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2016 marks the 21st Pacific Symposium on Biocomputing (PSB)! This is an exciting time for Biocomputing—there
are now a diversity of terms associated with the use of computer science, statistics and informatics to solve problems in
biology and medicine. Most recently, we have seen a rise in the use of the term “biomedical data science.” In the US,
the National Institutes of Health (NIH) has recognized the importance of biomedical data science with the appointment
in 2014 with Phil Bourne as Associate Director for Data Science. Don Lindberg recently stepped down as the Director
of the National Library of Medicine (NLM). The NLM is a long-time supporter of biomedical data science (including
biomedical informatics, clinical informatics, and bioinformatics). We are grateful that NLM regularly has supported
PSB as well. This summer, an NIH working group wrote a vision for the future of NLM that calls for it to be the
“epicenter of data science at NIH.” All these developments are good for the field—which has evolved from a niche
activity among (visionary) investigators to a mission-critical effort in support of biological and medical science. While
some are worried about shifting labels (biocomputing, biomedical informatics, biomedical data science, etc.), the core
challenges to the field remain the same, and the new labels simply reflect the influx of new talent and the need
periodically for some rebranding. We are comfortable with the large umbrella and the legacy of the term “biocomputing.”
There are no plans to rename PSB!

The mission of PSB is to provide a forum for the best emerging science in Biocomputing, providing both formal
and informal mechanisms for scientific communication—with an emphasis on work in the pacific rim. PSB
depends on the community to define emerging areas in biomedical computation. Its sessions are usually conceived
at the previous PSB meeting as people discuss trends and opportunities for new science. The typical program
includes sessions that evolve over two to three years as well as entirely new sessions. This year we revisit new
dimensions of precision medicine (which continues to advance at dazzling speed since the announcement of the US
Precision Medicine Initiative by President Obama at the State of the Union address), and add new sessions on
reproducibility and social media.

In addition to being published by World Scientific and indexed in PubMED, the proceedings from all PSB
meetings are available online at http://psb.stanford.edu/psb-online/. PSB has published more than 800 papers.
These papers are often cited in journal articles and represent early contributions in emerging subfields—many
times before there is an established literature in more traditional journals; for this reason, many papers have garnered
hundreds of citations. The Twitter handle PSB 2016 is @PacSymBiocomp and the hashtag this year will be #psb16.

The efforts of a dedicated group of session organizers have produced an outstanding program, including
introductory tutorials. The sessions of PSB 2016 and their hard- working organizers are as follows:

Discovery of Molecularly Targeted Therapies
Philip R.O. Payne, Kun Huang, Nigam Shah

Innovative Approaches to Combining Genotype, Phenotype, Epigenetic, and Exposure Data for Precision
Diagnostics

Melissa Haendel, Nicole Washington, Maricel Kann

Methods to Enhance the Reproducibility of Precision Medicine
Arjun Manrai, Chirag Patel, Nils Gehlenborg, Nicholas Tatonetti, John loannidis, Isaac Kohane

Precision Medicine: Data and Discovery for Improved Health and Therapy
Bruce Aronow, Steven Brenner, Sean Mooney, Alexander Morgan

Regulatory RNA
Drena Dobbs, Steven Brenner, Robert Jernigan, Alain Laederach, Vasant Honavar, Quaid Morris

Social Media Mining for Public Health Monitoring and Surveillance
Graciela Gonzalez, Matthew Scotch, Karen Smith, John Brownstein, Abeed Sarker, Michael Paul, Azadeh Nikfarjam

vi
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We are also pleased to present five workshops in which investigators with a common interest come together to
exchange results and new ideas in a format that is more informal than the peer-reviewed sessions. For this year, the
workshops and their organizers are:

Computational Approaches to Study Microbes and Microbiomes
Casey Greene, James Foster, Bruce Stanton, Deborah Hogan, Yana Bromberg

Biomedical Applications of Topology and Abstract Algebras
Eric Neumann, Svetlana Lockwood, David Spivak, Bala Krishnamoorthy

Use of Genome Data in Newborns as a Starting Point for Life-Long Precision Medicine
Steven E. Brenner and Sean D. Mooney

Translational Bioinformatics 101
Jessica D. Tenenbaum, Subha Madhavan, Robert Freimuth, Josh Denny, Lewis Frey

Social Media Mining Shared Task Workshop
Graciela Gonzalez, Abeed Sarker, and Azadeh Nikfarjam

We thank our keynote speakers Nancy Cox (Science keynote) and Winter Mason (Ethical, Legal and Social
Implications keynote).

Tiffany Murray has managed the peer review process and assembly of the proceedings since 2003, and also plays
a key role in many other aspects of the meeting. We are grateful for the support of the Institute for Computational
Biology, a collaborative effort of Case Western Reserve University, the Cleveland Clinic Foundation, and
University Hospitals their support of PSB 2016. We also thank the National Institutes of Health, the National
Science Foundation, and the International Society for Computational Biology (ISCB) for travel grant support.
We are particularly grateful to the onsite PSB staff Al Conde, Brant Hansen, Georgia Hansen, BJ Morrison-
McKay, Jackson Miller, Kasey Miller, and Paul Murray for their assistance. We also acknowledge the many
busy researchers who reviewed the submitted manuscripts on a very tight schedule. The partial list following this
preface does not include many who wished to remain anonymous, and of course we apologize to any who may
have been left out by mistake.

We look forward to a great meeting once again. Aloha!

Pacific Symposium on Biocomputing Co-Chairs,
October 15, 2015

Russ B. Altman
Departments of Bioengineering, Genetics & Medicine, Stanford University

A. Keith Dunker
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine

Lawrence Hunter
Department of Pharmacology, University of Colorado Health Sciences Center

Teri E. Klein
Department of Genetics, Stanford University

Marylyn D. Ritchie
Department of Biochemistry and Molecular Biology, Pennsylvania State University
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Finally, we wish to thank the scores of reviewers. PSB aims for every paper in this volume to be reviewed by
three independent referees. Since there is a large volume of submitted papers, paper reviews require a great deal
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1. Introduction

The delivery of personalized healthcare is predicated on the application of the best
available scientific knowledge to the practice of medicine in order to promote health,
improve outcomes and enhance patient safety [1-3]. Unfortunately, current approaches to
basic science research and clinical care are poorly integrated, yielding clinical decision-
making processes that do not take advantage of up-to-date scientific knowledge [2-4].
Basic scientists investigating the biological basis for a given disease may regularly
encounter synergistic effects spanning two or more bio-molecular entities or processes
that can contribute to our understanding of the mechanisms underlying phenomena such
as the etiologic basis of the targeted disease state or potential response to therapeutic
agents [5]. However, systematic approaches to the use of that knowledge in order to
directly inform the selection of targeted molecular therapies for “real world” patients are
extremely limited [1, 3, 6-9]. There are an increasing number of multi-modelling and in-
silico knowledge synthesis techniques that can provide investigators with the tools to
quickly generate hypotheses concerning the relationships between entities found in
heterogeneous collections of scientific data — for example, exploring potential linkages
among genes, phenotypes and molecularly targeted therapeutic agents, thus enabling the
“forward engineering” of treatment strategies based on knowledge generated via basic
science studies [1, 4, 6, 10, 11]. Ultimately, the goal of such methodologies is to
accelerate the identification of actionable research questions that can make direct
contributions to clinical practice. Given increasing concerns over the barriers to the
timely translation of discoveries from the laboratory to the clinic or broader population
settings, such high-throughput hypothesis generation and testing is highly desirable [1, 4,
6, 8, 12]. These needs are particularly critical in numerous disease areas where the
availability of new therapeutic agents is constrained, thus calling for the re-use and
repositioning of existing treatments [13, 14].

In response to the challenges and opportunities enumerated above, there exits an
emerging body of research and development focusing on multi-modeling approaches to
the discovery of molecularly targeted therapies, including experimental paradigms
spanning a spectrum from the identification of molecular targets for drugs, to the
repurposing or repositioning of existing agents that utilize such targets, to the systematic
identification of novel combination therapy regimens that amplify or enhance the
effectiveness of their constituent components. This focus is motivated by recent and
significant advances in the state of systems biology and medicine that have demonstrated
that the ability to generate and reason across complex and scalar models is essential to the
discovery of high-impact biologically and clinically actionable knowledge [1, 4, 12].
Such approaches are designed to overcome the limitations of reductionist approaches to
scientific discovery, replacing decomposition-focused problem-solving with integrative
network-based modeling and analysis techniques [4, 8]. Systems-level analysis of
complex problem domains ultimately enables the study of critical interactions that
influence health and wellness across a scale from molecules to populations, and are not
observable when such systems are broken down into constituent components. The use of
systems-level analysis methodologies is well supported by the foundational theory of
vertical reasoning first proposed by Blois [15]. This theory holds that effective decision-
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making in the biomedical domain is predicated on the vertical integration of multiple,
scalar levels of reasoning. This fundamental premise is the basis for a correlative
framework put forth by Tsafnat and colleagues, which states that the ability to replicate
expert reasoning relative to complex biomedical problems using computational agents
(e.g., in-silico knowledge synthesis) requires the replication of such multi-scalar and
integrative decision-making [16]. In order to achieve such an outcome, Tsafnat posits
that multi-scalar decision-making in an in-silico context requires both: 1) the generation
of component decision-making models at multiple scales; and 2) the similar generation of
interchange layers that define important pair-wise connections between entities situated
in two or more component models, often referred to as vertical linkages [16]. When such
component models and interchange layers are combined in a computationally actionable
format, they yield what can be referred to as a multi-model for a given domain that is able
to satisfy the premises of Blois’ vertical reasoning axiom, and therefore facilitate the
replication of expert performance in a high-throughput manner [16]. Of note, this type of
approach is extremely reliant upon graph-theoretic reasoning and representational
models, using a network paradigm that allows for the application of logical reasoning
operations spanning the entities and relationships that make up a multi-model [8].
Network paradigms have been regularly shown to be the ideal representational model for
naturally occurring systems, such as the ‘scale-free’ networks encountered in biological
and clinical phenomena [8]. At the most basic level, network-based multi-modeling
across scales presents an elegant and computationally tractable approach to understanding
and evaluating complex biological and clinical systems in order to discover the
knowledge incumbent to such constructs. This type of approach benefits from a robust
set of foundational theories and frameworks that can inform and shape the application of
multi-modeling techniques to a variety of knowledge discovery use cases. As such, there
is a growing body of evidence concerning the application of network-based approaches to
multi-modeling with an emphasis on therapeutic agent discovery, re-positioning and
molecular targeting. Examples of such evidence include reports and perspectives
published by Hood and Perlmutter [1], Butcher and colleagues [12], and Lussier and
Chen [13].

2. Overview of Session Contributions

The utility and impact of multi-modeling approaches to integrative biological and
clinical analyses, including hypothesis discovery operations such as those related to the
identification of molecularly targeted therapies as noted above, have been explored in a
number of instances by the biology, computer science and translational bioinformatics
communities. At a high level, the exemplary efforts made by authors contributing to this
session of PSB 2016 provide a broad cross-section of such novel methods, and focus on:
1) the development of factorization-based models to traverse multiple large-scale
database comprising types of drug-disease and drug-target relationships (Zitnik et al and
Regenbogen et al); 2) network-theoretic approaches in a variety of applications
including: linking environmental risk factors for disease via systematic analysis of
biological pathways (Darabos et al), the prioritization of gene mutations causing drug
resistance (Verkhivker), and the facilitation of viable community detection (Yu et al);
and 3) the incorporation of prior knowledge into in silico methods in order to optimize
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large-scale regression-based association studies (Verma et al) and to discover
dependencies between genes differ across disease conditions (Speyer et al). Brief
synopses of these reports are provided below:

2.1 Factorization-based Models for Traversing Databases

Zitnik et al describe a novel collective pairwise classification (COPACAR) model for
analysis of multi-relational data, including clinical manifestations of diseases, molecular
interactions of diseases, drug-drug and drug-target interactions and drug-drug similarities.
Their model combines factorization models that are optimized for large relational data
with classification pairwise ranking loss for classification. Importantly, their model
incorporates prior knowledge that is also scalable to highly complex, large-scale data.
The authors address the issue of ranking in their predictions, where relationship are
ranked according to their relevance, which is ideal for prioritizing large-scale, diverse
relationships. They distinguish their approach to other widely recognized collective
relational learning approaches optimized to minimize error rate are not well-suited to
rank high-confidence relationships integral to applications of precision medicine and drug
repurposing. The COPACAR method optimizes a ranking metric using pairwise
classification in order to estimate latent factors of entities, which are use to parameterize
the model’s predictions about pairwise entity relationships. Another particularly
significant contribution is the implementation of an application the authors term
“category-jumping,” which permits the generation of novel hypotheses relating
heterogeneous biomedical entities that may be unrecognized by other models that rely on
data of a single relation type. The authors demonstrated a widely observed phenomenon
that shared clinical manifestations of disease, in particular high-level symptom
characteristics, indicate shared molecular interactions (e.g. genetic associations and
protein interactions). Finally, hierarchical clustering of the disease matrix demonstrated
that diseases with sparse molecular information could be grouped to disease with
molecular-rich relations based on clinical manifestations, thus resulting in novel
hypotheses for molecular basis of these diseases.

Regenbogen et al address an important problem of extrapolating knowledge across
diverse, large-scale sources for small-scale, high-resolution problems in personalized
medicine, including individual patient drug prediction and drug repositioning. The
authors employed a technique called collaborative filtering (CF), which is extensively
used in online recommendation systems. Specifically, non-negative matrix factorization
(NMF) was used to analyze knowledge of connections, rather than entity features, in
order predict interactions among chemicals, genes, and diseases contained within the
Comparative Toxicogenomics Database (CTD). Although NMF has been widely used in
the analysis of genomics data and for predicting protein-protein and drug-target
interactions, a particular novel contribution of this work is the authors’ integration across
multiple entity types. One benefit of this framework is that it can be easily extended to
new entity classes without extensive pre-processing or abstraction, unlike other methods
highly specific to entity attributes; however, it is limited to predict interactions among
entities without details regarding how entities interact (e.g. directionality, causality, etc.).
Their method was able to accurately predict protein-protein interactions in an
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independent database and successfully predict CTD entity relationships between
successive versions of the database. Furthermore, integrating data across these two
independent databases increased the performance of the CF method. Importantly and
similar to Zitnik et al, the authors confirmed a high degree of precision in their results in
addition to a high sensitivity, which is crucial to precision medicine and drug repurposing
initiatives that focus on pursuing a small number of hypotheses relative to the total
interaction space.

2.2 Network-theoretic Analyses

Darabos et al presents a methodology for determining the effect of environmental factors
in complex diseases. This is an important problem to address since it is often difficult to
distinguish environmental causality in disease development. The authors utilize a
tripartite network linking diseases, environmental chemicals and biological pathways in
order to identify potential biological effects of environmental chemicals relating to
disease. This tripartite network allows for the connecting environmental factors with
disease through shared biological processes. The utility of this model is demonstrated in
one instance through the linkage of arsenic to multiple diseases through its role in
disrupting signal transduction pathways. Overall, this work supports the use of multi-
modeling network approaches to elucidate the effects of environmental exposure related
to disease states. The authors also show how linking disparate datasets together can help
answer large-scale questions through creation of a hypothesis generating system that can
help fuel future research areas such as population health and epigenetics.

Verkhivker investigates mechanisms of resistance to lapatinib caused by EGFR
mutations. Using genetic and structural data, they are able to prioritize mutations by their
ability to affect a residue interaction network, computed using molecular dynamics
simulations. The centrality of the residue in the network predicts its ability to disturb the
effect of EGFR inhibition. Their results provide a framework for understanding the
spectrum of resistance causing mutations, with the added benefit of implying causality of
the associated mutations. They suggest that a wide range of mutations within the EGFR
protein could cause resistance to lapatinib therapy. Their simulations also recover known
resistance mutations, further validating the success of their method.

Yu et al propose innovative extensions on the Markov clustering methodology for
community detection in networks. While viable community detection has implications in
a variety of fields, the authors propose an integrative methodology that is especially apt
for garnering a holistic picture in biological networks. They propose two subsequent
extensions to the well-known Markov Clustering and regularized Markov Clustering
algorithms in order to, firstly, focus on information or influence flow in a non-exclusive
manner (inverse regularized Markov Clustering — irMCL) and subsequently integrating
network structure with node attributes of biological significance such as phenotype, gene
expression or demographic information (attribute inverse regularized Markov Clustering-
airMCL). The authors have ideated a method which allows for node attributes to be
incorporated in the community detection paradigm, utilizing and weighing attributes with
respect to their effect on inter and intra community information flow. They have modeled
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the connections between node attributes and network structure in way that is malleable
with statistical classification approaches. They prove the validity and robustness of this
method by employing it on a simulated as well as real world dataset, utilizing the
requisite statistical models and measures for rigor. Their results showcase that the
methodology was immune to weak attributes whereas attribute similarity that predicted
the structure was highlighted. This eliminates the need for a user-based selection of
attribute importance. In the real world Breast Cancer dataset, the algorithm was able to
isolate a variety of pathways, including, but not limited to the cell cycle pathway, signal
transduction pathway and ribosome biogenesis. Also, the modules isolated showed
significant association with time to survival. The authors have aimed to examine and
stratify attribute impact by its connection to network structure. This is a novel ideology
that promotes multi-modal data integration without succumbing to formation of overly
complex models. Finally, with the inclusion and use of classification methodologies in
community detection, the authors plan to utilize the inherent classification properties to
better select models and features for future work.

2.3 Incorporation of Prior Knowledge into in silico Methods

Verma et al describe a system of discovering associations utilizing a novel method called
Phenome-wide interaction study (PheWIS), which builds on the authors’ previous work
with phenome-wide association studies (PheWAS). This work seeks to address the
problem of discovering associations between single nucleotide polymorphisms (SNPs)
and phenotypes on a large scale. The authors approach this problem of large-scale
association assessment by modeling the variance of the SNPs. They identified genetic
variants that are associated with multiple phenotypes by prioritizing previously published
results from both genome-wide and phenome-wide association studies using the AIDS
Clinical Trials Group (ACTG) and the Roadmap Epigenome project. They discovered
that by filtering out variance from low functional regions of the genome they could
conduct a pair-wise search using linear regression analysis to identify associations. With
their system the authors were able to identify 50,798 statistically significant associations
related to 26 different phenotypes. This work helps to demonstrate not only the
importance of modeling genotypic and phenotypic information together but also shows
the strength of utilizing previously published information to help inform novel hypothesis
driven systems.

Speyer et al investigate the effect of injecting biological knowledge into a previously
developed method, Evaluation of Differential Dependency (EDDY). Their method seeks
to answer the question, how do dependencies between genes differ across conditions?
They apply their method to the TCGA glioblastoma multiforme data, to find differential
dependencies between proneural and nonproneural, and mesenchymal and non-
mesenchymal tumors. The result is a list of gene sets whose dependencies most differ
between two cancer subgroups. Specifically, they find that the mesenchymal subset is
defined by changes to metabolic processes and the proneural subset is defined by changes
to AKT-ERK signaling. These pathways are strongly implicated in cancer, which shows
the power of this method to find cancer-related results. They compare their results to
knowledge-fused differential dependency network (KDDN) and find that the EDDY
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method appears to be more sensitive to differential dependencies, although there is
substantial overlap for a subset of pathways.

3. Discussion and Conclusions

The goal of PSB 2016 is to demonstrate advances relative to “work in databases,
algorithms, interfaces, natural language processing, modeling and other computational
methods, as applied to biological problems, with emphasis on applications in data-rich
areas of molecular biology.” Further “a major goal of PSB is to create productive
interaction among the rather different research cultures of computer science and
biology.” The body of work represented by this session, focusing on the development
and application of methods for the discovery of molecularly targeted therapies, is
emblematic of the vigorous and highly productive exchange of knowledge and ideas
surrounding the aforementioned foci.  Further, the work summarized herein serves to
emphasize:

1) The state-of-the-art in terms of in-silico knowledge synthesis methods that can be
used to identify, aggregate and instantiate component-level models and that can be
used to construct application-specific multi-models for therapeutic targeting (e.g.,
having a specified disease or biological context);

2) Ongoing challenges and opportunities surrounding the creation of “interchange
layers” and the execution of “vertical reasoning” tasks across and between scalar
multi-models in order to generate hypotheses linking synergistic bio-molecular
entities or processes of interest and correlative molecularly targeted therapeutic
agents; and

3) Exemplary instances where the preceding theories and methods have been applied to
create an “end to end solution” in which multi-modeling approaches have been used
to generate scalar multi-models, identify hypotheses concerning molecularly targeted
therapeutics informed by such multi-models, and ultimately evaluate those hypotheses
using some combination of in-silico, laboratory, animal or human study paradigms.

As such, these report amplify the highly promising future for the molecular targeting of
therapeutics in a variety of disease states, all in support of what are ultimately envisioned
as precision medicine paradigms with the ensuing benefits relative to the quality, safety,
outcomes, and costs of such data-driven and adaptive healthcare.
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Complex diseases are the result of intricate interactions between genetic, epigenetic and environ-
mental factors. In previous studies, we used epidemiological and genetic data linking environmental
exposure or genetic variants to phenotypic disease to construct Human Phenotype Networks and
separately analyze the effects of both environment and genetic factors on disease interactions. To
better capture the intricacies of the interactions between environmental exposure and the biological
pathways in complex disorders, we integrate both aspects into a single “tripartite” network. Despite
extensive research, the mechanisms by which chemical agents disrupt biological pathways are still
poorly understood. In this study, we use our integrated network model to identify specific biolog-
ical pathway candidates possibly disrupted by environmental agents. We conjecture that a higher
number of co-occurrences between an environmental substance and biological pathway pair can be
associated with a higher likelihood that the substance is involved in disrupting that pathway. We
validate our model by demonstrating its ability to detect known arsenic and signal transduction
pathway interactions and speculate on candidate cell-cell junction organization pathways disrupted
by cadmium. The validation was supported by distinct publications of cell biology and genetic studies
that associated environmental exposure to pathway disruption. The integrated network approach is a
novel method for detecting the biological effects of environmental exposures. A better understanding
of the molecular processes associated with specific environmental exposures will help in developing
targeted molecular therapies for patients who have been exposed to the toxicity of environmental
chemicals.

Keywords: Exposure; Complex Diseases; Chemical Agents; Biological Pathways; Human Phenotype
Network.

1. Introduction

Complex diseases are believed to be the result of non-linear genetic, epigenetic and envi-
ronmental interactions. Epistatic and pleiotropic genetic interactions, though ubiquitous in
nature, only explain a fraction of disease occurrences.! Both acute and prolonged exposure
to environmental factors such as chemical agents present in water, soil, or air also contribute
to human disease.? GWAS partially reveal causal genetic interactions in complex diseases.
Well-established studies of specific chemical agents link tobacco smoke to cardiovascular and
respiratory diseases, and asbestos dust to several types of cancer. Integrating data from multi-
ple sources helps to gain a better understanding of the way genetic risk factors, environmental
exposures, as well as lifestyle choices all contribute to causing complex diseases.

