seedorff et al seek to extend a taxonomy of health-related terms, the Mayo Consumer Health 
Vocabulary (MCV), that helps customers understand the terminology used by healthcare 
professionals. The authors argue for the importance of integrating synonyms for medical 
terminologies as well as both genetic risk factors and non-genetic risk factors for diseases into 
MCV, and present a method for automatically extending it using text mining. The successful 
extension of MCV can then form a basis to build consumer- oriented products and sophisticated 
search and information retrieval standards for patient-facing applications. 
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Genetic association studies have rapidly become a major tool for identifying the genetic basis of common 

human diseases.  The advent of cost-effective genotyping coupled with large collections of samples linked to 

clinical outcomes and quantitative traits now make it possible to systematically characterize genotype-

phenotype relationships in diverse populations and extensive datasets.  To capitalize on these advancements, 

the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) project, as part of the 

collaborative Population Architecture using Genomics and Epidemiology (PAGE) study, accesses two 

collections:  the National Health and Nutrition Examination Surveys (NHANES) and BioVU, Vanderbilt 

University’s biorepository linked to de-identified electronic medical records.  We describe herein the 

workflows for accessing and using the epidemiologic (NHANES) and clinical (BioVU) collections, where 

each workflow has been customized to reflect the content and data access limitations of each respective 

source. We also describe the process by which these data are generated, standardized, and shared for meta-

analysis among the PAGE study sites.  As a specific example of the use of BioVU, we describe the data 

mining efforts to define cases and controls for genetic association studies of common cancers in PAGE.  

Collectively, the efforts described here are a generalized outline for many of the successful approaches that 

can be used in the era of high-throughput genotype-phenotype associations for moving biomedical discovery 

forward to new frontiers of data generation and analysis. 
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1. Introduction 

In a typical genome-wide association study (GWAS), a single or limited number of traits or diseases are 
tested for association with common single nucleotide polymorphisms (SNPs) assayed regardless of 
presumed function across the human genome.  Since 2005, GWAS has been successful in confirming 
already known and identifying novel genotype-phenotype associations relevant to the biomedical 
community.  GWAS is now a mainstay discovery approach in human genetics. 

With hundreds to thousands of genotype-phenotype associations now catalogued across the human 
genome(1,2), there is great interest in expanding the characterization of these associations beyond the 
initial population or phenotype studied.  Indeed, the systematic characterization and fine-mapping of known 
GWAS-identified variants from European-descent populations has begun in earnest(3-10).   In addition, 
large scale methods to identify pleiotropy, such as phenome-wide association studies (PheWAS) (11,12), 
are increasing in frequency.  To propel research in these two avenues, the National Human Genome 
Research Institute founded the Population Architecture using Genomics and Epidemiology (PAGE) study 
in 2008.  PAGE is a collection of large, diverse epidemiologic and clinical collections with DNA samples 
linked to hundreds of disease outcomes, quantitative traits, and exposures(13)(Figure 1).  A major activity 
of the PAGE study is the systematic characterization of GWAS-identified genotype-phenotype 
relationships across populations and phenotypes.  The Epidemiologic Architecture for Genes Linked to 
Environment (EAGLE) project, one of PAGE’s four study sites, accesses the National Health and Nutrition 
Examination Surveys (NHANES) and the Vanderbilt University biorepository linked to de-identified 
electronic medical records (BioVU)(14) to pursue PAGE study goals.  

EAGLE participates in collaborative PAGE studies for disease and traits related to cardiovascular, 
metabolic, and cancer phenotypes among many others.  To enable characterization of genotype-phenotype 
relationships in EAGLE and PAGE, EAGLE has developed high-throughput workflows customized to test 
GWAS-identified variants for all outcomes and traits in multiple populations available in both EAGLE 
collections.  The development of a systematic workflow was and continues to be necessary to harmonize 
EAGLE analyses with analyses from other PAGE study sites and to facilitate meta-analysis across multiple 
studies.  We describe herein each EAGLE collection, including characteristics of each data collection that 
impact both the workflow design for effective data analysis as well as data sharing, all crucial elements for 
collaborative high-throughput human genetic association studies for biomedical discovery.       

 

2. Methods 

1.1.  Study populations 
EAGLE currently accesses two diverse study populations as part of the PAGE study:  the National Health 
and Nutrition Examination Surveys (NHANES) and BioVU, the Vanderbilt University biorepository linked 
to de-identified electronic medical records (EMRs).  NHANES is a population-based survey conducted by 
the National Center for Health Statistics at the Centers for Disease Control and Prevention(15).  NHANES 
ascertains Americans regardless of health status at the time of the survey.  For each study participant, data 
on demographics, health, and lifestyle are collected. A physical exam is conducted by a CDC physician or 
health professional, and laboratory measures are assayed from blood and urine.  DNA samples were 
collected on consenting participants for the Third NHANES (NHANES III) conducted between 1991 and 
1994 (n=7,159), NHANES 1999-2000 (n=3,570), NHANES 2001-2002 (n=4,269), and NHANES 2007-
2008 (n=4,615).  A total of 19,613 DNA samples are available for research representing self-reported non-
Hispanic whites (n=8,858), non-Hispanic blacks (n=4,325), Mexican Americans (n=4,768), and other 
race/ethnicities (n=1,662). 
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 Figure 1.  The Population Architecture using Genomics and Epidemiology (PAGE) study.  The PAGE 

study, funded in 2008, consists of a coordinating center (Rutgers University and Information Sciences 

Institute at the University of Southern California) and four study sites:  the Causal Variants Across the Life 

Course (CALiCo) consortium accessing the Atherosclerosis Risk in Communities (ARIC), Coronary Artery 

Risk in Young Adults (CARDIA), Cardiovascular Heart Study (CHS), Strong Heart Cohort and Family 

Studies (SHS/SHFS), and Study of Latinos (SOL); Epidemiologic Architecture for Genes Linked to 

Environment (EAGLE) accessing the National Health and Nutrition Examination Surveys (NHANES) and 

Vanderbilt University’s biorepository linked to de-identified medical records (BioVU); the Multiethnic 

Cohort (MEC); and the Women’s Health Initiative (WHI). 

In contrast to NHANES, BioVU is a clinic-based collection of patients visiting the outpatient clinics 
affiliated with Vanderbilt University in Nashville, Tennessee(14). DNA is extracted from discarded blood 
collected for routine outpatient clinic use and linked to a de-identified version of the electronic medical 
record known as the Synthetic Derivative (SD).  The SD is updated routinely and contains outpatient as 
well as inpatient clinical structured and unstructured data including billing codes, procedure codes, labs, 
tumor registry entries, demographic data, vital signs, and text-based clinical notes.  Because of extensive 
de-identification procedures, BioVU is considered non-Human Subjects research(16).  As of June 2012, 
BioVU contained 143,993 DNA samples, 57% of which are from females and 10% from African 
Americans.  

  

2.2. Genotyping 
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The majority of EAGLE’s genotypic data are a result of de novo targeted genotyping.  Briefly, SNPs were 
selected in 2008 to mid-2010 representing index genetic variants from GWAS of common diseases and 
traits such as HDL-C, LDL-C, triglycerides, total cholesterol, markers of inflammation, bone mineral 
density/osteoporosis, electrocardiographic traits, body mass index, complete blood count traits, type 2 
diabetes and eight major cancers.  SNPs were then genotyped using a variety of assays/platforms including 
TaqMan, TaqMan OpenArray, Illumina BeadXpress, and Sequenom.  To date, EAGLE has submitted 
greater than 5.1 million genotypes to the CDC Genetic NHANES database, and these data are available for 
secondary analyses via NCHS/CDC. 

 

2.3. Statistical analyses 

In EAGLE (single site) and PAGE (multi-site) studies, genotype-phenotype association analyses are 
conducted as defined by the following “tiers”(13): 

 Tier 1:  High-throughput unadjusted linear or logistic regressions assuming an additive genetic 
model. For categorical phenotypes, binning was used to create new variables of the form “A versus 
not A” for each category, and logistic regression was used to model the new binary variable. All 
continuous phenotypes were natural log transformed, following a y to log (y+1) transformation of 
the response variable with +1 added to all continuous measurements before transformation to 
prevent variables recorded as zero from being omitted from analysis.  All analyses are stratified by 
race/ethnicity. Statistical analyses are performed by each PAGE study site independently.  The 
phenotypic and exposure variables are not harmonized across PAGE study sites. 

 Tier 2:  Low throughput unadjusted linear and/or logistic regressions performed for select 
genotypes and phenotypes of interest in a single PAGE study site.  The genetic modeling and levels 
of stratification are dependent on a specific hypothesis or study question.  The study subjects are 
carefully phenotyped and multiple covariates (also well-defined) are considered in the models. 

 Tier 3: Low throughput unadjusted linear and/or logistic regressions performed for select 
genotypes and phenotypes of interest across PAGE study sites where the genetic modeling and 
levels of stratification are dependent on the hypothesis or study question.  The study subjects are 
carefully phenotyped like Tier 2 analyses; however for Tier 3, phenotypes and exposures are 
harmonized across multiple PAGE study sites.  Statistical analyses are performed by each PAGE 
study site independently, and aggregate results are shared across study sites for meta-analysis by 
the lead author(s). 

All PAGE study results, regardless of Tier, must be available in aggregate form for the PAGE 
Coordinating Center browser(13) and possible dbGaP(17) deposition.  To facilitate the uniform submission 
of PAGE study aggregate data by study site, the PAGE Coordinating Center created three “Results 
Template” files consisting of the phenotype file, the SNP file, and the Association file (version 8).  The 
phenotype file currently consists of 32 column headers such as phenotype label, PAGE study site, 
phenotype units, information on transformation and analysis tier, type of variable (binary versus 
quantitative), types of covariates included in the models, race/ethnicity, gender, sample size, and 
descriptive statistics of the phenotype used in the analysis.  The SNP files currently consists of 19 column 
headers such SNP ID (rs number), PAGE study site, race/ethnicity, gender, alleles and counts (including 
coded allele designation), genotypes and counts, Hardy Weinberg p-values, genotype call rates, and strand 
information.  The Association file currently consists of 53 column headers such as SNP ID, phenotype, 
PAGE study site, race/ethnicity, gender, genetic effect size of association and standard errors and/or 
confidence intervals, modeling label (defined by lead of the analysis plan), p-values, sample sizes, alleles 
(included allele and frequency of coded allele), genotype counts by affection status, median values and 
quartiles of quantitative traits by genotype, and genetic model. 
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In EAGLE, all NHANES genotype-phenotype associations are performed using SAS v9.2 and 
SUDAAN v10.0(SAS Institute, Cary, NC) using the Analytic Data Research by Email (ANDRE) portal of 
the CDC Research Data Center (RDC) in Hyattsville, MD (further described below).  EAGLE analyses 
accessing BioVU data are performed using a variety of software packages including PLINKv1.07(18), 
SASv9.3, and Rv2.14.1(19).  The EAGLE workflows described here are supported by multiple scripts 
written in several computer languages such Ruby with Ruby on Rails framework and Javascript with 
Backbone framework. 

 

3. Workflow 

3.1. The epidemiologic collection (NHANES) 

Like many epidemiologic collections, NHANES consists of thousands of DNA samples linked to thousands 
of variables and, in the case of EAGLE, hundreds of genetic variants.  To automate the high-throughput 
genotype-phenotype associations such as the PheWAS approach, the workflow for this and many 
epidemiologic collections must accommodate the fact that sample size, phenotypic/exposure variable list, 
and genetic variant content can vary substantially across the years of survey.  Also, the workflow must 
acknowledge and work with various data access models that can range from open access to highly 
restricted access to individual level data within and across collaborating studies.  Finally, the workflow 
must anticipate high volumes of structured data that will require accessible archival or storage for 
specialized searches.   

Specifically for NHANES, EAGLE accesses up to 19,613 DNA samples that have anywhere from one 
to 1,100 genetic variants and approximately 3,500 phenotypic/demographic variables available for analysis.  
Due to concerns related to confidentiality even for aggregate data(20), genetic data are considered restricted 
variables by CDC and therefore cannot be linked to phenotypic variables and accessed outside of the CDC 
RDC firewall.  To facilitate analyses such as genotype-phenotype association studies for research groups 
outside of CDC, the RDC created Analytic Data Research by Email (ANDRE).  ANDRE is the remote 
server for CDC that accepts and runs analyses generated in Statistical Analysis System (SAS) or Survey 
Data Analysis (SUDAAN).  ANDRE is an e-mail exchange that serves as an interface for processing code.  
Only analyses or SAS commands that result in aggregate data are allowed, and specific SAS commands 
and macros are explicitly forbidden.  SAS output resulting from analyses sent to ANDRE by outside 
investigators are further inspected to ensure that counts fewer than five are redacted or suppressed from the 
output before the output is returned to outside investigators for consumption.  And, ANDRE e-mail 
exchange is limited to outgoing files <20MB in size, which includes both the log and output files.  The time 
elapsed between submitting code to ANDRE and receiving the output files from ANDRE via e-mail is 
typically less than 30 minutes, but this can range from two minutes to several hours.   

Figure 2.  EAGLE project web-based Experiment Designer.  We developed a web-based Experiment 

Designer to assist EAGLE analysts in generating standard SAS code for high-throughput genotype-

phenotype tests of association.  The SAS designer allows each EAGLE analyst to create experiments by 

selecting pre-defined variables approved for study by CDC by NHANES dataset.  EAGLE analysts can also 

specify dependent variables, independent variables, and stratification variables (gender and race/ethnicity) for 

linear or logistic regression modeling.  The SAS Generator takes the experiment created with the Experiment 

Designer and generates the appropriate SAS code for submission to ANDRE. 
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The restrictions posed by the RDC present several challenges for high-throughput genotype-phenotype 
associations in EAGLE and for data sharing with the PAGE study sites.  To work within the restrictions 
and to minimize analyst workload, we created a web-based “Experiment Designer” and “SAS Generator”.  
With the Experiment Designer (Figure 2), analysts create and edit the variables for an experiment that will 
be sent to ANDRE.  Analysts can then select dependent and independent variables along with any 
adjustments and stratifications.  The Experiment Designer allows analysts to focus on the data and desired 
results instead of the SAS code itself.  The Experiment Designer also ensures uniform SAS coding of the 
genetic model (and coded allele), an important feature for large datasets accessed by three analysts at any 
one time. The SAS Generator then takes the experiment created with the Experiment Designer and 
generates the appropriate SAS code for submission to ANDRE.  Each experiment can be queued and sent 
to ANDRE when output from the previous experiment is received by the analyst via e-mail.  Thus, the SAS 
Generator ensures that there are no gaps between sending SAS code and receiving output from ANDRE.  
The SAS Generator ultimately saves the analyst time from constantly checking e-mail for receipt of 
ANDRE output.  To date, EAGLE analyses for EAGLE and PAGE study analysis plans have generated 
>400 experiments resulting in >20,000,000 SAS output files each with approximately 50 lines of 
unstructured SAS data output.   

Most tests of association performed in NHANES result in tens of thousands of SAS output files from 
ANDRE.  With so many output files and lines of data per output file, a second major challenge is 
translating the output into a condensed, accessible, and readily available format.  For each set of output we 
have developed the “Parser” software to do the following:  1) parse the file headers to classify the files (e.g. 
Linear Regression, SNP Frequency, etc), and 2) process the text of each SAS output file and extract the 
appropriate data values. The Parser can be utilized only when necessary, allowing EAGLE analysts to store 
the SAS output files and then process them in real-time, as needed. This also allows EAGLE analysts to 
view any single output file and also view the parsed results.   

 Once the SAS output file results are parsed, the data are compiled into the PAGE Coordinating Center 
Results Template file format.  To automate this process, we created the “Template Generator” step.  In this 
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step, an experiment's SAS output files are parsed and combined into a template for submission to the PAGE 
Coordinating Center and to PAGE collaborators for meta-analysis or for visualization using Synthesis-
View(21), PheWAS-View(22),  or other software. Automation of this step results in analysis results 
required for meta-analysis or dbGaP submission. 

The full epidemiologic workflow for EAGLE, from SAS code generation to Results Template file 
generation for data dissemination, is given in Figure 3.  The code is open source and will be available on 
the EAGLE website (https://eagle.mc.vanderbilt.edu/).    

Figure 3.  EAGLE project epidemiologic collection workflow.  The epidemiologic collection workflow begins 

with the Experiment Designer, designed as a web-interface and accessed by EAGLE analysts.  The analyst can 

easily use the Experiment Designer to create standardized SAS code based on parameters set by the analysts.  The 

resultant ANDRE-friendly code is automatically generated. Once the code has been submitted, ANDRE will send 

censored output files back to the EAGLE analysts.  These resultant files are first crudely parsed and stored in a 

database in preparation for “real-time” parsing by analysts.  Finally, analysts use the “Template Generator” to 

create standard PAGE Results Template files for sharing data across PAGE study sites for meta-analysis. 

 

3.2. The clinical collection (BioVU) 

The epidemiologic collection of NHANES described above is an extensive and rich source of 
phenotypic and genotypic data for genetic association studies of quantitative traits; however, because of the 
wide age range and lack of health information for specific diseases, the collection is underpowered for 
many diseases, including common diseases such as cardiovascular disease, type 2 diabetes, and various 
cancers.  To supplement EAGLE sample sizes for clinical outcomes in diverse populations, a clinical 
collection at Vanderbilt University known as BioVU was accessed. 

Additional cancer cases and controls were first identified in BioVU using billing (ICD-9) codes. 
Specific cancers such as melanoma could be defined with high positive predictive values whereas others 
such as endometrial cancer could not.  Therefore, to increase the positive predictive value of all EAGLE 
case/control definitions, data from the tumor registry were utilized.  These data include primary site 
designations and histology information collected for clinical reporting purposes for the North America 
Association of Central Cancer Registries.  A combination of the tumor registry data, along with ICD-9 
billing codes, procedure codes, vital signs, and free text clinical notes, were used to identify cases for eight 
cancers among all patients aged 18 or greater in the SD with DNA samples using the following algorithms: 

 

 Breast cancer:  Three or more mentions of ICD-9 primary code 174 (malignant neoplasm of the 
female breast) and all sub-codes (denoted “*” here and throughout) on separate clinic visits OR a 
tumor registry entry for breast cancer AND female  

 Colorectal cancer:  Tumor registry entry for colorectal cancer. 
 Endometrial cancer:  Tumor registry entry for endometrial cancer with primary sites C540-C549, 

C559 AND histology not one of 9590-9989 AND female. 
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 Lung cancer:  Tumor registry entry for lung cancer, any location and any type. 
 Melanoma:  Three or more mentions of ICD-9 codes 172.* (malignant melanoma of skin) OR 

tumor registry entry for melanoma. 
 Non-Hodgkin’s lymphoma:  Tumor registry entry for non-Hodgkin’s lymphoma with histology in 

('9673', '9675', '9684', '9687', '9695', '9705', '9823', '9827'), OR ( histology >= '9590'  and histology 
<= '9596'), OR ( histology >= '9670'  and histology <= '9671'), OR ( histology >= '9678'  and 
histology <= '9680'), OR ( histology >= '9689'  and histology <= '9691'), OR ( histology >= '9698'  
and histology <= '9702'), OR ( histology >= '9708'  and histology <= '9709'), OR ( histology >= 
'9714'  and histology <= '9719'), OR ( histology >= '9727'  and histology <= '9729'). 

 Ovarian cancer:  Tumor registry entry for ovarian cancer AND female. 
 Prostate cancer:  Three or more mentions of ICD-9 codes 185.* (malignant neoplasm of prostate) 

OR tumor registry entry for prostate cancer. 
 

Approximately two control samples were identified per case matched on sex, race/ethnicity, and age 
(within 5 years).  Control samples were required to have at least two clinical narratives (clinical notes, 
discharge summaries, etc), with preference given to records with at least one fully documented history and 
physical.  Records were excluded as controls if they had one or more codes for neoplasms, ICD-9 codes 
between 140.* and 239.*, had a tumor registry entry or had the one or more cancer related keywords in the 
problem list.  For breast cancer, endometrial cancer, and ovarian cancer, male controls were also excluded, 
and for prostate cancer, female controls were excluded.   

For specific cancers, controls with additional clinical data were desirable for anticipated analyses.  For 
example, for breast cancer controls among women over 40 years of age, we required that records contain at 
least one mammography Bi-Rad score as 1 (negative) or 2 (benign).  For colorectal cancer controls, we 
required for patients over 50 years of age the keyword “colonoscopy” in the problem list OR one of the 
following CPT codes:  45378 (colonoscopy, flexible, proximal to splenic flexure, diagnostic), 45379 (with 
removal), 45380 (with biopsy, single), 45381 (with directed), 45382 (with control), 45383 (with ablation 
of), 45384 (with removal of), 45385 (with removal of), 45386 (with dilation by), 45387 (with 
transendoscopic), 45391 (with endoscopic), and 45392 (with transendoscopic).  Finally, for prostate cancer, 
we required male controls aged 40 years and greater to have at least one prostate specific antigen (PSA) 
level <4 and that the most recent PSA level is within the normal range. 

With these algorithms implemented in the SD in late 2010/early 2011, we identified a total of 7,348 
cancer cases for targeted genotyping.  Race/ethnicity in the Vanderbilt University EMR and BioVU SD is 
administratively assigned, which we have shown is highly concordance with genetic ancestry determined 
by ancestry informative markers (AIMs)(23).  As expected based on the overall demographics of BioVU, 
the majority of case samples were European American (87%).  Approximately 4% of the samples were of 
unknown race/ethnicity and were assigned genetic ancestry via ancestry informative markers for 
downstream analyses (data not shown).  For the first five cancers defined in the SD (breast, colorectal, 
melanoma, ovarian, and prostate cancers) we identified approximately two controls per case for genotyping 
as defined in the text above.  A total of 8,996 controls were targeted for genotyping.  Two controls per case 
of endometrial cancer, lung cancer, and non-Hodgkin’s lymphoma were defined from among the genotyped 
control samples.     

In addition to defining case and control status for genotyping, we have begun to define clinical 
covariates anticipated for analysis.  As described above, screening data has been preferentially represented 
in controls for select cancers (breast, colorectal, and prostate) and is expected to be defined in cases.  
Environmental exposures are more difficult to define given that most of these data, if available, exist in the 
unstructured data (free text or clinical narrative) of the EMR.  Work is on-going to define common 
exposures or other variables that reside in the clinical narrative such as alcohol use, physical activity, and 
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family history using text mining and other approaches.  For smoking status, we have applied an 
implementation of the CTAKES algorithm(24), and have also illustrated that ICD-based smoking 
definitions are highly specific for identifying smokers(25). 

Unlike the epidemiologic collection (NHANES), the clinical collection (BioVU) is relatively free of 
data access restrictions.  Therefore, the clinical collection workflow only utilizes the later stages of the 
workflow described in Figure 3.  Output files from various statistical packages (such as PLINK) are parsed 
and Results Template files are generated for sharing among PAGE study sites and meta-analysis. 

 

4. Conclusions 

We describe here the epidemiologic (NHANES) and clinical (BioVU) collection workflows that enable 
high-throughput genotype-phenotype association studies and data sharing within EAGLE and the PAGE 
study.  Both workflows were customized based on a variety of factors including data structure and data 
access.  A major strength of this approach is that it provides the infrastructure to conduct systematic genetic 
analyses resulting in standardized files for data sharing and meta-analysis.  A major weakness of this 
approach is that is requires substantial bioinformatics and computing resources and personnel to create, 
maintain, and implement the workflow.  The preferential accessing of datasets with open access or fewer 
data use restrictions would assist in easing the effort required for the workflows.  However, full access to 
local or collaborative datasets through dbGaP will still require substantial bioinformatics and computational 
support to fully mine the genotype-phenotype investments for high returns relevant to human disease and 
biology. 
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Technology is driving the field of human genetics research with advances in techniques to generate high-throughput 
data that interrogate various levels of biological regulation. With this massive amount of data comes the important 
task of using powerful bioinformatics techniques to sift through the noise to find true signals that predict various 
human traits. A popular analytical method thus far has been the genome-wide association study (GWAS), which 
assesses the association of single nucleotide polymorphisms (SNPs) with the trait of interest. Unfortunately, GWAS 
has not been able to explain a substantial proportion of the estimated heritability for most complex traits. Due to the 
inherently complex nature of biology, this phenomenon could be a factor of the simplistic study design. A more 
powerful analysis may be a systems biology approach that integrates different types of data, or a meta-dimensional 
analysis.  For this study we used the Analysis Tool for Heritable and Environmental Network Associations 
(ATHENA) to integrate high-throughput SNPs and gene expression variables (EVs) to predict high-density 
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lipoprotein cholesterol (HDL-C) levels. We generated multivariable models that consisted of SNPs only, EVs only, 
and SNPs + EVs with testing r-squared values of 0.16, 0.11, and 0.18, respectively. Additionally, using just the SNPs 
and EVs from the best models, we generated a model with a testing r-squared of 0.32. A linear regression model with 
the same variables resulted in an adjusted r-squared of 0.23. With this systems biology approach, we were able to 
integrate different types of high-throughput data to generate meta-dimensional models that are predictive for the HDL-
C in our data set.  Additionally, our modeling method was able to capture more of the HDL-C variation than a linear 
regression model that included the same variables. 
 
1.  Introduction 

1.1.  A Case for Meta-dimensional Analysis 

Over the past decade, high-throughput technology has become considerably more efficient and 
less expensive1. The human genetics field has reaped the benefits of these advancements via 
extensive exploratory analyses largely in the form of GWAS. These studies have led to the 
discovery of thousands of SNPs that are significantly associated with hundreds of common, 
complex human traits2.  However, for many of these traits, a large proportion of the estimated 
heritability remains unexplained by these DNA variants3.   

One of the leading hypotheses regarding this “missing heritability” is that GWAS may not be 
robust to the inherent complexity of biological processes, and, therefore, may be missing large 
chunks of the underlying etiology4.  Two areas where this complexity might lie are in non-additive 
interactions (gene-gene or gene-environment) and within the different levels of biological 
regulation. First, because traditional GWAS specifically identify SNPs with large main effects, 
interactions without large main effects would be missed.  Next, complex phenotypes could be 
under the influence of more than one level of biological regulation.  Various types of –omic data 
(i.e. transcriptomic and methylomic) analyzed simultaneously could take into account trait 
variation that would be missed by SNP data alone5.  In order to account for complex etiology, a 
more powerful meta-dimensional analysis would have to be performed. A meta-dimensional 
analysis is one that integrates different types of high-throughput data while allowing for non-linear 
interactions in order to identify multi-variable prediction models that include data from from 
different levels of biological regulation6.  For example, analyzing microarray gene expression data 
and SNP genotypes data simultaneously to identify models that predict a complex human disease, 
such as breast cancer. 

In order to successfully perform a meta-dimensional analysis, computational tools need to be 
able to perform the following tasks successfully: sift through the high level of noise inherent to 
high-throughput data in order to identify true signals, simultaneously analyze continuous and 
categorical predictor and outcome variables, and identify main and interaction effects in order to 
generate a final predictive model.  Currently, no single analysis method performs all of these tasks 
at once.  Some candidates that may come together to create a successful analysis pipeline include 
tree-based methods (i.e. Random Forests7), Bayesian networks, computational evolution methods, 
and various types of clustering and correlation techniques.  For this paper, we propose a meta-
dimensional analysis tool called ATHENA that combines a tree-based filtering method with a 
computational evolution modeling method in order to integrate SNP genotypes and gene 
expression variables to predict HDL-C levels. 
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1.2.  The Genetics of HDL Cholesterol 

HDL particles are small, dense lipoproteins that circulate throughout the body. Many anti-
atherogenic properties have been ascribed to HDL, and low HDL-C levels are strongly and 
independently associated with increased risk for cardiovascular disease8. HDL-C has a relatively 
large genetic component with heritability estimates between 40-80%8,9.     Many common variants 
have been found to be significantly associated with HDL-C in humans, but collectively they only 
explain a small proportion of the estimated heritability.  A recent study used significant GWAS 
SNPs to perform polygenic scoring and found that the best model only explained ~4.75% of the 
variation in the HDL-C trait10. Some groups have begun to examine a more complex genetic 
architecture to explain the missing heritability and several gene-gene interactions have been 
identified11–13.  In this study, we aim to go a step further by integrating SNPs and gene expression 
data to find complex models that predict HDL-C levels. 

2.  Methods 

2.1.  The Analysis Tool for Heritable and Environmental Network Associations (ATHENA) 

ATHENA is a multi-functional software package designed by our lab to analyze various types of 
high-throughput data in order to generate multi-variable models.  ATHENA has been tested 
extensively on simulated data and applied to biological data sets in order to demonstrate its utility 
on “noisy” data14–17.  Figure 1 shows the full current and future functionality of ATHENA. 
 

 
Fig.  1. Components of the ATHENA software package 
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The main components of ATHENA are a filtering step and a modeling step.  The filtering step 
can be a statistical filter (Random Jungle18) or one that prioritizes variables based on their known 
biological functions (Biofilter19).  Currently, ATHENA has two different computational evolution 
modeling techniques--Grammatical Evolution Symbolic Regression (GESR) and Grammatical 
Evolution Neural Networks (GENN). For this analysis, we used Random Jungle (RJ) as the 
statistical filter and Grammatical Evolution Neural Networks (GENN) as the modeling technique. 

2.1.1.  ATHENA filtering: Random Jungle 

RJ is a faster, parallelized version of the tree-based variable selection method Random Forests 
(RF).  Briefly, RF uses a bootstrap sample of the data to grow a “forest” of decision or regression 
trees with no pruning.  The trees are then tested using the out-of-bag individuals not present in the 
bootstrap sample to determine which variables are most important for outcome prediction.   
Importantly, RF can identify main and interaction effects7.  We chose RJ as the statistical filter 
because of its capability to analyze millions of quantitative and categorical variables in a relatively 
computationally efficient manner. Also, the output is a list of variables ranked by an importance 
score. For this analysis, importance is defined as the percent increase in mean squared error after 
permuting the variable values while taking into account correlation patterns between the 
variables20.   This output lends itself nicely to selecting a subset of variables for input into a 
modeling technique that is less robust to noise.  

2.1.2.  ATHENA modeling: Grammatical Evolution Neural Networks 

GENN uses a variation of genetic programming (GP) called grammatical evolution (GE) to 
optimize artificial neural networks to identify a model that predicts a given outcome21–23.  GP is a 
computational technique that uses concepts of survival of the fittest in order to evolve a fit 
solution from an original population of random solutions24. GE is a more efficient version of GP 
because the solutions are represented as binary strings, which can be translated into a functional 
solution, or computer program, via grammar rules25.  All of the evolutionary operations that are 
applied to the solutions are done so at the level of the binary string. Below is the algorithm that 
GENN uses to identify the “fittest” solution: 
 
1. Divide the data into five equal parts for cross-validation (4/5 = training set; 1/5 = testing set). 
2. Generate random sub-populations, or demes, of binary strings across multiple processors. 
3. Calculate the fitness (i.e. balanced accuracy or mean squared error) of the solutions using the 

training set. 
4. Select the solutions with the highest fitness, which undergo crossover, mutation, migration 

between demes, and reproduction to create the next generation of solutions. 
5. Repeat Steps 3-4 for a user-defined number of generations.  
6. Test the final best model using the testing set and save the model. 
7. Repeat steps 2-6 for each the other four cross-validation data divisions. 
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8. Select the overall best model out of the five models using cross-validation consistency first 
and then testing set fitness to break ties. 
 
The solutions in GENN are artificial neural networks (ANNs).  Briefly, ANNs are directed 

graphs with an input layer (independent variables), hidden layer(s) (processing elements), and an 
output layer that predicts the outcome of interest26.  Figure 2 illustrates an example of a two-layer 
ANN. ANNs are a good candidate for this type of analysis because they are able to model 
complex, non-linear relationships between variables. Traditionally, ANNs are optimized using a 
hill-climbing algorithm, such as back-propagation, which iteratively alters the weights (or 
constants) until prediction no longer improves23.  This optimization technique is not ideal for a 
genetic analysis where the correct variables and the network architecture are not known a priori.  
GENN addresses this issue by evolving the ANNs so that the data drives the optimization of all 
aspects of the network. GENN has been tested on simulated and biological data and was often 
found to outperform other prediction techniques16,22,27. 

 
 
 
 
 
 
 
 
 

 
 

2.1.3.  ATHENA filtering-modeling pipeline  

Figure 3 below summarizes the filtering-modeling pipeline that was used for this analysis.  

 

Fig.  2. An example of a two-layer ANN. X=input variable; 
w=weight; AN=activation node; y=predicted output 

Fig.  3. ATHENA filtering-modeling pipeline for this analysis. Step 1. RJ filtering 
of SNPs and EVs; Step 2. GENN analysis of filtered SNPs only (2.1), EVs only 

(2.3) , and SNPs and EVs together (2.2); Step 3. GENN analysis of SNPs and EVs 
from the best GENN model from Steps 2.1 and 2.3. 
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In Step 1, we filtered the ~2.7 million SNPs and ~24,000 EVs separately in RJ. This was done 
because RJ has not been sufficiently tested to determine the effect of the overwhelmingly larger 
number of SNPs versus EVs that were present in this data set (~112x more SNPs).  After filtering, 
we analyzed the filtered SNPs (Step 2.1), the filtered EVs (Step 2.3), and the filtered SNPs and 
EVs together (Step 2.2) in GENN.  Because GENN has been shown to outperform other methods 
specifically at prediction modeling when the noise in the data is substantially reduced, we also 
assessed just the SNPs and EVs that were in the best ANN models from Steps 2.1 and 2.3 in a 
final GENN analysis (Step 3). 

2.2.  Cholesterol and Pharmacogenetics Dataset 

The data for this study comes from the simvastatin clinical trial Cholesterol and Pharmacogenetics 
(CAP)28.  The characteristics of the 480 individuals in this analysis are shown in Table 1. The 
genomic data consists of ~2.7 million SNP genotype dosages and ~24,000 gene expression levels.  
SNPs were genotyped on Illumina HumanHap 300K BeadChip and Illumina HumanHap 610-
Quad BeadChip and imputed to HapMap data using the IMPUTE2 software29. Imputation 
probabilities were used to calculate genotype dosages. Gene expression levels were measured in 
patient-derived immortalized lymphoblastoid cell lines (LCLs) using the Illumina HumanRef8v3 
BeadArray. The gene expression data was corrected for potential confounders by extracting the 
residuals from a linear regression model that included known covariates (day of assay, cell count, 
gender, and age) and the top nine principal components for unknown covariates. Our outcome of 
interest was the mean HDL-C level from the first and follow-up visit before any medication was 
administered. HDL-C was adjusted for gender, age, body mass index (BMI), and smoking status. 
All of the individuals in this subset of the cohort were European-American.  

3.  Results 

3.1.  Random Jungle  

Table 2 below lists the important parameter setting values that were used for RJ for each analysis. 
Table 2 also displays the computation times and the number of variables that remained after 
backward elimination. The values for bootstrap sample size and number of trees were previously 
tuned for each data set as suggested by the method developers18.    
 

Table 1.  Data set characteristics 

Clinical trait Value 

Age in years (mean [sd]) 54.4 [12.7] 
BMI (mean [sd]) 27.6 [5.3] 
HDL-C in mg/dl (mean [sd]) 53.4 [16.3] 
Smoker (% smoker) 13.2 
Gender (% male) 54.1 
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 In order to have a comparable threshold for both data sets, we chose an importance score 
cut-off because it has the same statistical meaning for both the SNPs and EVs.  The threshold of 
10 was chosen because it generated similar distributions of scores in both data sets.  This cut-off 
resulted in a filtered data set that consisted of 418 SNPs and 241 EVs. 

3.2.  GENN 

The filtered EV and SNP variables were analyzed both separately and simultaneously by GENN.  
In addition, the SNPs and EVs from the best GENN models were analyzed together.  Table 3 
shows the GENN parameters that were used for these analyses.  These parameters were selected 
based on a tuning analysis where we swept over various settings and selected based on prediction 
optimization. A detailed description of the parameters can be found in a previous ATHENA 
publication14.  The fitness function used by GENN for analysis of quantitative outcomes is shown 
below: 
 

 (1) 

 
where y is the observed value, y-hat is the predicted value, and y-bar is the mean value for the 
quantitative outcome.  

 
 
 
 
 
 
 
 
 
 

Table 3. GENN parameter settings 

Parameter Steps 2.1, 2.3 Steps 2.2, 3 
Number of demes (processors) 100 100 
Population Size / Deme 3000 1000 
Number of generations 1125 250 
Number of migrations 45 10 
Probability of Crossover 0.9 0.9 
Probability of Mutation 0.01 0.01 
Fitness r-squared r-squared 
Analysis time (hours) 8 1 

 

Table 2. RJ filtering parameter settings 

Parameter EV analysis SNP analysis 

Bootstrap Sample Size 11250 684342 
Number of Trees 4000 4032 
Tree Type Regression trees Regression trees 
Importance Score Permutation-based Permutation-based 
Backward Elimination Discard negative scores Discard negative scores 
Number of Processors 4 (500 trees  / processor) 64 (63 trees / processor) 
Compute Time (hours) 0.6 52 
Remaining Variables 1447 209346 
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Figure 4 shows the resulting best ANN models from each of the following analyses: a. 
SNPs only (Step 2.1), b. EVs only (Step 2.3), and c. SNPs and EVs together (Step 2.2).  The r-
squared values from the testing cross-validation set for each of the models were 0.16, 0.11, and 
0.18, respectively.  

 

 
Fig.  4. Best GENN models from the a. SNP, b. EV, and c. SNP and EV integrated analyses. The asterisks 

in the integrated model denote variables that were present in at least one of the top five cross validation 
models from the separate SNP and EV analyses.  (w = constant and variable are multiplied; PADD = 

additive activation node) 

Fig.  5. Best model GENN analysis of variables from best SNP and 
EV models. Testing r-squared value = 0.32. 
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Finally, we ran GENN with only the 6 SNPs and 5 EVs that were present in the top models 

shown Figure 4a. and 4b.  Figure 5 shows the resulting network from this analysis (Step 3).  The 
ANN consisted of 3/6 SNPs and 4/5 EVs from the best models and the testing r-squared value was 
0.32.  This is substantially greater than the three previous networks (Figure 4).  Additionally, we 
tested the same variables using a more traditional statistical prediction method--multivariable 
linear regression.  The adjusted r-squared value from the regression model that included all 6 
SNPs and 5 expression variables was 0.23. The full regression model was highly significant, with 
a p-value of 2.2x10-16. 

 

4.  Discussion 

In this study, we demonstrate a filtering-modeling pipeline for integrating different types of high-
throughput data to generate meta-dimensional prediction models. We were able to build a model 
that includes variables from different levels of biological regulation and explained more variation 
than either data-type alone (Figures 4 and 5).  Additionally, our best model was more predictive 
than the commonly used additive modeling technique.  Due to its flexibility, this approach is 
easily extendible to other types of high-throughput data. For example, another quantitative high-
throughput measurement such as proteomic data could be added to this analysis by filtering the 
data using the same RJ method and then adding in these filtered proteomic levels to the GENN 
analysis.  
 Notably, although the ANN from the integrated analysis had a higher r-squared value than the 
analyses that only included SNPs or EVs (Figure 4), it was still less predictive than the analysis 
that only included just the top SNPs and EVs (Figure 5). This could be a result of the combined 
increase in pressure on variable selection due to the larger number of predictor variables and on 
modeling due to the different scales of the EV and SNP values.  When we reduced the variable 
selection pressure by only including the top variables from the EV-only and SNP-only best 
models, the r-squared value went up substantially.  This highlights the ability of GENN to model 
the variables in an informative way when presented with a limited number of noise variables.  
Additionally, the GENN model was able to account for more outcome variation than the linear 
regression model indicating that the more complex modeling method of GENN identifies 
relationships between the variables that an additive model does not. 

One caveat to our approach is that we are not able to explore conditional relationships between 
the different types of predictor variables. An example would be a model where a SNP in a 
transcription factor binding site reduces the expression of the targeted gene, which, in turn, affects 
the phenotype. These types of relationships could be tested by first examining significant 
correlations between SNPs and EVs and then using this information to guide the modeling 
analysis.  Also, some groups are applying Bayesian networks (BNs) to data integration studies 
because they are able to capture this type of directionality30.  Future work will involve 
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incorporating BNs into ATHENA as one of the analysis methods. Other study designs specifically 
address the hypothesis that SNPs are affecting the phenotype via their association with gene 
expression levels, such as eQTLs31–34.  These studies have provided some interesting findings but 
would not identify SNPs and EVs that have an effect on the phenotype independently of one 
another. 

Interpreting the biological significance of statistical models is not a trivial task for several 
reasons.  First, due the correlation patterns that exist in SNPs and EV data, the variables in the best 
models could be functional variables or variables that are highly correlated with the functional 
variables. There is no simple way to determine which is the case.  One initial approach could be to 
map the top ranked SNPs and EVs back to genes to determine if the variables in the best models 
are representative of any given biological pathway or have similar biological function. We 
assessed this possibility by analyzing the RJ filtered SNPs and EVs with an online annotation tool 
called DAVID35,36.  The most significant biological groups after accounting for redundant pathway 
information in the databases were those related to immune function. This is interesting because 
HDL has been shown to play a role in innate and adaptive immune responses37. 

Notably, we did not identify any of the genes known to be highly associated with HDL-C.  The 
gene that is arguably most strongly associated with HDL-C is CETP38,39.  To determine if our 
method was not able to find the effects or if the effects were simply not there, we performed a 
univariate linear regression analysis on each of the SNPs and then ranked the p-values.  None of 
the SNPs in CETP were significantly associated with HDL-C in our data set (data not shown).  
This suggests that in this subset of individuals, other genes could be more strongly contributing to 
the variation in HDL-C. 

Once a meta-dimensional model has been identified and shown to be predictive, the next step 
is to replicate the finding in an independent data set.  For single SNPs, this process is relatively 
straightforward.  For meta-dimensional models, however, it becomes less trivial due to the 
increased difficulty of replicating the exact effects of numerous data points simultaneously, 
especially if the identified variables are not completely correlated with the functional variants.   
One part of model validation will be to determine if the model is predictive in another data set. 
Additionally, the functionality of these genes could be tested in vitro or in vivo to determine if 
perturbation has any phenotypic effect.  

The ultimate goal of identifying models that explain the genetic variability of a trait is to use 
this information to improve therapy or prediction and prevention in a clinical setting.  Methods 
robust to the true nature of complex traits, like the meta-dimensional analysis pipeline presented 
here, are an initial step towards a more thorough understanding of the genetic architecture of 
complex human traits like cardiovascular disease. 
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The rapid development of sequencing technologies makes thousands to millions of genetic at-
tributes available for testing associations with various biological traits. Searching this enormous
high-dimensional data space imposes a great computational challenge in genome-wide association
studies. We introduce a network-based approach to supervise the search for three-locus models
of disease susceptibility. Such statistical epistasis networks (SEN) are built using strong pairwise
epistatic interactions and provide a global interaction map to search for higher-order interactions
by prioritizing genetic attributes clustered together in the networks. Applying this approach to a
population-based bladder cancer dataset, we found a high susceptibility three-way model of ge-
netic variations in DNA repair and immune regulation pathways, which holds great potential for
studying the etiology of bladder cancer with further biological validations. We demonstrate that our
SEN-supervised search is able to find a small subset of three-locus models with significantly high
associations at a substantially reduced computational cost.