Human phenotypes, including physical traits, diseases and behaviors, have been success-
fully linked through their shared biology to form networks of diseases. These networks and
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the interactions they reveal have been thoroughly studied using mathematical and statisti-
cal analyses.?* Indeed, networks offer a comprehensive array of analytical tools while at the
same time providing an intuitive representation of interactions within otherwise inextricably
complex data.’ Additionally, the concept of ezposome® encompasses all human environmental
exposures and complements the genome in predicting complex disease.

At a systems biology level, the interaction between genetic predisposition and environ-
mental factors is poorly understood. The discovery of novel personalized molecular drugs that
target specific pathways rely on the development of methods to study the intricate inter-
actions between our environment and the biological pathways that govern human complex
disease. The focus of this work is to provide a novel tool to identify candidates for potential
environmental chemical agent and biological pathway interactions.

The sheer combinatorial complexity of chemical agents and pathways drives us to explore
new approaches that prioritize the interaction of potential interest. Therefore, we propose to
build an extension of the Human Phenotype Network (HPN)7 based on biological pathway
interactions, and overlay it with the HPN based on environmental exposure data.® The re-
sulting model is a tripartite network constituted of three different types of vertices: human
phenotypes, biological pathways, and environmental chemical agents. By projecting the net-
work onto the space of human phenotypical traits, we are able to identify disorders that share
only biological pathways, those that share environmental factors, and those that interact both
at the environmental and the genetic level. We speculate that by integrating pathways and
environmental exposure data in a single network, we are able to generate plausible hypotheses
about the disruptive nature of chemical agents on certain biological pathways.

We analyze the resulting integrated networks both in quantitative and qualitative terms.
We show how focusing on the double-edges of disorders that share both environmental and
genetic origins can help identify potential candidates for environmental chemical agent and
biological pathway interactions.

2. Methods

The expansion of systems biology has given rise to a trend towards studying disease from a
global perspective, reaching beyond the silos of traditional medicine. Graphs, or network, are
commonly used to study the interactions between phenotype and genotype. In the Human
Disease Network (HDN),? or its extension, the Human Phenotype Network,” nodes represent-
ing diseases and phenotypes are linked by edges that represent various connections between
disorders. These connections can be established by identifying shared causal genes,® genetic
variants (SNPs),? linkage-disequilibrium SNP clusters,” biological pathways,* or clinical symp-
toms.!? The underlying connections of these networks contribute to the understanding of the
molecular basis of disorders, which in turn lead to a better understanding of human disease.

In previous works, we presented the concept of Human Phenotype Networks (HPNs),
which represent the interactions between human traits and diseases based on their shared
biological background, such as SNPs, genes, or pathways.*” This approach has proven useful
in analyzing epistatic and pleiotropic effects at the systems level.!! Additionally, we have
proposed an extension to the HPN based on shared environmental chemical agents.® When
considered separately, both environmental and genetic HPNs are bipartite networks® composed

10
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of two distinct sets of vertices. Edges can only connect members of the opposite set. Bipartite
networks can be projected in the space of either vertex set. Projecting the network increases
the readability and interpretability of the data represented, but results in information loss.
Figure 1 shows a schematic representation of a bipartite network in the center panel (b) and
the resulting projection in either the space of circle vertices (a) and the space of rectangle
vertices (c). In the case of the genetic HPN presented below, the vertex sets are composed of
diseases and biological pathways. In the environmental HPN, the vertex sets are composed of
diseases and chemical substances.
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Fig. 1. Schematic representation of a Bipartite Network (b) and its projection in the space of either vertex
set (a) and (c).

Because both HPNs share the disease vertex set, we can combine the two HPNs into a
single “tripartite” network composed of three distinct vertex sets: traits, biological pathways,
and chemical agents. Figure 2 represents a tripartite network (a) and its projection onto the
rectangle vertex set (b). In tripartite networks, the edges are also divided into two categories.
In our example, the blue edges only connect circle and rectangle vertices, whereas the red
edges connect rectangles to diamonds. The resulting projection network has vertices linked
by blue edges, red edges or both red and blue edges. Naturally, a tripartite network can be
projected onto the space of either vertex set.

(b)

Fig. 2. Schematic representation of a Tripartite Network (a) and its projection in the space of the “rectangle”
vertex set (b).

In the following sections, we discuss the two bipartite HPNs and the third novel tripartite
HPN that combines exposure and genetic data.

11
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2.1. Human Phenotype Network based on Exposure Data

In our previous study, we proposed a novel approach to bridging the gap between envi-
ronmental exposure data and information on the diseases they may cause.® To the best
of our knowledge, the exposure-to-disease data has not been aggregated in publicly ac-
cessible sources. To establish possible causal effects at a global level, we integrated data
from the CDC’s Fourth National Report on Human Exposure to Environmental Chemicals
(http://www.cdc.gov/exposurereport/), including its subsequent updated tables, and the
data of the NHGRI GWAS Catalog, accessed on 05/06/2014. Through a meticulous PubMed
and Google Scholar literature survey, we compile a list of the diseases and traits that have been
associated with any 60 environmental chemicals of the CDC’s report. The CDC has identified
these chemical agents as potentially harmful to human health and categorized them into 11
groups such as tobacco smoke, heavy metals, pesticides, etc. Figure 8 (X-axis) recapitulates all
the chemical agents and their group in square brackets. Causal association between a chemical
substance and a disease is based on compelling evidence found in the literature and confirmed
in multiple studies, limiting uncertain associations to a minimum. We subsequently use the
phenotype list from the GWAS catalog and the International Classification of Diseases Ninth
Revision (ICD-9) codes to classify all traits and eliminate redundancies. Our survey invento-
ries 548 well-established causal effects between these 60 substances and 151 human phenotypic
traits and disorders. We note, however, that the data collected might contain a bias towards
phenotypes and exposures that are more heavily studied.
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Fig. 3. Phenotype-Substances Network. (a) The Bipartite Network. Top row, red vertices: environmental
chemical substances. Bottom row, blue vertices: human phenotypes and diseases. Vertex size is proportional
to the degree. (b) Projections onto the Phenotype Space. Nodes are colored according to their (majority)
substance group according to the legend. Node sizes are proportional to the number of substances associated.
Edge weights and width represent the number of shared substances.

The data aggregated in the survey is arranged in a bipartite network of diseases and
environmental chemical compounds linked by “probable causality” edges. The resulting graph
is depicted in Figure 3(a). This bipartite network shows the 548 relationships between the
60 chemical substances (top row, red vertices) and the 151 human disorders (bottom row,
light blue vertices). The node sizes are proportional to vertex degree, i.e. the number of
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connections to the opposite set of vertices. The resulting projection onto the disease space
is presented in Figure 3(b), where edges display common chemical factors associated with
disorders. Furthermore, each node in the network is annotated with the substance classification
group(s) to which it belongs. In the case of chemicals, the annotation is straightforward, as
each substance belongs to exactly one class. For diseases, we identify all groups that contain at
least one causal substance. A detailed description of the environmental HPN and our findings
is available in our previous study.® The projection onto the chemical substance space is not
shown in this study to save space, but it can be found in our previous study.® Nodes are
color coded according to their (majority) substance class. The phenotype network (b) has 151
nodes and is densely connected (average degree of 40+), where each edge signifies that the
two diseases they connect are associated with one or more common chemical agents.

2.2. Human Phenotype Network based on Biological Pathways

In their seminal work, Goh et al.,? explored the Human Disease Network, limiting their analysis
to the genes shared by different diseases. Another study by Li et al.? traced the genetic variants
connecting disease traits. In 2009, Silpa Suthram et al.'? analyzed diseases by their related
messenger RNA in combination with the human protein interaction network. They found
significant genetic similarities between certain diseases, some of which shared drug treatments.
Also in 2009, Barrenas et al.'® further studied the genetic architecture of complex diseases by
doing a GWAS, and found that complex disease genes contribute less and are less represented
than the single-gene diseases in the human interactome. In 2014, Zhou et al.'* have presented
yet another way of finding overlap in disease commonalities, that is, they link disorders that
share symptoms.

In the present work, we expand on the biological SNP-based HPN presented first in our
previous studies.!™!'5 We update the data to the most recent versions of the GWAS catalog
(05/15/2015), NIH database of Genotypes and Phenotypes (dbGaP), and the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG).'® We integrate the 1,252 phenotype information from
both sources, the over 37,000 SNPs annotation, and 16,000 gene/loci association, as well as
the biological pathways data to build the present pathway-based HPN. By aggregating these
associations, we were able to link phenotypes with shared pathways, i.e. with genes involved
in the same pathways. Furthermore, we have used the International Classification of Diseases
Ninth Revision (ICD-9) codes to classify all traits and identify redundancies. The HPN en-
compasses all phenotypes listed in the GWAS catalog and dbGaP, provided that they are
connected to at least one other trait. It is comprised of 986 phenotypic traits, 1,424 biological
pathways, and over 260,000 edges, with an average connectivity of 500+.

2.3. Combining the Human Phenotype Networks: Tripartite and Projection

The main focus of this work is to help identify potential candidates for environmental chemical
agent and biological pathway interactions. These interactions can in turn guide the develop-
ment of novel targeted and personalized therapies. To help tease out potentially relevant
pathway-environment interactions out of all the possible combinations, we build the tripartite
HPN by combining the pathway-based HPN and the environmental HPN into one graph. The
resulting model is comprised of 2,529 vertices of three different types: 1,045 diseases (142 over-
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lapping between the two HPNs), 1,424 biological pathways, and 60 environmental chemical
substances. Moreover, the tripartite HPN includes two different types of interaction edges:
about 80,000 disease-to-pathway and over 1,500 disease-to-substance links.

Because of the sheer size, density and complexity of the tripartite network, we choose to
present only its projection onto the disease space in Figure 4. Red edges represent biological
pathway interactions, green edges represent environmental chemical agent interactions, and
blue edges are double edges that share both biological and environmental interactions.

Fig. 4. Combined Human Phenotype Network based on Biological Pathways and Chemical Substances Expo-
sure: Projection of the substance-phenotype-pathway tripartite network onto the phenotype space. Red edges
represent pathway interactions only. Green edges show identified substance interactions. Finally, blue edges
show pairs of traits that share both biological pathways and chemical substance exposure. The vertex and
label size are proportional to its degree (i.e. the number of impinging edges).

To further facilitate the interpretation of the results and focus our analysis on shared
genetic and environmental candidates, we filter the combined HPN to retain only the traits
and diseases that have at least one edge of each kind impinging on them. In other words, we
extract the subnetwork made of only blue edges and the vertices that are connected by those
blue edges. The resulting HPN is presented in Section 3 below.

14



Pacific Symposium on Biocomputing 2016

3. Results

In this section, we present the results of the quantitative analysis of the projected tripartite
HPN. Quantitative network and graph analysis relies on strict statistical and mathematical
tools and can be applied to networks of arbitrary size and complexity.® In this study, we
focus on a subnetwork that shows the shared interactions between traits associated with both
environmental and genetic factors. Therefore, we reduce the size and the complexity of the
projected HPN to a manageable number of diseases and interactions in order to allow both
quantitative, qualitative, and visual interpretation of the results. The final HPN integrating
only vertices that share both genetic and environmental background, pictured in Figure 5,
is composed of 74 phenotypes and 1,000 edges. The node (and label) size is proportional to
the total number of associated environmental chemical agents; the color hue represents the
number of biological pathways associated (green for fewer and red for more). The edge weight
(i.e. its width) is proportional to the number of pathways shared between the disease endpoints
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Further study of the individual edges and their distribution reveals that the vast majority
of disease pairs are connected by heavy metals (59%), pesticides (20%) or organic compounds
(7%). Mercury is potentially a common cause for almost 300 pairs of disorders, closely followed
by lead, cadmium, DDT and arsenic. Figure 6 provides the detailed distribution of each
substance of amongst the edges of the HPN. In the inset of Figure 6, the pie chart shows the
same distribution by chemical agents classification groups, no by individual compound.
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Fig. 6. Distribution of the Chemical Agents among the Edges within the Combined Network. The number
of edges connecting two traits for each substance. Inset: the distribution of the substance classification groups
among all edges in the combined network.

A similar study of the biological pathway edges reveals that the signal transduction, the
immune system and metabolism pathways are the most represented. This comes as no surprise
because these are “generic” pathways involving hundreds or even thousands of genes, there-
fore statistically highly probable to be represented more within the network. The complete
breakdown of the 25 most represented biological pathways is shown in Figure 7.

Finally, we studied the distribution of biological pathway and chemical agent interactions
within the projected network. The heatmap in Figure 8 shows the frequency of co-occurrence
(double edge) for chemical substances and pathways between pairs of diseases.

In Figure 8, the biological pathways are approximately sorted by ascending frequency
along the Y-axis. The chemical substances are arranged in groups along the X-axis. Heavy
metals, in particular lead, cadmium, arsenic and mercury, and a pesticide (DDT) appear to
interact with the most biological pathways. To assess the significance of these co-occurrences,
we test the statistical probability of each existing pair in a null-model by running a 10,000-
fold permutation test on all the edges of the tripartite network. For lack of space, we cannot
present these data in detail. The results of the permutation test show that the most represented
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Fig. 7. Distribution of the biological pathways amongst the edges within the combined network. The number
of edges connecting two traits for each the top 50 most represented pathways.

chemical agent-pathway pairs of have less than a 3% probability of occurring by chance.

4. Qualitative Observations, Biomedical Implications & Discussion

In this study, we integrated genetic and environmental exposure data in a tripartite network
to identify interactions between environmental agents and biological pathways. Although the
effects of environmental agents on disease have been studied extensively, the mechanisms of
exposure are still poorly understood. Using the network approach, we aim to identify specific
biological pathways disrupted by environmental agents. Identifying these pathways would not
only help to establish more effective, more precise treatment therapies for patients who have
been exposed, but can also provide insight to the mechanisms behind complex diseases.

To identify potential exposure-pathway interactions, we analyze overlapping edges in the
final integrated HPN. Each edge distinguishes two phenotypes that are associated with the
same environmental and genetic risk factors. We conjecture that the number of co-occurrences
between pairs of environmental substances and biological pathways is correlated with a higher
likelihood of an interaction between substance and pathway involved. Our permutation test
shows that due to the combinatorial complexity of our HPN, the statistical probability of
having our identified pathway-environment interaction occur by chance is generally below 3%.

The integrated network approach is a novel method for detecting the biological effects of
environmental exposures. A better understanding of the molecular processes associated with
specific environmental exposures will help in developing targeted molecular therapies for pa-
tients who have been exposed to the toxicity of environmental chemicals. We qualitatively
analyze the HPN and propose possible biomedical applications. To establish the validity of
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Pathway-Substance Interaction Heatmap:

the HPN, we assess its ability to detect known environmental substance-pathway interactions.
To construct the tripartite network, we used epidemiological data that associated environ-
mental exposure and genetic data to phenotypic disease. In order to validate our network
and generate new hypotheses, we used distinct publications of cell biology and genetic studies
that associate environmental exposure to pathway disruption. There is no overlap between
the publications we used to build the network and the publications we used to validate it and
generate hypotheses.
Arsenic and signal transduction:

Arsenic is a heavy metal toxin found naturally in the
soil, minerals, and groundwater. Because of the many health risks it poses for humans, arsenic

and its associated molecular mechanisms have been investigated extensively. By now, it is

well known that arsenic severely disrupts signal transduction pathways.!”'® Thus, we expect
to see arsenic exposure overlap with signal transduction pathways at a high frequency in the

HPN. Indeed, arsenic occurred most frequently in conjunction with “signaling by GPCR”
and “GPCR downstream signaling”, with a combined 225 co-occurrences and an approximate
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1.4% chance co-occurrence, and less than 2.3% chance respectively. Arsenic exposure also had
a high number of co-occurrences with more specific signaling transduction pathways such as T-
cell receptor signaling (28 co-occurrences, 1% probability)!® and B-cell receptor signaling (36
co-occurrences, 1.2% probability),?° both of which have been supported by scientific literature.

4.1. Generating hypotheses for substance-pathway interactions

Beyond the HPN’s capability of replicating recognized environment-pathway interactions, we
can further use it to search for undiscovered exposure-pathway interactions and identify pos-
sible molecular targets candidates for environmental exposure treatments. We generate hy-
potheses by first looking for high frequency co-occurrences that are less established in the
literature. Pathways that are highly incident on a particular disease are evaluated to establish
a possible link between the exposure, biological pathway, and disease using biological knowl-
edge and scientific literature. Using this approach, our integrated HPN can narrow in on
plausible exposure-pathway interactions that are worth studying further in order to elucidate
the molecular mechanisms involved in environmental toxicity.

Cadmium and cell-cell junction organization: Occupational studies from the 1980s and
1990s suggest that kidney stones, a highly recurrent and hard calcium deposit in the kidneys,
are more common among workers exposed to cadmium.?23 A subsequent study analyzed
NHANES data from 1999-2006 and concluded that low levels of exposure to cadmium in-
crease the risk of chronic kidney disease.?* There has been little elucidation of how cadmium
contributes to kidney disease, however. We use the combined HPN to generate a hypothesis
about which biological pathways are disrupted by cadmium exposure and how they might
contribute to kidney disease. We observe on the network that cell-cell junction organization
pathway is highly incident on the kidney stones phenotype node. We also observe the cell-cell
junction organization pathway occurs most often with cadmium exposure (21 co-occurrences,
0.9% probability). From this, we can hypothesize that cadmium increases risk of kidney stones
by obstructing tight junction functionality. Recent studies have provided preliminary support
for this hypothesis. A recent study provided evidence that claudin-14, a gene associated with
tight junction function, is responsible for a genetic predisposition to kidney stones.?> The
study suggested that claudin-14 mutations blocks calcium from entering tight junctions of the
kidneys and causes excess calcium to go into urine, leading to kidney stones. Additionally, a
literature survey indicates preliminary evidence that cadmium affects the distribution of tight
junction proteins.?® These studies suggest that both claudin-14 and cadmium confer risk for
developing kidney stones. Using the combined HPN, we identified cell-cell junction pathway
disruption as one way cadmium exposure might confer this risk.

Most complex diseases are synergistic outcomes of genetic and environmental effects. In
order to develop effective therapies, we must understand the molecular processes modulated by
both genetic variants and environmental exposures. The combined HPN provides a method
to detect pathways that are disrupted by environmental exposures and proposes potential
molecular targets for therapies.
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Biomedicine produces copious information it cannot fully exploit. Specifically, there is considerable need to
integrate knowledge from disparate studies to discover connections across domains. Here, we used a
Collaborative Filtering approach, inspired by online recommendation algorithms, in which non-negative matrix
factorization (NMF) predicts interactions among chemicals, genes, and diseases only from pairwise
information about their interactions. Our approach, applied to matrices derived from the Comparative
Toxicogenomics Database, successfully recovered Chemical-Disease, Chemical-Gene, and Disease-Gene
networks in 10-fold cross-validation experiments. Additionally, we could predict each of these interaction
matrices from the other two. Integrating all three CTD interaction matrices with NMF led to good predictions
of STRING, an independent, external network of protein-protein interactions. Finally, this approach could
integrate the CTD and STRING interaction data to improve Chemical-Gene cross-validation performance
significantly, and, in a time-stamped study, it predicted information added to CTD after a given date, using
only data prior to that date. We conclude that collaborative filtering can integrate information across multiple
types of biological entities, and that as a first step towards precision medicine it can compute drug repurposing
hypotheses.
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1. Introduction

At the same time as advances in biomedical research have enabled humanity’s knowledge to grow
far beyond the limits of any one person, that knowledge is being applied on ever-smaller scales.
Specialized therapies are benefiting smaller subsets of the population, using all available knowledge
to design a therapy for a specific case or to repurpose an existing drug for a novel use.

Online databases that compile this knowledge have become invaluable resources for researchers.
Massive interaction networks can be powerful sources for hypothesizing novel relationships
between biological entities. However, most of these networks are either focused on one particular
type of entity (STRING' — genes/proteins) or interaction (DrugBank”>, ChEMBL’ — drug-gene
interactions). A full representation of biomedical knowledge would integrate the interactions among
these physical entities and associate them with more abstract entities, such as pathways (KEGG®,
REACTOME™®) and diseases (CTD).

Several approaches to data integration have been explored. One approach is to predict how two
classes of entity interact (e.g., drugs and targets) by integrating multiple types of feature data about
the entities® '°, or taking this a step farther, propagating this information to a third entity type''.
These methods utilize information about the entities themselves, so they are specific to certain
classes of entity. We will show an alternative approach, which can predict interactions among
chemicals, genes, and diseases utilizing only information about how they connect to one another,
and which benefits from the integration of disparate forms of information.

Collaborative filtering (CF) is a computational approach used in online recommendation
systems, in which large-scale knowledge of how entities interact is used to predict likely
connections'*"”. Non-negative matrix factorization (NMF) is a popular tool for CF that compresses
a matrix into two smaller factors whose product approximates the original'*'>. NMF has long been
used in biomedical science for clustering and classifying microarray data'®, but recent works have
used NMF, or related algorithms, in CF strategies to predict drug-target'”'® or protein-protein'®
interactions. We hypothesized that this basic approach could be pushed farther, to incorporate more
than two types of biological entity, improving prediction of novel interactions among them.

Testing this hypothesis required multiple interaction networks, comprising connections between
at least three entity types, so we turned to the Comparative Toxicogenomics Database (CTD). CTD
is a publicly available resource that employs a team of human “biocurators” to comb the literature,
extracting and annotating Chemical-Gene, Chemical-Disease, and Disease-Gene relationships’. In
this paper, we will demonstrate that NMF can be used to recover hidden interactions in each of these
networks individually and that NMF over any two of these networks can predict back the third. To
show that this is not an artifact of the data source (CTD), we will demonstrate that NMF over the
combined CTD networks recapitulates experimental protein-protein interactions in the STRING
database. We will focus in on the CTD Chemical-Gene interaction network, and show that our
ability to predict missing connections improves when we perform NMF over a network
incorporating Chemical-Gene, Chemical-Disease, and Disease-Gene interactions from CTD and
also Protein-Protein interactions from STRING.

22



Pacific Symposium on Biocomputing 2016

2. Methods:

2.1. Construction of datasets:

Tables of interactions from CTD were obtained and processed as follows. Unless otherwise noted,
all data processing and manipulation was performed in Matlab. Chemical-Gene and Chemical-
Disease interactions were downloaded on April 2, 2014%, each as a single tab-delimited text file. The
full Chemical-Gene interactions file was imported into Matlab as a table containing 878,594 rows,
each representing one unique curated relationship between one chemical and one gene, or between
other relationships. This initial table comprised 10,520 unique chemicals and 32,248 unique genes.
Relationships containing nested relationships were removed, as were any relationships whose “Gene
Form” was not given as “protein” (“mRNA,” for example.) The result of this filtering was a table
of direct relationships involving 8,653 unique chemicals and 8,288 unique genes. A binary
adjacency matrix was built in which each row and column corresponded to one chemical or gene,
respectively, with interacting pairs assigned a value of 1, and all other pairings 0. The resulting
sparse 8,653-by-8,288 matrix contains 82,168 unique, binary Chemical-Gene interactions.

The Chemical-Disease interactions file was similarly imported into Matlab, but was filtered to
remove all CTD-inferred relationships by deleting any row for which the “Direct Evidence” column
was blank. The filtered table was used to build a binary adjacency matrix as described above, which
in this case comprised 8,226 chemicals, 3,031 diseases, and 80,433 unique, curated interactions.

The full Disease-Gene interactions file was too large to process in the same way, so CTD’s
Batch Query tool” was used to retrieve only the curated interactions. On April 18, 2014, the CTD
Disease Vocabulary file was downloaded, and the Disease IDs were input to the Batch Query tool,
which was set to export all Curated Gene Associations for each disease. The output tab-delimited
interactions were then imported into Matlab and, as before, used to build a sparse, binary adjacency
matrix of 4,907 Diseases by 7,362 Genes, with 23,133 unique interactions.

For construction of a combined Chemical-Gene-Disease (CGD) interaction matrix, the
interaction tables used to build the individual matrices were used. A single list of 30,102 unique
entities was obtained from the union of the three individual matrices’ unique entity lists, comprising
12,119 Chemicals, 6,333 Diseases, and 11,650 Genes. Each of the three interaction tables was then
used to populate a matrix in which each of the 30,102 entities was represented as both a row and a
column. Thus, for each row in the three tables, the interacting entities’ positions in the combined
entity list defined two symmetrical pairs of indices in the 30,102-by-30,102 matrix at which to
represent the interaction.

For later experiments, we used the STRING network of human protein-protein interactions®,
which we mapped to the CTD CGD matrix. When comparing our predictions to STRING, we
focused on 7,604 genes whose IDs we could map between databases, and used the confidence scores

* from http://ctdbase.org/downloads - dates noted because CTD updates monthly; previous versions are unavailable
b http://ctdbase.org/tools/batchQuery.go
¢ STRING v9.1, now archived at http://string91.embl.de/newstring cgi/show download page.pl
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assigned by STRING (ranging from 0 to 999) to define the positive class at various thresholds. To
construct a CTD+STRING CGD matrix, we added protein-protein interactions from this STRING®
network to the Gene-Gene diagonal block of the CTD CGD matrix. Interactions among the 7,604
genes also in CTD were dropped directly into the corresponding cells in the CGD matrix
symmetrically. The matrix was extended by 6,699 rows and columns, corresponding to the genes
that were not matched to CTD. The final matrix contains 254,929 nonzero Gene-Gene interactions,
66,685 with values of 0.5 or greater, and 1,405 with the maximum value of 0.999.

2.2. Non-negative Matrix Factorization (NMF):

NMF describes several closely related algorithms that, given a non-negative matrix A with size mxn
and a positive integer k< min(m,n), attempt to find m>k matrix W and kx»n matrix H such that W
and H are non-negative, and such that AXWH. This is done by solving the optimization problem

. _l _ 2
Vg_l};gof(W, H) =-||A — WH]|g (D

Throughout this work, NMF was run using the nnmf{) function of Matlab’s Statistics Toolbox with
all input arguments (other than A and k) left at default settings. Consequently, the optimization
method used was Alternating Least Squares (ALS), in which initial W and H matrices are randomly
generated, and then alternatingly solved for in the following matrix equations, until the minimization
function converges or until the maximum number of iterations has been reached:

Solve for H: WTWH = WTA (2.1)
Solve for W: HHTWT = HAT (2.2)

In our applications of NMF to datasets of various sizes, we tested multiple & values for each, to find
a value that would give optimal performance without overfitting.

NMF is known to converge at solutions that are local, rather than global, minima of the
optimization problem, meaning the product WH is not unique. We found that calculating the
average of WH across multiple replicate factorizations increased performance in our experiments;
all results we discuss below were obtained by averaging the output of 4 NMF replicates®.

2.3. 10-fold Cross-validation Experiments:

In N-fold cross-validation experiments, each point in a dataset is randomly assigned to one of N
subsets. Then, one at a time, every subset is removed, and the remaining N-1 subsets are used as
training data for the algorithm to be tested. In the end, the algorithm’s predicted values for each
dropped subset form a test set covering all of the original data. An algorithm’s ability to successfully
recover data in cross-validation depends not only on the algorithm itself, but also on the internal
consistency of the dataset. Entities with only 1 known interaction were not considered, because
NMF would have no way to recover that interaction.

4 inserted as the confidence score divided by 1000 to match the range of the rest of the CGD matrix, which is binary.
¢ Data not shown. We chose 4 replicates to balance diminishing returns in improvements v. computational cost.
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2.4. Performance evaluation for NMF predictions

The performance of NMF in each experiment was evaluated by calculating the Receiver Operator
Characteristic (ROC) curve, comparing predicted scores to an input positive class, and computing
the number of correct predictions at varying score thresholds. An ROC curve can be understood as
sorting the list of predictions by score and, beginning at the origin, moving up on the y-axis for each
true prediction and moving right on the x-axis for each false prediction. The area under an ROC
curve (AUC) can serve as a broad measure of performance, representing the probability that a
randomly chosen positive (known) interaction will have been assigned a higher score by NMF than
a randomly chosen negative (not known) interaction.

3. Results and Discussion

3.1. 10-fold cross-validation for NMF of individual CTD matrices.

In order to determine whether a CF approach can integrate interactions between multiple classes of
biological entity, we first made certain that NMF can be used to recover unknown pairwise
interactions among Chemicals, Diseases, and Genes from incomplete interaction data. 10-fold cross-
validation was performed on three adjacency matrices constructed from CTD’s Chemical-Disease
(CD), Chemical-Gene (CG), and Disease-Gene (DG) networks, respectively.

(a) (b) (©)

Fig. 1. Receiver Operator Characteristic (ROC) curves of NMF at varying & values in 10-fold cross-validation
experiments over individual CTD interaction networks. (a) Chemical-Disease, (b) Chemical-Gene, (c¢) Disease-Gene

Figure 1 shows NMF performs much better than random guessing in 10-fold cross-validation
for the three CTD networks, with performance plotted as Receiver Operator Characteristic (ROC)
curves, with £ varying over a range to find values that optimize AUC. The best results were AUC
of 0.94 (CD), 0.92 (CG), and 0.82 (DG). The results in Figure 1 show these three networks are
internally consistent enough to recover missing interactions using NMF, and that the interactions
involving Chemicals (CD and CQ) are particularly well-suited to prediction by NMF.
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3.2. CTD Chemical-Gene-Disease matrix and leave-one-matrix-out experiments

Once we verified that the three networks from CTD were, Chemicals Diseases Genes
individually, amenable to prediction of missing interactions via
NMF, we considered how to utilize this multifaceted data more
effectively. The data encompassed three classes — Chemicals,
Diseases, and Genes — of biological entity, with information
about each category spread across two matrices. When it
factorizes an interaction matrix, NMF represents each entity
(row/column vector) as a compressed vector that approximates
all available information. Therefore, we reasoned that simply
combining the asymmetric CD, CG, and DG matrices into one
symmetric “all-vs-all” Chemical-Gene-Disease (CGD) matrix Fig. 2. Tllustration of the combined,
would allow NMF access to more information about the gy mmetric CGD matrix. The CTD
relationships between Chemicals, Diseases, and Genes, and thus  CD, CG, and DG matrices are orange,
improve our ability to predict missing ones. purple, and green, respectively. The
In order to test the ability of our CF approach to integrate ~ diagonal blocks are empty before
different types of interaction, we devised a “leave-one-matrix-  [2ctorization.
out” experiment (Fig. 3a-c). From the combined CGD matrix in
Figure 2, we removed all interactions of one class (CD, CG, or DG) at a time, and attempted to
predict them from only the other two interaction classes. We performed this test, using NMF with
various k values, for each of the three interaction types and calculated ROC curves. Fig. 3d shows
the AUC for each k value used to predict the missing matrices.

Genes Diseases Chemicals

Table 1. Amount of data dropped and re-predicted in Leave-One-Matrix-Out Experiments,
followed by AUC when NMF was performed over the remaining two interaction matrices.
Column headings indicate which interaction matrix was left out.

Dropped Matrix Chemical-Disease Chemical-Gene Gene-Disease
Size 4760x1605 4760x3940 3940x1605
# Interactions 59,766 60,831 15,522
AUC k=100 0.801 0.833 0.802
AUC k=200 0.810 0.840 0.801
AUC k=300 0.813 0.837 0.802
AUC k=500 0.817 0.832 0.795

These results show that NMF is able to predict the interactions contained in each of the matrices
created from CTD’s datasets, given only information contained in the other two matrices, despite
the distinctly different biological connections they represent. Put another way, this demonstrates
that combining these binary interaction matrices can unlock new layers of information that was not
accessible from the individual matrices. Because all three networks share an origin in CTD’s manual
curation process, however, we need to determine that the latent information tapped by NMF for
these predictions provides a meaningful insight to the workings of biology, and not just an insight
into the CTD curation pipeline.
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(a) (b) (©)
Fig. 3. Visualization of Leave-One-Matrix-Out experiments. Blocks of data
containing Chemical-Disease (a), Chemical-Gene (b), or Gene-Disease (c)
interactions were removed from the CGD matrix. Diagonal blocks remain
empty. As seen in (d) and in Table 1, NMF recovered each network from (d)
the remaining two.

3.3. Prediction of Gene-Gene associations from CTD Chemical-Gene-Disease matrix

The diagonal blocks of the combined matrix, which would correspond to Chemical-Chemical,
Disease-Disease, and Gene-Gene associations, contain no data initially from CTD, but are also filled
in when we use NMF. We sought to compare predictions in these regions to an external data source,
in order to find out if the values predicted by NMF represent real biological relationships.
Although it is unclear what the disease-disease network might represent, comparing the gene-
gene block to existing protein interaction databases was a natural next step. We compared the values
from NMF to known protein-protein interactions from the STRING database. 7,604 genes were
present in both the combined CTD matrix and the STRING experimental network. Among these
7,604 genes, STRING contained 67,763 experimentally supported protein-protein interactions, of
which 38,424 have been assigned confidence scores by
STRING of at least 500, and 902 have been assigned the
highest confidence score of 999.
As shown in Fig. 4., the values produced by NMF over
the CTD CGD matrix predicted these interactions with an
ROC AUC of 0.69, which increased to AUC=0.73 for
interactions >500 confidence score, and to AUC=0.75 when
only the highest-confidence STRING interactions (999) were
considered.
These results show that the Gene-Gene associations filled
into the Chemical-Gene-Disease matrix by NMF correspond
to real, experimentally known protein-protein interactions.
This ‘result is important because, gnlike the Leave-One- Fig. 4. ROC curves for the prediction of
Matrix-Out experiments, these predicted edges were never  grpinG protein-protein _ interactions
part of CTD, reducing the chance that positive results are due  ysing NMF (4=300) on CTD CGD.
to some inherent bias in the CTD curation process. This also
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suggests that the predictions in the Chemical-Chemical and Disease-Disease blocks may be
biologically meaningful, potentially representing drug interactions and disease co-morbidity, for
example. At the same time, these results suggest that some of the information contained within the
STRING network was not found by NMF in the combined CGD matrix. We created a second
Chemical-Gene-Disease matrix containing all the same interactions from CTD, but with protein-
protein interactions from STRING added to the Gene-Gene block of the diagonal.

3.4. 10-fold cross-validation of Chemical-Gene edges within combined CGD matrix

In order to determine if additional data can improve upon the prediction of Chemical-Gene
interactions observed in Fig. 1b, we performed an experiment similar to 10-fold cross-validation,
which only removed Chemical-Gene edges from the larger matrix. We performed this experiment
using the CTD CGD matrix, and also using the CTD+STRING CGD matrix, both with £=200. We
also repeated the 10-fold cross-validation using the CG matrix alone, using the best-performing .
value, £=50. For this comparison, a single set of randomized cross-validation classes was generated
first, and then was used for all three input matrices, to ensure that the only differences in available
information were those we were testing.

Table 2. Comparison of NMF performance in 10-fold cross-validation of Chemical-Gene
edges without added data, with the addition of CD and DG information from CTD, or
with that plus GG information from STRING

Matrix k ROC AUC"  p-value'vs CTD¢g  p-value’ vs CTDcgp
CTDcg 50 0.920 - —
CTDcap 200 0.927 4.6x10™"% -
CTDceptScs 200 0.932 4.9x107* 5.8x10™"7

As shown in Table 2 and Figure 5a, the Chemical-Gene cross-validation performance after the
addition of Chemical-Disease and Disease-Gene interactions yielded AUC=0.927, an increase over
the highest-performing k& value with Chemical-Gene interactions only (AUC=0.920 at £=50).
Moreover, when Gene-Gene interactions from STRING were added to the CGD matrix,
performance further improved to AUC=0.932. To measure this improved performance, we used the
StAR method, which implements an approach based on Mann-Whitney U-statistics®', to determine
if the ROC curves were significantly different. Although the increases in AUC appear small, so
many data points were used to calculate the ROC curves that they were found to be highly
significant.

AUC of the ROC curve provides an overall indicator of how well a method recovers true
interactions. However, practical applications (e.g., drug repurposing,) are likely to focus on
relatively few predictions compared to the total interaction space. For this reason, it is often more
important that the top predictions have high precision (i.e., few false positives). To be sure the CGD
matrices were not only increasing AUC by improving recall of the low-confidence interactions, we
calculated precision-recall curves for the cross-validation (Figure 5b). As the inset shows, the

f Output by StAR tool, standalone version®, rounded for table
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precision of the highest-scoring 10% of interactions® is high for all three test cases, with the
CTD+STRING Chemical-Gene-Disease matrix showing precision improvements across the range.

These results show that we can improve the ability of NMF to predict missing Chemical-Gene
relationships by incorporating information about how those Chemicals and Genes interact with
Diseases, and, further, how those Genes interact with one another.

Fig. 6a. ROC curves showing NMF performance  Fig. 6b. Plot of Precision vs. Recall for the same
for 10-fold cross-validation of Chemical-Gene  experiments shows precision approaches 1.0 for
interactions, improving with more data. AUCs  the top recovered interactions. Focusing on top
with statistical comparison are in Table 2 above. 10% (inset) shows improvement with more data.

3.5. Retrospective prediction of new Chemical-Gene
interactions

Finally, to corroborate these results in a more realistic context,
we retrospectively predicted Chemical-Gene interactions that
had been added to CTD over one year. Following the same
process described in Section 2.1, we downloaded the CTD
Chemical-Gene network on April 5, 2015, and again built a
binary matrix of direct interactions. We mapped this to the
2014 CTD CGD matrix, removing entities that were not
present in both versions, resulting in a 2015 matrix of 8,706
Chemicals by 8,304 Genes with 5,879 new interactions.

We calculated an ROC curve (shown in Figure 6)
comparing these new interactions to the predictions for the
same 8,706 Chemicals and 8,304 Genes that were obtained
from NMF (£=200) on our CTD+STRING CGD matrix. The

Fig. 6. Retrospective prediction of new
CTD Chemical-Gene interactions (added
between 4/2014 and 4/2015), using NMF
(/=200) on CTD+STRING CGD matrix.
AUC=0.930.

& The positive class comprised 75,804 interactions, so the inset shows precision for over 7500.
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resulting curve, with AUC=0.93, indicates that our approach was able to correctly anticipate missing
or undiscovered interactions.

3.6. Example: prediction of Chemical-Disease interactions for Pancreatic Neoplasms

One potential application of our approach is to identify unknown or overlooked drugs with
connections to a particular disease. In Table 3, we present an example of this involving pancreatic
cancer, a disease with high lethality and few effective treatments™. Following NMF (k=200) over
the CTD+STRING CGD matrix, we inspected the highest" values corresponding to new interactions
(that is, interactions that have not been curated by CTD at this time) between Chemicals and the
disease entity “Pancreatic Neoplasms.” Examples were chosen in which the Chemical is a drug’; as
the primary focus of CTD is toxicology, much of the information therein concerns environmental
toxins and disease-causing interactions. As Table 3 shows, literature searches found evidence
supporting a connection to pancreatic cancer for 14 of the top 15 drug predictions, over half of which
were studied in clinical trials. This shows that, at minimum, our approach generated hypotheses
worth testing clinically.

Table 3. Top" 15 drugs’ predicted to interact with Pancreatic Neoplasms by NMF using
the CTD+STRING CGD matrix. These interactions were not present in the CTD CD
matrix, but 14 are supported by papers or clinical trials in associated PubMed ID (PMID).

Drug Name Support for Connection to Pancreatic Cancer Reference
Indomethacin Pre-clinical cell line study PMID: 1890839
Carboplatin Phase II clinical trial PMID: 15802284
Mitoxantrone Phase II clinical trial PMID: 16334117
Simvastatin Phase II clinical trial PMID: 24162380
Cytarabine Phase III clinical trial PMID: 1833042
Topotecan Phase II clinical trial PMID: 11218186
Sorafenib Phase II clinical trial PMID: 24574334
Rosiglitazone Pre-clinical mouse study PMID: 22864396
Melphalan Pre-clinical rat study PMID: 4075299
Methamphetamine - -
Thiotepa Use in other cancers PMID: 4183076
Thalidomide Phase I clinical trial PMID: 15753541
Caffeine Phase III clinical trial PMID: 1833042
Sirolimus Patient Case Report PMID: 19581741
Gefitinib Phase II clinical trial PMID: 19258727

" Values above a threshold of 0.425. To provide context for this choice of threshold, the inset in Figure 5b shows
cross-validation performance as precision versus recall at varying thresholds; 0.1 Recall in that graph corresponds to

~ a threshold value of 0.425. Thus, we chose predictions whose precision should be at least 0.7.

' Approved by the FDA, according to http://www.accessdata.fda.gov/scripts/cder/ob/default.cfm
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At the same time, this example highlights key pitfalls. Because we created binary interaction
matrices from CTD, we can not say these drugs are predicted to treat pancreatic cancer or to cause
it, only that they interact in some way. Indeed, the clinical trial we reference for simvastatin found
no significant effect, but suggested further study in specific circumstances that could benefit from
it”. Incorporating more detail from the interactions in CTD into our CGD matrix will, we believe,
help resolve some of the ambiguity in our current predictions. For truly personalized treatments, we
foresee a use case in which therapy suggestions are derived from a subset of predicted drug-gene
interactions. That subset would be determined by a patient’s unique situation; for example, the
somatic mutations driving a tumor, or the germ line mutations linked to a disease phenotype (the
latter being a possible application for our approach’s gene-disease predictions).

4. Conclusions

Taken as a whole, our results show that Collaborative Filtering can integrate biological interaction
networks in order to reveal missing connections between diverse entities. This approach depends
only on knowledge of connections, so it can be extended to new classes of entity with minimal
customization, unlike more specialized methods. Consequentially, our approach is limited to
predicting that entities interact, rather than sow. Matrix tri-factorization, which has been used to
classify entities by fusing interaction networks with entity feature data®**’, may enable more
detailed predictions. Ultimately, however, we see this as an initial component in a pipeline that will
harness the ever-expanding universe of knowledge and focus it on a small point, illuminating a
patient’s unique situation or highlighting a new use for a drug. This will need to be done rapidly,
affordably, and accessibly. Importantly, implementations of NMF have been developed that can
efficiently handle matrices with millions of times more entities than we have so far attempted'**°,
Ultimately, this work may offer a step towards computing therapy.
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We have previously developed a statistical method to identify gene sets enriched with
condition-specific genetic dependencies. The method constructs gene dependency
networks from bootstrapped samples in one condition and computes the divergence
between distributions of network likelihood scores from different conditions. It was shown
to be capable of sensitive and specific identification of pathways with phenotype-specific
dysregulation, i.e., rewiring of dependencies between genes in different conditions. We
now present an extension of the method by incorporating prior knowledge into the
inference of networks. The degree of prior knowledge incorporation has substantial effect
on the sensitivity of the method, as the data is the source of condition specificity while
prior knowledge incorporation can provide additional support for dependencies that are
only partially supported by the data. Use of prior knowledge also significantly improved
the interpretability of the results. Further analysis of topological characteristics of gene
differential dependency networks provides a new approach to identify genes that could
play important roles in biological signaling in a specific condition, hence, promising
targets customized to a specific condition. Through analysis of TCGA glioblastoma
multiforme data, we demonstrate the method can identify not only potentially promising
targets but also underlying biology for new targets.
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33



Pacific Symposium on Biocomputing 2016

1. Introduction
1.1. Gene set analysis, DDN and EDDY

Identification of biological features underlying disease phenotypes or conditions (e.g.
differentially expressed or mutated genes) is critical in identifying therapeutic targets. As specific
pathways are capable of complex rewiring between conditions, methods such as Gene Set
Enrichment Analysis (GSEA) (1) and network-based analyses (2-4) have become increasingly
attractive for extraction of such biological features from genomic data. One can use known genetic
interactions as a ground truth network and overlay genomic data from different conditions to
statistically evaluate regions with differential activities (5) or condition-specific sub-networks (6-
8). Differential Dependency " Network (DDN) approaches are able to identify individual
differential dependencies (9-13) or condition-specific sub-networks from genome-wide
dependency networks such as a protein-protein interaction networks. Differential co-expression
analysis methods (14), such as Gene Set Co-expression Analysis (GSCA), test gene sets for
differential dependencies, but they are often overly sensitive to minor correlation changes and
produce biased results with respect to the size of gene sets (15).

In our previous work, we have developed a novel, network-based computational method that
overcomes the limitations of other network-based approaches (15). This novel computational
approach — EDDY: Evaluation of Differential DependencY — combines GSEA’s gene-set-assisted
advantages with the robustness of
assessment of differential network
dependency. It interrogates gene sets
(pathways) in a database to test if
dependencies  across  genes  are
significantly rewired between
conditions (see Fig. 1). It was shown to
be capable of sensitive and specific
identification of pathways  with
phenotype-specific dysregulation, i.e.
rewiring of dependencies between
genes in different conditions, with its
robust network inference and low false
discovery rate (15).

In this paper, we present a method Figure 1. Advantages of EDDY compared to other tools
to  integrate = known  biological
interactions to improve the performance of network inference and to enable better interpretation of
inferred DDNs. The effect of the degree of prior knowledge integration on inferred DDNSs is also
analyzed. Finally, we describe the application of prior-knowledge assisted EDDY to glioblastoma
(GB) gene expression downloaded from the Cancer Genome Atlas (TCGA).