Keywords : Epistasis; High-order genetic interactions; GWAS; Statistical epistasis networks; MDR.

1. Introduction

The goal of genome-wide association studies (GWAS) is to identify and characterize suscepti-
bility genes that can help diagnose, treat, and prevent common human diseases.1–3 However,

most existing association analyses employ main-effect-centered strategies that assume a simple
genetic architecture and are thus only able to find very limited single-locus effects on disease

risks.4 The non-additive effect of gene-gene interactions, i.e. epistasis, has been recognized
playing an important role explaining the complex relationship between the genetic and phe-

notypic variations.5–7 Thus, identifying and characterizing genetic interactions across multiple
loci have become the focus of current association studies.8–10 However, this imposes a great

computational challenge in high-dimensional data analyses. Specifically, for a genetics dataset
consisting of n loci, the computational complexity of enumerating all possible two-locus com-

binations is O(n2), and it increases exponentially with the order of combinations considered.

Given the sizes of current genome-wide data (n ∼ 106) and the next-generation whole-genome
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sequencing11 data (n ∼ 109), it requires 3× 104 to 3× 1013 years to enumerate and evaluate all
three-locus models, using a 1000-node computer cluster where each node is assumed to be able

to process 1000 models per second. Therefore, new data-mining technologies with advanced
and efficient pre-screening and attribute-selection strategies are needed in large-scale genetic

association studies.12–15

In this article, we propose a network-based model-prioritization approach that is able

to identify high-order association models at a significantly reduced computational cost than

exhaustive enumerations. The networks were built by including strong pairwise epistatic in-
teractions as edges and their two end genetic attributes as vertices, as in the framework of

statistical epistasis networks (SEN) previously developed by Hu et al.16 Following the hypoth-
esis that strong pairwise interactions may indicate the existence of higher-order interactions,

we propose to i) quantify all pairwise epistatic interactions in a given genetics dataset; ii) con-
struct pairwise statistical epistasis networks; iii) identify attributes that are clustered together

by traversing the networks; iv) evaluate the clustered attributes for higher-order interactions.
This distinguishes our approach the most from many existing attribute-selection strategies

and advances the detection of higher-order interactions since hypothetically it is much less
likely for a higher-order interaction to exist without showing any lower-order interactions than

without showing any main effects.17,18

In the present study, we consider searching for three-locus interaction models and use the

multifactor dimensionality reduction (MDR) algorithm and software to evaluate the associ-
ations of the models found by our SEN-supervised search. MDR is a data-mining strategy

for detecting and characterizing gene-gene interactions associated with a discrete disease sta-
tus.19–22 It pools multi-locus genotypes from multiple single-nucleotide polymorphisms (SNPs)

into high-risk and low-risk groups. Specifically, a multi-locus genotype combination is consid-

ered high-risk if it has subjects with a ratio of cases to controls higher than a given threshold;
otherwise it is considered low-risk. The clustering of all multi-locus genotype combinations

into high-risk and low-risk is then evaluated for its ability to classify and predict disease sta-
tus through cross-validations. Population-based data are partitioned into a training set and

a testing set. The attribute combination with the highest training accuracy is chosen as the
best model and is subsequently evaluated using the testing set. The article by Moore et al22

provides a good overview of the development of MDR. MDR is model-free, i.e. no particular
genetic models are assumed, and non-parametric, i.e. no parameters are estimated, and is thus

an ideal independent classifier to evaluate our SEN-supervised model search.
We previously identified a pairwise interaction network by applying SEN to a large

population-based bladder cancer dataset.16 Such a network showed significant topological
properties compared to the null networks built from permuted data. We believe that this

large connected structure captures the complex genetic architecture of bladder cancer and is
a promising guide-map for searching higher-order combinations of attributes that may jointly

modify the disease outcome. Here, we use this bladder cancer pairwise interaction network to

supervise the search for high-association three-locus models using a fast network traversing
algorithm that identifies trios clustered together.
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2. Methods

2.1. Bladder cancer dataset

The dataset used in this study includes 1422 SNPs from about 500 cancer susceptibility genes

for 491 bladder cancer cases and 791 healthy controls.23,24 The bladder cancer cases were
collected among New Hampshire residents of ages 25 to 74 years, diagnosed from July 1, 1994

to June 30, 2001 and identified in the State Cancer Registry. Controls less than 65 years of
age were selected using population lists obtained from the New Hampshire Department of

Transportation, while controls aged 65 and older were chosen from data files provided by the
Centers for Medicare & Medicaid Services (CMS) of New Hampshire. Most (> 95%) of the

subjects were of Caucasian origin. Informed consent was obtained from each participant and

all procedures and study materials were approved by the Committee for the Protection of
Human Subjects at Dartmouth College. DNA was isolated from peripheral circulating blood

lymphocyte specimens using Qiagen genomic DNA extraction kits (QIAGEN Inc., Valencia,
CA). Genotyping was performed on all DNA samples of sufficient concentration, using the

GoldenGate Assay system by Illumina’s Custom Genetic Analysis service (Illumina, Inc., San
Diego, CA). Out of the submitted samples, 99.5% were successfully genotyped, and samples

repeated on multiple plates yielded the same call for 99.9% of the SNPs.

2.2. Statistical epistasis networks (SEN)

We have previously developed a network approach to inferring statistical epistasis of bladder

cancer.16 First, entropy-based information-theoretic measures were used to quantify pairwise
interactions22,25–28 for all two-locus models in the bladder cancer dataset. Specifically, for two

genetic attributes G1, G2, and the phenotypic status C, mutual information I(G1;C) and
I(G2;C) measure the shared information, or dependency, between individual genotypes and

the phenotype, i.e. the main effects. In addition, by joining G1 and G2 together, I(G1, G2;C)

measures how much of the phenotypic status that combining G1 and G2 can explain. The
epistatic interaction strength between G1 and G2 can then be defined using information gain

IG(G1;G2;C) = I(G1, G2;C)− I(G1;C)− I(G2;C). As such, IG(G1;G2;C) is the gained mutual
information about C from considering genetic attributes G1 and G2 together, i.e. the synergy

between G1 and G2 on the phenotype C. Moreover, normalizing the main effect I(G1;C) and
the interaction effect IG(G1;G2;C), by dividing them by the entropy of the phenotype H(C),

provides the association of a single attribute or a pairwise interaction with the phenotype C,
i.e. the percentage of the phenotypic status that a genotype can explain.

Second, we ranked all possible pairwise interactions between SNPs according to their rela-
tive strength and subsequently built a series of statistical epistasis networks by incrementally

adding edges if their corresponding pairwise interaction strength was stronger than a given
cutoff value. Topological properties were analyzed for the network at each cutoff value in-

cluding the size of the network (the number of its vertices and the number of its edges), the
connectivity of the network (the size of its largest connected component), and its vertex degree

distribution. Permutation testing was used to generate a null distribution of those topological

properties by building permuted-data networks through the same construction process and
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Fig. 1. The derived statistical epistasis network of bladder cancer. The network includes 319 SNPs (vertices)
and 255 pairwise interactions (edges). The size of a vertex represents the strength of the main effect of its
corresponding SNP, with the disease association ranging from 0.001% to 1.614%. The width of an edge indicates
the strength of its corresponding interaction, with the disease association ranging from 1.354% to 2.052%.
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using the same cutoffs.

Then, a threshold of the pairwise interaction strength was determined by finding the cutoff
when the topological properties of the real-data network differentiated the most from the null

distribution.16 Such a systematically derived and most significant epistasis network of bladder
cancer is shown in Fig. 1. This network provided a global map of strong pairwise epistatic

interactions associated with bladder cancer. It was able to show not only the neighborhood
structure of each attribute, but also the topology of a set of clustered attributes. Thus it serves

as a very promising tool to identify higher-order genetic models.

2.3. SEN-supervised search for three-locus genetic models

SEN is essentially an attribute-prioritization approach. However, different from many existing
main-effect-centered pruning methods, our network strategy prioritizes attribute pairs that

show strong or significant interactions. In addition, organizing these strong interacting pairs
in the network format provides a landscape of interaction structures. We hypothesize that

the sets of attributes that are clustered together in the bladder cancer network may better

explain the case-control outcome than the non-clustered sets. Therefore, we propose to use
SEN to supervise the search for multi-locus association models. As the first attempt, in this

study, we consider the search for three-locus models and use MDR to assess the associations
of three-locus models.

The clustering of vertices, or attributes, in a network is determined based on their pairwise
distances. In Graph Theory,29 the distance d(v1, v2) of a pair of vertices v1 and v2 is defined

as the minimal number of edges for one vertex to reach the other. Two vertices v1 and v2

are neighbors if d(v1, v2) = 1. Given three vertices v1, v2, and v3, we define their trio distance

dtrio(v1, v2, v3) as the sum of all pairwise distances, i.e. dtrio(v1, v2, v3) = d(v1, v2) + d(v1, v3) +

d(v2, v3). Therefore, for trios with dtrio = 3, any two of them are directly joined by an edge,

and if a trio has dtrio = 4, one vertex is directly connected to the other two but the other two
are not joined by an edge. We define that a trio of attributes are clustered in a network if their

dtrio ≤ 4; otherwise we say that they are not clustered together.
All three-locus models of clustered trios can be identified by traversing the SEN, repre-

sented as a graph G with |V | vertices and |E| edges, using the following algorithm. It reads

G and outputs a list of trios of vertices that are connected together. The algorithm has a
computational complexity O(|V | × k2), where k is the maximum number of neighbors of a

vertex in G:

vertices = G.getVertices();
for each v in vertices do

neighbors = v.getNeighbors();
for each u1 in neighbors

for each u2 in neighbors do

output {u1, v, u2};

Note that in our bladder cancer epistasis network (Fig. 1) k = 11 ≪ |V |, so the complexity

of the above algorithm O(|V | × k2) ≈ O(|V |). Thus the SEN-supervised search significantly

reduces the computational complexity compared to enumerating all three-locus combinations.
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3. Results

We first applied a χ2 test of independence to identify SNPs with significant main effects. For all

1422 SNPs from the entire dataset, using a Bonferroni-corrected significance level of α = 0.05,
we found only one significant main-effect attribute IGF2AS 04 (p = 1.052 × 10−6). This SNP

had one interacting neighbor SLC19A1 01 captured in our SEN (Fig. 1), and this pairwise
interaction was previously reported.30 Thus we removed IGF2AS 04 from our interaction

analysis to avoid its dominance effect when combined with other attributes.
Next, for the other 318 SNPs identified in the bladder cancer network, we ran MDR

exhaustively on all 1-way, 2-way (
(
318
2

)
= 50, 403 pairs), and 3-way (

(
318
3

)
= 5, 309, 116 trios)

combinations. We analyzed the correlation between MDR accuracies and SNP neighborhood

structures in the network, in order to see whether clustered SNPs in the network have better

disease status prediction accuracies than non-clustered ones.

3.1. MDR accuracy comparison of clustered and non-clustered SNP trios

We categorized all 5,309,116 trios according to their trio distances and show the MDR accu-

racies in each distance category (Fig. 2). We observe that, since there are no triangles in the
network, the minimal trio distance is 4. In addition, trios of distances greater than 32 are not

connected in the network, i.e. at least two out of the three vertices do not have a path con-
necting them. The clustered trios of distance 4 have significantly higher training and testing

accuracies than the trios in all other distance categories, while those other distance categories
do not statistically distinguish among themselves. Moreover, the clustered trios have better

consistencies between training and testing accuracies (Fig. 2B inset).
We then binned all dtrio > 4 three-locus models together as non-clustered trios, and com-

Fig. 2. The 3-way MDR A) training accuracy and B) testing accuracy relative to the trio distance. Points
are mean values and bars show the 95% confidence intervals. The inset depicts ∆ = training accuracy −
testing accuracy, which indicates the level of over-fitting. A lower value of ∆ means a better prediction con-
sistency for training and testing data.
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Fig. 3. Distributions of 3-way MDR A) training and B) testing accuracies for clustered (dtrio = 4) and
non-clustered (dtrio > 4) trios. The mean of each distribution is shown using a vertical dashed line. There are
391 clustered trios and 5, 309, 116− 391 = 5, 308, 725 non-clustered trios.

pared their distributions of MDR training and testing accuracies to those of the clustered

trios (Fig. 3). As seen from the figure, clustered trios have both better training and testing
accuracies compared to non-clustered trios. Therefore, using the pairwise SEN structure was

able to identify a good subset of three-locus combinations that improved the phenotypic status
prediction accuracy.

We also performed a correlation analysis on the MDR accuracies at different combination
orders. Table 1 shows that, in general, three-way accuracies had stronger correlations with two-

way accuracies than those with one-way accuracies. Compared to non-clustered trios, the three-
way accuracies of clustered trios were less correlated with one-way accuracies. That is, three-

locus models of clustered trios were less biased towards high main-effects attributes. When
correlating two-way with three-way accuracies, compared to non-clustered trios, clustered trios

had a lower dependency on training data but a higher dependency on testing data.

3.2. SEN-supervised MDR three-locus models

As shown previously, SEN-supervised search yielded a small subset of three-locus combinations

(391 out of 5,309,116) based on their clustering structure in the network, and this small
subset had significantly better three-way MDR accuracies compared to the others. In this

section, we examined the results of these SEN-supervised MDR models, and tested whether
the observations from such a model-selection process were statistically significant.

For these 391 SEN-filtered trios, their best and average MDR accuracies are reported in
Table 2. We performed two sets of significance tests to assess the p-values for each observa-

tion. First, we randomly resampled 391 trios out of the total 5,309,116 and repeated it 1000

times. Second, on the 318 vertices identified in the network, we permuted their neighborhood
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Table 1. Spearman’s rank correlation of MDR accuracies at different model orders

1-way vs. 3-way 2-way vs. 3-way

Training balanced accuracy

Clustered trios ρ = 0.1863 (p = 1.27× 10−10) ρ = 0.4319 (p < 2.2× 10−16)
Non-clustered trios ρ = 0.2934 (p < 2.2× 10−16) ρ = 0.5897 (p < 2.2× 10−16)

Testing balanced accuracy

Clustered trios ρ = 0.1060 (p = 2.77× 10−4) ρ = 0.4027 (p < 2.2× 10−16)
Non-clustered trios ρ = 0.1946 (p < 2.2× 10−16) ρ = 0.3795 (p < 2.2× 10−16)

Table 2. MDR results of the clustered trios and their levels of statistical significance

Observed-value Significance

random-resample edge-swap

Best training accuracy 0.5992 p = 0.005 p = 0.002
Best testing accuracy 0.5873 p = 0.002 p < 0.001
Average training accuracy 0.5630 p < 0.001 p < 0.001
Average testing accuracy 0.5329 p < 0.001 p < 0.001

Fig. 4. Summary of the best MDR model using SEN-supervised search. A three-locus model has 27 multi-
factorial cells, each of which is filled with the distribution of cases (left bars) and controls (right bars) for the
corresponding genotypes. A cell is left blank if there are no samples falling into its genotype. Each non-empty
cell is labeled either “high-risk” (dark grey) or “low-risk” (light grey) based on its case-control ratio.

structures by swapping edges. For each edge swapping, two edges, e.g. e1 = {v11, v12} and
e2 = {v21, v22}, were picked randomly, and then their end vertices were swapped to form two

new edges e′1 = {v11, v22} and e′2 = {v21, v12}. This was a standard network randomization

procedure where the total number of neighbors for each vertex was preserved but its interact-
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Fig. 5. Results of the best three-locus MDR models using five different attribute-selection or model-
prioritization techniques. Circles represent training balanced accuracies and solid points are testing balanced
accuracies.

ing partners were randomized. For each permutation, we performed edge swapping 10 × |E|

times, where |E| is the total number of edges in the network (Fig. 1). Such a permutation

process provided null networks with randomized pairwise interactions. Again, we generated
1000 permuted networks and used them to identify the clustered-trio subsets. Then MDR

analyses were applied to both sets of permuted data and the assessed significances of the real
observations are shown in Table 2. As we can see, all observations from the subset found by

SEN-supervised search were statistically significant.
The best three-locus MDR model using SEN-supervised search was FANCA 02, PMS2 01,

and IL1RN 05, with a training balanced accuracy 0.5992 and a testing balanced accuracy
0.5783 (p = 1× 10−5 using a standard permutation test). This model included two DNA repair

genes and one immune regulation gene. Fig. 4 summarizes the MDR analysis for the best
model. Out of all 27 possible genotype combinations, 25 had observed samples, 15 genotypes

were predicted as high-risks (dark-grey cells), and 10 genotypes were predicted as low-risks
(light-grey cells).

3.3. Comparing SEN-supervised search to other common MDR filters

Due to the exhaustive enumeration nature of MDR, attribute-selection is usually used for large

genome-wide data. We implemented four most commonly used filters, ReliefF,31 TuRF,32 Chi-
square, and Odds Ratio (OR), on the bladder cancer data (1422 SNPs), and compared the

best models they found to our best model using SEN-supervised search (Fig. 5). For each of
the four other filters, we chose its top 15 most important attributes and ran MDR on all three-

locus combinations (
(
15
3

)
= 455) of them. This also provided a comparable number of models

for MDR to evaluate since SEN-supervised search yielded 391 three-locus combinations. As

seen in the figure, our SEN-supervised search found the best three-locus model compared to

all the other common attribute-selection strategies.
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4. Discussion

Epistasis has been recognized playing an important role in understanding the mapping be-

tween genetic and phenotypic variations.8–10 Detecting and characterizing epistasis is a very
challenging data-mining task due to the fact that the epistatic interactions could involve mul-

tiple genetic attributes from a pair to a large set, and this undetermined order of interactions
imposes enormous computational complexities for enumerating all possible combinations of

genetic attributes for varying orders in genome-wide data.15 Various pre-screening techniques
have been proposed to filter potentially important attributes for further higher-order combina-

tion analyses. However, most of them adopt main-effect-centered strategies and may overlook
attributes that are important in interactions but only show weak main effects.17

In this article, we proposed a network-guided approach to searching three-locus genetic

models for association studies. The network was built by including strong pairwise epistatic
interactions, and we were able to show that trios clustered together in this network have

higher associations than those non-clustered ones. Traversing the pairwise statistical epistasis
networks (SEN) to search clustered three-locus models significantly reduces the computational

complexity of enumerating all possible three-locus combinations. Thus our SEN-supervised
model search can serve a very promising prioritization method and can be combined with

many existing association-mining techniques, such as MDR used in this study.
We had previously developed a network approach to characterizing statistical epistasis in-

teractions in genetic association studies.16 In this framework, all pairwise interactions in a ge-
netic dataset were quantified using information gain, an information-theoretic measure based

on Shannon entropy.33 Then networks were built by including pairs of attributes, as edges
and two end vertices, if their pairwise interaction strengths were greater than a theoretically-

derived threshold. This threshold was determined systematically by analyzing network topo-
logical properties and comparing them to null networks built using permuted data through

the same construction process. This SEN approach advanced many existing genetic associa-

tion methods by focusing on interactions rather than individual genetic factors. Moreover, by
organizing interactions in the form of networks, SEN provided a global connection map and

suggested clustering of multiple attributes that might have joint effects on the phenotype.
The present study explored the clustering structure captured in our previous SEN appli-

cation to a bladder cancer dataset (Fig. 1). Using a fast network-traversing algorithm, the
three-locus models of clustered trios were identified and further evaluated using MDR. These

models were shown having both significantly higher training and testing MDR accuracies than
the three-locus models of non-clustered trios (Fig. 2 and Fig. 3). Moreover, the clustered mod-

els had less over-fitting (Fig. 2B inset). These results show that the SEN-supervised search
was able to identify a small subset of three-locus models with significantly high associations at

a very moderate computational cost. Note that even if the computational complexity of build-
ing a pairwise interaction network (O(|V |2)) is considered together with the SEN-supervised

search (O(|V |×k2) ≈ O(|V |)), where |V | is the total number of attributes and k is the maximum
number of neighbors of an attribute in the network, the computational cost is still far less than

enumerating all possible three-locus combinations (O(|V |3)). This reduction of computational

complexity is even more encouraging in the era of genome-wide and whole-genome studies
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where thousands to millions of genetic attributes are considered.

The best three-locus MDR model identified using the SEN-supervised search includes
FANCA 02 (rs2239359), PMS2 01 (rs3735295), and IL1RN 05 (rs419598). All three SNPs had

very limited main effects with one-way MDR testing accuracies 0.4929, 0.5110, and 0.5276,
respectively. The falcon anemia complementation group A (FANCA) gene produces DNA

repair protein that may operate in a post replication repair or a cell cycle checkpoint func-
tion. Postmeiotic segregation increased 2 (PMS2) is a component of the post-replicative DNA

mismatch repair system. Interleukin 1 receptor antagonist (IL1RN) encodes the protein that
inhibits the activities of interleukin 1 alpha (IL1A) and interleukin 1 beta (IL1B), and mod-

ulates a variety of interleukin 1 related immune and inflammatory responses. The three genes
have moderate biological relationships,34 all have been found associated with various cancers,

and both DNA repair and immune regulation are considered major biological processes in-

volved in bladder carcinogenesis.35–37 However, the interaction effect among the three genes
associated with bladder cancer has never been reported previously. One could speculate, nev-

ertheless, that defects in the protective cell cycle checkpoint and DNA repair functions could
lead to attempts to replicate damaged DNA. Immune surveillance would be the remaining

protective mechanism to eliminate potential tumor cells. Thus, this trio of genetic variations
could increase the probability of tumor cell expansion. We expect that with further biological

validations, our findings could help explain the etiology and the complex genetic architecture
of bladder cancer.