" In this manuscript, we use ‘dependency’ to denote statistical dependencies derived from data such as co-expression,
or conditional dependencies, and ‘interaction’ to denote known direct or indirect relationships between genes.
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2. Methods

From two sets of samples representing different conditions, EDDY computes the discrepancy of
gene dependency in a specific gene set by contrasting the two resulting probability distributions of
candidate network structures (based on a likelihood of each network), constructed via a resampling
approach, and evaluates its statistical significance to determine if the network structures are
rewired between the conditions.

2.1. EDDY: Evaluation of differential dependency

Let a set of variables G' = {g1, g&», ... } (each variable corresponds to a gene) denote the activity
levels of the genes. For G, there are N possible gene dependency network (GDN) structures d,, da,
..., dy for the variables. Let a discrete random variable D take on di, d,, ..., dy as its discrete
values, then the posterior probability distribution Pr(D|S.) for a data S of a given condition C
can represent the probability distribution of dependency network structures for G in the condition
C. When two data sets, S¢, and S¢,, are given for two different conditions C; and C,, the
divergence between the two corresponding probability distributions Pr(DISCl) and Pr(DISCZ) is
computed as a measure of difference between the conditions. The divergence between the
conditions C; and C; is measured using the Jensen-Shannon (JS) divergence, an information-based
metric to measure the similarity between two probability distributions (16) and the statistical
significance of the divergence is computed using a permutation approach. This approach is a
generalization of comparing the best networks from different conditions by considering many
possible networks and their likelihoods instead of comparing the single best networks. The benefit
of this generalization is a more reliable measure of discrepancy (15), especially when data is
limited. Thus, there is a high chance of finding many local optima for the best network. By
considering many probable dependency networks instead of one local optimal network, our
approach can represent a more complete picture of dependencies at the cost of additional
computation. EDDY then iterates through all gene sets in a database, for example, MSigDB
(http://www.broadinstitute.org/gsea/msigdb/) to identify the dysregulated pathways.

2.2. Inference of gene dependency network supported by known interactions

To reduce computational complexity, EDDY uses a heuristic method that proposes probable
dependency structures by independently evaluating each dependency between two variables.
Specifically, y?-test is applied to test the independence between every pair of two variables g; and
g (EG), obtaining the resultant p-value p; (=p;;). An edge e;; between g; and g; is included when

Pr(i;j1S) = (1-py)" > 6 (1)
where 4 > 1 and a user-specified parameter 6 together control sensitivity of dependency
discovery. We integrate known interactions retrieved from pathway databases to support
dependency discovery. Formally, let wp € [0, 1] denote a prior weight to control the level of prior
knowledge to be incorporated into the inference of GDN and Ep (i; j) be a binary-valued variable
indicating the existence of known interaction between g; and g, Known interactions can be
retrieved from a pathway database such as Pathway Commons 2. Edge-specific threshold is given,

Op(i;j) « 0 -[1—wp - Ep(i; j)]. (2
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Prior weight (wp) can be varied between 0 and 1, where wp = 0 specifies no influence of the
known gene interactions in GDN inference and all edges in inferred GDN requires full support
from the data 8, (i;j) = 6, and wp = 1 makes inferred GDN include all the known interactions
unconditionally, 8, (i; j) = 0. When wp = 0.5, edges with half the support from the data will be
included in the network. Edges are included in a network if they satisfy:

Pr(i;j1Sc) > 0p (i )). (3)

Since information on the condition-specificity of known interaction is generally not available,
incorporating known interactions into GDN inference could potentially decrease the divergence
between GDNs, hence, the sensitivity of the EDDY algorithm to detect pathways with condition-
specificity. The specific effect of prior weight (wp) on the sensitivity of EDDY will be discussed
in the Results section.

Considerations: As opposed to data-derived edges, prior edges can have a direction,
indicating, for example, the influence of one gene on another. While it is straightforward to
incorporate the direction of an edge into EDDY, this may conflict with the acyclic requirement of
Bayesian networks. For the computations in this work, directionality was determined not to create
cycles. In addition, prior edge encompasses many types of interactions such as catalysis or
phosphorylation. It also may describe various degrees of influence from explicitly controlling a
state change to simply being a neighbor gene. For the work described here, we excluded these so-
called “neighbor” interactions. In future work, we may
examine a nuanced means of weighting other types of
interactions.

2.3. Estimating divergence between two conditions-
specific probability distributions of GDNs

The empirical estimate of the probability distribution,
Pr(D|S.), is yielded from bootstrapping samples and
the construction of GDNs as described above. Once
the probability distribution of dependency network
structures Pr(D|S, 1) and Pr(DISCZ) are computed, the
divergence between the conditions C; and C, is
measured using the Jensen-Shannon (JS) divergence
and the statistical significance is estimated using a
permutation test. See (15) for more detail, and the
overall workflow is shown in Fig. 2.

2.4. Topological analysis of Differential Dependency
Network (DDN)

GDNs constructed for condition C; and C, are
summarized into differential dependency networks
(DDNs) where each edge is annotated as Cl1-specific,
C2-specific, or common. While these condition-

specific dependencies can be used to identify potential Figure 2. Workflow of knowledge-assisted

EDDY
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targets, the DDN often comprises hundreds of edges, rendering the prioritization of those
dependencies non-trivial. We utilize the topological analysis of EDDY-derived DDNSs to discern
biologically important signaling nodes. These nodes could play important roles in biological
signaling, hence, promising targets. For each node i, we will compute the normalized betweenness
centrality metrics, g(i|DCl) and g(i|DCZ) for GDNs, D¢, and D, , respectively (17). The
regularized difference
, gli|Dc,)-gli|Dc
(11, ) = St aie) o)
where 1 is a regularization parameter, is then used to assist in prioritization of genes.

2.5. Comparison to Knowledge-fused Differential Dependency Network (KDDN)

The KDDN (Knowledge-fused Differential Dependency Network) model (18; 19) extends the
DDN method by incorporating prior knowledge into its regularized linear regression problem with
sparse constraints, where the level of prior knowledge, wp, is a parameter taking value in [0, 1] to
adjust the degree of prior-knowledge integration into the determination of differential dependency.
We compare the results of knowledge-assisted EDDY against KDDN’s results. KDDN does not
aggregate differential dependencies of genes in a gene set and assign a score to a gene set as
EDDY does, but focuses on individual differential dependencies. Hence, we focus on those
pathways enriched with differential dependencies, identified by EDDY, and compare
corresponding differential dependency networks between two methods.

3. Results
3.1. Data, Gene Sets and Analysis

We used the gene expression data of 202 glioblastoma multiforme (GBM) samples assigned with
GB subtype from TCGA to identify pathways enriched with differential dependency between
mesenchymal (58 samples) and non-mesenchymal samples, and between proneural (57 samples)
and non-proneural samples. The gene expression data were log-transformed, standardized, and
quantized prior to EDDY analysis. The gene sets queried for the analysis were 472 gene sets in
REACTOME category of MSigDB. We then mined known interactions from Pathway Commons
2 (http://www.pathwaycommons.org) and matched these to all pairings in the REACTOME gene
sets for prior knowledge incorporation. To investigate the effect of the degree of prior knowledge
in identifying condition-specific dependencies, the prior weights wp = 0, 0.5, and 1 were used.
wp = 0 specifies no influence of the known gene interactions in GDN inference and all edges in
inferred GDN requires full support from the data, and wp = 1 makes inferred GDN include all the
known interactions unconditionally. When wp = 0.5, dependencies with known interactions are
added with half the support from the data.

3.2. Pathways identified by knowledge-assisted EDDY

Across three different prior weights (wp = 0, 0.5, and 1.0), EDDY identified 57 pathways with
statistically significant divergence between mesenchymal (MES) and non-mesenchymal for at
least one of the weights, and 75 pathways between proneural (PN) and non-proneural. Table 1
presents a subset (24 pathways) of 57 mesenchymal-specific pathways, and Table 2 a subset (38
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pathways) of proneural-specific 75 pathways, based on their biological interest (bold-faced) or p-
value (wp = 0.5) < 0.05. For each pathway, we include the number of genes in the pathway, p-
values, Pp (the proportion of newly discovered dependencies, Ep compared to the total number of
edges in GDN, Ep+Ep) and P (the proportion of condition-specific dependencies, Ec, compared
to total edges, Ect+Es), for different prior weights. As wp increases, more known interactions are
added to GDN without condition-specificity, and this has three possible effects. First, condition-
specific edges with weak support from data can gain support from the prior weighting, thereby
increasing Pc while reducing Pp. Second, condition-specific edges with prior support can lose
specificity and hence, result in reduced Pc. Finally, the loss of condition-specific edges can reduce
the diversity of networks in the score distribution, having the indirect effect of increasing the
influence of the surviving condition-specific edges on the divergence calculation. Indeed, we
observe a consistent decrease in the number of networks in the distribution as we increase prior
weight. As a result of these competing effects, p-value does not correlate with prior weight, even
when examined over the finer variation of 0.1 (data not shown). However, we did note that the
number of pathways with statistically significant divergence tends to decrease with prior weight —
28, 20 and 16 pathways with statistically significant divergence between mesenchymal and non-
mesenchymal, and 39, 36 and 28 pathways between proneural and non-proneural, as the prior
weight increases from 0 to 0.5 to 1.0.

Table 1: A subset of the REACTOME pathways with significant differential dependency between GB mesenchymal
and non-mesenchymal. Pp gives the proportion of newly discovered dependencies over the total number of edges in
GDN and P the proportion of condition-specific dependencies over total number of edges. Systematic ID from

MSigDB is used instead of full pathway for shorten description. Mapping from Systematic IDs for bold-faced
pathways are provided in Table 3 and Table 4, and in Appendix at the end for the rest of pathways.

Systematic # p—Value PD = ED/(ED+EP) PC = Ec/(Ec+Es)
1D genes w,=0 w,=0.5 w,=1 w,=0 w,=0.5 w,=l | w,=0 w,=0.5 w,=1
M760 27 0.0165 0.1314 0.2416 0.37 0.72
M5113 29 0.1839 0.0173 0.4192 0.47 0.59
M13748 34 0.1406 0.0299 0.0049 0.51 0.45 0.66 0.34
M9271 33 0.0122 0.0304 0.2399 0.77 0.66 0.75 0.68
M506 23 0.0223 0.0478 0.1954 0.20 0.13 0.81 0.59
M17157 19 0.0084 0.1605 0.6331 0.51 0.77
M764 21 0.0019 0.1777 0.3609 0.73 0.83
M571 38 0.6392 0.2754 0.0305 0.58 0.49
M9694 31 0.7833 0.0026 0.0705 0.04 0.35
M1051 16 0.2921 0.0035 0.33 0.57
M875 41 0.2310 0.0053 0.9018 0.58 0.76
M612 23 0.3943 0.0104 0.8191 0.30 0.59
M552 14 0.1828 0.0111 0.6727 0.19 0.58
M3634 13 0.0091 0.0191 0.50 0.39 0.86 0.53
M1062 21 0.1057 0.0222 0.1714 0.11 0.36
M932 19 0.1187 0.0266 0.0606 0.64 0.79
M16702 19 0.7982 0.0292 0.6791 0.39 0.61
M1016 14 0.3862 0.0348 0.0561 0.47 0.66
M1662 23 0.2844 0.0354 0.2397 0.33 0.64
M6034 12 0.0568 0.0391 0.1070 0.92 0.64
M17787 18 0.2575 0.0426 0.7349 0.69 0.33
M7169 39 0.0082 0.0427 0.1184 0.85 0.81 0.80 0.76
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M901 35 0.0136 0.0427 0.0933 0.37 0.29 0.72 0.56
M10122 13 0.3501 0.0433 0.6130 0.05 0.47

Table 2: A subset of the REACTOME pathways with significant differential dependency between GB proneural
and non-proneural.

Systematic # p-Value PD = ED/(ED+EP) PC = Ec/(Ec+Es)
1D genes wp=0 wp=0.5 wp=1 wp=0 wp=0.5 wp=l | w,=0 w,=0.5 w,=1
M647 16 0.0020 0.0017 0.0014 0.89 0.83 0.78 | 0.93 0.94 0.72
M530 37 0.0648 0.0022 0.4847 0.25 0.68
M1092 14 0.0154 0.0071 0.0072 0.87 0.79 0.78 | 0.90 0.84 0.71
M549 12 0.0335 0.0114 0.8563 0.25 0.16 0.82 0.65
M1040 19 0.0141 0.0151 0.0463 0.59 0.52 0.51 0.51 0.43 0.23
M13408 21 0.1654 0.0202 0.0242 0.43 0.40 0.65 0.33
M714 38 0.0112 0.1503 0.5874 0.56 0.75
M570 44 0.0440 0.2321 0.5892 0.56 0.78
M947 25 0.0045 0.0000 0.11 0.07 0.87 0.68
M9450 12 0.3631 0.0007 0.39 0.68
M860 28 0.1070 0.0011 0.0704 0.20 0.68
M12967 35 0.0534 0.0013 0.0395 0.09 0.07 0.58 0.06
M936 30 0.0050 0.0020 0.0684 0.67 0.48 0.86 0.73
M15243 10 0.0559 0.0029 0.00 0.58
M1075 31 0.0135 0.0040 0.1367 0.39 0.29 0.88 0.74
M846 36 0.2413 0.0052 0.5402 0.22 0.69
M1662 23 0.0026 0.0059 0.1335 0.48 0.36 0.86 0.73
M801 11 0.0274 0.0061 0.8040 0.50 0.38 0.75 0.58
M899 39 0.1676 0.0073 0.1689 0.48 0.76
M769 10 0.1899 0.0103 0.7851 0.43 0.93
M13115 27 0.0144 0.0122 0.2782 0.03 0.02 0.77 0.64
M12627 11 0.0001 0.0139 0.00 0.00 0.86 0.72
M564 10 0.1861 0.0152 0.7291 0.19 0.48
M10272 11 0.0758 0.0168 0.0001 0.54 0.50 0.72 0.40
M11184 15 0.0242 0.0180 0.0070 0.88 0.86 0.85 | 0.75 0.69 0.64
M719 15 0.1317 0.0190 0.1944 0.06 0.71
M794 13 0.0326 0.0215 0.3349 0.61 0.49 0.82 0.69
M1014 11 0.3598 0.0232 0.03 0.63
M907 11 0.0022 0.0273 0.7901 0.63 0.52 0.68 0.65
M837 27 0.4998 0.0273 0.4145 0.39 0.74
MI18 13 0.0023 0.0285 0.7926 0.63 0.52 0.68 0.65
M704 44 0.1173 0.0287 0.2284 0.21 0.66
M1016 14 0.1716 0.0359 0.2208 0.35 0.76
M3661 22 0.0774 0.0416 0.0697 0.35 0.73
M15195 30 0.0953 0.0432 0.0659 0.42 0.70
M661 30 0.2166 0.0448 0.4245 0.28 0.65
M583 18 0.0162 0.0453 0.1178 0.59 0.43 0.81 0.65
M1825 11 0.0229 0.0488 0.0961 0.50 0.37 0.93 0.89

3.3. Biological Significance of Selected Signaling Pathways ldentified by EDDY
3.3.1. Condition-specificity of Integrin allb B3 signaling in mesenchymal GB
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EDDY analysis of mesenchymal vs non-mesenchymal GB show significantly different (p =
0.0165 at wp = 0.5) dependency network for INTEGRIN ALPHAIIB BETA3 SIGNALING
(M760; http://bit.ly/1DIgidx). This pathway is representative of biological mechanisms of
adhesion in platelets, but there are proteins that participate in other signaling process in a diverse
array of tissues and diseases. The class dependent DDNs show interesting differences in the state
of this pathway’s genes in mesenchymal vs. non-mesenchymal GB. DDN and GDNs in Figure 3
show that mesenchymal GB loses dependency on the cell surface integrins ITGA2B (betweenness
normalized difference, 8,,,=-0.83%, rank, Rs, =2) and ITGB3 (6,,=-0.65, Rs, =7). Activation of
ITGA2B/ITGB3-RAP1A-PTK2 signaling axis induces glioma cell proliferation (20). There is also
a shift in the dependencies around SRC kinases between mesenchymal and non-mesenchymal GB
samples with no SRC dependency evidence in mesenchymal samples but with new dependencies
developed for Csk (8;,,=0.12), also a member of Src-family kinase. In previous work, it is also
demonstrated that Src family kinases plays very important role in migration and invasion cancer
cells (21). Lastly, there is dependency shift in intracellular signaling effectors for integrins in the
mesenchymal samples as evidenced by the 6, of PTPNI (4, =0.84, Rs, =1), APBBIIP
(6pw=0.70, Rs, =6), SYK (6,,=0.43, Rs, =11), RAPIB (6,,=0.49, Rs, =9). These molecules
have known roles in immunologic cell function, particularly cells of the monocytic origin (22-25).
Mesenchymal GB samples have an appreciable amount of microglial (brain resident monocytic
cells) cell infiltration that can be detected by RNA expression data (26), and it is interesting that
EDDY appears to be detecting differential dependencies in molecules important for microglial
function. In summary, this DDN demonstrates a differential wiring of ITGA2B/ITGB3 signaling
network in mesenchymal vs non-mesenchymal GB. Functional validation of such differential
wiring could help identifying novel nodes of vulnerability for treatment of subtype specific GB.

3.3.2. Condition-specificity of PI3K events in ERBB?2 signaling in proneural GB
Another example of differential network dependency is illustrated in the analysis of proneural vs.
non-proneural samples of GB. An example significant dependency network (p = 0.044 at wp = 0)

Figure 3: (a) DDN, (b) GDNygs, and (¢) GDN,,on.mes of Integrin allb B3 signaling (M760) pathway

* The full data for the betweenness centrality and their difference between GDNs are not shown due to the space
constraint. However, the betweenness centrality is indicated by the size of nodes in the GDNS.
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Figure 4: (a) DDN, (b) GDNpy, and (¢) GDN,,,,.pn of PI3K events in ERBB2 signaling (M570) pathway

is PI3K_EVENTS IN_ERBB2 Signaling (M570; http://bit.ly/1187dUt). This pathway highlights
the signaling events from ERBB2, add associated family members, signal down through PIK3CA
to AKT and mTOR signaling (Figure 4). There is a shift in the dependency of the ERBB signaling
receptors between the proneural and non-proneural with a lessened dependency in the proneural.
This is consistent with the observation that the proneural subtype of GB seems to be more reliant
on PDGFRA signaling than signaling through ERBB2 (6,,,=0.77, Rs, =4) and EGFR (8,,,=0.71,
Rs, =7) (27). However, PIK3R1 (6, =0.60, Rs, =10) does show differential dependency in
proneural samples, which agrees with observation of enrichment of PIK3R1 mutations in
proneural samples (27). This may suggest that PIK3R1 mutations drive PIK3CA based signaling
rather than PIK3CA mutations or ERBB alterations in the proneural subtype. It may also argue
that PI3K signaling may needs to be targeted differently in different subtypes of GB.

3.4. Comparison to KDDN
Since KDDN does not aggregate score and p-value for pathway as EDDY does, we first identify
pathways enriched with differential dependency, and apply KDDN to the same data set using the
same prior knowledge for comparison. We used KDDN Cytoscape plug-in with parameters 1, set
to 0.2, 4, t0 0.05, and & to 0.1, the default settings. The results are summarized in Tables 3 and 4.
With the default settings, kDDN identifies fewer edges than EDDY. Nevertheless, the general
trend is that EDDY and kDDN find more than twice as much agreement in condition-specific
edges than disagreement (selecting edges for opposite conditions). Varying A; and A, can increase
the number of kDDN edges to approach those found by EDDY, but we sought a consistent
approach to setting these parameters for fair comparison, rather than fitting agreement ad hoc. A
key difference between the two applications is that EDDY identifies both condition-specific and
shared edges for both conditions. When we include these edges, the overlap improves somewhat,
but in general, the alignment between kDDN and EDDY is not substantial. We attribute this
disagreement to the enhanced sensitivity of the EDDY method in assessing significance over a
distribution of network scores. This might raise a concern for potential false positive discoveries
by EDDY. However, our previous analysis of EDDY with simulation data indicates the false
positive rate for EDDY is low, which is also supported by low Pp (< 0.5) in Table 1 and Table 2 —
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majority of edges identified by EDDY are known interactions. We leave more comprehensive
comparisons between EDDY and kDDN or other similar methods to our future study.

Table 3: A comparison of DDNs found by EDDY and KDDN for GB mesenchymal. EDDY queries selected specific
gene sets depending on prior weight, wp. Statistics for the two networks are common dependencies Eg and condition-
specific dependencies E¢ for EDDY, and condition-specific dependencies Ex for KDDN. The last column represents
concordance between KDDN and EDDY DDN, specifically |[EciNEx;]U[EciNEk ]| where Ec;, represents C;-specific
edges identified by EDDY and Eg, represents C;-specific edges identified by KDDN.

REACTOME Pathway (PN) ID wp | |[Es| |Ec|] |Ex| | concordance
INSULIN_RECEPTOR_RECYCLING M506 0.0 | 25 108 28 8
INSULIN_SYNTHESIS_AND_PROCESSING M764 00 |15 75 22 7
INTEGRIN_ALPHAIIB_BETA3 SIGNALING M760 0.0 | 41 104 34 9
PURINE_METABOLISM M9271 0.0 | 62 190 63 21
PYRUVATE METABOLISM M17157 | 0.0 | 16 54 53 6
GLUCONEOGENESIS M13748 | 0.5 | 96 183 4l 12
GLYCOLYSIS M5113 0.5 | 105 149 35 11
INSULIN_RECEPTOR RECYCLING M506 0.5 | 80 115 28 7
PURINE_METABOLISM M9271 0.5 | 94 197 63 21
GLUCONEOGENESIS M13748 | 1.0 |205 106 41 7
NUCLEAR SIGNALING BY ERBB4 M571 1.0 | 185 180 65 19

Table 4: A comparison of DDNs found by EDDY and KDDN for GB proneural

REACTOME Pathway (PN) ID wp | |[Es] |E¢] |Ex|| concordance

ACTIVATED POINT MUTANTS_OF_FGFR2 M647 0.0 4 57 5 3
DOWNREGULATION_OF ERBB2 ERBB3 SIGNALING M549 0.0 5 23 8 3
FGFR1_LIGAND BINDING _AND ACTIVATION M1092 | 0.0 5 47 5 3
G1_S_SPECIFIC_TRANSCRIPTION M1040 | 0.0 | 33 35 8 3

PI3K_AKT ACTIVATION M714 00 | 61 186 58 19

PI3K_EVENTS IN ERBB2 SIGNALING M570 00 |78 271 83 31
ACTIVATED POINT MUTANTS_OF_ FGFR2 M647 0.5 4 61 5 3
DOWNREGULATION_OF ERBB2 ERBB3 SIGNALING M549 0.5 15 28 8 2

ERK _MAPK TARGETS M13408 | 0.5 53 99 27 12
FGFR1_LIGAND BINDING _AND ACTIVATION M1092 | 0.5 9 48 5 3
G1_S_SPECIFIC_TRANSCRIPTION M1040 | 0.5 44 33 8 3

NEGATIVE REGULATION OF FGFR _SIGNALING M530 0.5 (130 271 48 26
ACTIVATED POINT MUTANTS_OF_FGFR2 M647 1.0 19 50 5 3
ERK_MAPK TARGETS M13408| 1.0 |108 54 27 5
FGFR1_LIGAND BINDING _AND ACTIVATION M1092 1.0 17 41 5 3

G1 S SPECIFIC_ TRANSCRIPTION M1040 1.0 | 61 18 8 2

4. Discussion

Expression profiling and whole genome sequencing from hundreds of GB specimens by
TCGA has revealed a broad spectrum of genetic alterations and discrete expression signatures and
subtypes (27; 28). However, the issue of how to best target these molecular subtypes using
pharmacological agents remains to be addressed. An obstacle in identifying subtype-specific drug
vulnerabilities is how genetic alterations and gene expression affect wiring of key signaling
networks that drives tumor phenotype (29). In this work we demonstrated that using knowledge-
assisted EDDY, it is possible to identify subtype specific network wiring and gene dependencies,
which may be used to identify subtype specific drug vulnerabilities.
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Finally, we have recently started an implementation of the EDDY algorithm on a GPU, which

has shown dramatic acceleration. Besides making computations faster and allowing for the
running of larger datasets, we envision a prior weight optimization over the number of condition-
specific edges. Additionally, experimental validation of highlighted differences is a main priority
in the future. We have access to cohort of 64 patient derived GB xenografts that include all four
GBM subtypes and are available to readily deploy to test novel hypothesis indicated through
EDDY analysis.
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Appendix

Systematic ID Pathway

M10122 |RETROGRADE_NEUROTROPHIN_SIGNALLING
M1014  |IL_6_SIGNALING
M1016 | SYNTHESIS_OF_VERY_LONG_CHAIN_FATTY_ACYL_COAS
M1016 | SYNTHESIS_OF_VERY_LONG_CHAIN_FATTY_ACYL_COAS
M10272 | IONOTROPIC_ACTIVITY_OF_KAINATE_RECEPTORS
M1051 INTEGRATION_OF_PROVIRUS
M1062 | ANTIGEN_PRESENTATION_FOLDING_ASSEMBLY_AND_PEPTIDE_LOADING_OF_CLASS_|_MHC
M1075 INWARDLY_RECTIFYING_K_CHANNELS
M11184 | ENDOGENOUS_STEROLS
M12627 | DOPAMINE_NEUROTRANSMITTER_RELEASE_CYCLE
M12967 | MRNA_3_END_PROCESSING
M13115 | G_PROTEIN_ACTIVATION
M15195 | MAPK_TARGETS_NUCLEAR_EVENTS_MEDIATED_BY_MAP_KINASES
M15243 | GAP_JUNCTION_DEGRADATION
M1662 | SIGNALING_BY_ BMP
M1662 | SIGNALING_BY_ BMP
M16702 | ACTIVATED_AMPK_STIMULATES_FATTY_ACID_OXIDATION_IN_MUSCLE
M17787 | GLUCURONIDATION
M1825 REGULATION_OF_INSULIN_SECRETION_BY_ACETYLCHOLINE
M3634 | CASPASE_MEDIATED_CLEAVAGE_OF_CYTOSKELETAL_PROTEINS
M3661 FGFR_LIGAND_BINDING_AND_ACTIVATION
M552 PROLACTIN_RECEPTOR_SIGNALING
M564 MEMBRANE_BINDING_AND_TARGETTING_OF_GAG_PROTEINS
M583 RIP_MEDIATED_NFKB_ACTIVATION_VIA_DAI
M6034 | SEROTONIN_RECEPTORS
M612 CIRCADIAN_REPRESSION_OF_EXPRESSION_BY_REV_ERBA
M661 SIGNALING_BY_FGFR1_MUTANTS
M704 SIGNALING_BY_FGFR_MUTANTS
M7169 NCAM1_INTERACTIONS
M719 SHC1_EVENTS_IN_EGFR_SIGNALING
M769 ELEVATION_OF_CYTOSOLIC_CA2_LEVELS
M794 ACTIVATION_OF_CHAPERONES_BY_ATF6_ALPHA
M801 ACTIVATION_OF_CHAPERONE_GENES_BY_ATF6_ALPHA
M837 CREB_PHOSPHORYLATION_THROUGH_THE_ACTIVATION_OF_RAS
M846 FRS2_MEDIATED_CASCADE
M860 SHC_MEDIATED_CASCADE
M875 NETRIN1_SIGNALING
M899 IL1_SIGNALING
M901 GLOBAL_GENOMIC_NER_GG_NER
M907 CALNEXIN_CALRETICULIN_CYCLE
M918 N_GLYCAN_TRIMMING_IN_THE_ER_AND_CALNEXIN_CALRETICULIN_CYCLE
M932 SYNTHESIS_SECRETION_AND_INACTIVATION_OF GLP1
M936 TRAF6_MEDIATED_IRF7_ACTIVATION
M9450 | PLATELET_ADHESION_TO_EXPOSED_COLLAGEN
M947 INHIBITION_OF_VOLTAGE_GATED_CA2_CHANNELS_VIA_GBETA_GAMMA_SUBUNITS
M9694 | ACTIVATION_OF THE_PRE_REPLICATIVE_COMPLEX
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INTEGRATING GENETIC AND STRUCTURAL DATA ON HUMAN PROTEIN KINOME IN
NETWORK-BASED MODELING OF KINASE SENSITIVITIES AND RESISTANCE TO
TARGETED AND PERSONALIZED ANTICANCER DRUGS
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The human protein kinome presents one of the largest protein families that orchestrate
functional processes in complex cellular networks, and when perturbed, can cause various
cancers. The abundance and diversity of genetic, structural, and biochemical data underlies
the complexity of mechanisms by which targeted and personalized drugs can combat
mutational profiles in protein kinases. Coupled with the evolution of system biology
approaches, genomic and proteomic technologies are rapidly identifying and charactering
novel resistance mechanisms with the goal to inform rationale design of personalized kinase
drugs. Integration of experimental and computational approaches can help to bring these
data into a unified conceptual framework and develop robust models for predicting the
clinical drug resistance. In the current study, we employ a battery of synergistic
computational approaches that integrate genetic, evolutionary, biochemical, and structural
data to characterize the effect of cancer mutations in protein kinases. We provide a detailed
structural classification and analysis of genetic signatures associated with oncogenic
mutations. By integrating genetic and structural data, we employ network modeling to
dissect mechanisms of kinase drug sensitivities to oncogenic EGFR mutations. Using
biophysical simulations and analysis of protein structure networks, we show  that
conformational-specific drug binding of Lapatinib may elicit resistant mutations in the EGFR
kinase that are linked with the ligand-mediated changes in the residue interaction networks
and global network properties of key residues that are responsible for structural stability of
specific functional states. A strong network dependency on high centrality residues in the
conformation-specific Lapatinib-EGFR complex may explain vulnerability of drug binding to
a broad spectrum of mutations and the emergence of drug resistance. Our study offers a
systems-based perspective on drug design by unravelling complex relationships between
robustness of targeted kinase genes and binding specificity of targeted kinase drugs. We
discuss how these approaches can exploit advances in chemical biology and network science
to develop novel strategies for rationally tailored and robust personalized drug therapies.

t This work is partly supported by funding from Chapman University.
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1. Background

The era of significant scientific breakthroughs and technological advancements in genetics
and biology has brought to clinical settings personalized health care that has the capacity to
detect the onset of disease at its earliest stages and preempt the progression of disease. The
comprehensive cancer genome characterization efforts have refined our understanding of
specified genes responsible for development and progression of tumorsl. Several
malignancies are associated with the mutation or increased expression of protein kinases,
including lung, breast, stomach, colorectal, head and neck, and pancreatic carcinomas and
glioblastomaZ. Tumor sequencing efforts have identified a rich source of naturally occurring
mutations with many being simple single nucleotide polymorphisms (SNPs) in protein
kinases. A subset of these SNPs occurs in the coding regions (cSNPs) of kinases and result in
a change in the encoded amino acid sequence (nonsynonymous coding SNP; nscSNPs).
Genome studies have revealed the importance of “driver” somatic alterations that activate
crucial oncoproteins such as EGFR, BCR-ABL, and other kinase genes. Mutations in these
protein kinases are often implicated in many cancers and exemplify the phenomenon of
‘oncogene addiction,” according to which the effects of driver genomic alterations are
pivotal for tumor proliferation and have a selective advantage for the formation of the
tumor during somatic cell replication3. Oncogene dependencies induced by genetic
alterations in BCR-ABL, KIT, EGFR and other kinase genes are well known and have provided
decisive clinical proof of principle for the genomics-informed drug discovery of kinase
drugs*. Although tumor dependencies driven by dominant oncogenes could respond to
targeted therapies, clinical responses to single agents are often followed by the
development of drug resistance. The tumor dependency concept is especially relevant to
understand mechanisms of acquired resistance, where resistant mutations, seemingly
developed due to drug treatment, may instead represent evolutionary selection of cell
subpopulations which harbor preexistent somatic mutant variants which confers a primary
resistance to these cells and provides them with a selective advantage. The spectrum of lung
cancer EGFR mutations can induce oncogenic transformation by leading to constitutive
kinase activity of EGFR and confer markedly different sensitivity to EGFR inhibitors®. The
most common reported mutations are the deletion of five exon-19 residues and the exon-21
substitution L858R in the catalytic domain of EGFR®. Together, these mutations correspond
to more than 90% of the activating EGFR mutations observed in non-small-cell lung cancer
(NSCLC). While T790M has only a modest effect on EGFR function, a tandem of T790M and
L858R mutations can result in a dramatic enhancement of EGFR activity. More than 200
activating and drug resistance EGFR mutations with different clinical responses to tyrosine
kinase inhibitors have been reported’ and molecular mechanisms of mutation-induced
kinase activation have been extensively discussed?.

Gefitinib and Erlotinib are orally effective protein-kinase targeted inhibitors that are
used in the treatment of ERBB1/EGFR-mutant lung cancer. Afatinib is another EGFR-
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targeted kinase drug approved by the FDA for the first-line treatment of patients with
metastatic NSCLC whose tumors have EGFR exon 19 deletions or exon 21 (L858R)
substitutions. Lapatinib, a small molecule tyrosine kinase inhibitor of both EGFR and
HER2/ErbB2 is now also approved for advanced HER2-amplified breast cancer?. Structural
and biochemical studies have characterized the inhibition of intrinsic catalytic activity of
EGFR and HER2/Erbb2 variants by Lapatinib using a diverse array of enzymatic and cell-
based assays!®1l. (Cell-based EGFR resistance mutation screens have demonstrated that
Lapatinib produced the broadest mutation spectra of any of the EGFR-targeted drugs tested
in in vitro system, with a number of Lapatinib-specific resistant mutations clustered around
the selectivity pocket and the EGFR-A-loop!2. The association between EGFR mutations and
differential drug sensitivity suggested that genetic EGFR alterations and corresponding
changes in structural and interaction profiles of the EGFR kinase domain render tumors
sensitive to selective inhibitors. = Oncogenic kinases can adopt different mechanisms to
alleviate negative regulatory processes associated with their intrinsic conformational
instability. One of them is the recruitment of unstable kinase forms to the Hsp90 system that
protects abnormally activated kinases in cancer cells13. HSP90 stabilizes viral kinases and
various mutated oncogenes, including oncogenic EGFR mutants that are dependent on the
chaperoning function through direct interactions to maintain their stability. HSP90
inhibition reduces mutant EGFR levels and activity, suggesting a viable EGFR inhibition
strategy. Crystallographic studies!®> have supported this mechanism by showing that the
catalytic domains of the EGFR-L858R and EGFR-L858R/T790M oncogenic mutants can
adopt flexible inactive conformations that may facilitate conformational release from the
autoinhibitory state. This may be exploited by the Hsp90 chaperone to bind the unstable
mutant conformations and promote an accumulation of a constitutively active form.
According to the newly emerging paradigm, kinase inhibitors may exert their primary effect
by “arresting” the kinase domain in the specific inactive form, thereby depriving the Hsp90
system from access to unstable conformational states and preventing uncontrollable
accumulation of the active form1é.

The abundance and diversity of genetic, structural, and biochemical data underlies the
complexity of mechanisms by which targeted and personalized kinase agents can combat
mutational profiles in EGFR kinase. We employ a battery of synergistic computational
approaches that integrate genetic, biochemical, and structural data to characterize the
effect of cancer mutations in protein kinases. We show that binding specificity and drug
resistance of EGFR drugs may be linked with the global network properties of key residues
that are responsible for structural stability of specific targeted conformations. The results of
this study offer a network-based perspective on drug design of targeted and personalized
kinase drugs, showing how the efficiency and robustness of the interaction networks may be
associated with kinase binding preferences and emergence of resistant mutations.
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2. Methods

2.1. Data mining

Protein kinase sequences were obtained from Kinbase (http://kinase.com/kinbase/).
Common SNPs were retrieved from PupaSNP and dbSNP using the Ensembl data mining tool,
Biomart (http://www.ensembl.org/Homo_sapiens/martview). The disease causing SNPs
were retrieved from OMIM, KinMutBase, and HGMD databases. We used all kinase gene
entries referenced in NCBI and SwissProt database, and 7955 unique SNP entries
corresponding to these kinase genes as they are referenced in NCBI. These unique SNP
entries include 3722 synonymous, 3985 missense, 75 nonsense and 173 frameshift
mutations. We have also gathered 780 OMIM variant entries from NCBI and 3542 SwissProt
variant entries. Cancer mutations were retrieved from OMIM and COSMIC databases.
Motif-based alignments of kinase sequences to the catalytic core were first generated by
implementation of the Gibbs motif sampling method. This method identifies characteristic
motifs for each individual subdomain of the kinase catalytic core, which are then used to
generate high-confidence motif-based Markov chain Monte Carlo multiple alignments based
on these motifsl’”. The nsSNPs were then mapped to the kinase catalytic domain in
accordance with this alignment. Cancer driver predictions were performed by using the
SVM approach as described in the earlier work!8,

2.2. Somatic mutation distributions and driver mutation hotspots in protein kinome

Functionally important subdomains of the kinase catalytic core were examined to determine
the distribution of nsSNPs and identify structurally conserved hotspots of functionally
important mutations. The number of SNPs in each of the subdomains was calculated from
the structure-informed multiple sequence alignment. The expected probability E(p) of a SNP
occurring in a kinase subdomain region was calculated separately for each SNP type. In brief,
the average length of each region was calculated as the weighted average of the region
length in each kinase considered, where weights correspond to the total number of SNPs
occurring within each kinase. The probability of a SNP occurring within a particular region
purely by chance was computed as its weighted average length over the sum of every
region's weighted average length. The probability (p-value) of the observed total number
(x) of SNPs occurring within each region, where n is the total number of SNPs considered,
was calculated using the general binomial distribution. The average length of each sub-
domain was calculated as the weighted average of the region length in each kinase
considered, where weights correspond to the total number of SNPs occurring within each
kinase. The probability of a SNP occurring within a particular region purely by chance was
computed as its weighted average length divided by the sum of every region’s weighted
average length. The probability (p-value) of the observed total number of SNPs occurring
within each region was then calculated using the general binomial distribution. Cancer
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mutant predictions and analysis were performed as described in previous studies?l. A
support vector machine (SVM) was trained upon common SNPs (presumed neutral) and
congenital disease causing SNPs characterized by a variety of sequence, structural, and
phylogenetic parameters. The threshold taken for calling a SNP a driver is 0.49 for catalytic
domain mutations, and 0.53 for all other mutations.

2.3. Network modeling of residue interaction networks in protein kinases

Molecular dynamics (MD) simulations were carried out using NAMD 2.6 with the
CHARMMZ27 force field1°. The binding free energies and computational alanine scanning of
kinase-drug complexes were done using MM-GBSA approach?0. A graph-based
representation of proteins was used in the protein structure network analysis, where
residues were considered as nodes and edges correspond to the nonbonding residue-residue
interactions. The pair of residues with the interaction strength I, greater than a user-
defined cut-off |, are connected by edges and produce a protein structure network graph
for a given interaction strength | . . The strength of interaction between two amino acid
side chains is

n..
—_ %100 (1)

|
P JINGxN)

where n; is number of distinct atom pairs between the side chains of amino acid residues i
and j that lie within a distance of 4.5 A. N, and N, are the normalization factors for

residues i and j respectively?l. We considered any pair of residues to be connected if | ;.

was greater than 3.0%. A weighted network representation of the protein structure is
adopted that includes non-covalent connectivity of side chains and residue cross-
correlation fluctuation matrix?2. In this model, the weight w; of an edge between nodes i

and j is measured as W :—Iog(‘Cij ‘) where C; is the element of the covariance matrix

measuring the cross-correlation residue fluctuations obtained from MD simulations. The
shortest paths between two residues are determined using the Floyd-Warshall algorithm.
We computed the residue-based betweenness which is defined as the sum of the fraction of
shortest paths between all pairs of residues that pass through residuei:

cm-$00

j<k ik

(2)

where g, denotes the number of shortest geodesics paths connecting j and k, and g, (i) is

the number of shortest paths between residues j and k passing through the node n,.
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3. Results

3.1. Structural and functional signatures of cancer mutations in protein kinases

Genetic variations in protein kinase genes are widely spread across both phylogenetic and
structural space, and only a subset of all SNPs could be directly mapped to the kinase
catalytic domain (Figure 1A). We constructed the distribution of various SNPs categories
that could be mapped onto the 12 functional subdomains (SDs) of the kinase catalytic core
(Figure 1B). Structural mapping of sSNPs resulted in a uniform coverage of kinase
subdomains, showing only a weak preference towards SD II which has no obvious
functional role in kinase regulation. The distribution of nsSNPs pointed to the preferential
bias towards specific functional regions. Functionally important P-loop (SD I), hinge region
(SD V), catalytic loop (SD VIB), and A-loop (SD VII) along with the P+1 loop region (SD VIII)
are more densely populated The catalytic domain of protein kinases harbors a large number
of SNPs falling into three major categories: common and neutral SNPs; inherited disease
causing germline SNPs; and cancer causing SNPs. By compiling and mapping a total of 355
common SNPs, 428 inherited disease causing SNPs, and 541 cancer associated SNPs we
found a statistically significant enrichment of different categories of SNPs in specific 1
regions of the catalytic domain (Figure 1C). Common nsSNPs are randomly distributed
within the catalytic core, only sparsely populating functional segments of the catalytic core,
such as the catalytic or A-loops, whereas these nsSNPs more densely occupy evolutionary
unconserved regions of the C-terminal tail. The disease-causing nsSNPs primarily mapped
to the regions involved in regulation and substrate binding, such as the APE-loop and the
P+1 region, as well as the catalytic loop (Figure 1C). Cancer-associated nsSNPs tend to target
regions directly involved in the catalytic activity that are mainly localized in the P-loop, A-
loop and catalytic loop. The distribution of kinase nsSNPs across functional kinase
subdomains suggested that the kinase regions that are enriched in different types of SNPs
are markedly different and have only a minimal overlap. The distribution revealed a
preference for cancer-causing nsSNPs to populate primarily the A-loop (SDVII) and the P-
loop (SD I). The functionally important for substrate and protein binding P+1 loop are
enriched largely in disease-associated mutations, but not cancer-causing mutations. These
results indicated that disease-associated mutations could primarily affect the kinase
regions involved in functional regulation, allosteric interactions and substrate binding?3.

Kinome-wide analysis of sequence and structure-based signatures of cancer mutations
revealed that a significant number of cancer mutations could fall at structurally equivalent
positions within the catalytic core. These structurally conserved mutations tend to cluster
into specific mutational hotspots which may be shared by multiple kinase genes. We
classified cancer mutation hotspots which had been identified as a frequent target of
tumorigenic activating mutations. Cancer mutation hotspots in protein kinases are largely
localized within the P-loop, hinge region, and A-loop (Figure 1).
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Figure 1. The distribution of nsSNPs in the catalytic core (A,C). The catalytic domain was subdivided
into 12 subdomains (B) with some subdomains corresponding to functional regions : SD I (P-loop);
SDIII(aC-helix); SDV (hinge region); SDVIB (catalytic loop); SDVII (A-loop) ; SDVIII (P+] loop).
(B)Structural mapping is shown for common nsSNPs , disease-causing nsSNPs , and cancer-causing
nsSNPs. (D) Structural localization of driver mutations is mapped onto the crystal structure of the
active EGFR (pdb entry 2]J6M). Structural annotation of cancer driver mutations is arranged
according to their oncogenic potential. The higher the oncogenic potential of the cancer drive, the
larger the ball denoting structural position of the respective mutation.

3.2 Structural bioinformatics analysis of oncogenic kinase mutants: distinct structural
signatures of Hsp90-dependent kinase clients are associated with oncogenic potential

Oncogenic kinase mutants may rely on the Hsp90 dependence for the maintenance of
stability and accumulation of the constitutively active form. In particular, Hsp90 function is
essential to maintain high-level expression of mutant EGFR in lung cancer cellsl*. We
performed kinome-wide structural bioinformatics analysis of chaperone-regulated kinases
(Figure 2). The proteomics-based client annotation (Figure 2A) was compared against
structure-based mapping of the Hsp90-Cdc37 kinase clients (Figure 2b). Structural coupling
of the catalytic DFG motif and the regulatory aC-helix is recognized as central in controlling
kinase activity and dynamic equilibrium between the inactive (DFG-out/aC-helix-in), the
Cdk/Src-like inactive (DFG-in/aC-helix-out) and the active kinase forms (DFG-in/aC-helix-
in). Although many of the Hsp90 kinase clients can occupy evolutionary different branches
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of the human kinome, we found they share a common Cdk/Src- type structural arrangement
of their inactive functional states. The Cdk/Src-like inactive structures shared by the Hsp90
kinase clients are unified by a common structural determinant whereby the regulatory aC-
helix is moved to a aC-out conformation and forms autoinhibitory clamp with the A-loop,
thus preventing the formation of the catalytically competent active kinase.

Figure 2. The distribution of the Hsp90-dependent protein kinase clients in the human kinome. (A)
Kinome mapping of Hsp90-Cdc37 clients discovered in proteomic-based studies!¢ is depicted. The
kinases that are found to be downregulated by Hsp90 inhibition in the experimental profiling are
shown in yellow (confirmed kinase clients) and red (novel kinase clients from proteomics studies?¢).
(B) Structure-based mapping of the Hsp90-Cdc37 kinase clients. The Cdk/Src kinase clients are
marked in blue filled spheres. A high density of the Cdk/Src clients in the TK, TKL, STE, CAMK, and
CMGC groups of the human kinome tree is highlighted by blue circles. The second category of kinase
clients is characterized by active structures stabilized through allosteric interactions (green spheres).