With the fast development of sequencing technologies, more and more large-scale biomed-
ical data are becoming available. Although this presents exciting opportunities for genetic

association studies to explain many common human diseases, mining these high-dimensional
data to identify important genetic factors with non-linear interaction effects is a daunting

endeavor. In this article, we proposed a network-guided search approach that is able to effi-
ciently identify high-association three-locus genetic models. Our approach prioritizes genetic

attributes that have strong pairwise interaction effects. This differentiates our method from

most existing pre-screening strategies that focus on individual attributes with significant main
effects. The effectiveness of our approach was validated using MDR. In future research, we

expect to extend our SEN-supervised approach to the search for higher-order models and to
expand its applications to more data-mining and classification techniques.
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Background. Drug-drug interaction (DDI) is a major cause of morbidity and mortality. DDI re-
search includes the study of different aspects of drug interactions, from in vitro pharmacology, which
deals with drug interaction mechanisms, to pharmaco-epidemiology, which investigates the effects of
DDI on drug efficacy and adverse drug reactions. Biomedical literature mining can aid both kinds of
approaches by extracting relevant DDI signals from either the published literature or large clinical
databases. However, though drug interaction is an ideal area for translational research, the inclusion
of literature mining methodologies in DDI workflows is still very preliminary. One area that can ben-
efit from literature mining is the automatic identification of a large number of potential DDIs, whose
pharmacological mechanisms and clinical significance can then be studied via in vitro pharmacology
and in populo pharmaco-epidemiology.

Experiments. We implemented a set of classifiers for identifying published articles relevant to
experimental pharmacokinetic DDI evidence. These documents are important for identifying causal
mechanisms behind putative drug-drug interactions, an important step in the extraction of large
numbers of potential DDIs. We evaluate performance of several linear classifiers on PubMed ab-
stracts, under different feature transformation and dimensionality reduction methods. In addition,
we investigate the performance benefits of including various publicly-available named entity recog-
nition features, as well as a set of internally-developed pharmacokinetic dictionaries.

Results. We found that several classifiers performed well in distinguishing relevant and irrele-
vant abstracts. We found that the combination of unigram and bigram textual features gave better
performance than unigram features alone, and also that normalization transforms that adjusted for
feature frequency and document length improved classification. For some classifiers, such as linear
discriminant analysis (LDA), proper dimensionality reduction had a large impact on performance.
Finally, the inclusion of NER features and dictionaries was found not to help classification.
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1. Introduction
Drug-drug interaction (DDI) has been implicated in nearly 3% of all hospital admissions1 and
4.8% of admissions among the elderly;2 it is also a common form of medical error, representing
3% to 5% of all inpatient medication errors.3 With increasing rates of polypharmacy, which
refers to the use of multiple medications or more medications than are clinically indicated,4
the incidence of DDI will likely increase in the coming years.

DDI research includes the study of different aspects of drug interactions. In vitro phar-
macology experiments use intact cells (e.g. hepatocytes), microsomal protein fractions, or
recombinant systems to investigate drug interaction mechanisms. Pharmaco-epidemiology (in
populo) uses a population based approach and large electronic medical record databases to
investigate the contribution of a DDI to drug efficacy and adverse drug reactions.

Biomedical literature mining (BLM) can be used to detect novel DDI signals from ei-
ther the published literature or large clinical databases.5 BLM is becoming an important
biomedical informatics methodology for large scale information extraction from repositories
of textual documents, as well as for integrating information available in various domain-specific
databases and ontologies, ultimately leading to knowledge discovery.6–8 It has seen applications
in research areas that range from protein-protein interaction,9,10 protein structure,11 genomic
locations associated with cancer,12 drug targets,13 and many others. BLM holds the promise
of tapping into the biomedical collective knowledge and uncovering relationships buried in
the literature and databases, especially those relationships present in global information but
unreported in individual experiments.14

Although pharmaco-epidemiology and BLM approaches are complementary, they are usu-
ally conducted independently. DDI is thus an exemplary case of translational research that
can benefit from interdisciplinary collaboration. In particular, automated literature mining
methods allow for the extraction of a large number of potential DDIs whose pharmacological
mechanisms and clinical significance can be studied in conjunction with in vitro pharmacology
and in populo pharmaco-epidemiology.

Though BLM has previously been used for DDI information extraction,15,16 much remains
to be done before it can integrated into translational workflows. One gap is in the extraction of
DDI information from a pharmacokinetics perspective, since existing methods do not explicitly
capture pharmacokinetics parameters and do not consider knowledge from in vitro and in
vivo DDI experimental designs, especially the selection of enzyme-specific probe substrates
and inhibitors. For instance, important pharmacokinetic parameters such as Ki, IC50, and
AUCR have not been included in existing text mining approaches to DDI. Yet this kind of
pharmacokinetic information may be particularly relevant when seeking evidence of causal
mechanisms behind DDIs, and as a complement to DDI text mining of patient records, where
reporting biases and confounds often give rise to non-causal correlations.17

We have previously showed that BLM can be used for automatic extraction of numerical
pharmacokinetics (PK) parameters from the literature.18 However, that work was not ori-
ented specifically toward extraction of DDI information. In order to perform DDI information
extraction from a pharmacokinetics perspective, we first need to be able to identify the rel-
evant documents that contain such information. Here, we evaluate the performance of text
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classification methods on documents that may contain pharmacology experiments in which
evidence for DDIs is reported. Our goal is to develop and evaluate automated methods of
identifying DDIs backed by reported pharmacokinetic evidence, which we believe is an es-
sential first step towards the integration of literature mining methods into translational DDI
workflows. A collaboration between Rocha’s lab, working on BLM, and Li’s lab, working on
in vitro pharmacokinetics, was developed in order to pursue this goal.

In this paper, we report on the performance of a set of classifiers on a manually-annotated
corpus produced by Li’s lab. We consider a wide range of linear classifiers, among them lo-
gistic regression, support vector machines (SVM), binomial Naive Bayes, linear discriminant
analysis, and a modification of our ‘Variable Trigonometric Threshold’ (VTT) classifier, which
was previously found to perform well on protein-protein interaction text mining tasks.14,19,20
In addition, we compare different feature transformation methods, including normalization
techniques such as TFIDF and PCA-based dimensionality reduction. We also compare per-
formance when using features generated by several Named Entity Recognition (NER) tools.

In the next section, we describe the corpus used in this study. Section 3 discusses the
evaluated classifiers, while section 4 deals with dimensionality reduction and feature trans-
forms. Section 5 covers our methods of cross-validation and performance evaluation. Section
6 provides classification performance results for textual features, while section 7 does so for
the combination of textual and NER features. We conclude with a discussion in section 8.

2. Corpus
Li’s lab selected 1213 PubMed pharmacokinetics-related abstracts for the training corpus.
Documents were obtained by first searching PubMed using terms from an ontology previously
developed for automatic extraction of numerical PK pharmacokinetics parameters.18 The re-
trieved articles were manually classified into two groups: abstracts that explicitly mentioned
evidence for the presence or absence of drug-drug interactions were labeled as DDI-relevant
(602 abstracts), while the rest were labeled as DDI-irrelevant (611 abstracts). DDI-relevance
was established if articles contained one of the four primary classes of pharmacokinetics stud-
ies: clinical PK studies, clinical pharmacogenetic studies, in vivo DDI studies, and in vitro drug
interaction studies. The classification was initially done by three graduate students with M.S.
degrees and one postdoctoral annotator. Any inter-annotator conflicts were further checked
by a Pharm D. and an M.D. scientist with extensive pharmacological training. The corpus, as
well as further details,21 is available upon request.

We extracted textual features from the abstract title and abstract text, as well as several
other PubMed fields. These included the author names, the journal title, the Medical Subject
Heading (MeSH) terms, the ‘registry number/EC number’ (RN) field, and the ‘secondary
source’ field (SI) (the latter two contain identification codes for relevant chemical and biological
entities). For each PubMed entry, the content of the above fields was tokenized, processed by
Porter stemming, and converted into textual features (unigrams and, in certain runs, bigrams).
Strings of numbers were converted into ‘#’, while short textual features (those with a length of
less than 2 characters) and infrequent features (those that occurred in less than 2 documents)
were omitted. Each MeSH term was treated as a single textual token. Finally, the occurrence
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of different features in different documents was recorded in binary occurrence matrices. We
evaluated performance using unigram features only (the unigram runs), as well as using a
combination of unigram and bigram features (the bigram runs).

3. Classifiers
Six different linear classifiers were implemented:

(1) VTT: a simplified, angle-domain version of our ‘Variable Trigonometric Threshold’ Clas-
sifier (VTT).14,19,20 Given a binary document vector x = 〈x1, . . . , xK〉, with its features (i.e.
dimensions) indexed by i, the VTT separating hyperplane is:∑

i

θixi − λ = 0

Here, λ is a threshold (bias) and θi is the ‘angle’ of feature i in class space:

θi = arctan pi

ni
− π

4
where pi is the proportion of positive-class documents in which feature i occurs, and ni is
the proportion of negative-class documents in which features i occurs. θi is positive when
pi ≥ ni and negative otherwise. The threshold parameter λ is chosen via cross-validation.
The full version of VTT, previously used in protein-protein interaction tasks, includes
additional parameters to account for named entity occurrences and is used in section 7
below. VTT performs best on sparse data sets, in which most feature values xi are set
to 0; for this reason, we do not evaluate it on dense dimensionality-reduced datasets (see
below).

(2) SVM: a linear Support Vector Machine (SVM) classifier (provided by the sklearn22 library’s
interface to the LIBLINEAR package23) with a cross-validated regularization parameter.

(3) Logistic regression: a logistic regression classifier (also provided by sklearn’s interface to
LIBLINEAR) with a cross-validated regularization parameter.

(4) Naive Bayes: a binomial Naive Bayes classifier with a Beta-distributed prior for smoothing.
The prior’s concentration parameter was determined by cross-validation.

(5) LDA: a Linear Discriminant Analysis (LDA) classifier, where the data covariance matrix
was shrunk toward a diagonal, equal-variance structured estimate. The shrinkage param-
eter was determined by cross-validation.

(6) dLDA: a ‘diagonal’ version of LDA, where only the diagonal entries of the covariance
matrix are estimated and the off-diagonal entries are taken to be 0. A cross-validated
parameter determines shrinkage toward a diagonal, equal-variance estimate. This classifier
provides a more robust estimate of feature variances; it is equivalent to a Naive Bayes
classifier for multivariate Gaussian features.24

4. Feature Transforms
For both unigram and bigram runs, the classifiers were applied to the following data matrices:

(1) No transform: the raw binary occurrence matrices, as described in section 2. For LDA,
when the number of documents (N) was less than the number of dimensions (giving rise
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to singular covariance matrices), the occurrence matrices were projected onto their first
N principal components.

(2) IDF: occurrences of feature i were transformed into that feature’s Inverse Document Fre-
quency (IDF) value:

idf (i) = log N

ci + 1
where ci is the total number of occurrences of features i among all documents. This reduced
the influence of common words on classification.

(3) TFIDF: the Term Frequency, Inverse Document Frequency (TFIDF) transform applies the
above IDF transform, and then divides each document’s feature values by the total number
of that document’s features. This attempts to minimize differences between documents of
different sizes (i.e. with different numbers of features).

(4) Normalization: here the non-transformed, IDF, and TFIDF document matrices underwent
a length-normalization transform, where each document vector was inversely scaled by its
L2 norm. This normalization has been argued to be especially important for good SVM
performance.25

(5) PCA-based dimensionality reduction: The above matrices were run through a Principal
Component Analysis (PCA) dimensionality reduction step. Projections onto the first 100,
200, 400, 600, 800, and 1000 components were applied.

5. Performance evaluation
We evaluated the performance of the classifiers using three different measures: the commonly-
used F1 score, the area under the interpolated precision/recall curve26 (here called iAUC),
and Matthews Correlation Coefficient27 (MCC).

In this task, only one corpus was provided. Thus, we had to use it both for training classi-
fiers and for measuring generalization performance on out-of-sample documents. We performed
the following cross-validation procedure to estimate generalization performance:

(1) The documents of the entire corpus were partitioned into 4 folds (75%-25% splits). This
was repeated 4 times, giving a total of 16 folds (we call these the outer folds).

(2) For each fold, classifiers were trained on 75% block of the corpus and tested on the 25%
block of the corpus.

(3) The 16 sets of testing results were averaged to produce an estimate of generalization
performance.

In addition, all of the classifiers mentioned in section 3 contain cross-validated parameters: for
VTT, this is the bias parameter, while the other classifiers have regularization or smoothing
parameters. In order to fully separate training from testing data and accurately estimate
generalization performance, nested cross-validation was done within each of the 75% blocks
of the above outer folds:

(1) The 75% block is itself partitioned into 4 folds (75%-25% splits of the 75% block). This
is repeated 4 times, producing a total of 16 folds (we call these the inner folds)
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(2) For each searched value of the cross-validated parameter, a classifier is trained on each of
the 16 inner folds’ 75% block and tested on its 25% block.

(3) The value giving the best average performance (here, according to the MCC metric) is
chosen as the cross-validated parameter value for this outer fold.

An outer fold’s cross-validated parameter value is then used to train on the fold’s 75% block
and test on its 25% block.

6. Classification performance
6.1. Overall performance

dLDA  LDA  Log 
Reg 

Naive 
Bayes  SVM  VTT 

Unigrams  0.790  0.663  0.786  0.794  0.789  0.806 
Bigrams  0.791  0.663  0.794  0.790  0.795  0.809 

0.700 
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0.780 

0.800 

F1
 

dLDA  LDA  Log 
Reg 

Naive 
Bayes  SVM  VTT 
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dLDA  LDA  Log 
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Naive 
Bayes  SVM  VTT 
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0.800 

0.820 

0.840 

0.860 

0.880 

0.900 

iA
U
C 

dai

# mg

mg

MeSH: Cross-Over Studies

on dai

MeSH: Drug Interactions

crossov studi

crossov

random

daili

Fig. 1. Classification performance using non-transformed features, for both unigram and bigram runs. Top
left is the F1 measure, top right is the MCC measure, and lower left is the iAUC measure. LDA performed
poorly and is below the charts’ lower cutoff value. Lower right shows the top 10 features identified in a typical
bigram fold, ranked according to the information gain criteria.

Figure 1 shows the performance of the classifiers in unigram runs (which included only un-
igram features) and bigram runs (which included both unigram and bigram features), without
any feature transforms applied. In addition, it also shows the top 10 features identified in a
typical bigram fold, ranked according to the information gain criteria.28

With the exception of LDA, all of the classifiers performed similarly on the task. VTT
performed slightly better than the other classifiers according to the F1 and MCC measures.
LDA’s performance was dismal, suggesting that in such a high-dimensional setting there is
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not enough data to estimate the feature covariance matrix, even under covariance matrix
shrinkage. This is supported by the fact that the dLDA (diagonal LDA) classifier, which
estimates only the diagonal entries of the covariance matrix, performed well on the task.

The difference between unigram and bigram runs was not major, but bigram performance
showed a consistent small improvement, indicating that the advantage in predictability pro-
vided by bigrams outweighs their cost in additional parameters. For the rest of this work, we
will only report on the bigram run performance. The pattern of performance for the unigram
runs was similar to that of bigram runs.

6.2. Feature transforms

0.58	  

0.59	  

0.60	  

-‐	   IDF	   IDF	  +	  Norm	   Norm	   TFIDF	   TFIDF	  +	  
Norm	  

M
CC

	   dLDA	  

Log	  Reg	  

SVM	  

VTT	  

0.580 

0.585 

0.590 

0.595 

0.600 

‐  IDF  IDF + Norm  Norm  TFIDF  TFIDF + 
Norm 

M
CC

 

Fig. 2. MCC performance using bigram features under various transforms. ‘-’ refers to no transform, IDF
and TFIDF refer to transforms described in section 4, while IDF+Norm and TFIDF+Norm refer to those
same transforms followed by unit-length normalizations. Results are shown for 4 well-performing classifiers
(left); average MCC values across those 4 classifiers (right).

For simplicity, in the following sections we present performance results in terms of MCC
values only. It is important to note that in most of the conditions, the 16-fold estimate of
MCC performance gave a standard error on the order of 0.01; differences in performance of
this scale can be ascribed to statistical fluctuations.

In figure 2, we plot the performance of the classifiers under different feature transform
methods on the bigram runs. We tested these transforms under 4 classifiers: diagonal LDA
(dLDA), SVM, Logistic Regression (Log Reg), and VTT. LDA performance is not reported,
since as previously seen it performs badly on high-dimensional data. The binomial Naive Bayes
classifier was omitted because it is not applicable to non-binary data.

The different transforms did not change performance dramatically, but some did offer
advantages. VTT performed consistently well across different kinds of transforms, except for
the IDF transform, where its performance decreased. As expected, SVM benefited from length
normalization (whether L2-type unit-length normalization, or L1-type normalization offered
by the term-frequency part of TFIDF). As seen in the bottom section of figure 2, the transforms
offering good performance across a range of classifiers seemed to be those combining an IDF
correction with some kind of length normalization: either IDF+Norm or TFIDF (with or
without unit-length normalization).
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Fig. 3. MCC performance on abstracts under different feature transforms and PCA-based dimensionality
reductions, bigram runs. The very bottom lists different transforms, while the numbers refer to the number
of principal components kept. ‘-’ refers to both no transform (original data matrix) and to no dimensionality
reduction, as appropriate.

6.3. Dimensionality reduction
Figure 3 shows the performance of 4 classifiers under PCA-based dimensionality reduction on
the bigram runs. Here, after applying the previously described transforms, the data matrices
are projected onto their principal components. This generates smaller-dimensional, non-sparse
data matrices. In this case, we have omitted the VTT classifier, since it does not generalize
to non-sparse datasets. We have also omitted the binomial Naive Bayes classifier, since it is
not applicable to non-binary data.

Dimensionality reduction only has a significant effects on performance for LDA, where this
is expected. Because LDA requires an estimate of the full feature covariance matrix, it does
not perform well when the data is very high-dimensional (and hence, the covariance matrix is
difficult to estimate). However, under dimensionality reduction LDA performs extremely well,
often outperforming other classifiers. Figure 4 shows the performance of different classifiers
under different dimensionality reductions, now averaged across the 6 feature transforms de-
scribed previously. Interestingly performance tends to increase as more principal components
are kept. With 1000 principal components, LDA has the best on-average performance, though
SVM also does well here. On the other hand, Diagonal LDA – which does not take into account
feature covariances – does not perform well under dimensionality reduction.

7. Classification performance on abstracts with NER
The above runs used the occurrences of unigrams and bigrams as features. We have previously
used features extracted using Named Entity Recognition (NER) tools in order to improve clas-
sification performance on a protein-protein interaction text mining task.14,19,20 NER identifies
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Fig. 4. MCC performance of different classifiers under feature transforms and dimensionality reduction con-
dition, but now averaged across different feature transforms, bigram runs. The bottom axis refers to number
of principal components kept, and ‘-’ refers to no dimensionality reduction.

occurrences of named entities (for example, drugs, proteins, or chemical names) in documents.
We applied a set of NER extraction tools and used the count of named entities identified in
each document as an additional document feature, on top of the textual occurrence features
previously discussed.

The following publicly-available tools were used to identify named entities:

• OSCAR4:29 a recognizer of chemical names
• ABNER:30 biomedical named entity recognizer for proteins
• DrugBank:31 a database of drug names
• BICEPP:32 a recognizer of clinical characteristics associated with drugs

We also identified named entities using the following dictionaries, provided by Li’s lab:21

• i-CYPS: a dictionary of cytochrome P450 [CYP] protein names, a group of enzymes cen-
trally involved in drug metabolism

• i-PkParams: a dictionary of pharmacokinetic parameters
• i-Transporters: a dictionary of proteins involved in transport
• i-Drugs: a dictionary of Food and Drug Administration’s drug names

For SVM, Logistic Regression, and LDA, the NER counts were treated as any other feature.
Diagonal LDA was omitted since it was outperformed by dimensionality-reduced LDA, and
binomial Naive Bayes was omitted since NER-count features are non-binary. VTT incorporates
NER-count features via a modified separating hyperplane equation:∑

i

θixi −
∑

j

βj − cj

βj
− λ = 0

where xi represent non-NER feature occurrences, θi and λ are textual feature weighting and
bias parameters as described in section 3, cj is the count of NER features produced for the
current document by NER tool j, and βj is a cross-validated weighting term for NER tool j.
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Fig. 5. MCC performance of the classifiers in combination with different NER features on the bigram runs.
Classifiers used non-transformed data matrices, apart from LDA which was applied to an occurrence matrix
projected onto its first 800 principal components.
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Fig. 6. MCC performance when using NER features on the bigram runs, averaged across the 4 classifiers
shown in figure 5.

The classifiers were run on occurrence matrices with no transform applied, except for LDA,
which was run on occurrence matrices projected onto their first 800 principal components. Each
run utilizes NER features from a single tool, to test their individual merit on this task. It is
important to note that in the presence of NER count features, whose values are of a different
magnitude from those of binary occurrence features, length normalization can significantly
hurt classifier performance (data not shown).