According to our analysis, oncogenic kinase mutations in the conserved hotspots (A-
loop), may perturb the constraints keeping the aC-helix-out in the rigid inactive position,
and allow the A-loop to assume an extended active conformation (A-loop open) that is seen
in the as crystal structures of the EGFR-L858R and EGFR-L858R/T790M mutants?®. These
Cdk/Src-like active conformations that can be adopted by oncogenic mutants are far more
flexible and unstable. As a result, they may be sequestered by the Hsp90 to promote
uncontrollable transformation and accumulation of the constitutatively active state for
kinase cancer mutants.
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3.3 Integrating genetic and structural data on oncogenic EGFR mutations: modeling of
thermodynamic and networking signatures of targeted drug binding

By using MD simulations and MM-GBSA binding free energy simulations, we evaluated the
thermodynamic effect of oncogenic EGFR mutations on different conformational states of
EGFR (Figure 3A). Our results showed that oncogenic mutations L747P, L747S, L858R and
LB861Q can destabilize the rigid autoinhibitory  structure that is thermodynamically
favorable in the wild-type EGFR24 Strikingly, oncogenic mutations L747P/S, L858R and
L861Q seemed to favor a highly flexible Cdk/Src -active conformation and marginally
destabilize the active conformation. As a result, EGFR mutations with a high oncogenic
potential may destabilize the dormant autoinhibitory structure. These mutations may induce
fast equilibrium between flexible Cdk/Src-like active conformation and active structure that
could lead to uncontrollable activity, which is a “deadly” signature of cancer mutations. The
major Lapatinib-resistant mutations with the high oncogenic potential occurred in the
residues that do not directly contact ligand. L747 is located at a loop adjacent to aC-helix;
V765 and V769 are at or near the C-terminal portion of aC-helix, and T790is at the
gatekeeper position in the ATP binding site. Of the remainder, N857 is located in helix D,
T854 forms the base of the ATP binding site, L858 and H870 are in the A-loop (Figure 3). To
determine the thermodynamic contribution of the EGFR residues to Lapatinib binding and
identify energetic hot spots susceptible to mutations, we performed free energy simulations
and computational alanine scanning (Figure 3B). First, we found that only some Lapatinib-
interacting residues corresponded to cancer mutation hotspots, suggesting that escaping
binding interactions with the drug via mutations may not be a primary mechanism that
drives emergence of Lapatinib-resistant mutations. The energetic hot spots of Lapatinib
binding that corresponded to cancer mutation drug-resistant EGFR sites included L718,
L777, L788, T790 (gate-keeper), and T854 residues. However, the EGFR mutations of high
oncogenic potential that can render differential sensitivity to Lapatinib such as L747, L858,
and L861 make fairly moderate contributions to binding energetics that could not explain
high resistance. These results suggested that the mechanism of Lapatinib-induced somatic
mutations may rather be associated with the intrinsic stability of the Cdk/Src inactive EGFR
structure that binds Lapatinib10-12, Several hypotheses have suggested that the mechanism
of Lapatinib-induced somatic mutations is linked with a conformation-specific mode of
Lapatinib binding to an inactive EGFR structurell12 as drug resistant cancer mutations may
stabilize the constitutively active EGFR form and thus interfere with the drug binding. To
test this mechanism, we evaluated organization of the residue interaction networks and
structural stability of EGFR states. The stability of the inactive EGFR conformation targeted
by Lapatinib is mediated by interaction networks formed by high centrality residues F723
(P-loop), aC-helix (V765, M766, and V769), the aC-B4-loop (L774), the HRD motif (H835,
D837), DFG motif (D855, F856) and L858 (A-loop) (Figure 3C, Table 1). The central result of
the network analysis showed that although some somatic mutations may emerge in residues
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with medium centrality, Lapatinib-resistant cancer mutations can be developed in high
centrality sites that determine interaction network of the specific EGFR form (Table 1). Due
to their central position in the structural network, mutations of V765 and V769 (aC-helix)
and L858 (A-loop) can severely compromise the integrity of the interaction network by
weakening or dissolving the central autoinhibitory lock between the P-loop/A-loop
interactions holding the aC-helix in the inactive position. Targeted mutations of these high
centrality sites could disrupt allosteric coupling between functional regions, leading to the
weakening and fragmentation of the residue interaction network. A strong network
dependency on high centrality residues may explain a broad spectrum of Lapatinib-resistant
mutations that are located away from the inhibitor, near the aC-helix and in the A-loop.
Hence, residue centrality may be used as a metric for assessing severity of drug resistance
mutations and differentiating between highly resistant and moderately resistant positions.

Figure 3. Structure-based network modeling of EGFR cancer mutations and drug binding. (A) Free
energy changes caused by oncogenic mutations in different conformational states of EGFR. (B)
Computational alanine scanning of binding site residues in the Lapatinib-EGFR complex (pdb id
1XKK). (C) The residue centrality profile of Lapatinib-EGFR complex (in blue). EGFR mutations are
shown in green diamonds and Lapatinib-resistant oncogenic mutations are shown in red diamonds.
(D) Structural mapping of EGFR cancer mutations (blue spheres) on the crystal structure of
Lapatinib-EGFR complex (green ribbons). Mapping of Lapatinib-resistant mutations (indicated by
arrows) on the crystal structure of Lapatinib-EGFR complex colored according to structural stability.
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Table 1: Structure-based network analysis of the EGFR kinase domain and Lapatinib-EGFR complex.
Structural region and network centrality of functional EGFR residues targeted by cancer mutations
and drug resistant mutations are reported.

Residue Residue# Betweenness Mutation Exon Kinase/segment/spine
Leu 718 0.03230 L718P Exon 18 B1 strand
Gly 719 0.05586  G719A/C/R/S Exon 19 Gly-rich P-loop
Leu 747 0.10818 L747S/P Exon 19 B3-aCloop
Val 765 0.07211 V765M Exon 20 aC-helix
Val 769 0.10593 V769L Exon 20 aC-helix
His 773 0.08204 H773L Exon 20 aC-B4 loop
Cys 775 0.06188 C775F/R/Y Exon 20 aC-B4 loop
Arg 776 0.09576 R776S/C/H/P/L Exon 20 aC-f4 loop
Leu 777 0.07761 L777Q/P/M Exon 20 aC-B4 loop(R-spine)
Cys 781 0.03448 C781F Exon 20 4 strand
Leu 788 0.06048 L788V/I/F Exon 20 B5 strand
Thr 790 0.12979 T790M/A Exon 20 B5 strand
Gly 810 0.01939 G810S/D/A Exon 20 aD-aE loop
Asn 816 0.03781 N816K Exon 20 aE-helix
Val 845 0.06473 V845M/A/L Exon 21 B7strand (C-spine)
Thr 847 0.05199 T8471/A/K Exon 21 B7strand
Thr 854 0.07392 T854A/1/A Exon 21 B7strand
Leu 858 0.10864 L858R/Q/K/V/M Exon 21 Short helix/A-loop
Lys 860 0.05991 K860T/E/I Exon21 Short helix/A-loop
Leu 861 0.07540 L861Q/R/E/F/K/P Exon 21 Short helix/A-loop
His 870 0.01914 H870R/N/Y Exon 21 A-loop
Arg 889 0.06413 R889S Exon 22 A-loop
Ile 965 0.04496 [965S/N Exon 23 al-helix

Our study suggests that binding of selective and personalized kinase agents can be linked
with the robustness of the residue networks in kinase structures. We have found that
selective EGFR inhibitors with preferential binding to specific inactive conformations, such
as Lapatinib, could be vulnerable to a broad spectrum of resistant mutations pointing to a
“dark side” of targeted agents that reflects the inherent conflict between the efficiency and
robustness of kinase drugs. The association of network properties with kinase regulation
and drug binding suggests that residue interaction networks may be reorganized and
specifically tailored through therapeutic agents targeting high centrality residue nodes.
Integration of genetic, biochemical and structural data in the unified framework of protein
structure networks and systems biology may help to understand and rationally exploit the
complex relationships between robustness of targeted genes and binding specificity of
personalized drugs.
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PHENOME-WIDE INTERACTION STUDY (PheWIS) IN AIDS CLINICAL TRIALS GROUP
DATA (ACTG)
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Association studies have shown and continue to show a substantial amount of success in identifying links between
multiple single nucleotide polymorphisms (SNPs) and phenotypes. These studies are also believed to provide insights
toward identification of new drug targets and therapies. Albeit of all the success, challenges still remain for applying and
prioritizing these associations based on available biological knowledge. Along with single variant association analysis,
genetic interactions also play an important role in uncovering the etiology and progression of complex traits. For gene-
gene interaction analysis, selection of the variants to test for associations still poses a challenge in identifying epistatic
interactions among the large list of variants available in high-throughput, genome-wide datasets. Therefore in this study,
we propose a pipeline to identify interactions among genetic variants that are associated with multiple phenotypes by
prioritizing previously published results from main effect association analysis (genome-wide and phenome-wide
association analysis) based on a-priori biological knowledge in AIDS Clinical Trials Group (ACTG) data. We approached
the prioritization and filtration of variants by using the results of a previously published single variant PheWAS and then
utilizing biological information from the Roadmap Epigenome project. We removed variants in low functional activity
regions based on chromatin states annotation and then conducted an exhaustive pairwise interaction search using linear
regression analysis. We performed this analysis in two independent pre-treatment clinical trial datasets from ACTG to
allow for both discovery and replication. Using a regression framework, we observed 50,798 associations that replicate at
p-value 0.01 for 26 phenotypes, among which 2,176 associations for 212 unique SNPs for fasting blood glucose
phenotype reach Bonferroni significance and an additional 9,970 interactions for high-density lipoprotein (HDL)
phenotype and fasting blood glucose (total of 12,146 associations) reach FDR significance. We conclude that this method
of prioritizing variants to look for epistatic interactions can be used extensively for generating hypotheses for genome-
wide and phenome-wide interaction analyses. This original Phenome-wide Interaction study (PheWIS) can be applied
further to patients enrolled in randomized clinical trials to establish the relationship between patient’s response to a
particular drug therapy and non-linear combination of variants that might be affecting the outcome.

Keywords: PheWAS,; PheWIS,; genetic interactions; Epistasis; ENCODE,; Roadmap Epigenome,; Pharmacogenomics,
Clinical Trials; Annotations; prior biological knowledge;

1. Introduction

Investigating the precise response of antiretroviral therapies given to patients is an important area of
research. Previous studies have discovered interesting single gene effects as well as genetic
interaction effects associated with response to anti-retroviral medications'” in the AIDS Clinical
Trials Group (ACTG) data (https://actgnetwork.org/). A recently published Phenome-wide association
study (PheWAS)* showed a number of variants associated with a list of 27 highly curated and
transformed (for normal distribution) phenotypes collected in baseline model of AIDS clinical
trials™*. Thus, this unique clinical trials dataset and the analyses performed earlier provide a backbone
for performing epistatic interactions analyses among variants and genes that might be associated with
multiple drug response phenotypes.
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A wealth of data are being generated from speedy advancements in genotyping and
sequencing technologies, thus providing opportunities to investigate not only single gene effects but
also non-linear combined genetic effects of these variants. Genome wide association studies (GWAS)
have been proven to detect many SNPs associated with multiple diseases or traits. These variants
discovered by GWAS can only explain small proportion of genetic risk corresponding to the problem
of “missing heritability””. One conceivable explanation of missing heritability is the existence of
genetic interactions or epistasis’ and the evidence for genetic interactions has been observed in both
humans and model organisms®. Efficient identification of epistatic interactions is also an important
biological problem because unlike GW Astudies, gene-gene interaction studies are not yet fully
equipped to produce reproducible results most importantly due to the combinations of pairwise
models that are generated from each individual study. Additionally, testing for two or multi-way
interactions still remains a challenge due to overhead of computing resources and also due to
correction for false positives for each test performed. Thus, filtration of variants based on prior
biological knowledge is used frequently in the search for epistasis’. Many studies have shown that
filtration of variants based on strong and marginal main effects as determined by the data can be
useful in detecting interactions®. Combining the main effect filtration method along with filtration
based on prior-biological knowledge has also been proven to increase the power to detect epistatic
interactions’ .

The Roadmap Epigenome has provided high-resolution genome wide interaction maps based
on the chromatin accessibility, histone modifications, DNA methylation and mRNA expression across
127 epigenomes'>". These data can be used as a great resource of prior biological information for
filtering variants based on the activity of the genomes as defined by chromatin states'*. Annotations
of variants associated with disease traits from the NHGRI GWAS Catalog'® have shown that 81% of
variants associated with a disease can be annotated into one of the functional regulatory elements
using ENCODE data where functional here refers to any biochemical activity as identified from at
least one of the cell lines from ENCODE '*'*, Roadmap epigenome data is collected from an even
larger list of epigenomes and thus provide an extensive and more detailed map of regulatory activity
of the genome.

In this study, we intended to use this extensive knowledge about regulatory elements as
criteria to filter variants based on their functional activity before performing interaction testing rather
than the more traditional approach of prioritizing variants based on their activity after conducting
analysis. This will reduce the multiple testing burden and increase interpretability. In the remaining
sections, we explain our proposed analytic pipeline for Phenome-wide interaction study (Phe WIS), its
application to the pre-treatment ACTG datasets, and a series of highly significant gene-gene
interactions associated with baseline clinical variables. We show that combination of biological
knowledge and main effect filtering provides a high-throughput, comprehensive pipeline to address
the architecture of complex traits. This method can clearly be applied to patients from on-treatment
imminent clinical trial data to generate hypothesis for epistatic gene-gene interactions that could
influence drug response and treatment design.

2. Materials and Methods

58



Pacific Symposium on Biocomputing 2016

2.1 Genotype and Phenotype data

ACTG data from treatment-naive patients has been previously reported'® . We used the same dataset
as described in the pilot PheWAS conducted on ACTG data that consisted of 27 pre-treatment
laboratory measurements (shown in supplementary table 1 at
ritchielab.psu.edu/publications/supplementary-data/psb-2016/phewis) that have been normalized by
appropriate transformations. From all 27 phenotypes, 26 were used as independent variables and one
phenotype (CD4 T-cell counts) was used as a covariate due to its known confounding effect in HIV
patients®'. This dataset consisted of 2547 genotyped participants which were imputed in three phases
based on a separate immunogenomics project®. Phase I and II were combined together (Discovery
dataset), which consisted of 1366 samples and Phase III consisted of 1181 samples (Replication
dataset) as described in detail in pilot PheWAS®. Supplementary Table 2 Lists the information on
samples used in both the discovery and replication dataset along with the demographic information on
these samples.

2.2 Annotation and Filtration of variants

The pilot PheWAS analysis reported 10,584 variants that replicated at p-value <0.01 with the same
direction of effect across two datasets. We took all of these variants that passed the replication criteria
in the pilot PheWAS and annotated them using Biofilter”. Biofilter is a unified framework that
consists of data from multiple resources such as KEGG, GENCODE, RegulomeDB, etc. We added
Roadmap Epigenome posterior probability data for 25 chromatin states averaged across all 127
epigenomes as a new source to Biofilter. We annotated variants with the help of Biofilter by
specifying the Roadmap Epigenome as the single source to be used to annotate variants in order to
remove any redundancy from similar sources such as RegulomeDB** or HaploReg*’ which also
contain data from ENCODE project'”.

We used the 25-state chromatin models data published on the Roadmap epigenome website
(http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp). The roadmap epigenome
posterior probability raw data is a map of the human genome where the genome is divided into 200
base pair regions (chunks) and thus there are 15,478,375 total numbers of chunks of the genome (for
human genome build 37) for which probabilities for each 25 states are provided. We combined
posterior probabilities from 127 epigenomes (tissues/cell types) in Roadmap Epigenome data by
doing an average across all values to calculate posterior probability of each state for each 200bp
region. State with highest probability was then assigned to each region. Careful investigation of these
data suggested that many consecutive chunks are annotated as the same chromatin states. Thus we
dynamically combined chunks together to yield a larger contiguous region of the genome, thereby
reducing the total number of chunks. In order to combine the consecutive chunks, we used a rule of
80% where the two chunks were combined and annotated as the same state if the probability of the
same state in consecutive chunk is 80% or greater.

To get an estimate of the total number of regions for each chromatin state in a genome-wide
study, we choose to look at approximately SM variants from [llumina Omni5 platform as that is one
of the largest genotyping chips. Table 2 provides an overall estimate of each chromatin state and the
total number of regions combined dynamically for all variants genotyped on Illumina Omni5 chip
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(http://www.illumina.com/products/humanomni5-quad_beadchip kit.html). We picked the Omni5
chip to show a large number of variants that can be covered with their respective chromatin states
from the genotyping chips available. To get a better overview of variants on genotyping chips that are
known to be associated with a disease using NHGRI GWAS catalog'”, we also mapped these variants
on Omni 5 chip to GWAS catalog (accessed May 2014) using Library of Knowledge Integration
(LOKI) database in Biofilter and looked at how all variants in each state are associated with one or
more disease from GWAS catalog. Table 2 also represents the number of times each chromatin state
is represented in the NHGRI GWAS catalog as being associated with a disease.

10,584 variants from the pilot PheWAS were annotated using the same approach described above.
Figure 1 shows the proportion of variants in each of the 25 states. To filter these variants based on the
activity of each region (corresponding to chromatin states), we removed any variants that fell in
Chromatin State 25 (Quiescent/Low State) because as described in Roadmap epigenome,
predominantly most of the inactive regions fall under quiescent state (approximately 40% of inactive
region) and this state is represented on an average in 68% of the genome'’. This annotation followed
by filtration step resulted in 1776 variants that were further considered for association testing.

Table 2. Estimate of chromatin states from Illumina Omni5 genotyping chip and number of chromatin states in variants
mapping to GWAS catalog that are associated with a disease. Here each 200 base pair region of the genome is combined
together dynamically when the next region is represented as same state with at least 80% posterior probability.

S1 Active TSS 6803 18
S2 Promoter Upstream TSS 21901 51
S3 Promoter Downstream TSS 1 22854 65
S4 Promoter Downstream TSS 2 9007 24
S5 Transcribed 5' preferential 90330 175
S6 Strong transcription 42687 102
S7 Transcribed 3' preferential 225664 449
S8 Weak transcription 207773 404
S9 Transcribed Regulatory (Prom/Enh) 15920 47
S10 Transcribed 5' preferential and Enh 15170 40
S11 Transcribed 3' preferential and Enh 9022 25
S12 Transcribed weak Enhancer 19313 46
S13 Active Enhancer 1 7318 23
S14 Active Enhancer 2 6947 24
S15 Active Enhancer Flank 10350 23
S16 Weak Enhancer 1 8878 25
S17 Weak Enhancer 2 18104 44
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S18 Primary H3K27ac possible Enhancer 895 5
S19 Primary DNAase 19959 48
S20 ZNF genes and repeats 9211 11
S21 Heterochromatin 32644 40
S22 Poised Promoter 3808 12
S23 Bivalent Promoter 12285 35
S24 Repressed Polycomb 69906 189
S25 Quiescent/Low 3289868 5565

Figure 1. Distribution of all 25 chromatin states in 10,584 SNPs from the pilot PheWAS study (on left) and the
proportions of variants used in PheWIS (on right)

2.3  Statistical Analysis

To test for pairwise interactions among 1773 annotated variants in both discovery and replication
datasets, all variants were encoded as additive where risk incurred by heterozygous alternate allele is
half the risk incurred by homozygous alternate alleles. We ran linear regression where a reduced
model consisted of main effects of all variants adjusted by covariates and a full model consisted of
main effects and an interaction term for each pairwise SNP-SNP model adjusted by covariates. A
likelihood ratio test was conducted to obtain the significance of the interaction effect above and
beyond the main effect of each variant. Below is the mathematical description for the reduced and full

model:

61

Reduced Model: Y= By + B1 SNP1 + B, SNP2
Full Model: Y= Bo + B1 SNP1 + B, SNP2 + B3 SNP1*SNP2

(1
2




Pacific Symposium on Biocomputing 2016

Likelihood Ratio Test: Full Model — Reduced Model 3)

We used PLATO (http://ritchielab.psu.edu/software/plato-download) to conduct PheWIS in both
discovery and replication datasets where all 26 phenotypes were calculated simultaneously for each
pairwise interaction model. We adjusted the analysis by age, gender, CD4 T-cell count (square root)
and first 5 principal components (to account for genetic ancestry). We also calculated Bonferroni and
FDR based corrected p-values™™*’ for each model tested. Here the models are adjusted for all pairwise
combination of variants and all phenotypes (40,842,828 tests). We ran the regression analyses
separately for discovery and replication datasets and then looked for each pairwise combination of
SNPs associated with the same phenotype to determine if results were replicating across the two
independent datasets.

3. Results

Annotation of all 10,584 variants from the pilot Phe WAS analysis showed that the majority of
variants represent state 25 (S25; Quiescent/Low) as shown in Figure 1.Variants detected from GWAS
are highly enhanced in regulatory regions as illustrated in Table 2 where a large number of variants
are represented in all 25 states but the majority of variants associated with a disease represent the
most inactive state “S25”. Since a large proportion of variants known to be associated from GWA
studies only represent small proportion of genetic risk®® and one of the biggest challenges is in
understanding the role of the majority of these variants®. Therefore, prioritizing variants based on the
affect that they can impose on gene regulation is a crucial step in understanding the associations
between variants and phenotypes. We aimed this study to focus on only variants that are represented
in more active states (with state 1 being the most active and state 25 being the least active) with the
potential for a larger proportion of variance to be explained by these variants. A total of 50,798 SNP-
SNP pair and phenotype results replicate at p-value<0.01. In order to adjust for multiple testing
burden and to reduce false positives, we required replication between the two datasets based on
Bonferroni adjusted p-value and False Discovery Rate (FDR) adjusted p-value®®*”*°. A total of 2,176
results replicate for just one phenotype (fasting glucose) based on Bonferroni based correction and
12,146 results replicated for two phenotypes: fasting glucose and high density lipoprotein (HDL), for
FDR based correction of p-values. We used Biofilter to again annotate the position of these variants
with chromatin states and then further annotate each SNP from SNP-SNP pairs with genes. SNPs are
annotated as genes where the position of a SNP falls within gene boundaries. Therefore, more than
one SNP can be annotated to same genes. Table 3 presented the distribution of variants from
Bonferroni and FDR based results for each of the 24-chromatin states. We also looked at the
expression of top genes in various tissues using GTEx portal’'. For HDL results, we looked for
expression in adipose and liver tissue and for fasting glucose; we looked for expression in the
pancreas.

We also mapped all SNP-SNP pairs to genes using Biofilter. Bonferroni significant results
consisted of 212 unique genes that were mapped to 66 genes and FDR-based significant results
consisted of 690 unique SNPs that represent 245 unique genes. Details of all replicated results can be
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found in supplementary material online (supplementary table 3 and 4 at
ritchielab.psu.edu/publications/supplementary-data/psb-2016/phewis).