Figure 5 shows the performance of the different classifiers on a combination of bigram and
NER features, while figure 6 shows the same performance averaged across classifiers. Given
the scale of standard errors of MCC performance estimates (~0.01), it does not appear that
NER features offer a significant improvement in classification rates. We also attempted to
use combinations (pairs) of NER features in classification, but this also failed to improve
performance (data not shown). We discuss possible reasons for this in the final section.

Pacific Symposium on Biocomputing 2013

418



8. Discussion
We studied the performance of BLM on the problem of automatically identifying DDI-relevant
PubMed abstracts, that is those containing pharmacokinetic evidence for the presence or
absence of drug-drug interactions (DDI). We compared the performance of several linear
classifiers using different combinations of unigrams, bigrams, and NER features. We also tested
the effect several feature transformation and normalization methods, as well as dimensionality-
reductions to different numbers of principal components.

Several of the classifiers achieved high levels of performance, reaching MCC scores of
~0.6, F1 scores of ~0.8, and iAUC scores of ~0.86. Bigrams in combination with unigrams
tended to perform better than unigrams alone, and the combination of document-frequency
and length normalization also tended to have a slight positive effect on performance. This
effect may have been more pronounced if we had used count (instead of occurrence) matrices,
in which document vector magnitudes are more variable. In addition, we also implemented
PCA-based dimensionality reduction. Its effect on performance was mild for most classifiers,
except for linear discriminant analysis (LDA). We observed dismal LDA performance with no
dimensionality reduction, and high performance when data matrices were projected onto their
first 800-1000 principal components. This is consistent with the well-known weakness of LDA
in high-dimensional classification contexts.

Both relevant and irrelevant training sets came from the field of pharmacokinetics and,
for this reason, shared very similar feature statistics. This makes distinguishing between them
quite a difficult text classification problem – though also a more practically relevant one
(such as in a situation where a researcher needs to automatically label a pre-filtered a list of
potentially relevant documents). It may also explain why the NER features did not make a
positive impact on classification performance: the documents in both classes would be expected
to have similar counts of drug names, proteins, and other named entities, and so these counts
would not help class separation. It is possible, of course, that the use of NER more finely tuned
to DDI, relation extraction, or some other more sophisticated feature-generation technique
could improve performance.

To conclude, the best performing classifiers and feature-transforms led to similar upper
limits of performance, suggesting a fundamental limit on the amount of statistical signal
present in the labels and feature distributions of the corpus. However, to achieve near-optimal
generalization performance, selecting the proper combination of classifier, feature transforms,
and dimensionality-reduction is necessary. When working with classifiers that contain cross-
validated parameters, this can be done through the use of nested cross-validation. We provide a
thorough report of the performance of supervised classifiers on this text classification scenario.
Linear classifiers with common feature transforms provide a justifiable, well-understood "lower-
bound" for classification performance.

Using such procedures, given the reasonable performance achieved here, we show that
under realistic classification scenarios, automatic BLM techniques can identify reports of DDIs
backed by pharmacokinetic evidence in PubMed abstracts. These reports can be essential in
identifying causal mechanics of putative DDIs, and can serve as input for further in vitro
pharmacological and in populo pharmaco-epidemiological investigation. Thus, our work shows
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that this text classification task is tractable, providing an essential step in enabling further
development of interdisciplinary translational research in DDI.
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It is well-known that the general health information seeking lay-person, regardless of his/her educa-
tion, cultural background, and economic status, is not as familiar with—or comfortable using—the
technical terms commonly used by healthcare professionals. One of the primary reasons for this is due
to the di↵erences in perspectives and understanding of the vocabulary used by patients and providers
even when referring to the same health concept. To bridge this “knowledge gap,” consumer health
vocabularies are presented as a solution. In this study, we introduce the Mayo Consumer Health
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Vocabulary (MCV)—a taxonomy of approximately 5,000 consumer health terms and concepts—and
develop text-mining techniques to expand its coverage by integrating disease concepts (from UMLS)
as well as non-genetic (from deCODEme) and genetic (from GeneWiki+ and PharmGKB) risk fac-
tors to diseases. These steps led to adding at least one synonym for 97% of MCV concepts with an
average of 43 consumer friendly terms per concept. We were also able to associate risk factors to 38
common diseases, as well as establish 5,361 Disease:Gene pairings. The expanded MCV provides a
robust resource for facilitating online health information searching and retrieval as well as building
consumer-oriented healthcare applications.

Keywords: Information Extraction; Consumer Health Vocabularies; Disease Risk Factors

1. Introduction

In the age of individualized medicine, it is becoming increasingly evident that more and more
consumers are using the Internet and the World Wide Web to seek medical and health related
information.1,2 According to surveys by the Jupiter Organization and Harris Interactive, in
2007, 71% of people who used the Internet, also used it to seek health information (an increase
by 37% since 2005).3 Furthermore, it has been reported that 70% of people who obtain health
information online say that it has influenced a decision about their treatment.4 However, often
due to various educational, economical, cultural, and language di↵erences between patients
and healthcare professionals, there exists a barrier in the process of gathering and interpreting
health related information. One of the primary reasons for this is due to di↵erences in perspec-
tives and understanding of healthcare between patients and providers, as well as a significant
disconnect in the vocabulary used even when they are referring to the same health concept.

Since various aspects of healthcare outcomes, including empowering consumers to make
better-informed decisions and increasing patient compliance, can be a↵ected due to this in-
formation disconnect, addressing the consumer health vocabulary problem has emerged as an
important research activity in the recent past5–7 as evidenced by services such as MedLine
Plus8 provided by the NIH. Cole et al.9 proposed using a standardized biomedical terminology,
SNOMED-CT,10 and a commercially developed consumer health vocabulary, Intelligent Med-
ical Object’s Personal Health Terminology (PHTTM), to assist patients and physicians who
use common language terms to find specialist physicians with a particular clinical expertise. In
particular, based on a user’s input string, PHT was searched for term matching to acquire the
SNOMED-CT codes (via PHTTM–SNOMED map) that were in turn used to find physicians
with the appropriate clinical specialty. In more recent work, the Open Access Collaboratory
Consumer Health Vocabulary (OAC-CHV11) developed at the University of Utah contains
more than 150,000 consumer health terms that are mapped to clinically oriented terms from
the UMLS.12 OAC-CHV has also been demonstrated in successfully translating clinical text
from electronic medical records to consumers.13

While the above research has shown promising outcomes, there are several limitations hin-
dering widespread adoption and application of these results. First, excluding OAC-CHV, the
existing vocabularies for consumer health, such as PHTTM , are either closed sourced, or have
a commercial license. This not only prevents them from being leveraged in consumer health
applications and tools, but also limits further development and community input. Second,
with the recent advances in genomic medicine, the science and the role of non-genetic and
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genetic risk factors in disease etiology is becoming clearer. Consequently, there is an increas-
ing need to incorporate such information within consumer health vocabularies–a requirement
not adequately met by existing vocabularies. Finally, best practices in modeling vocabular-
ies require explicit specification of relationships between the terms and concepts, as well as
providing appropriate metadata (e.g., synonyms, definitions, provenance). This impacts the
vocabulary management and development to semantics-based querying and navigation lever-
aging the vocabulary. Our preliminary findings indicate that none of the existing consumer
health vocabularies, including freely available OAC-CHV, adopt such methodologies, and are
developed using ad-hoc vocabulary modeling formalisms. For example, OAC-CHV is modeled
and maintained using Microsoft Excel files, instead of a more formal knowledge representation
language, such as OWL (Web Ontology Language).14

In this study, we attempt to address the first two limitations. Specifically, we introduce
the Mayo Consumer Health Vocabulary (MCV) developed and maintained by the ontology
team at Mayo Clinic Global Products and Services to support annotation on MayoClinic.com
(http://www.mayoclinic.com) health portal initially launched in 1995. Currently, MCV com-
prises approximately 5,000 consumer health terms arranged in a taxonomy, and includes map-
pings to SNOMED-CT and ICD-915 for some of the core concepts. The terminology extends
beyond the typical medical terminologies to include lifestyle terms representing consumer
health concepts related to nutrition, exercise and other lifestyle behaviors that influence a
persons health. While successfully used to annotate health related information (articles, doc-
uments, blog entries, multimedia etc.) within the MayoClinic.com portalb, MCV currently
lacks the coverage for several disease concepts as well as relevant disease risk factors. The
current study addresses these requirements by developing text mining approaches for inte-
grating disease concepts (from OAC-CHV16) as well as non-genetic (from deCODEme17) and
genetic (from GeneWiki+18 and PharmGKB19) risk factors to diseases. The integration led
to adding at least one synonym for 97% of MCV concepts with an average of 43 consumer
friendly terms per concept, an important step in increasing search result coverage for future
versions of MayoClinic.com. We were also able to associate non-genetic risk factors to 38 com-
mon diseases, as well as establish 5,361 Disease:Gene pairings. We discuss the details of our
methods and findings in the remainder of this manuscript.

2. Resources and Tools

The following resources and tools were leveraged to conduct this study.

2.1. Open Access Collaboratory Consumer Health Vocabulary

The Open Access Collaboratory Consumer Health Vocabulary (OAC-CHV16) is created and
maintained by the Consumer Health Vocabulary Initiative. It is a relationship file that links
commonly used real-world vocabulary to associated medical terminology. Additionally, it pro-
vides the associated UMLS CUIs as well as understandability scores for each term and whether

bOur recent Web analytics statistics indicate that the MayoClinic.com portal is, on average, visited by more
than 22 million unique visitors every month.
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a term is disparaged (has an abnormality, such as a misspelling). In total there are 158,519
terms and 57,819 unique UMLS CUIs (2.7 terms per UMLS CUI). We used this file for finding
near-matching terms to those in MCV and retrieving the connected terms based on common
UMLS CUIs. We also used the UMLS CUIs connected to retrieved terms for comparison of
similarity between MCV and OAC-CHV terms.

2.2. SNOMED-CT

The Systematized Nomenclature of Medicine–Clinical Terms (SNOMED-CT10) was created
by the College of American Pathologists and is maintained by the International Health Ter-
minology Standards Development Organisation. It is a hierarchical ontology of medical terms.
Similarity information can be gathered to compare two items in SNOMED-CT using sev-
eral ontology-based algorithms such as Wu-Palmer.20 We used SNOMED-CT as the UMLS
source for comparison of UMLS CUIs and retrieval of UMLS CUI synonyms within the
UMLS::Similarity and UMLS::Interface modules, respectively (see below).

2.3. PharmGKB

The Pharmacogenomics Knowledge Base (PharmGKB) is managed at Stanford University
and focuses on maintaining information about gene:drug relationships and the corresponding
gene variations, but also includes limited information on gene:disease relationships.19 The data
is collected from literature and other databases that report study results having to do with
gene:drug interactions. It uses its own ID system for genes and diseases but provides data sets
that allow for translation of genes into Entrez Gene IDs and diseases into SNOMED or UMLS
IDs. We retrieved all Disease:Entrez Gene ID relationships and used this as a basis for our
list of genetic risk factors by disease.

2.4. deCODE genetics

deCODE genetics17 is a pharmaceutical company with an interest in genetic e↵ects on disease
and medicine. They sell a Direct-to-Consumer genetic testing service, called deCODEme, for
sequencing a portion of an individual’s genome to estimate genetic risk of various diseases.
deCODEme has a website that contains information on the 47 diseases that are being tested,
including information on both non-genetic and genetic factors that increase an individual’s
risk. We use the non-genetic factors portion of these disease pages to mine risk factors.

2.5. UMLS::Interface

UMLS::Interface is a Perl module that retrieves the position of UMLS CUIs from a UMLS
ontology source (i.e. SNOMED-CT).21 It provides tools for translating medical terms given
as strings into the corresponding UMLS CUIs, getting positions in the ontology based on
the UMLS CUI, and returning related UMLS CUIs and associated medical terms. Position
in UMLS can be retrieved using a UMLS CUI or, if no UMLS CUI is available, one can be
estimated based on an input string. It requires UMLS be loaded into a MySQL Database for
access. We used this module to retrieve sister nodes (synonyms) for each MCV term.
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2.6. UMLS::Similarity

UMLS::Similarity is a Perl module that retrieves a similarity score between two concepts based
on their positioning in the hierarchical UMLS source (i.e. SNOMED-CT).21 It has several
options for evaluating either similarity or relatedness for two UMLS CUIs. Eight similarity
measures, based on location in the ontology, were incorporated into the module (including
Wu-Palmer, the similarity measure used in this study) as well as various relatedness measures
that were not used in this study. This module was used for computing the similarity of MCV
and OAC-CHV terms to indicate whether the relationship was valid (should be maintained)
or invalid (should be deleted).

2.7. MetaMap

MetaMap is a program designed to extract biomedical terminology from text and map it to
appropriate UMLS concepts.22 It splits input text into minimal phrases and provides potential
UMLS matches for the terms, indicating a score from 0-1000 with a higher score meaning a
better match, as well as the semantic type (i.e. disease, substance, ...), UMLS source, and
UMLS CUI. We used this program to extract non-genetic risk factors from plain text with
the ability to divide sentences into phrases and indicate the semantic type being crucial.

3. Materials and Methods

3.1. Materials

The primary materials used in this study are the following:

• The February 4, 2011 OAC-CHV data set, available for download via http://

consumerhealthvocab.org. The data set contains 158,519 mappings between medical con-
cepts and terms along with several measures of understandability for each term. There is a
one–to–many relationship between UMLS CUIs and OAC-CHV terms.

• The July 3, 2012 GeneWiki+ relationships data set, available for download via http:

//genewikiplus.org/wiki/GeneWiki:Data. The data set contains 18,230 relationships be-
tween genes and diseases, referencing the diseases using a Disease Ontology ID (DOID).23

• The June 13, 2012 Human Disease Ontology data set, available for download via http:

//obofoundry.org. The data set contains 8,631 entries, each with at least one DOID, and
a total of 14,311 SNOMED IDs mapped to the entries.

• The July 5, 2012 PharmGKB relationships data set, available by request via http:

//www.pharmgkb.org/downloads.jsp. The data set contains 11,706 unique relationships
between drugs, diseases, genes, haplotypes, and gene variant locations (see Table 1). It in-
cludes information on whether pharmacokinetic and pharmacodynamic e↵ects play a part
in the relationship as well as PubMed IDs for articles that provide evidence supporting
the relationship. Also available are gene and disease data sets, providing mappings between
genes and Entrez Gene IDs, and diseases and SNOMED-CT IDs, respectively.

• The MCV data set and MCV-SNOMED relationship data set, not publicly available for this
study but, in the future, will be made available for public use. MCV includes a list of around
5,000 medical terms, 2,126 of which are considered core terms (directly associated with
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Table 1. PharmGKB Relationships (Highlighted fields indicate relationships studied in this work)

Haplotype Gene Variant Location Drug Disease Entrez Gene ID SNOMED-CT

Haplotype 0 0 0 762 169 0 0
Gene 684 0 2,578 1,541 27,421 0

Variant Location 0 3,147 2,053 0 0
Drug 0 772 0 0

Disease 0 0 4,348
Entrez Gene ID 0 0
SNOMED-CT 0

clinical concepts) and were the basis of this e↵ort. These core terms are identified by MCV
IDs and divided into 4 groups: diseases (1,443), first aid (63), symptoms (102), and test
procedures (518). The MCV-SNOMED relationship data set contains 1,476 relationships
between MCV IDs and SNOMED IDs.

3.2. Methods for integrating disease concepts

Fig. 1. Outline for linking MCV and OAC-CHV terms

For this study, we compared biomedical terms in MCV and OAC-CHV to expand the list
of word alternatives for MCV. Note that traditional methods for ontology matching and align-
ment are not applicable here because they rely primarily on relationships between concepts as
well as the hierarchical structure in the source and target ontologies (which are “metadata–
based”), whereas both OAC-CHV and MCV are at present a nearly flat list of terms with
minimal relationships and hierarchies. A general outline for integrating MCV and OAC-CHV
is given in Fig. 1. For the strings in MCV and OAC-CHV, we removed all punctuation and
stop words and made all letters lowercase. We used a specific subset of stop words that showed
up often in the data to avoid deleting good words (i.e. ‘a’ in “vitamin a deficiency”). Because
every term in OAC-CHV was paired with a UMLS CUI and a medically preferred term, we
were able to create sets of potential phrases for each UMLS CUI which allowed us to retrieve a
list of synonyms quickly for any entry in OAC-CHV. We began by simply seeing if any terms
in MCV were exact matches to terms in OAC-CHV. This was followed by stemming all words
in every term using a Porter Stemmer24 and checking for exact matches between the two sets.
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All matches were added to a matched list.
We then created a similarity score for each pair of terms between OAC-CHV and MCV.

This score was calculated by giving one point to each word that was in the other term and
.75 points to each stemmed word that was in the other stemmed term, summing these points,
and dividing by the total number of words between the two terms. For example, the terms
‘knee knees injury’ and ‘knee injuries’ would receive a score of (.75 + 1 + .75 + 1 + .75)/5 = .85

(Fig. 2). Based on outcome observations, an empirical threshold of .65 was set where any pair
that achieved a score equal to or over this threshold was considered to be matching and was
added to the matched list.

Fig. 2. Comparison scoring of two example terms

The next step was to get UMLS CUI codes for every term that had been paired in the
matched list. For OAC-CHV terms, that information was already included in the file. For
MCV terms, we used a relationships file developed by Mayo to get the connected SNOMED
IDs. With those SNOMED IDs, we queried the BioPortal REST service which returned the
appropriate UMLS CUIs.25

Next we evaluated the strength of the SNOMED relationship between each pair, using
their UMLS CUI codes and the UMLS::Similarity module. MCV terms that were connected
to multiple UMLS CUIs had the highest similarity score counted for each pairing. MCV terms
which were connected to no UMLS CUIs did not go through this step. The similarity measure
used was the Wu-Palmer Similarity score,20 a measure that ranged from 0 (exclusive) to 1
(inclusive) with a larger number indicating two UMLS CUIs being more similar. Based on
output observations, we set a threshold of .6 where any pair scoring below that would be
deleted from the list of pairings.

Once all pairings had been computed, we began gathering synonyms for MCV terms. For
every pairing between MCV and OAC-CHV, the OAC-CHV term was connected to a group
of terms with the same UMLS CUI. For every pairing, this group of OAC-CHV terms was
added to the correct MCV. UMLS::Interface was then queried for equivalent terms to every
MCV term. These two groups of synonyms were combined for each MCV term and duplicate
synonyms were deleted.

3.3. Methods for integrating non-genetic and genetic disease risk factors

For the second part of this study, we integrated non-genetic and genetic risk factors to diseases
in MCV. Non-genetic factors were obtained by mining information from deCODEme’s website
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for most of the 47 medical conditions that they do genetic testing on. The text mining algo-
rithm was implemented using the XML and RCurl packages in R.26–28 First, a list of diseases
was queried from the “about deCODEme” page of their website. The page for each individual
disease was then accessed and the associated factors were retrieved. Because the information
on non-genetic risk factors was stored in consistent locations within deCODEMe’s website
templates (usually in bold text; as seen in Fig. 3), our retrieval algorithm processed just the
relevant text area. For factors that included ambiguous terms such as ‘age,’ ‘ethnicity,’ and
‘gender,’ we developed the following heuristics based on typical structures of the paragraphs
that followed the highlighted function:

Fig. 3. Sample of risk factor portion of deCODEme site

• Gender – Typically the first gender to show up in the paragraph was at higher risk. When no
gender was at higher risk, then either no gender was named or the first instance of a gender
in the paragraph was accompanied by a conjunction and the opposite gender. For instance,
in Fig. 3, “AAA is most commonly encountered in older men” would give us ‘men’ as the
higher risk group, because it is spotted first in the paragraph. However, if the sentence were
to instead say “AAA is most commonly encountered in older men and women,” we would
not assume a higher risk group.

• Age – There were many di↵erent structures for ages being described. We made a list of the
typical ones for querying the text such as “over age ##,” “between the ages of ## and
##,” and “in their ##s.” For instance, in Fig. 3, the phrase “over age 60” indicates that
60+ is a high risk group.

• Ethnicity – Typically there were many ethnicities mentioned and there was a rough ordering
indicated by the comparison words used. Words such as ‘more,’ ‘highest,’ and ‘fourfold’
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indicated that the earliest ethnicities in the paragraph were at higher risk while the word
‘less’ indicated that the earliest ethnicities following the word ‘than’ represented high risk
groups. Our method deleted all words that did not have to do with this ordering and were
not ethnicities, allowing us to extract ethnicities based on locations of comparison words.
For example, in Fig. 3 the ethnicity sentence is reduced to “less Asians African-Americans
than European” and European would be chosen as the high risk group.

• ‘Other’ Categories – Categories that included the word ‘other’ in their title often listed
many risk factors but did not have a uniform structure, making it much more di�cult
to extract the factors. To solve this problem we ran the paragraphs through MetaMap,
a biomedical terminology extraction tool which split the paragraph up into concepts and
provided expected semantic categories as well as goodness-of-fit scores. We took the terms
which were substance, disease, or injury related, based on their semantic categories, and, if
they had a perfect fit score of 1000, added them to the non-genetic factors list. In addition,
if the words ‘smoking,’ ‘alcohol,’ or ‘cocaine’ were found, they were added to the factors
list, even without a perfect goodness-of-fit score.

The second type of factor that we looked at was genetic. Initially we extracted all SNOMED
IDs that were linked to each MCV ID by processing MCV’s relationships file. The Human
Disease Ontology23 holds relationships between SNOMED IDs and DOIDs, allowing us to
extend our connections between MCV IDs and DOIDs (Disease Ontology IDs). Using these
relationships, we queried the GeneWiki+ data set to retrieve genes that were correlated to
each DOID, and by extending that relationship to MCV and accumulating the genes, we cre-
ated a relationship file between MCV IDs and Entrez Gene IDs.

In addition to using the GeneWiki+ data set, we also had access to PharmGKB relation-
ships files which, among other things, linked diseases and genes through their PharmGKB
Accession IDs. Subsequently, by using the PharmGKB genes relationships file, we replaced
the listed genes with their Entrez Gene IDs. Similarly, by using the PharmGKB diseases rela-
tionships file, we replaced the diseases in the relationships with the connected SNOMED-CT
IDs. We then replaced these SNOMED-CT IDs with the connected MCV IDs from MCV’s re-
lationships file and added any MCV:Entrez Gene ID pairs that were missing from GeneWiki+
to our list of MCV ID:Entrez Gene ID relationships.

4. Results

The MCV file we began with included 2,126 terms. After just looking for exact matches or
stemmed perfect matches, 1,677 terms had found matches in OAC-CHV and 449 had not.
When we did not use UMLS::Similarity to evaluate matches, we had 2,092 terms that found
matches and 34 that did not. After using UMLS:Simliarity to eliminate weak or incorrect
matches we had 2,069 terms that had matches and 57 that did not. Table 2 shows a summary
of these findings.

On average, each term in MCV had 50.2 synonyms when not checking against
UMLS::Similarity, but just 38.5 synonyms after incorporating this extra measure.
UMLS::Interface averaged adding 4.5 synonyms to each term in MCV with a final average
output of 43 synonyms per MCV term.
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Table 2. Summary of MCV terms mapping results

MCV Terms mapped to OAC-CHV MCV Terms not mapped to OAC-CHV

Perfect Matches 1,646 480
Perfect Matches after stemming 1,677 449
Close matches using algorithm 2,092 34

Matches after UMLS::Similarity 2,069 57

deCODEme contained information on 47 diseases or conditions. Of these, five either did not
have non-genetic factor information in the usual area (in lists within the main text area) or did
not have any non-genetic factor information at all. Of the 42 that did contain non-genetic fac-
tor information, 38 matched either an MCV name or one of the synonyms previously created.
On average each of these 38 diseases had 6.7 non-genetic factors gathered from deCODEme.

GeneWiki+ contained information on 18,230 Gene:Disease relationships and a total of
10,084 unique Entrez Gene ID:DOID relationships. There were a total of 361 diseases and
seven symptoms from MCV that mapped to at least one gene and a total of 4,884 mappings
between MCV entries and Entrez Gene IDs (once the MCV IDs had been processed into
SNOMED IDs and then DOIDs).

The PharmGKB relationships file contained a total of 11,706 unique relationships, but
only 1,541 of those were between diseases and genes. There were 570 MCV ID:Entrez Gene
ID relationships recorded after tracking the DOIDs to the corresponding SNOMED-CT IDs
and then MCV IDs. Of these, 93 already existed in the GeneWiki+ information and 477 were
new. See Table 3 for a summary of these results. After including the PharmGKB information,
coverage of MCV terms was the same (361 diseases and seven symptoms).

Table 3. Matching between Diseases and Genes

MCV:Entrez Gene Pairs

Only in GeneWiki+ 4,791
In both GeneWiki+ and PharmGKB 93

Only in PharmGKB 477
Total 5,361

5. Discussion

The principle goal of this study was to map terms and concepts from MCV to synonyms or
near-synonyms from publicly available sources. Connecting similar terms from OAC-CHV,
checking the quality of these matches using UMLS::Similarity, and extracting close relations
from UMLS::Interface expanded the base list of terms by more than 43 times and over 97% of
terms in MCV added at least one synonym. Having such a list will allow for improved search
results that minimize the di�culty of finding an exact phrase to retrieve information on an
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expected medical concept.
Our extraction of genetic factors was also very helpful in adding to MCV. GeneWiki+

and PharmGKB each added a valuable amount of gene:disease matchings with GeneWiki+
contributing somewhat more, reasonable considering PharmGKB specializes in gene:drug re-
lationships. A large number of relationships presented in these files were unable to be mapped
to any diseases in MCV due to either MCV lacking the disease or one of the ID relationship
files being incomplete. With only 42 diseases from deCODEme having non-genetic risk infor-
mation, it may have been more valuable to just manually edit those relationships. Extraction
of ethnicity, gender, and age information was valuable but many factors were included in the
‘other’ categories and were not always correctly retrieved by MetaMap. It may be worthwhile
to map these to a database of risk factors at some point, but that was not considered in this
study.

6. Conclusion

In this study we integrated synonyms for medical terminologies as well as both non-genetic
and genetic risk factors for diseases into MCV. Bringing this information into medical query
services oriented towards consumers is an important step to providing better results and risk
information that is growing in importance, especially as genetic risks become better known.
The expanded version of MCV created in this exercise provides a solid basis for creation
of consumer-oriented healthcare applications and online health information searching. With
MCV becoming publicly available in the future, current limitations due to many consumer
health vocabulary sources being closed source should be reduced.
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This paper explores the application of text mining to the problem of detecting protein functional
sites in the biomedical literature, and specifically considers the task of identifying catalytic sites in
that literature. We provide strong evidence for the need for text mining techniques that address
residue-level protein function annotation through an analysis of two corpora in terms of their cov-
erage of curated data sources. We also explore the viability of building a text-based classifier for
identifying protein functional sites, identifying the low coverage of curated data sources and the po-
tential ambiguity of information about protein functional sites as challenges that must be addressed.
Nevertheless we produce a simple classifier that achieves a reasonable ∼69% F-score on our full text
silver corpus on the first attempt to address this classification task. The work has application in com-
putational prediction of the functional significance of protein sites as well as in curation workflows
for databases that capture this information.

Keywords: text mining, information extraction, machine learning, catalytic site, biomedical litera-
ture, biomedical natural language processing, protein functional sites

1. Introduction

To facilitate progress in understanding and prediction of protein function, it is critical to pop-
ulate databases with information about the physical aspects of protein function,1,2 including
the location of functionally important residues on the protein and the biochemical properties
of ligand-protein interactions. Drug discovery for treatment of diseases proceeds systemati-
cally from this information; drugs can be designed to target a specific functionally important
site on the protein and can become the basis for large-scale drug screening experiments. How-
ever, such physical information is currently scarce compared to more qualitative information
about protein function, such as pathway assignments or Gene Ontology annotations, despite
its critical importance for characterization and eventual manipulation of protein behavior.

In previous work, we have shown that text mining can be integrated with protein structure-
based methods for prediction of protein functional sites to identify high-quality predictions
that are supported by evidence in the biomedical literature.3 The method we developed in that
work is called Literature-Enhanced Automated Prediction of Functional Sites, or LEAP-FS.
While that work showed that we were able to recover a good proportion of curated functional
site annotations in existing databases, it did not attempt to classify the functional importance
of each site more specifically, e.g., identifying catalytic sites. Automated identification of cat-
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alytic sites in the biomedical literature has application, for example, in genome annotation
pipelines and in drug design. Such predictions provide fine-grained information regarding the
biological significance of a specific functional site, influencing both the overall understanding of
the role of a protein in a biological process, and how that protein might be modulated through
drug intervention. The classification can also be employed within the curation pipeline for the
development of resources such as the Catalytic Site Atlas4 to assist in identifying meaningful
literature to be curated, and to highlight specific residue mentions within that literature that
should be considered for inclusion in the resource.

Development of a functional site classifier would lay the foundation for generalizing the
methods we previously developed in LEAP-FS. First, it supports the generalization of the
methods to a broader set of the biomedical literature; we would like to be able to identify
functionally important protein residues through analysis of literature that is not directly
connected to proteins via curated links. The classifier would play a role in that generalization
by assisting in the recognition of literature where residues are specifically discussed as being
catalytically active. Second, classification of a residue mention as within a catalytic site gives
us increased confidence that the residue mention is relevant for prediction of functional sites
– it provides evidence that the residue is mentioned due to its functional importance.

In this work, we take a step towards finer-grained analysis of amino acid residues mentioned
in text. We provide an analysis of the residues identified in publications linked to proteins in
the Protein Data Bank in order to understand what relevant information is readily available
in curated data sources. We further explore the development of a classifier which can classify
amino acid residues as catalytic residues based on the textual context of the residue mention,
e.g. for the positive cases below.

(1) We propose a mechanism involving general base catalysis by the carboxy-terminal Trp270
carboxyl group [PMID 12356304]

(2) it is possible that Arg 381 is one of the catalytic bases previously observed [PMID 9174368]

We find that while our classifier does a reasonable job in classifying positive instances, there
is significant ambiguity around negative instances, both for the purpose of developing training
material and during classification of held-out test data.

2. Related Work

BindingMOAD is a database of protein ligand-binding sites, which is updated through curation
of approximately 2000 full text publications each year.5 To assist with this curation, a natural
language processing system called BUDA, using the rule-based GATE system6 (gate.ac.uk)
was developed to identify articles relevant to binding, and to extract protein-ligand interac-
tions along with quantitative binding affinities. However, it has been noted that the curation of
BindingMOAD cannot rely completely on this automated information extraction, due to am-
biguities that persist in the extracted information.7 Furthermore, specific evaluation results of
BindingMOAD have not been made available so we are unable to make detailed comparisons.

The Open Mutation Miner8 system extracts mutation information from full text publica-
tions and identifies mutation impact information including protein properties such as kinetic
and stability data. The system also aims to capture protein function impacts, through detec-
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tion of Gene Ontology9 molecular function terms via dictionary look-up with some morpho-
logical processing. A rule-based strategy is employed for association (grounding) of an impact
to a mutation. We refer the reader to their work8 for a thorough review of other text mining
systems that focus on extracting mutation information. The scope of these systems is different
than our work, as we are interested in detecting all specific protein residue mentions, not only
mutation sites, and we focus on catalytic and ligand binding sites.

Nagel et al10 address annotation of individual protein residues, focusing on binding and
enzymatic activity. The goals of that work are closest to our own goals. They develop a
mutual information-based classifier for detection and categorization of functional terms within
a sentence, achieving F-scores of 0.57 for binding and 0.27 for enzymatic activity on a very
small corpus of 100 manually annotated abstracts; association of residues to these terms is
achieved using syntactic relationships. However, only 16 extracted functional annotations are
produced by the system. The authors compared those annotations to information in UniProt
and did find that that the text mining identified correct annotations, of which 11 were not
already present in the resource. The evaluation of this work was very limited in scope; we will
present a much larger-scale evaluation.

3. Methods

3.1. Amino Acid residue detection in text

To detect residues in biomedical publications, we employ a set of patterns that take advantage
of regularities in how protein residues and mutations are expressed in text. These patterns
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are described in detail in previous work;3,11 that work showed that we were able to achieve
F-scores of over 94% on a third-party gold standard.10 For the analysis reported here, we re-
used the previous results we generated, which included detection of single-letter abbreviations
for mutations (e.g. D199S ) but ignored single-letter abbreviations for individual residues. All
residue and mutation mentions were normalised to a three-letter residue abbreviation with
the specific position of the residue.

3.2. Corpus creation

We created two corpora for processing: a corpus of abstracts and a corpus of full text pub-
lications. The starting point for the creation of each of these corpora was the set of 17,595
PubMed identifiers referenced as the primary citation of records in the Protein Data Bank12

(PDB; www.pdb.org), using PDB data downloaded in May 2010 for the LEAP-FS system.
We were able to retrieve the full set of abstracts from a local Medline repository. We were

also able to successfully retrieve 11,560 full text publications from this set. After running
the residue and mutation detection step over these corpora, we identified 6,109 abstracts and
8,491 full text publications with residue mentions. We next applied a physical verification step
for those residue mentions, in which each amino acid mention identified in the text must be
matched to a physical residue in the corresponding PDB record, with both the position in the
protein sequence and the specific amino acid matching (for mutations, either the wild type or
the mutated amino acid was allowed to match). This step ensures that residues identified in
the text are grounded to the appropriate protein sequence, and resulted in identifying 5,236
abstracts and 7,309 full text publications with physically verified text residues (PVTR) (in
each case representing 86% of the original corpus).

3.3. Distant learning for training data creation

To avoid costly manual annotation of training data, we take advantage of high quality external
knowledge to automatically generate appropriate training data. We have previously explored
this strategy for creation of training data for extraction of protein-residue associations from
text.11 We extend that approach here to create a “silver standard” data set – i.e. training
data that we believe to be highly reliable, but which has not been manually verified. The
architecture of the approach is outlined in Figure 1.

The silver corpus creation starts with the abstract and full text corpora we collected, with
each physically-verified text residue in the corpus serving as a potential training example. The
annotation of the text residues in the corpus as well as the sub-selection of publications for
the silver standard data set relies on external curated data. The external knowledge we rely
on to build our training and test data is the curated links to the literature from the Protein
Data Bank which form the basis of our corpus creation, coupled with literature-curated anno-
tations of catalytic sites available in the Catalytic Site Atlas4 (CSA; www.ebi.ac.uk/thornton-
srv/databases/CSA/). We refer to the subset of CSA annotations that are marked as coming
from the literature as CSA-Lit. The annotated catalytic sites in CSA-Lit represent highly
reliable positive information about the residues in PDB records that are catalytically active.
Our training data focuses on the publications that have at least one physically-verified text
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residue that is annotated in CSA-Lit.
Because catalytic sites are also binding sites, and generally are a subset of functional sites,

there is significant potential ambiguity about whether a given functional site is catalytic. To
ensure that our training data cleanly captures specifically catalytic sites as positive instances
but does not inadvertently include a catalytic site as a negative instance, we refer to other
functional site resources to discard potentially ambiguous cases. Catalytic sites that are not
in the CSA-Lit subset but are annotated in CSA (usually on the basis of sequence alignment
with a known catalytic site) are discarded as they are not definitively catalytic, but very likely
to be. We also consider any site identified in BindingMOAD as a binding site and any residue
that is near a small molecule (NSM) in the corresponding PDB structure (see3 for details on
how this is formally determined) as ambiguous. The logic we employ is formalized as follows:

For each PubMed article with at least one physically-verified text residue in CSA-Lit, for each
physically-verified text residue in the article,

(1) is it in CSA-Lit? (if yes, annotate as positive instance)
(2) is it in CSA? (if yes, discard)
(3) is it annotated in BindingMOAD? (if yes, discard)
(4) is it a residue near a small molecule in the PDB structure? (if yes, discard)
(5) otherwise, annotate the text residue as a negative instance.

Application of this strategy results in an imbalanced silver corpus for the abstracts, with
749 positive instances and 179 negative instances (in 259 abstracts), and a significantly larger
and more balanced silver corpus for the full texts, with 5846 positive instances and 6095
negative instances (over 312 articles).

3.4. Applying basic machine-learning classification

The silver standard we created is designed to resemble the judgments which would be produced
by a human without requiring an explicit annotation stage. The curators of CSA determined
on the basis of a particular article whether a particular site was catalytic or not, which suggests
that this information is available explicitly or implicitly in the text of the article. This in turn
suggests that a machine-learning algorithm may be able to successfully classify some of the
residue mentions on the basis of this textually-encoded information as catalytic.

In this section, we describe a fairly simplistic machine learning approach to this problem.
This approach was designed to determine how readily the annotations could be determined
using simple features based on the textual context surrounding the residue mention. In addition
to this, it was desirable to have the features selected so the classifier could be trained on the
relatively small abstracts-only portion of the corpus, since these are far more easily accessible
than full text data. Because of the small size of this portion of the dataset, feature types
which tend to suffer from data sparseness were not explored extensively. In particular, for
word n-grams, from the few hundred instances in abstracts we have available there is unlikely
to be enough information to meaningfully populate feature vectors for n > 1, so we only
experimented with features based on word unigrams.
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Table 1. Statistics of PDB-PMID-Residue relationships in CSA. PDB = Protein Data Bank. CSA =
Catalytic Site Atlas. CSA-Lit = the subset of CSA annotations marked as based on literature. PMID = PubMed
ID. A verified text residue is a residue that has been identified through text mining, and mapped to a physical residue
in the corresponding PDB protein sequence. “Site” refers to a particular numbered location in a protein sequence.

Source Set Residues PDB PMIDs (PMID,Site)
1. PDB PDB residues, with abstract 17904740 30816 17595 4797110
2. PDB PDB residues with verified text residues (abstracts) 44701 9923 5236 14127
3. PDB PDB residues with verified text residues (full text) 7309 107153
4. CSA PDB residues in CSA 112031 17524
5. CSA PDB residues in CSA, with abstract 94327 14673 7587 29447
6. CSA Verified text residues; match to CSA (abstracts) 9059 3163 1630 2708
7. CSA-Lit PDB residues in CSA-Lit 6372 942
8. CSA-Lit PDB residues in CSA-Lit, with abstract 5586 831 823 2799
9. CSA-Lit PDB residues in CSA-Lit, with abstract with at

least one verified text residue
2116 343 341 1139

10. CSA-Lit Verified text residues; match to CSA-Lit (abstracts) 878 259 259 476
11. CSA-Lit Verified text residues; match to CSA-Lit (full text) 312 805
12. CSA-Lit Verified text residues; match to CSA-Lit (full text

+ abstract)
444 1052

We report classification results with a model built using Zhang Le’s Maxent Toolkita.
In preliminary experiments, we achieved superior performance using this toolkit than with
other tools. The corpora were preprocessed; sentences were identified using the Jena Sentence
Boundary Detector tool13 and the text was tokenized and tagged with part-of-speech (POS)
tags using the GENIA tagger.14 We experimented with the following feature sets:

• Tokens(b,e): the set of tokens in the range (b, e) relative to a physically-verified text
residues (PVTR) token, not crossing sentence boundaries. For example, Tokens(−2,−1)

denotes the two tokens immediately preceding the PVTR. The value $ denotes the sentence
boundary, so Tokens($,−1) means all preceding tokens.

• Lemma(b,e) and BioLem(b,e): the same as Tokens(b,e), but using lemmas of the tokens
derived from the GENIA tagger and the BioLemmatizer,15 respectively.

• MT: Match Type. Whether the PVTR was identified via mutation pattern such as
Cys42Ala or a bare amino acid residue pattern such as Cys42.

Use of the full preceding sentential context, e.g. Lemma($,−1), was found to be the most
effective; smaller ranges tended to be detrimental. Features based on POS-tags were unhelpful.
Unlemmatized tokens performed worse than lemmas (results not reported).

4. Results

4.1. Literature-based recovery of CSA annotations

To establish the context for the task of classifying functional sites as catalytic, we undertook an
analysis of the data we had generated for our initial experiments with the LEAP-FS method.
The aim of this analysis was to understand the proportion of the residues extracted from

ahttp://homepages.inf.ed.ac.uk/lzhang10/maxent toolkit.html
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Table 2. Analysis of the overlap of the physically verified text residues (PVTR)
in our full text corpus with functional site annotations. Percentiles in parenthe-
ses are relative to the category.

Category Num PVTR % PVTR Num PMID PMID %
All PVTR 107153 100.0% 7309 100.0%
in abstract 6085 (5.7%) 2477 (33.9%)
not in abstract 101068 (94.3%) 4832 (66.1%)
PVTR CSA-Lit 805 0.8% 312 4.3%
in abstract 237 (29.4%) 127 (40.7%)
not in abstract 568 (70.6%) 185 (59.3%)
PVTR any CSA 5821 5.4% 2413 33.0%
in abstract 1252 (21.5%) 759 (31.5%)
not in abstract 4569 (78.5%) 1654 (68.5%)
PVTR BindingMOAD 5652 5.3% 698 9.5%
in abstract 537 (9.5%) 239 (34.2%)
not in abstract 5115 (90.5%) 459 (65.8%)
PVTR NSM 42603 39.8% 5254 71.9%
in abstract 3540 (8.3%) 1653 (31.5%)
not in abstract 39063 (91.7%) 3601 (68.5%)
PVTR any annotation 44428 41.5% 5566 76.2%
in abstract 3900 (8.8%) 1804 (32.4%)
not in abstract 40528 (91.2%) 3762 (67.6%)

carefully selected biomedical publications that correspond to known catalytic sites. In our
previous work,3 we established that a significant proportion of the residues identified in the
publications we analysed corresponded to functionally active sites as recorded in both CSA
and BindingMOAD and used this as evidence supporting the hypothesis that residue mentions
in the literature have functional significance. Here, we specifically examine how well we are
able to recover the functional site annotations in the CSA, essentially measuring the method’s
recall of curated annotations.

Table 1 summarises the results. Line 1 indicates the total amount of information in the
Protein Data Bank that is linked to a PubMed ID. The last column (PMID,Site) indicates the
number of unique combinations of PMIDs and residue locations in the Protein Data Bank. This
represents an upper bound on the number of residues mentioned in text that we would expect
to find. Line 2 represents the results of the analysis in our previous work; we identified 14,127
residue mentions in 5,236 PubMed abstracts; those residue mentions correspond to 44,701
physical residues in the PDB. Line 3 extends that to processing of full text publications. Lines
4-6 focus on the subset of PDB residues that are included in the Catalytic Site Atlas; we take
these residues to be the set of known (or presumed) catalytic sites. We can see here that text
mining of PubMed abstracts (Line 6) is only able to identify a small proportion (∼9%) of
the catalytic residues that could be mentioned in some publication (Line 5). Restricting our
analysis to those residues in the CSA that have been explicitly marked as having supporting
evidence in the literature (the CSA-Lit subset; Lines 7-12) we find that we are able to recover
a somewhat higher proportion, ∼17% for abstracts (476/2799). When we process full text as
well, our coverage of CSA-Lit improves dramatically, to ∼38% (1052/2799) for all literature
evidence we were able to access and detect.
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Table 3. Results using 8-fold cross-validation over the development and test sets. BL = Baseline;
ME refers to the MaxEnt classification engine. A = abstracts; F = full text.