Figure 2 represents the top 30 results for fasting glucose that are less than Bonferroni corrected p-
value 0.01. Each SNP-SNP pair and their corresponding genes are shown along with —log10 (p-value)
track for both Discovery and Replication datasets. Interactions among the specific chromatin states
that the SNP falls under are shown on the right side. Six unique gene-gene pairs are also expressed in
the pancreas. Figure 3 shows a circular plot for HDL providing the interaction between the SNPs in
the genes and the states that the SNPs represent. The genes are colored based on the tissue that they
are expressed in. Figure 3 also represents the FDR corrected p-values for each SNP-SNP interaction
pairs. For details on all results that were replicated, please refer to supplementary material online
(supplementary table 3 and 4 at ritchielab.psu.edu/publications/supplementary-data/psb-2016/phewis)

Table 3. Occurrences of Bonferroni and FDR corrected results in all 24 chromatin states

S1 Active TSS 1 4
S2 Promoter Upstream TSS 6 15
S3 Promoter Downstream TSS 1 3 14
S4 Promoter Downstream TSS 2 3 7
S5 Transcribed 5' preferential 33 118
S6 Strong transcription 5 24
S7 Transcribed 3' preferential 38 183
S8 Weak transcription 80 292
S9 Transcribed Regulatory (Prom/Enh) 2 4
S10 Transcribed 5' preferential and Enh 2 10
S11 Transcribed 3' preferential and Enh 6 7
S12 Transcribed weak Enhancer 1 11
S13 Active Enhancer 1 6 12
S14 Active Enhancer 2 0 2
S15 Active Enhancer Flank 2 9
S16 Weak Enhancer 1 1 1
S17 Weak Enhancer 2 0 6
S18 Primary H3K27ac possible Enhancer 1 2
S19 Primary DNAase 2 8
S20 ZNF genes and repeats 2 5
S21 Heterochromatin 7 34
S22 Poised Promoter 0 1
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€ TFigure 2. Synthesis-view plot
(http://visualization.ritchielab.psu.edu/synthesis_views/plot)
illustrating interactions among top 30 SNP-SNP pair for
fasting glucose phenotype. Different color for text
corresponds to the combination of chromatin states that
SNP-SNP pairs are mapped to as represented on the right

axis.
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€ TFigure 3. Circular plot representing
interactions of SNP-SNP pair combined
based on the genes and the chromatin
states represented for HDL phenotype.
Yellow color corresponds to the
expression of gene in adipose tissue, red
color corresponds to expression of gene in
liver tissue and grey color corresponds to
expression on gene in neither adipose nor
liver tissues. Lines show the interactions
between the variants in the genes and
corresponding states. On right, showing a
synthesis view plot where FDR p-values of
both discovery and replication dataset for
each pair SNP-SNP interactions
representing unique gene and chromatin
state is represented. Color for SNP-SNP
pair corresponds to different combinations
of interactions among chromatin states
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4. Discussion

This study presents a pilot Phenome-wide Interaction study (Phe WIS), which is the first of its kind, in
the AIDS Clinical Trials Group data. With the help of statistical methods to detect genetic interactions
associated with one or multiple phenotypes, we showed significant interactions for SNPs mapped to
different chromatin states. The purpose of this study is aimed at mimicking the regulatory genetic
networks by showing how interactions between two different chromatin states impacted by genetic
variants are associated with a trait. In this paper, we used a-priori biological information from
Roadmap Epigenome data to test for variants that represent active chromatin states. Among the top
associations with Bonferroni p-value<0.01 are the interactions between SEHIL gene and RCLI gene
to be associated with fasting glucose. Interactions between these two genes are represented by two
top-most SNP-SNP interaction pair as shown in Figure 2. In these interactions, the three-chromatin
states represented are S3 (Promoter Downstream TSS 1), S5 (Transcribed 5° preferential) and S8
(Weak Transcription), which suggests interactions among transcribed regions that could be of
potential interest. SEH 1L gene participates in the regulation of glucose transport process
(GO:0010827) and functional studies in yeast have shown that growth of yeast on glucose media
requires function RCLI*. PheWIS aims at identifying interactions among variants above and beyond
the main effects of individual variant. Thus, with this approach we are able to identify several known
and novel interactions that could not be identified with PheWAS alone.

The majority of interactions in the FDR corrected results for HDL show interactions among
chromatin state 21 (S21; Heterochromatin) and other states. In Roadmap epigenome data,
heterochromatin state is mostly represented by constitutive heterochromatin and heterochromatin state
is highly tissue specific"”. Since in this analysis, we combined data from all cell lines to represent all
25 chromatin states, nothing can be said about the heterochromatin in adipose or liver cell lines. Thus,
suggesting that in the future, more work would be required to look at these polymorphic regions based
on the tissue that phenotype is affecting or the tissue using which the study samples are collected. For
the HDL PheWIS results, one potential interesting interaction is between ARID1B and PEPD genes.
Peptidase D (PEPD) and ARID1B genes have been known to be associated with HDL* . Both of
these genes are highly expressed in adipose tissue with PEPD being also highly expressed in liver.

There are few limitations in this study. Although after correcting for multiple testing based on
Bonferroni and FDR methods, we identified many statistical interactions associated with two
phenotypes; future research is required to understand these novel interaction associations. Next, all
these results are based on treatment naive patients enrolled in clinical trials, similar analysis in post-
treatment quantitative phenotypes can help explore more associations that are linked to the side-
effects presented by drugs as well as the benefits of the drug given to patients. Our approach is based
on averaging across 127 epigenomes from Roadmap data to annotate regions of the genome. With this
approach, we might have missed useful information on chromatin states that are specific to just one
tissue type. Future studies can be focused on tissue specific annotation approach or a more
comprehensive approach where annotations for an active region can be from any one tissue as well
rather than average across all tissues. Lastly, we only excluded the variants that were mapped to state
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25 from Roadmap epigenome data whereas future studies could also focus on excluding variants that
are under represented in more than one states and only including the variants that map to states which
are over-represented in our data.

5. Conclusions

We present the first phenome-wide SNP-SNP interaction study in a pharmacogenomics dataset.
Though this study is on treatment naive patients, it presents a great framework to look for statistical
epistasis in a large number of phenotypes, which are collected post treatment. Most of the interactions
associated with traits in this study are novel and would require more extensive future work to
understand if any of these associations explain biological processes that are also linked to one or more
phenotypes. Methods such as the one proposed for PheWIS will enable researchers to investigate
more territory in the etiology of complex traits.
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Understanding community structure in networks has received considerable attention in recent years.
Detecting and leveraging community structure holds promise for understanding and potentially in-
tervening with the spread of influence. Network features of this type have important implications in
a number of research areas, including, marketing, social networks, and biology. However, an over-
whelming majority of traditional approaches to community detection cannot readily incorporate
information of node attributes. Integrating structural and attribute information is a major chal-
lenge. We propose a flexible iterative method; inverse regularized Markov Clustering (irMCL), to
network clustering via the manipulation of the transition probability matrix (aka stochastic flow)
corresponding to a graph. Similar to traditional Markov Clustering, irMCL iterates between “ex-
pand” and “inflate” operations, which aim to strengthen the intra-cluster flow, while weakening the
inter-cluster flow. Attribute information is directly incorporated into the iterative method through
a sigmoid (logistic function) that naturally dampens attribute influence that is contradictory to the
stochastic flow through the network. We demonstrate advantages and the flexibility of our approach
using simulations and real data. We highlight an application that integrates breast cancer gene ex-
pression data set and a functional network defined via KEGG pathways reveal significant modules
for survival.

Keywords: KEGG pathways, logistic regression, community detection, Markov clustering, omics,
survival

1. Introduction

Community structure occurs when nodes exhibit a high-degree of connectivity to each other,
and a lower degree of connectivity to other groups and nodes in the network.!? The community
detection problem has been studied extensively in Social Network Analysis (SNA). In the
areas of bioinformatics and computational biology, the problem is also referred to as module
detection or graph clustering.?4

In a general sense, the community detection problem can be viewed as the clustering of
a network. Classical graph clustering methods inlcude Kernighan-Lin algorithm,® hierarchical
clustering methods,® spectral clustering,”® Newman and Girvan algorithm,”!? and modularity-
based algorithms comprise an important class of community detection methods.''"? Classical
approaches to community detection cannot readily incorporate information of node attributes
and rely solely on network structures. The simultaneous use of attribute and connectivity
information can yield more accurate results and can be leveraged in downstream analysis
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for prediction under attribute or network perturbations. Hanisch et al. derive the distance
matrix by combining the structural and gene profiles distances, but require prior domain
knowledge.'* Zhou et al. represent attributes as additional nodes.'® In this setting, attributes
are restricted to discrete values, and consequently the size and complexity of the graph grows,
and requires accounting of the different types nodes and edges.'¢ Instead of graph partitioning,
the algorithms of CoPaM!” and DME'® introduces a problem of identifying cohesive patterns or
subnetworks satisfying a density threshold and cohesive constraints.

We have developed a novel community detection method that rely on stochastic flow in
networks. Leveraging robust statistical classification methods, we bridge and simultaneously
model the attribute and structural space. The methods that we propose are highly general-
izable and flexible in their implementation. We showcase their flexibility through simulation
and application that integrates breast cancer gene expression data set with KEGG ontologies
and survival data.

2. Materials and Methods

Briefly, we begin by outlining Markov CLustering (MCL) and regularized Markov CLustering
(rMCL) frameworks, which set the foundation of our approaches.'®2° MCL is based on the
notion that if a group of nodes belongs to the same community, then the stochastic flow from
these nodes will be concentrated towards nodes in that community.!® Performing random
walks on a graph may reveal where flows gather, which suggests potential communities. In
this setting, our focus is on undirected graphs, which have a symmetric adjacency matrix and
have edge interpretations of association (not causation).

MCL algorithms depend on the iteration between two operators expand and inflate, until
convergence, in order to identify communities in the network. Markov clustering utilizes a
stochastic matrix that is initially derived from the adjacency matrix, A4 € R™™ of the
graph. The stochastic matrix is defined as the matrix product, M = Ay - D™, where Ay =
Aug; + 1, and D € R™" is the diagonal matrix containing the degree information for each
node, D(k,k) = diag (3. ; A(i,k)). The operations in MCL and rMCL utilize the stochastic
matrix, M, which has columns that can be interpreted as transition probabilities. In the classic
MCL, the expand step at the j 4 1* iteration requires a matrix product M;,q = M; - M.

The inflate operator, Mﬁ{ = Inflate(Mj;1,r), can be understood as the component-wise

exponentiation m(i, j)", Vi,j7 = 1,...,n, where the inflation operator, r, is a constant. Following
inflation, M]”}r{ is converted to a stochastic matrix, M;;,, and a new iteration is started.

Importantly, the expand operator alone would give rise to a Markov Chain via a random walk
on the graph. However, due to the inflation operator the process cannot be regarded as a
Markov Chain. Inflation is critical to accentuate strong ties and paths, and deemphasize weak
ones. The inflation constant, r, controls the degree at which this strengthening and weakening
is enforced, and has a direct impact on the cluster formation. Upon convergence of MCL to
steady-state, the stochastic matrix can be understood in terms of attractors. The matrix is
sparse, and the attractors have at least one positive value in their row. The indices of these
positive values, together with the attractor, form the community.

A regularized version of Markov Clustering, rMCL, was proposed and has been shown
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to overcome some fragmentation issues in the communities. The rMCL algorithm follows the
same iterative approach, with an ezpand step that is replaced by a reqularization operation,
Mj1 = M; - My, where M is the initial stochastic matrix formed from the network adjacency
matrix.?’ The regularize step ensures that the original structural information is still utilized
for the graph clustering process after the first iteration. Unfortunately, the regularized MCL
does not naturally converge to a steady state with the same desirable interpretations in terms
of community membership. In order to achieve this, at each iteration, a prune step is added
that forces some smaller entries of the stochastic matrix to zero using a heuristic threshold.
The pruning aims to eliminate entries that are small relative to other entries in the matrix.2°

2.1. inverse regularized Markov Clustering (irMCL)

We propose a flexible method, inverse regularized Markov CLustering (irMCL), which utilizes
the expand and inflate operators, but relies on an alternative concept of community that
emphasizes the spreading of influence or information in a non-exclusive manner. Our approach
relies on the following modeling assumptions:

(A1) Spreading of information/influence from Node i to Node j will not affect that
from Node i to other nodes, k # j.

(A2) Nodes in the same community are influenced or share information from similar
group of nodes.

(A3) Nodes with larger degrees tend to be more influential.

(A4) If an individual is highly influenced by a group of nodes, such influence tends to
be self-amplified.

(A5) Spread of information between nodes with similar attributes is easier, and thus
should be a function of the attributes similarity measures between nodes.

In this model, the community membership of a node is measured by information that flows
into the nodes, as opposed to MCL and rMCL, where a feature is the stochastic flow that
exits this node. Accordingly, we term this procedure “inverse regularized Markov Clustering”
(irMCL). These assumptions naturally give higher weights to nodes in the network with high
degrees and naturally incorporate attribute information in a flexible manner. Similar to MCL,
we denote Aqqg € R™™ as the adjacency matrix of graph G. We define a symmetric spread
matriz as: A = Aqq; + I, which defines the graph with the addition of self loops.

Algorithm 1 shows the full details of the irMCL approach. At each iteration, the initial
spread matrix used to regularize. Repeated use of the spread matrix naturally puts more
weight on the high degree nodes in the network (A3), and is unique to our approach. The
same inflation operator as in MCL is used according to assumption (A4). Convergence is
tracked empirically by examining the mean squared difference as the difference between M;
and M;_q, defined as > ;" | > (mfi) — mgi_l)f /n, where mfi) is the entry of M;.

The output of this iterative method is a stochastic matrix, where the rows with high
similarity are likely to belong to the same community. In our applications, we utilize complete
linkage, and estimate the similarity using a euclidean distance. Silhouette plots are utilized
for the determination of the number of clusters via average silhouette width.?!
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Algorithm 2.1 Feature derivation for inverse Regularized Markov Clustering (iIRMCL)
Initialize:
Aag; € R Adjacency Matrix
Ao = Apgj + 1
for k=1 tondo
Do (k, k) = diag (3_;—, Ao (i, k))
end for
set: r>1

Repeat until stopping criteria is met
for j =1 tom do
Mj «— Mj—l . AO
M = Inflate(M;, r)
for k =1 tondo _
Dj(k,k) = diag (37—, M (i, k))
end for
]% — Mjinﬁ . D;l
end for

Output: M; for row clustering

2.2. attribute inverse regularized Markov Clustering (airMCL)

The irMCL algorithm is based solely on network connectivity. We propose a natural extension
for clustering of networks that contain nodes with heterogenous attributes. In this setting,
we use the term attribute to loosely to define features of the nodes. In the biological con-
text, this could include, for example, a measurement of a phenotype, gene expression, or
demographic information. The term heterogenous is used to describe the set of attributes de-
fined on the network, which can be continuous or categorical. We call this method attribute
inverse regularized Markov CLustering (airMCL), because it connects the inverse regularized
Markov Clustering (irMCL) approach with statistical classification methods, for the purpose
of community detection in attributed networks.

The link between irMCL and is achieved through use of multiple logistic regression, in
which the attribute information is regressed on the vectorized structure of the network.??
This approach gives rise to probabilistic estimate of association between network structure
and attributes directly, which is embedded into the weights for edges in the spread matrix
for Algorithm 1. Specifically, airMCL relies on vectorized versions of distance matrices, which
reflect the similarity (or lack thereof) between individuals for an attribute or set of attributes.
The distance matrix, D € R"™ " is symmetric, and the entries d(i,j) = d(j,i) convey the
similarity between nodes i and j for a given set of attributes. Consequently, vectorizing the
strict upper triangular portion (not including the diagonal) of these matrices maps the pairwise
information between nodes and attributes into a vectorized space. This set of vectors forms
the set of predictors for the logistic regression modeling.

More formally, let Z; be the vectorized strict upper triangular regions Dy, in the same way
as the vectorization of A,q;. The logistic model is defined as:

PrY =12 P
log <1 — P(r(Y :‘1\)Z)> = o + ;5kzk, (1)
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where [y is an intercept term, and f;...53, are the regression coefficients for the vector-
ized attributes. The left hand side of Equation 1 is the log-odds ratio. We can directly
estimate the odds ratio using the estimated coefficients 3 for each pairwise-relationship:
w = exp (Zizl ﬁka) , which is embedded into the weights for edges in the spread matrix
for Algorithm 1.

Implementations tMCL and airMCL are performed in the R programming language
(https://www.r-project.org/). A library airMCL that implements these algorithms will be
made available in the CRAN repository upon publication.

2.3. Swimulations
We examine the performance irMCL and airMCL using a variety of network simulations
following the general framework proposed by Girvan and Newman.? In our simulations, we
consider networks containing 128 nodes that are divided into four communities of 32 nodes
each. Vertices are connected independently and randomly with a probability P, for those
within the same community, and P, for vertices in different communities (P, < P;,). The
probabilities are selected such that the average degree of a vertex is 16. The expected number
of links to a vertex in a different community is defined as z,,;, while the expected number of
links to a vertex in the same community is defined as z;,. Note that the community structure
is less defined (weak) when z,,; is larger.

Within simulations of different connectivity patterns, we examined single continuous and
categorical attributes, as well as their combination. Categorical attributes in the ith group
were generated from a multinomial distribution:

P, T =1
P =) 1%, v € {1,2,3,4}/i
The values of p were set to 0.9, 0.6, 0.3 to mimic strong, moderate, and weak associations to
the network structure, respectively. Note that when p takes large value (0.9), the attribute
X is highly homogeneous within communities. When p is small, however, it implies X has
high variability within each group, and will be less informative for the purpose of community
detection.

A normal distribution, N(u;,1), was used for continuous attributes of group . The differ-
ence between means of consecutive groups Au = ;1 — p; was set at 4, 2, or 0.5, to convey
strong, moderate, and weak levels of association, respectively, between structural and attribute
information. Within the simulation framework, we also set out to determine how sensitive our
methods are to noise in network in the form of missing links. For each scenario, we performed
community detection on the full network, and networks with up to 30% of their links missing
at random. We compared our methods, airMCL and irMCL , with rtMCL and a fast-greedy
method.! We also examined an irMCL-adhoc method, which can be only applied to networks
with single categorical attribute. In this setting, irMCL-adhoc assigns a fixed weight of 0.5
when the two nodes have different attribute values, regardless of the structural relevance.

Mixed attributes were also explored for different combinations of continuous and cate-
gorical levels of association. The mixed attribute simulations described previously were also
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carried out to explore performance for networks varying from well defined communities (small
Zout) to poorly defined communities (large zout). The clustering by attribute information alone
is also performed. For continuous attributes, Euclidean distance and hierarchical clustering
with complete linkage is used. For categorical attribute, the attribute value is directly used as
cluster label. For combination of two heterogeneous attributes, the larger average performance
between continuous and categorical is used, because they cannot be combined for clustering.

Performance is assessed using the Adjusted Rand Index (ARI) as a measure of agreement
between two data clusterings.?324 Let S be a set of n elements and consider two partitions of S
to compare, X = {X1,...,X,} € Sand Y = {Y,...,Y;} € S. The ARI assumes the generalized
hypergeometric distribution as the model of randomness, where the two partitions are picked
at random such that the number of classes and clusters are fixed.?* Specifically, letting n;;
denote the number of objects in common between X; and Y; and a; = 37, nij, and b = 37, nyj,
the ARI is defined as:**

2y () =5 ()% GG
3135 (5) + 355 (3] - 12 (5) 25 (3)1/6)
For each parameter setting, 100 simulated networks are tested and the standard error is cal-
culated.

ARI =

2.4. Application to functional genomics

We applied the airMCL method to a breast cancer microarray dataset by Van Der Vijver et
al.?> The data was obtained from the package seventyGenesData available in Bioconductor
(https://www.bioconductor.org/). Our objective was to infer communities using airMCL and
identify those which relate to survival. Briefly, the data consists of 295 tumor samples from
a 295 women with breast cancer. Survival data was also made available for all each patient
in this population. The duration for survival analysis in this study is Time To Metastasis
(TTM). In this study, 101 metastasis events occurred and 194 censored data points.

The input to airMCL requires specification of an adjacency matrix for a corresponding
network and a set of attributes. In our application, we define the network using the KEGG
database.?6 The 24,496 transcripts in the dataset were mapped to KEGG pathways using
Entrez gene identifiers with the Bioconductor annotation package KEGG.db. In order to obtain
a 1: 1 mapping, when several transcripts mapped to a gene, the one with the most variation
across the sample was retained for the modeling. After mapping, the data set consisted of
295 samples and 4,715 genes that represent nodes in the network. Transcript abundance was
represented by the logl0 of the ratio between each sample and the reference RNA.25 The
adjacency matrix (input) was determined through an pathway-based gene network that was
formed by placing links between genes when they are present in the same KEGG pathway.
The functional network consists of 4,715 nodes (genes) and 883,557 edges.

Node attributes for the airMCL are defined through a measure of dissimilarity of the gene
expression data. Several dissimilarity options are feasible and we expand on this point in the
discussion. The dissimilarity measure is defined as d;; = 1 — |r;;|, where r; ; is the Pearson
correlation coefficient between the ith and jth genes. Logistic regression models are fit using
the vectorized pairwise dissimilarity on edges (1 linked, 0 for unlinked pairs) as the predictor,
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and the vectorized adjacency matrix as the response variable. However, the gene network
has 4,715 nodes, implying more than 11 million observations in the regression. Moreover, the
sparsity of the network gives rise a severe class imbalance. To alleviate the computational
complexity and address imbalance, we randomly selected the unlinked node pairs so as to
have the same number as that of the edges.

Survival analysis is performed on TTM using a Cox proportional hazard model.?” Ben-
jamini and Hochberg method was used to control the false discovery rate.?® A threshold of
P-value< 0.05 was used to identify modules whose overall expression levels are significantly
associated with the time to metastasis. Kaplan-Meier estimates were calculated for each sig-
nificant module based on stratification of the 295 patients into two groups, using the median
overall expression levels of the module. Specifically, wy; = m% Y ic., zik, where wy; is the average
expression level of Ith module for kth patient, ¢; is the set of node index of ith module, and
m; 18 the number of nodes in this module.

3. Results

Each simulation was run to convergence. Some general trends persisted for the different pa-
rameter and attribute simulations (Figure 1). The overall performance of rMCL was poor,
but relatively stable across missing links and different levels of association between structure
and attribute. This was the case for categorical, continuous, and mixed attribute settings.
When the attribute associations are moderate and weak, fast-greedy shows advantages over
the other methods when the missing links is larger (Figure 1B-C,E-F).