Sections Catalytic Non-catalytic F-score
Eng. σ2 Features Train Test P / R / F P / R / F Mic /Mac
ME 0.0 MT, Lemma A A 86.8/ 93.0 /89.8 51.7/34.6/41.4 81.5/66.4
ME 1.0 MT, Lemma A A 82.6/ 97.1 /89.3 30.8/ 6.0 /10.1 76.9/54.0
ME 4.0 MT, Lemma A A 85.6/ 95.8 /90.4 56.7/25.6/35.2 81.8/65.5
ME 0.0 MT, BioLem A A-test 79.2 / 86.9 /82.9 17.4 /10.8 /13.3 69.0 /48.6
BL A, F A 82.2/100.0/90.2 0.0 / 0.0 / 0.0 74.1/45.1
ME 1.0 BioLem A, F A 90.4/ 81.2 /85.6 41.0/60.2/48.8 79.5/68.1
ME 4.0 MT, Lemma A, F A 90.0/ 74.6 /81.5 34.5/61.7/44.2 76.0/65.0
ME 0.0 MT, BioLem A, F A-test 89.2 / 80.0 /84.4 44.2 /62.2 /51.7 78.2 /68.8
BL A F 48.9/100.0/65.7 0.0 / 0.0 / 0.0 32.1/32.8
ME 0.0 Lemma A F 51.9/ 87.2 /65.1 64.8/22.5/33.4 56.2/56.5
ME 0.0 MT, BioLem A F 52.4/ 89.4 /66.1 68.8/22.2/33.6 57.8/58.1
ME 1.0 MT, BioLem A F 50.6/ 96.4 /66.3 73.9/ 9.7 /17.2 56.8/57.3
ME 0.0 MT, BioLem A F-test 51.7 / 88.8 /65.3 64.8 /19.9 /30.5 56.0 /56.2
BL A, F F 48.9/100.0/65.7 0.0 / 0.0 / 0.0 32.1/32.8
ME 1.0 Lemma A, F F 63.5/ 72.6 /67.7 69.6/60.0/64.5 66.4/66.4
ME 0.0 BioLem A, F F 62.4/ 72.7 /67.2 69.0/58.1/63.0 65.5/65.5
ME 1.0 BioLem A, F F 62.7/ 73.6 /67.7 69.7/58.1/63.3 66.0/66.0
ME 4.0 MT, Lemma A, F F 63.5/ 60.9 /62.2 64.0/66.5/65.2 63.8/63.7
ME 0.0 MT, BioLem A, F F-test 69.2 / 68.4 /68.8 69.9 /70.7 /70.3 69.6 /69.5

We further wish to understand the extent of the ambiguity we face in attempting the
classification task. To assess this, we examined the annotation status of the physically verified
text residues (PVTRs) in the full text data set. While the annotations of the CSA-Lit subset
are clearly the most relevant to our classification task, representing literature-curated catalytic
site annotations, all of the annotations in CSA are very likely to be valid catalytic sites, as
they were derived through alignment with known catalytic sites in closely related structures.
As we suggested above, many binding sites are also catalytic sites. Hence sites in PDB protein
structures which are in close proximity with a small molecule (NSM = near small molecule),
a characteristic strongly suggestive of a ligand binding site, as well as the curated subset of
those sites represented in the BindingMOAD database,5 are also potentially catalytic. The
overlap of the PVTRs with each of these sources is summarized in Table 2. The results show
that a large proportion of the PVTRs overlap with some existing annotation for those sites
(41.5%), despite only a small fraction having been formally curated as catalytic sites (0.8%).
While this is a strong result for LEAP-FS – supporting the hypothesis that text residues are
likely to be functionally important – it means that we have a large ambiguity set for our
catalytic site classification task.

4.2. Classification results over silver corpus

The abstracts and full text corpora were split into a training subset and a test subset, with
80% of the articles in each corpus randomly selected for training and 20% reserved as a
held-out test set. Table 3 provides a selection of the classification results over these subsets
(test results in italics). Our experiments used 8-fold cross-validation. We include results for
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Table 4. Results using 8-fold cross-validation over the development and test sets, aggregated by
unique physically-verified text residue. See caption Table 3 for abbreviation definitions.

Sections Catalytic Non-catalytic F-score
Eng. σ2 Features Train Test P / R / F P / R / F Mic /Mac
BL A A 78.9/100.0/88.2 0.0 / 0.0 / 0.0 69.6/44.1
ME 0.0 MT, Lemma A A 82.5/ 96.7 /89.1 65.8/23.6/34.7 80.1/66.4
ME 4.0 MT, Lemma A A 80.9/ 98.5 /88.8 70.0/13.2/22.2 79.5/64.2
ME 1.0 MT, BioLem A A 79.7/ 99.0 /88.3 60.0/ 5.7 /10.3 77.4/59.8
ME 0.0 MT, BioLem A A-test 73.3 / 92.8 /81.9 33.3 / 9.7 /15.0 66.1 /52.3
BL A, F A 78.9/100.0/88.2 0.0 / 0.0 / 0.0 69.6/44.1
ME 0.0 Lemma A, F A 87.9/ 85.9 /86.8 51.3/55.7/53.4 79.8/70.2
ME 4.0 BioLem A, F A 88.7/ 85.1 /86.9 51.6/59.4/55.3 80.3/71.2
ME 0.0 MT, Lemma A, F A 88.5/ 77.8 /82.8 42.9/62.3/50.8 76.6/67.8
ME 0.0 MT, BioLem A, F A-test 85.9 / 80.7 /83.2 55.6 /64.5 /59.7 77.0 /71.7
BL A F 19.3/100.0/32.3 0.0 / 0.0 / 0.0 6.2 /16.2
ME 0.0 Lemma A F 22.6/ 94.5 /36.5 94.6/22.9/36.9 50.5/58.7
ME 0.0 MT, BioLem A F 22.8/ 95.8 /36.9 95.8/22.7/36.8 50.8/59.3
ME 1.0 MT, BioLem A F 20.8/ 99.7 /34.5 99.2/ 9.6 /17.5 40.8/57.2
ME 0.0 MT, BioLem A F-test 24.3 / 94.1 /38.6 92.1 /19.1 /31.6 48.5 /57.4
BL A, F F 19.3/100.0/32.3 0.0 / 0.0 / 0.0 6.2 /16.2
ME 1.0 Lemma A, F F 36.7/ 78.6 /50.1 93.0/67.6/78.3 75.5/68.7
ME 1.0 BioLem A, F F 35.2/ 80.1 /48.9 93.2/64.7/76.4 74.2/68.0
ME 4.0 MT, Lemma A, F F 36.7/ 65.2 /47.0 89.8/73.2/80.6 75.4/66.1
ME 0.0 MT, BioLem A, F F-test 50.4 / 75.7 /60.5 92.2 /79.4 /85.3 80.8 /74.3

a baseline system, labelled BL, which is a majority-class classifier. Other lower-performing
scenarios are not included. All results reported for Lemma and BioLem are Lemma($,−1)

and BioLem($,−1), respectively. The column σ2 indicates the value for the σ2 Gaussian
smoothing parameter to the MaxEnt learner (0.0, 1.0, 4.0 were tested).

The abstract development set contains 613 catalytic (positive) and 133 non-catalytic (neg-
ative) text instances, while the full text development set contains 4641 catalytic and 4846
non-catalytic text instances. The standard measurements of precision, recall, and f-score are
calculated over these text instances. F-score is calculated through micro-averaging (Mic),
i.e. across all text residues in the test set, and macro-averaging (Mac), i.e. averaging perfor-
mance over the two categories catalytic vs. non-catalytic.

We note that the baseline system BL has non-zero values for the non-majority class (there-
fore, less than 100% majority class recall) in the cases of training on abstracts and full text
together. This is because the majority class is calculated from the input data in the training
fold. The folds are randomly determined at the document level rather than the text instance
level. Coupled with more balanced instances in the full text data, this can result in the majority
class in a given fold not being the same as the majority class in the entire data set.

5. Discussion

5.1. Full text versus abstracts

Examination of Table 1 shows a clear advantage when processing full publications as compared
to abstracts, despite having access to a smaller proportion of the relevant literature (66% of
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relevant publications). This demonstrates that the increased level of detail that is available
in full text publications16 is important for understanding of specific physical residues. Our
results also indicate an advantage in processing both the abstracts and full text together.

Our results show some discrepancies between what is identified in abstracts as compared
to the corresponding full text publications we were able to access. While it would be typical
for a full text publication to contain the abstract, we found that our system was not able to
identify (minimally) the same text residues as in the corresponding abstracts for 497 full text
files. Further investigation revealed that more than half (250) of those full text publications
were spurious – while there was text downloaded for a given PMID, it was not the actual
publication context. This typically resulted from an error in the logic of our full text retrieval
script or a subscription firewall. We found that in 157 publications we missed residue mentions
due to conventions in the HTML to plain text conversion script that our residue detection
patterns were not sensitive to. An additional 88 publications had no results in the full text
data set because single letter mutations were not included in the full text processing.

5.2. Classifier performance

Examination of Table 3 shows several consistent patterns. First, the classifiers based on ma-
chine learning all easily outperform the baseline classifier; this effect is most pronounced on
the more balanced full text test set. Second, the classifiers trained on more data (combining
both abstracts and full text) outperform the classifiers trained on abstracts alone. The lack
of complete subsumption of the abstract data in the full text data, as discussed above, likely
contributes to this effect, but it also demonstrates the advantage of more training contexts to
learn from. Third, the MT (match type) feature improves performance in most cases. Fourth,
the results on the held-out test set are slightly lower than the corresponding results for the
development set, except in the case of the final full text test run, trained on all the devel-
opment data. This again shows the benefit of more data. However, the differences between
the various feature sets we experimented with were small and not fully consistent across the
system combinations we considered – sometimes BioLem gives an advantage over Lemma
and sometimes not, and various settings for the σ2 parameter affected P/R/F across the two
categories inconsistently. We have experimented with a limited set of features in this work
to test the viability of the approach; application of other features and other approaches to
named entity recognition is warranted to achieve improved performance.

One complicating factor for the classifier arises from the distinction between a catalytic text
mention of a given site in a protein, and a catalytic site. A catalytic site may be discussed in
text for some reason that has nothing to do with its function and therefore a given text mention
may not be appropriately categorized as “catalytic”, even if the corresponding protein site is a
catalytic site. However, given our distance-based methodology for producing the training and
test data for the classifier, we cannot discriminate between these cases. We annotate individual
text mentions of PVTRs based on site-level information rather than considering whether the
specific local textual context provides evidence of function.

An analysis of the classifier’s performance at the level of a unique PVTR, rather than at
the level of text mentions, is shown in Table 4. Here, we have aggregated over the classification
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of all text mention instances of a given (PMID, Site) pair. We have employed a simple majority
vote of classifications over the instances – that is, if the majority of the individual text mentions
are classified as catalytic, then the PVTR is classified as catalytic as well. In the case of a tie,
we examine the scores of the classification. When the data is viewed this way, we see improved
performance on the recall of catalytic sites, at a significant cost to precision. In contrast,
the classification of non-catalytic sites has improved overall. These results therefore confirm
the catalytic text mention/catalytic site difference, suggesting that many text mentions of
catalytic sites are not clear references to its catalytic status, while it is possible to reliably
rule a PVTR out as non-catalytic due to a lack of catalytic text mentions.

Addressing this problem could lead to overall improvement of the classifier, which we plan
to explore in future work. We could build a classifier which aggregates information across
text mentions to support classification of a unique PVTR rather than classification of each
individual text mention. We could also explore a two-part solution, where the first part is
to identify sentences that contain functional information about a site in a protein, and the
second part is to classify that functional information more specifically. This would require
development of a training corpus which provided more specific functional information. This
could be done manually or by filtering text mentions in our existing corpus according to
whether there is a detected Gene Ontology molecular function term within the same sentence,
similar to the mutation grounding strategy of Naderi and Witte.8

5.3. Use of the classifier for improving curation of catalytic sites

Our data highlights (a) the low coverage of curated information about both catalytic sites and
binding sites more generally, and (b) the significant ambiguity of functional sites.

The gap between curated information and the amount of inferred information in genomic
databases is a well known problem,17 and we see clear evidence of that gap here. In comparing
Lines 4 and 7 of Table 1, we see that the CSA-Lit curated subset represents less than 6% of
the full CSA database. BindingMOAD is the curated subset of the PDB NSM data, focused
on protein ligand binding sites. For the PVTRs in our corpus, only 13% of NSM sites we
recover are also captured in BindingMOAD (PVTR NSM vs. PVTR BindingMOAD data
in 2). While this difference in coverage could be because many of those NSM sites are not
high-quality binding sites, it is more likely a reflection of the time and resources that manual
curation requires. The fact that we are able to recover over forty thousand NSM sites in our
corpus of 7,309 full text publications suggest that text mining can play a powerful role in
closing this gap, by highlighting sites that have literature evidence of functional importance.

However, to close the annotation gap we must go one step further than identification,
and perform finer-grained categorization of those PVTRs. The catalytic site classifier we have
developed on the basis of our training data could be applied more broadly to the full set of
7,309 articles for which we have identified PVTRs. This would identify those PVTRs not in
CSA-Lit that are most likely to be catalytic sites; those in turn can be prioritized for curation,
and the specific document with the catalytic mention of the site can be provided to a database
curator. These developments would enable higher-throughput in the curation process.
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6. Conclusion

This paper has explored the applicability of text mining from the biomedical literature to
the problem of detecting catalytic sites. We have presented two corpora in which protein
residue mentions were annotated using reliable external knowledge about catalytic residues.
Our analysis of these corpora according to their coverage of existing annotated resources
showed that the literature is a good source of information about functionally significant protein
sites, and furthermore that processing of full text publications is particularly important for
achieving good recall of these sites from the literature. With respect to classification of these
functional sites as catalytic, we observed that there is considerable ambiguity in assigning the
functional role of a given site.

Nevertheless, we explored development of a classifier learned from our annotated silver
corpora to enable automatic annotation of catalytic sites in the biomedical literature. Despite
the ambiguity of catalytic sites, and the evaluation of the annotation at the level of individual
text mentions of protein sites rather than aggregated over unique physical sites, the classifiers
were able to achieve reasonably good performance with a simple set of features. Having estab-
lished the viability of the approach, and having identified some of the challenges that arise in
this task, we are confident that we in future work we will be able to develop new methods that
improve upon the initial results presented here. This work represents an important step in the
development of effective strategies for understanding functional characteristics of proteins at
the level of specific residues, and for supporting curation of that information in databases, by
exploiting the information available in the published literature.
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Emerging technologies such as single cell gene expression analysis and single cell genome sequencing 
provide an unprecedented opportunity to quantitatively probe biological interactions at the single cell level. 
This new level of insight has begun to reveal a more accurate picture of cellular behavior, and to highlight 
the importance of understanding cellular variation in a wide range of biological contexts. The aim of this 
workshop is to bring together researchers working on identifying and modeling cell heterogeneity that arises 
by a variety of mechanisms, including but not limited to cell-to-cell noise, cell-state switches and cell 
differentiation, heterogeneity in immune responses, cancer evolution, and heterogeneity in disease 
progression. 

 
1.  Background 

Quantifying the molecular mechanisms underlying cell behaviors and functions is one of the 
ultimate goals of biology and medicine. Until recently, most current measures to classify and 
characterize cellular behavior have been performed on the average of all cells in a sample instead 
of a single cell. However, measurements derived from pooled populations of cells lack the 
specificity to capture outlier cell behavior that might explain cell differentiation and transitions 
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from normal to disease cellular states. The noise, or variance, between the genomic state of 
different cells -- even among cells assumed to be homogenous -- has been shown to be strongly 
correlated with protein expression and function [1]. Furthermore, it has been argued that 
neglecting cell heterogeneity is one of the major causes of error in disease classification [2].  
Emergence of cell heterogeneity might be sporadic (e.g., cell-to-cell variation in an isogenic cell 
population [3]), programmed (e.g., cell differentiation [4]), or, to some extent, driven by selection 
pressure (e.g., in cancer [5]).  

Emerging technologies like single cell gene expression and single cell sequencing provide 
unprecedented opportunities to quantify single cell level differences. These technologies will be 
able to provide a wealth of various forms of new information including protein abundance, 
methylation patterns, promoter structure, gene expression, copy number variations, gene function 
and essentiality, DNA structure, evolutionary plasticity, and selective advantage.  These data can 
all be leveraged in the quest to understand the emergence and consequences of heterogeneity. 
However, simple accrual of data from these various single cell experimental techniques is not 
enough to obtain a clear understanding of the diverse range of biological processes affected by 
cellular heterogeneity. Synthesis and interpretation of the wealth of single cell-level data depends 
on novel computational approaches to uncover and model the biological principles that underlie 
the emergence of cell heterogeneity. Most importantly, computational methods are needed to 
provide a system-level view of the interplay of diverse, fluctuating biological components. 

The increasing interest in the mechanisms underlying diseases is complemented by the 
emergence of single cell technologies. Due to these factors, we expect increasing efforts to 
develop computational models and tools for the analysis of cell heterogeneity. We believe that this 
workshop gives the community of computational biologists the chance to discuss this theme, 
which may soon become dominant in biomedical science.  

2.  Main directions and challenges 

The focus of this workshop is on uncovering and modeling cell heterogeneity that arises by any of 
the above-mentioned mechanisms – sporadically, programmed, and through evolution. The main 
topics covered by this workshop are questions related to cell-to-cell noise, cell-state switches and 
cell differentiation, heterogeneity in immune responses, cancer evolution, and disease progression 
and heterogeneity. 

2.1.  Cell-to-cell noise 

The stochastic nature of gene expression leads to cell-to-cell differences in protein level, 
commonly referred to as noise. Expression noise can be disadvantageous, by affecting the 
precision of performing biological functions, but it may also be advantageous by enabling 
heterogeneous stress-response programs to environmental changes [6]. Therefore, various genes 
and gene groups might display various levels of expression noise. Importantly, gene expression is 
a multi-step process and the stochasticity of its individual steps, including transcription and 
translation, contributes to the resulting variability. Untangling different components of expression 
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noise is highly nontrivial and requires a concerted effort of experiment and computational 
modeling.  

2.2.  Cell state switches and cell differentiation 

Heterogeneity has profound implications for cellular differentiation, in which cells must commit to 
one of a finite number of possible cell states. It has long been appreciated that cells must have 
molecular mechanisms for counteracting fluctuations in both environmental conditions and 
cellular components to reliably affect developmental programs [7]. However, recent work suggests 
that utilization of heterogeneity in the activation of cell differentiation programs in a population of 
cells can be evolutionarily advantageous. Such advantages are being found in a broad range of 
biological systems.  For example, combined experimental and computational work in B. subtilis 
has begun to characterize the benefits of cell-to-cell variability for the survival of prokaryote 
populations [4,8]. The importance of heterogeneity in differentiation programs in higher 
organisms is also being highlighted by recent advances in single cell technologies. New data from 
analysis of both embryonic stem cells (e.g., [9]) and adult stem cells (e.g., [10]) highlight the 
necessity for novel computational approaches to provide a deeper understanding of the role of 
heterogeneity in these important areas of biology and medicine. 

2.3.  Heterogeneity in immune responses 

Innate and adaptive immune responses depend on the proper utilization and regulation of cellular 
heterogeneity. Recognition of a wide variety of antigens necessitates a heterogeneous population 
of immune cells. However, if the heterogeneity is too great, discrimination between “self” and 
“other” antigens may be compromised leading to autoimmune diseases.  Advances in flow 
cytometry and single cell proteomics are beginning to elucidate the molecular mechanisms 
governing the proper regulation on this heterogeneity [11]. Complementary approaches in 
computational methods to analyze this important aspect of cellular immunity will be key to further 
our understanding of immune responses in healthy and disease states [12]. 

2.4.  Cancer evolution 

A tumor is formed from a heterogeneous mass of cells with different complements of somatic 
mutations and possibly different differentiated states. The implications of this heterogeneity for 
cancer progression and treatment are not well understood. While mutational heterogeneity could 
merely be a consequence of the somatic mutation process that drives cancer development, 
heterogeneity may itself be an important, or even essential, contributor to tumor evolution 
[5,13,14]. Single-cell analyses are necessary to understand the role heterogeneity plays in cancer 
evolution. For instance, single-cell sequencing is likely to profoundly impact cancer diagnostics 
and prognosis through the detection of rare tumor cells or through the monitoring of circulating 
tumor cells [15].  Single-cell next generation sequencing can also be used to investigate tumor 
subpopulations and to delineate the differences between primary and metastasic tumors [5,14].   
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3.  Workshop Contributions 

The workshop includes two invited speakers and five accepted submissions. 
Dana Pe’er (invited speaker) is an Associate Professor in the Department of Computer 

Science and the Department of Biological Sciences at Columbia University. Dr. Pe’er received her 
doctoral degree in computational biology from the Hebrew University. Her research focuses on 
understanding the organization, function and evolution of molecular networks. Dr. Pe’er and her 
team develop computational methods to integrate diverse high-throughput genomic data and to 
discover the general principles governing cellular signal processing, propagation of small changes 
in regulatory networks and how they alter cellular functioning that can lead to diseases such as 
autoimmune disease and cancer. 

Sylvia Plevritis (invited speaker) is an Associate Professor in the Department of Radiology 
in the Stanford School of Medicine. Dr. Plevritis received her doctoral degree in Electrical 
Engineering and master’s degree in health services from Stanford University. Her research focuses 
on computational and mathematical modeling of cancer biology and cancer outcomes. Using 
diverse sources of information from genomic and proteomic data to clinical data, her laboratory 
was able to infer natural histories of cancer, to estimate cell subpopulations after cancer treatment, 
and to identify perturbations of molecular networks during different stages of cancer. Dr. Plevritis 
is also the Program Director of the Stanford Center for Cancer Systems Biology (CCSB), and the 
co-Section Chief of Information Sciences in Imaging at Stanford (ISIS).   

Julian Candia, Jayanth Banavar and Wolfgang Losert. “From molecules to cells to 
organisms: understanding health and disease with multidimensional single-cell methods.” 
This works describes a newly developed framework to investigate multicolor data from 
fluorescence-activated cell sorting (FACS). The method integrates several approaches to gain 
different perspectives on the data: singular value decomposition to reduce data representation, 
machine learning to separate patients into classes and improve diagnosis, and network analysis to 
infer cell subpopulations. 

Michael Januszyk, Jason P. Glotzbach, Michael Sorkin, Atul J. Butte and Geoffrey C. 
Gurtner. “Automated Functional Profiling of Progenitor Cell Populations using High-
Resolution Single Cell Gene Expression Data.” The authors show how information from 
thousands of publicly available microarray datasets of gene expression can be used to increase the 
power of single cell gene expression data analysis, which has high-resolution but is limited to only 
several dozen target genes that can be measured at the same time. The method is based on higher-
order covariance of gene expression retrieved from the Gene Expression Omnibus (GEO) 
database, and functional classification based on Gene Ontology. Applied to murine bone marrow-
derived mesenchymal stem cells, the method finds significant associations between cell 
subpopulations and known functional categories.   

Layla Oesper, Ahmad Mahmoody and Ben Raphael. “Estimating Tumor Clonal 
Populations from Copy Number Data.” The authors introduce an algorithm to infer tumor 
subpopulations directly from high-throughput DNA sequencing data. Their method decomposes a 
mixture of normal cells, clonal cells, and sub-clonal populations to maximize the probability of 
observed data using techniques from convex optimization. The algorithm was applied to nine 
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breast cancer samples and successfully recovered the heterogeneity of these tumor cell 
populations. 

Kyoungmin Roh and Stephen Proulx. “The role of positive and negative feedback loops 
of p53 pathway.” This work describes simulations of different scenarios built from deterministic 
p53 feedback loops, both negative and positive, based on Puszynski’s model. Using simulated 
annealing to find the optimal response of p53 to DNA damage, the authors demonstrate the ability 
of p53 feedback loops to reduce the chance of cell apoptosis, making the cell less sensitive to 
DNA damage. The analysis provides new insight on p53 feedback loops and DNA damage 
pathways. 

Damian Wojtowicz, Daniela Ganelin, Raheleh Salari, Jie Zheng, David Lavens, Yitzhak 
Pilpel and Teresa Przytycka. “Teasing apart sources of stochastic variations in eukaryotic 
gene expression.” In this project, the authors develop a novel computational approach to delineate 
the relative impact of transcription and translation processes on cell-to-cell variations, noise, in 
protein abundance, and apply it to large-scale gene expression data from yeast (Newman et al., 
2006). Interestingly, they show that translation-related genomic features, such as codon usage and 
5’UTR secondary structure, have higher impact on noise than previously appreciated. 
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COMPUTATIONAL BIOLOGY IN THE CLOUD: 
METHODS AND NEW INSIGHTS FROM COMPUTING AT SCALE 
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The past few years have seen both explosions in the size of biological data sets and the proliferation of new, highly flexible on-
demand computing capabilities. The sheer amount of information available from genomic and metagenomic sequencing, high-
throughput proteomics, experimental and simulation datasets on molecular structure and dynamics affords an opportunity for greatly 
expanded insight, but it creates new challenges of scale for computation, storage, and interpretation of petascale data. Cloud 
computing resources have the potential to help solve these problems by offering a utility model of computing and storage: near-
unlimited capacity, the ability to burst usage, and cheap and flexible payment models. Effective use of cloud computing on large 
biological datasets requires dealing with non-trivial problems of scale and robustness, since performance-limiting factors can change 
substantially when a dataset grows by a factor of 10,000 or more. New computing paradigms are thus often needed. The use of cloud 
platforms also creates new opportunities to share data, reduce duplication, and to provide easy reproducibility by making the datasets 
and computational methods easily available. 

1. Challenges and opportunities of massive data  

In recent years, large-scale datasets have become increasingly common in many biological fields.  There have been 
tremendous strides in the throughput capacity and affordability of genomic sequencing.  RNAi and similar 
techniques have allowed broad surveys of genetic regulation and host-pathogen interaction [1-3].  Multiple 
techniques for protein-protein association have gone large-scale, leading to “interactome” scale analyses of HIV 
infection [4] and other processes.  “Brain atlas” projects are making available datasets that combine gene expression 
profiles with detailed anatomic and localization data [5].  And structural genomics projects have steadily increased 
the number of high-resolution macromolecular structures available for the proteins involved in all these processes.  
In addition to statistical analysis of all these datasets, more compute-intensive approaches such as large-scale 
simulation have made it possible to simulate many mutants of a drug target or combine data sources to examine the 
structure and dynamics of large subcellular structures.  All these advances offer the possibility for tremendous 
insight into biology but pose challenges for effective analysis to maximize this insight. 

 The particulars involved in analyzing each of these domain-specific datasets have been treated elsewhere; we 
will discuss some of the common themes, particularly as they relate to cloud computing.  Dataset size has increased 
greatly.  Simply transmitting and storing many sequencing datasets is non-trivial.  Sharing access to these data is yet 
more complicated when they are stored on individual researchers’ or centers’ computer systems.  The challenges of 
sharing are compounded when patient data are concerned and access should be restricted and monitored.  Analyzing 
these large datasets can also be very computationally intensive.  Most analyses are at best case O(N); anything that 
leverages the comprehensive nature of large-scale datasets to examine pairwise or higher-order association often 
scales substantially worse.  So the “classical” paradigms of storing datasets on local clusters and running analysis 
there are challenged three times:  by transfer and archival capacity, by storage capacity, and by compute capacity. 

2. Cloud solutions for problems of scale 

We will briefly discuss how cloud-computing paradigms offer new solutions for these challenges; the workshop will 
illustrate a number of these as well as give an opportunity to discuss challenges and future directions.  This subject 
has also been reviewed in [6-8] and elsewhere.  
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2.1. Flexible capacity:  the utility model of computing 

One substantial advantage of  cloud-computing solutions is the ability to adjust computational resources according 
to requirements.  Doubling the size of a traditional cluster is both expensive and time-consuming; in a cloud model, 
it simply involves requesting (and paying for) twice the capacity.  The capacity limit of services such as Amazon’s 
EC2 and Google Compute Engine has not been made public, but a recent demonstration showed the Institute for 
Systems Biology Genome Explorer running on 600,000 cores (Google IO 2012).  In terms of raw compute capacity, 
this alone would likely rank among the top 5 supercomputers in the world.  An additional advantage for cloud 
computing is the ability to dynamically adjust utilization.  Most analyses do not run at a constant rate over time—
one would like to request a large amount of resources to run a calculation and then release those resources while the 
results are evaluated and the next analysis is designed.  It is thus rare to see a cluster at 100% utilization all the time, 
and like spare airline seat capacity or spare hotel rooms, the spare cycles are wasted money.  In current cloud 
paradigms, a user pays only for the jobs (or virtual machines) that are running.  This provides a much better fit to a 
fluctuating usage pattern. 
 

2.2. Storage 

Cloud storage solutions such as Amazon’s S3 or Google Cloud Storage offer similar scalability and flexibility to the 
matching compute solutions.  More importantly, they allow large and potentially shared datasets to be stored on the 
same infrastructure where large-scale analyses are run.  This can obviously be achieved if one has a copy of a 
dataset on one’s local cluster, but such an approach quickly becomes redundant when the dataset is held in common 
to many disparate users—the NCBI Short Read Archive is a good example.  Caching a copy of this dataset on each 
cluster where analysis is run quickly becomes an expensive and redundant exercise.  Companies such as DNAnexus 
have utilized cloud resources to offer storage, access to shared datasets, and transparent sharing of data.  Cloud 
storage also provides enhanced reliability, as the data are backed up in several geographical locations. 
 

2.3. Parallel analyses 

When both computation and storage are performed in large distributed data centers, one can leverage technologies 
such as MapReduce[9, 10] and Dremel[11] for performing analyses and database queries in a much more efficient 
manner. 
 

2.4. Sharing data, tools, and algorithms 

One important and oft-overlooked benefit of the cloud model is how it can facilitate sharing.  Most obviously, cloud 
data storage allows easy sharing with access control lists and monitoring of access for sensitive data.  However, the 
ability to package and distribute tools and analyses on cloud platforms offers a new transparency in tool sharing and 
reproducibility.  Furthermore, it helps overcome the problem of web server tools that are often overloaded or impose 
an undue burden on the host resources.  If one imagines an analysis program running on a cloud front-end (such as 
Google App Engine) where any user can design a job to access a shared or private dataset and be presented with a 
virtual machine to run on his or her account for a common cloud service provider (Amazon EC2, Google Compute 
Engine, Microsoft Azure, or other), this allows much greater scalability for any public service and also reduces the 
cost to an individual researcher of making his or her methods publicly accessible. 

3. Challenges in the cloud 

Cloud computing offers new computational paradigms to deal with data and analyses at scale.  However, simply 
applying the same algorithms and programming paradigms on 1000x the data often yields poor results.  Working at 
scale generates different limiting factors on performance and cost, both algorithmic and logistical (data locality and 
transfer speed/cost, network latency, virtual machine start-up).  Paradigms and tools such as the aforementioned 
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MapReduce (available in an open-source implementation from Hadoop) can yield great benefits but require 
refactoring code and rethinking computational approaches.  We will discuss these and other challenges during the 
workshop session; participants will also share their experiences in overcoming some of these issues.  Cloud 
computing is a classic example of more is different—working on different platforms and at larger scale offers new 
capabilities but also requires new ways of thinking and generates different performance-limiting problems.  
Nevertheless, we believe this paradigm offers the possibility for unprecedented insight into biological function. 
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COMPUTATIONAL CHALLENGES OF MASS PHENOTYPING 
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One of the primary challenges in making sense the dramatic increase in human genotype data 
is finding suitable phenotype information for correlational analyses. While the price of genotyping 
has fallen dramatically and promises to continue to decrease, the cost of generating the phenotypes 
necessary to take advantage of this data has held steady or even increased. Until recently, human 
phenotype data was primarily derived from assays or measurements made in clinical or research 
laboratories. However, laboratory phenotyping is expensive and low-throughput. Recently, a 
variety of promising alternatives have arisen that can provide important new information at greatly 
reduced costs. However, the nature, extent and complexity of the data produced involve significant 
new computational challenges.  

This workshop will begin with an introduction to some of the new modalities, which include: 
automated abstraction of information from electronic medical records, data streams from medical 
instruments (e.g. in an intensive care unit) and implanted devices (e.g. cardiac assist devices), data 
produces by patient social networks, and data from a new generation of inexpensive wearable 
sensors measuring everything from physical activity to blood glucose.  

Most of these new sources of phenotypic data are secondary to some other purpose.  Patient 
records are generated to support clinical care and payment for medical services.  Patient social 
networking sites support patients emotionally and provide peer counseling. Implantable medical 
devices produce data streams that meet manufacturers’ or caregiver requirements. Wearable 
sensors satisfy personal curiosity or monitor disease progress. Each of these also produces 
valuable information for genotype correlations.   

We will focus on defining the computational challenges arise in the collection, storage, 
processing, analysis and, especially, in the useful integration of these many new sources of 
phenotype data into derivatives that facilitate scientifically or medically valuable correlations with 
genotype.  Computational challenges arise due to the diverse nature of the types of data that 
characterize human phenotypes, the fact that most phenotyping is a secondary use of data 
produced for other purposes, and the need to integrate, abstract and summarize data in ways that 
are likely to show correlations with genotype.  There are also bioethical challenges in data sharing, 
anonymization, openness / privacy, consent, and related topics where computational methods 
might help address other concerns. 

The new sources of phenotypic information produce data at radically different time scales and 
granularities.  Modern medical instruments can produce data streams at 50Hz or greater sampling 
frequencies for days at a time.   Patient social networking users typically update their entries every 
few days, but can be maintained for many years.   Effectively integrating information that is 
produced at such different resolutions and durations is a difficult task.  Sensor fusion approaches 
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from other domains may be relevant, although some problems (and some solutions) may be 
specific to the biomedical domain.  Similarly, signal processing approaches that summarize high 
frequency data into scalar or categorical values may prove of value in this application. 

Many of the new sources of phenotypic information produce unstructured or semi-structured 
data, such as physician notes in electronic medical records, or postings to patient social 
networking sites.   Biomedical natural language processing (NLP) techniques have shown some 
value in systematizing and normalizing this kind of textual information, but most research in this 
area has been for clinical decision support, information retrieval, or information extraction. 
Performance of NLP tools is too often modest in those applications. Are there aspects of using 
unstructured information to define phenotype that differ from these other applications?  Are there 
differences that can be exploited to improve performance? 

Many interesting precedents for the sort of genetic research that these new sources of 
phenotype data make possible can be found in traditional epidemiology; so can many of the 
challenges.  One particularly pernicious problem in using observational data is the confounding of 
covariates.  For example, many of the patients taking the drug Metformin have elevated blood 
glucose levels; that’s because Metformin is a front-line drug for diabetes, not because taking the 
drug increases blood sugar. People who wear activity monitors are more active than those that do 
not, but just giving everyone an activity monitor is unlikely to increase the level of physical 
activity in the population.  Identifying and normalizing for covariates is a critical task in taking 
advantage of the growth of phenotype data gathered secondary to some other purpose (such as 
patient care or finding social support).  Integration of new data streams with more traditional 
epidemiological data types (such as demographics or survey results) are also an interesting area for 
the development of automated methods. 

A different class of computational problems arises from the complex personal, social and 
bioethical concerns around the collection and use of phenotypic data.  Are there computational 
approaches to anonymization, provenance, de-duplication or other problems in making it possible 
for patients (and normal controls) to share the data they want to with researchers, to protect their 
rights, to give research participants access to important conclusions drawn around them?  Are 
there developments in electronic consenting, cryptography, or computer security that can facilitate 
the flow of useful data to researchers while protecting participants? 

These topics are relatively new to the computational biomedicine community.  The purpose of 
the workshop is to bring together experts in diverse areas to: identify specific driving problems, 
define important research topics, and perhaps to share valuable data sets and other research 
resources.  We hope that the outcome of the workshop is a deeper understanding of the challenges, 
one that will eventually lead to novel computational approaches to addressing these very important 
problems. 
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There has been unprecedented public investment in sequencing human and cancer genomes in the hopes of 
understanding disease [1, 2]. At the same time, large genome-wide association studies have helped 
elucidating the genetic underpinning of common diseases, identifying thousands of putative disease 
relevant loci [7, 8]. Complementary molecular profiling studies have revealed that several of these loci are 
co-associated with individual mRNA levels, suggesting candidate pathways that are putative mediators of 
genetic signals [7]. Coupled with the public investment, there is considerable personal investment in 
genetic profiling, being offered by companies such as 23andMe, deCODEme and others. Although this 
work has led to amazing discoveries, such as the surprising genetic, subclonal diversity within tumor 
populations (e.g., [3-5]), it’s not clear how much how these insights will improve personalization of 
medicine. 
 
In this workshop, we hope to address questions about how much genome sequencing has helped our 
understanding of the causal factors in disease and how much will these data change the way we treat 
disease in the clinic. Are genome clinics even realistic? If not, what other data will we need on individual 
patients before genome-based personalized medicine is possible? 
 
Establishing causal mutations 
Genetic variants cause disease through their impact on cell function. Despite promising recent efforts to 
predict phenotype from genotype in single cells [6], we are still far from being able to connect each 
mutation with its molecular and, ultimately, gross phenotypic consequences in humans. Establishing the 
causal mutation(s) is often a prerequisite to subsequent therapeutic and preventive actions especially for 
disease caused by a rare or somatic variant. So, a major challenge in genome-based medicine is 
distinguishing disease-causing polymorphisms among a large number of candidates, many of which are 
spuriously correlated. 
 
In cancer, the causal mutations are called driver mutations because they contribute to the progression of 
cancer; these variants must be distinguished from passenger mutations that have little effect on cell function 
but appear as a result of greatly increased somatic mutation rates in cancer cells. In our workshop, we have 
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two invited speakers who will present different strategies to solving the problem of identifying driver 
mutations. One approach is to identify those regions that are aberrant more often than expected across 
different tumors of the same type. This approach assumes that driver mutations appear in regions that are 
under positive selection during cancer biogenesis. But limits on the resolution of this analysis make it 
difficult to identify driver regions that are small enough to contain a single gene or single functional 
element. Dr Dana Pe’er will introduce Helios, a new method that incorporates multiple layers of cancer 
profiling data to increase the effective resolution of the analysis, allowing to identifying driver mutations. 
Another approach to find driver mutations is to infer the evolutionary history of subclonal populations of 
cancer cells by genetically profiling multiple sites within primary and metastatic tumors and deconvolving 
the subclonal evolutionary structure from these data.  Dr Sohrab Shah will discuss analysis approaches of 
ovarian tumors that embody this strategy. 
 
Connecting genetic variants to molecular and disease phenotypes 
Even if the causal mutation(s) can be identified, their phenotypic impact often remains unclear, especially if 
they do not directly affect the encoded protein sequence. Fortunately, genomes are being sequenced along 
with their products on the level of RNA or other molecular layers, allowing connections to be made 
between genotype and molecular phenotypes. In some cases, the RNA profile alone can be used to select 
therapy. Dr Lars Steinmetz will discuss efforts to use yeast as a model system for identifying molecular 
signals that suggest targets for therapeutic intervention. Ultimately, as we learn more and more about 
genome function in coding and non-coding regions [9], we should be able to design algorithms that predict 
the functional consequences of individual mutations.  Dr Steven Brenner will discuss the Critical 
Assessment of Genome Interpreation (CAGI) project, a community experiment to objectively assess 
computational methods for predicting the phenotypic impact of genome variation. 
 
Acting on mutations 
Finally, once the causal mutations and their phenotypic consequence are identified, their remains the 
problem of how to design targeted treatment. This remains a significant, unsolved problem but some 
progress has been made in identifying actionable mutations based on known (or assumed) targets of current 
drugs [10]. 
 
Workshop contributions 
The workshop includes invited talks from researchers active in genome-based clinical research. 
 
Dana Pe’er is an Associate Professor in Biology and Systems Biology at Columbia University, New 
York.  She is the director of the laboratory on Computational Systems Biology and is an active researcher 
in both the systems biology and machine learning communities.  Dana pioneered the application of 
Bayesian networks and Bayesian modeling techniques to molecular profiling data. She will discuss new 
computational methodology to integrate multiple cancer genome profiling layers to identify copy number-
based driver mutations. 
               
Sohrab Shah is Assistant Professor in the Dept. of Pathology at the University of British Columbia and a 
research scientist at the BC Cancer Agency. He heads a computational biology laboratory that combines 
deep expertise in genome sequencing and analysis with machine learning methodology development to 
make discoveries in breast and ovarian cancer, including two recent Nature papers. In this talk, he will 
discuss recent approaches to study the variation between spatially and temporally distinct tumor specimens 
in ovarian cancer. Understanding the variation between tumor specimens within individual patients can be 
used to detect driver mutations and the evolution of mutational accumulation. 
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Lars Steinmetz is co-chair of the genome biology unit at the European Molecular Biology Laboratory in 
Heidelberg, which consists of over 100 scientists and 9 research teams. In parallel, Dr. Steinmetz leads a 
focused research team at the Stanford Genome Technology Centre in the USA. Lars is a leading scientists 
at the forefront of genetic and genomics research. His lab pioneered the development and the application of 
high-throughput approaches to functionally profile genetic and molecular systems at a genome-wide scale. 
His lecture will address how observational molecular and genetic profiling information can be used to 
identify causal molecular mediators that confer genetic signals to phenotype. The hypotheses generated by 
computational modeling are systematically validated in a yeast model. 
                                                                                                                                      
Steven E. Brenner is Professor in the Department of Plant and Microbial Biology at the University of 
California, Berkeley with adjunct appointments in Bioengineering and Therapeutic Sciences. He has won 
numerous awards for his research including the prestigious ICSB Overton Prize reflecting his broad, 
seminal contributions to computational biology in diverse areas including alternative splicing, protein 
evolution, critical assessment of bioinformatics methodology, and, most recently, genome-based medicine. 
His presentation will give an overview of recent community efforts to assess genome interpretation. The 
Critical Assessment of Genome Interpreation (CAGI) is a community experiment to objectively assess 
computational methods for predicting the phenotypic impact of genome variation. CAGI has revealed the 
relative strengths of different prediction approaches, showing some that worked consistently well, while 
other classes worked only on special types of problems. Even with the simplest dataset, involving 
nonsynonymous mutations in a human metabolic enzyme, yielded great variability of the result.  Overall, 
CAGI revealed very significant biomedical insights into the implications of genetic variation are embodied 
in current algorithms, but that the ability of generic methods to make clinically important decisions is 
presently limited. 
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