When a categorical attribute is highly relevant to true groups (p = 0.9), the inclusion of
attribute information significantly improved the performance (Figure 1A). In this case, the
airMCL and post-hoc weighting were both useful in boosting performance. The performance
for post-hoc weighting degrades as the attribute association weakens (Figures 1B-C). For con-
tinuous attributes, the airMCL is superior for strong associations across all levels of missing
links (Figure 1D), and is the top-performer for moderate association with fewer missing links
(Figure 1E). When the associations are weak for continuous attributes, airMCL is competi-
tive with irMCL for scenarios with few missing links (Figure 1F). In simulations with multiple
heterogeneous attributes (Figure 2G-I), the airMCL successfully extracts the structurally rel-
evant information and improves the performance over clustering using structural information
only (irMCL).

Tuning the parameter z,, in the simulations enables us to test the performance of our
approaches in scenarios where the communities are not well defined. The performance of
irMCL is comparable to fast greedy algorithm, and actually slightly outperforms fast-greedy
under z,,; ranges from 1 to 6 (Figure 2A-C). In our simulations, large z,,: represents networks
in which there is poor community structure. The airMCL’s use of attributes offsets this poor
structure and is the top-performing method in these extreme scenarios.

We applied the airMCL method to a breast cancer dataset using a KEGG pathway-based
network and gene expression attributes.?® A correlation-based similarity was utilized for the
attributes, and the estimated coefficient for the logistic regression was —0.7624 and significant.
Convergence was observed 15 iterations. The clustering of the rows of the stochastic matrix was
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Performance on Simulated Data
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Fig. 1. Simulation results for community detection for a categorical attribute (top row), continuous attribute
(second row), and a mixture of a continuous and categorical attributes (third row). Relationships between
categorical attributes and community structure were simulated to be (A) strong, (B) moderate, and (C)
weak, respectively. Likewise, for continuous attributes (D-F). For the mixed attribute simulation the cat-
egorical /continuous relationships between attribute and structure considered were (G) strong/strong, (H)
strong/weak, and (I) weak/strong.

determined using the maximum average silhouette, which was 0.85, and yielded 434 clusters.
Note that the rule of thumb for strong structure is an average silhouette between 0.71 — 1.2

Only modules with size > 8 were selected for survival analysis, and the overall activation
status of each module was used for the covariate (see M&M) for predicting TTM. Cox pro-
portional hazard model was used and a multiple testing adjustment was made. A threshold
criteria of P-value< 0.05, both methods yields six modules whose overall expression levels
are significantly associated with the time to metastasis. Table 1 shows the summary of mod-
ules detected and a full listing of module members is available in the Supplement (posted
on https://sphhp.buffalo.edu/biostatistics /news-events/workshops/). The adjusted p-values
in Table 1 are from Cox regression.

In order to utilize the Kaplan-Meier product limit estimator, for each of the six modules,
the 295 patients were split into two groups (low-expression and high-expression) using the
median of overall expression levels as cut-off. The survival curves are shown in Figure 3. Log-
rank tests were used to test the difference between survival curves of high- and low-expression
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Performance for varying strength of community structure
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Fig. 2. Comparison of the performance of airMCL/irMCL (with/without attributes) with rMCL and fast
greedy method in synthetic networks using adjusted Rand index against z,,:. The attributes are mixed, which
include attributes with (A) high-relevance categorical (p = 0.9) and high-relevance continuous (Ap = 4),
(B) high-relevance categorical (p = 0.9) and weak-relevance continuous (Ap = 0.5), and (C) weak-relevance
categorical (p = 0.3) and high-relevance continuous (Au = 4). The horizontal black dashed line indicating the
average ARI using attribute information alone.

Table 1: Breast Cancer Module Summarization

Module Size Pathways represented P-value
1 8 Hedgehog signaling pathway (hsa04340) 0.02195
2 27  Pathway in cancers (hsa05200) 0.02195

MAPK signaling pathway (hsa04010)
Adherens junction (hsa04520)
Regulation of actin cytoskeleton (hsa04810)
Melanoma (hsa05218)
Prostate cancer(hsa05215)
Oocyte meiosis (hsa04114)
82 Ribosome pathway (hsa03010) 0.02195
4 25 Cell cycle pathway (hsa04110) 0.02195
Non-homologous end-joining (hsa03450)
5 19 Pathway in cancers (hsa05200) 0.03541
Mismatch repair (hsa03430)
Colorectal cancer (hsa05210)
Small cell lung cancer (hsa05222)
Pancreatic cancer (hsa05212)
Thyroid cancer (hsa05216)
6 35 Proteosome pathway (hsa03050) 0.03614

w

groups. The unadjusted p-values of log-rank tests are shown in Figure 3.

4. Discussion

The design of airMCL is such that the impact of the attributes on community formation
depends on the strength of the association between attributes and network structure. Conse-
quently, those weak associations are naturally dampened. Our approach is similar to spirit to
the weighting that is done in neural network via an activation function (usually a sigmoid),
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Survival Plots for Significant Modules
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Fig. 3. (A-F) Kaplan-Meier survival plots for modules 1 — 6. Estimate is based on the partition of the sample
into two groups using median values of overall expression for each module (see methods). Red indicates higher
expression, blue is for lower expression, and the unadjusted P-values for the log-rank tests are shown.

which weights the features in the input layer. In severely weak settings, the airMCL operates
like the irMCL. A challenge attribute information may be irrelevant, or even contradict, the
structure of the network. In our simulations, bringing in attribute with weak signals did not
derail performance (Figure 1C,F,G-I). This is important as it is not up to the user to specify
what attributes are important by weighting, or even eliminating them. In contrast, in the
categorical case, we observed with the ad-hoc weighting can derail performance, especially in
light of weak attribute associations (Figure 1C).

The fit of the logistic model itself reveals the strength of the relationship between attribute
similarity network structure. Examining the regression coefficients (Equation 1) of the model
can guide in model development, e.g., choice of similarity, subsets of features. For example,
hypothesis testing on the coeflicients (e.g., Hy : 8; = 0) can reveal the significance of the
attribute similarity as a predictor of structure. We have found this useful as a way of selecting
a similarity measure for the attributes.

An important feature of the airMCL approach is that the derived inputs for the logistic
regression can be handled in a flexible manner. If the set of attributes is heterogenous, one can
partition the attributes into multiple subsets, and estimate distance matrices over these subsets
independently. This approach enables a unique choice of similarity measure most appropriate
for the given attribute or set of attributes. Differences in scales, even within variables of the
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same type, can also be managed by subsetting attributes. Collectively, the vectorization of
the different distances would give rise to multiple predictors for the logistic regression.

In the breast cancer application, some of the identified pathways are consistent with that
reported by Van't Veer et al.,? such as pathways in cell cycle regulation (Module 4) and signal
transduction (Module 2). In addition, we also found that ribosome pathway is associated with
breast cancer metastasis. This is consistent with the results reported by Belin et al., that
dysregulation of ribosome biogenesis is related to enhanced tumor aggressivity.?? Activation
of hedgehog pathway is also reported in tumors including breast cancers,3%3? and is related to
cancer metastasis.®® Figure 3 shows that module over-expression (red) is often associated with
higher hazards of metastasis. The up-regulation of Module 1 (hedgehog signaling pathway)
is unexpectedly associated with better prognosis. This can be explained by the fact that up-
regulated genes in this module encode inhibitors in this pathway (GAS1, RAB23, and CK1 ),
which is biologically plausible.

In our simulations, we have simulated balanced communities of moderate size. However,
we have also observed good performance, in terms of computational time and accuracy, in the
simulation of balanced larger communities. In the case of unbalanced communities, we have
achieved good performance in moderate sized simulation networks and real social networks.
However, a limitation of our approach is applications to large (1000+ nodes) unbalanced
networks. Addressing this form of scalability will be a direction of future research.

We have focussed on a specific application to gene expression cancer data to showcase our
method. However, the airMCL is generalizable in the sense that it can be used in connection
with data that contains a network structure and a set of attributes. The term attribute can be
loosely defined to encompass demographic information, clinical data, omics data, and combi-
nations of different types of data. The combination of multiple sources of data is known to be
a major challenge, and our approach directly integrates them into the community detection.
Framing the problem of relating the attributes to the structure via classification has several
advantages. Arguably the most important of these advantages is the ability to monitor and
quantify loss. Framing the connection between structure and attributes as a supervised learn-
ing problem enables the use of statistical classification methods. In this work, we outlined the
framework in terms of the classic multiple logistic regression model.?? However, several classi-
fication methods may be more or less suitable depending on the dimension of the graph and
attributes, and also the correlation of predictors. Within the classification methods framework
are opportunities to utilize the bias-variance tradeoff for model and feature selection. This is
a direction of future research, which we anticipate will guide in elimination of extraneous
attributes (and potentially nodes), and protect against overfitting.
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Interactions between drugs, drug targets or diseases can be predicted on the basis of molecular, clinical and ge-
nomic features by, for example, exploiting similarity of disease pathways, chemical structures, activities across cell
lines or clinical manifestations of diseases. A successful way to better understand complex interactions in biomed-
ical systems is to employ collective relational learning approaches that can jointly model diverse relationships
present in multiplex data. We propose a novel collective pairwise classification approach for multi-way data analy-
sis. Our model leverages the superiority of latent factor models and classifies relationships in a large relational data
domain using a pairwise ranking loss. In contrast to current approaches, our method estimates probabilities, such
that probabilities for existing relationships are higher than for assumed-to-be-negative relationships. Although our
method bears correspondence with the maximization of non-differentiable area under the ROC curve, we were able
to design a learning algorithm that scales well on multi-relational data encoding interactions between thousands of
entities. We use the new method to infer relationships from multiplex drug data and to predict connections between
clinical manifestations of diseases and their underlying molecular signatures. Our method achieves promising pre-
dictive performance when compared to state-of-the-art alternative approaches and can make “category-jumping”
predictions about diseases from genomic and clinical data generated far outside the molecular context.

Keywords: Collective classification, multi-relational learning, three-way model, drug-drug interactions,
drug-target interactions, symptoms-disease network, gene-disease network

1. Introduction

Collective relational learning is concerned with data domains where entities like drugs, diseases and
genes are interconnected through multiple relations, such as drug-drug and drug-target interactions or
disease comorbidity.'* Since these approaches promote leaps across different data contexts, they are
particularly well suited to model large-scale heterogeneous collections of biomedical data and have
proven especially attractive for estimating binary relations, such as drug-drug interactions. These ap-
proaches take advantage of the relational effects in the data by relying on relationships within one set of
entities when estimating relationships for the other entity set. For example, when predicting drug-target
interactions relational approaches can consider the fact that drugs with similar pharmacological effects
are likely to interact with proteins with similar genomic sequences.!>>~7 Another example is mining of
disease data, where relational approaches can benefit from observation that diseases caused by dysregu-
lation of related pathways are likely to have similar clinical manifestation and show sensitivity to similar
chemical compounds.?

State-of-the-art collective relational learning methods rely on latent factor modeling and typically
measure the fit of the models to the data through a regression metric, such as the root mean-squared
error, one-sided linear error or square penalty.>312 The use of this metric in the search for best model

81



Pacific Symposium on Biocomputing 2016

parameters is especially appealing due to the well explored theory with many statistical guarantees about
the quality of least-squares solutions, efficient procedures for model estimation, and, in some cases, even
the ability to find the optimal estimates. However, it is now widely recognized that approaches optimizing
the error rate, such as the root mean-squared error, can perform poorly with respect to ranking of the
relationships.'®!# This situation gets exacerbated in practice where life scientists focus their attention on
only a small number of predicted relationships between entities, effectively ignoring all but a short list of
most promising predicted relationships. For this reason, it is better to focus on correct prediction of small
but highly likely set of relations than on accurately predicting all, even the irrelevant relationships.'”

The predictive task we need to address is ranking where the aim is to rank the relationships according
to their relevance. At first it may appear that learning a good regression model is sufficient for this task,
as a model that achieves perfect regression will also give perfect ranking. However, a model with near-
perfect regression performance may have arbitrarily poor ranking performance. The vice versa also holds
true: a perfect ranking model may give very poor regression estimates.!'® The development of prediction
models that optimize for a ranking metric and can accommodate heterogeneous biomedical relations is
therefore a crucial step towards accurate identification of the most promising relationships.

Taking insights from the research reviewed above, we propose a general statistical method that can
estimate relationships between entities, e.g., drugs and diseases, from multi-way data, e.g., drug-drug
interactions and shared human disease symptoms. Our proposed method uses pairwise classification
scheme to directly optimize a ranking metric. It estimates a latent data model, which serves to make
predictions about pairwise entity relationships. The contributions in this work are:

e We present a generic collective pairwise classification (COPACAR) model for multi-way data analy-
sis.* We derive COPACAR model from the maximum posterior estimator for optimal collective pairwise
classification on multi-relational data. We show the analogies between COPACAR and the maximiza-
tion of area under the ROC curve.

e For minimizing the loss function of COPACAR, we propose a learning algorithm that is based on
stochastic gradient descent with bootstrap sampling of training triplets. The in silico experimental
results show that our algorithm has favorable convergence results w.r.t. the number of required al-
gorithm iterations and the size of subsampled data. COPACAR can be easily parallelized, which can
further increase its scalability.

e We show how to apply COPACAR to two challenges arising in personalized medicine. In studies on
multi-way disease and drug data we demonstrate that our method is capable of making category-
jumping inferences,"” i.e. it can make predictions within and across informational contexts.

e Our experiments show that for the task of collective learning on multi-relational disease and drug data,
learning a model with COPACAR outperforms approaches based on tensors and their decompositions.

Below we first overview related approaches for multi-relational learning and tensor decomposition.
We then formulate a novel collective pairwise classification model and discuss the model fitting proce-
dure. We present two case studies where we (1) investigate the connections between clinical manifesta-
tions of diseases and their molecular interactions, and (2) study the interactions between drugs based on
drug-drug and drug-target relationships, structural similarities of the compounds, known pharmacologi-
cal effects and interaction information extracted from the literature.

2. Related Work

Collective learning'' is an umbrella term for the mechanisms that exploit information, such as that on
related classes, additional attributes or relationships between related entities, to support various learning

4The online repository http://github.com/marinkaz/copacar includes the data and the source code used in this paper as well as
additional material for experiments in a non-biological domain.
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tasks on multi-relational data, like classification, link prediction in networks and association mining. The
literature on relational learning is vast, hence we only give a very brief overview.

Relational learning approaches'® assume that relations between entities arise from the interactions
between intrinsic latent attributes of these entities.'® Until recently, these approaches focused mostly on
modeling a single relation as opposed to trying to consider a collection of similar relations. However,
recently made observations that relations can be highly similar or related®!%-'>!° suggested that super-
imposing models learned independently for each relation would be ineffective, especially because the
relationships observed for each relation can be extremely sparse. We here approach this challenge by
proposing a collective learning approach that jointly models many data relations.

Probabilistic modeling approaches for relational (network) data often translate into learning an em-
bedding of the entities into a low-dimensional manifold. Algebraically, this corresponds to a factorization
of an appropriately defined data matrix.®> A natural extension to modeling of many relations is to stack
data matrices and regard them as a tensor.!%!!-20 Another extension to simultaneously learning many re-
lations is to share a common embedding or the entities across different relations via collective matrix
factorization.®?' An extensive review of tensor decompositions and other relational learning approaches
can be found in Nickel et al."®

Several clustering-based approaches have been proposed for multi-relational learning. These include
classical stochastic blockmodels, which associate a latent class to each entity in a domain; mixed member-
ship stochastic blockmodels, which allow entities to have a mixed clusters membership;?? non-parametric
Bayesian models, which automatically infer the number of latent clusters;*?* and neural network archi-
tectures, which embed symbolic data representations into a flexible continuous vector space.?* Many
network modeling approaches?>?’ try to detect local dependencies among the entities, i.e. nodes, and
accordingly group the nodes from a multiplex network into densely interconnected groups.

Unlike clustering-based approaches, COPACAR has classification capabilities, which come from
model inference based on a pairwise ranking loss. Furthermore, COPACAR uses a factorized model to
estimate interactions between entities, so that we can apply our approach to large data domains. Our
approach also differs from the matrix factorization approach in terms of estimation method: while matrix
factorization models rely on likelihood training, we explicitly try to make the probability for existing
relationships to be larger than for assumed-to-be-negative relationships.

3. Relational Data Modeling

We consider relational data consisting of triplets where each triplet encodes a relationship between two
entities that we call the subject and the object. A triplet (E;, R¥), E;) indicates that relation R*) holds

between subject £; and object E;. We represent a triplet as a matrix element Xz(f)

encodes relation R(*). We model dyadic multi-relational data as a three-way tensor where two modes are
identically formed by the concatenated entities and the third dimension corresponds to the relations.

Fig. 1 illustrates our modeling method. We assume the data is given as a collection of m partially
observed matrices each of size n x n, where n is the number of entities and m is the number of relationsP.
A matrix element ng) = 1 denotes existence of a relationship (E;, R*), E;). Otherwise, for non-existing
relationships, the associated matrix elements are set to zero. Unknown relationships can have a desig-
nated value so that they are ignored during model estimation.

We refer to a triplet also as a relationship. A typical example, which we discuss in greater detail in
the following sections, is in pharmacogenomics, where a triplet (F;, R("), E;) might correspond to the
interaction between drug i and drug j, and a triplet (E;, R®), E;) might represent the association of drug
i and drug j through a shared target protein. The goal is to learn a single model of all relations, which can

, where matrix X*)

®Note that unlike established techniques in multi-relational modeling,'" our model does not need a homogeneous data domain.
That is, entities of the first two modes can each be of different type, such as drugs, patients, diseases, etc.
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Fig. 1. A multi-relational data model for collective learning. F1, ..., E,, denote the entities, while XM . X™) encode

the relations in the domain.

reliably predict unseen triplets. For example, one might be interested in finding the most likely relation
R®*) for a given subject-object pair (E;, E;). Or, given a relation R*), one might like to know the most
likely relationships (E;, R*%), E;).

4. Model Description and Theoretical Aspects

Next, we formulate a generic method for collective pairwise classification on multi-relational data. It
consists of the optimization criterion, which we derive by Bayesian analysis using the likelihood function
for the pairwise ranking and the prior probability for model parameters. We also highlight the analogy
between our model and the well known ranking statistic.

We begin with the intuition that a desirable collective learning model, which aims to identify the
most relevant relationships in multi-relational data, should exhibit the property illustrated in Fig. 1 (right,
bottom). The model should aim to rank the relationships rather than to score the individual relationships
as ranking better represents learning tasks to which these models are applied in life and biomedical
sciences. We later demonstrate that accounting for this property is important.

However, a common theme of many multi-relational models is that all the relationships a given model
should predict in the future are presented to the learning algorithm as non-existing (negative) relation-
ships during training. The algorithm then fits a model to the data and optimizes for scoring of single
relationships with respect to a least-squares type objective®®11:21:23.28 (Fig. 1, right, top). This means the
model is optimized to predict the value 1 for the existing relationships and O for the rest. In contrast, we
here consider relationship pairs as training data and optimize for correctly ranking relationship pairs.

4.1. Collective Pairwise Classification Model for Multi-Way Data (COPACAR)

To find the correct pairwise ranking of the relationships for all entity pairs and all relations in the domain
we would like to maximize the following posterior probability:

p(XP)| >p) o p(>5, [XP)p(X®)), (1)

where )A((’“), k = 1,2,...m, denote the latent data model. Here, the notation >, indicates the relational
structure for kth relation. For now, we assume that all relations act independently of each other; we will
later discuss how to achieve category-jumping between the considered relations. We also assume the
ordering of each relationship pair ((E;, R*®), E;), (E,, R*), E})) is independent of the ordering of every
other relationship pair. Hence, we rewrite the above relation-specific likelihood function p(> DA((’“)) as
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a product of single densities and then combine it for all relations £ = 1,2, ..., m as:
= (k) (k) < < (k) (k)
Hp(>k ‘X(k) H H p >k X( )) (X3; >ngn)(1 - p(XgC) >k Xél;rl))a(x” FeX, )? (2)
k k 4,7,9,h

where J is the indicator function, d(x) is 1 if x is true and is 0 otherwise. Assuming that the properties of
a proper pairwise ranking scheme hold, we can further simplify the expression from Eq. (2) into:

[TpGe 1X®) =TT TT pXE > X{))oees>xa, 3)
k

k i,5,9,h

So far it not guaranteed that the model produces a total ordering of the relationships in each rela-
tion. To achieve this we need to satisfy the requirements for a total ordering. We do so by defining the
probability that relationship (E;, R*), E;) is more relevant than relationship (E,, R*¥), E}) as:

p(X) >, Xy 20X - X)), )

)
where o(+) is the logistic function, o(z) = 1/(1 4 exp(—x)).

Until now we delegated the task of modeling the relationship (E;, R*), E;) to a yet unspecified latent
model X(k), k = 1,2,...m,. We describe the model that can consider the intrinsic structure of multi-
relational data. We build on the intuition from the RESCAL'!!? tensor decomposition and introduce the
following rank-r factorization, where each relation is factorized as:

X" = ATRWA,, fork =1,2,...,m. o)

Here, A is a n x r matrix of latent components, where n represents the number of entities in the domain
and r is dimensionality of the latent space. The rows of A, i.e., AT fori = 1,2,...,n, model the latent
component representation of entities in the domain. Matrix R(**) is an asymmetric r x r matrix that
contains the interactions of the latent components in kth relation.

When learning a large number of relations, i.e., when k£ is large, the number of observed relation-
ships for each relation can be small, leading to a risk of overfitting. To decrease the overall number of
parameters, the model in Eq. (5) encodes relation-specific information with the latent matrices R(*) and
embeds the entities into the latent space spanned by A. The effect of » < n is the automatic reuse of
latent parameters across relations. Collectivity of COPACAR is thus given by the structure of its model.

Thus far we discussed the likelihood function p(>, |[X*)). To determine the Bayesian approach from
Eq. (1), we propose a prior p(ﬁ(k)), which is a normal distribution with a zero mean and a covariance
matrix X:

p(A) ~N(0,%4), p(RF) ~ N(0,2R), fork =1,2,...,m. (6)

We further reduce the number of unknown parameters by setting ¥4 = AaIand ¥g = AgrI. We derive the
optimization criterion for our collective pairwise classification via the maximum posterior estimator:’

OPT-COPACAR £ log p(X#)| >)
= log p(>y, X ) (X )
= log Hp >, [X0)p(XH)

1ogH [T o(XE - XG))ixa x5 p X 0)

k i,5,9,h
< (k < (k k k
=3 5 XWX x® XU AR AR Y IR E, (D)
k ,79,9,h k
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where A\ and Ar are regularization parameters and pairwise classification loss function ¢ is formulated
as:
Sk ok k k k k
X - X x® - xG)) = (X[ - X)) log s (ATR®A; — ATR®IA,). (8)

The COPACAR model rewards estimates of the model parameters that are in accordance with the input

data. Intuitively, the semantics of the loss ¢ is as follows: (1) If Xff) > Xg;? then (E;, R, E;) should

rank higher than (E,, R*), E},), since it is assumed that the first relationship has greater relevance than

the latter. Therefore, a model in which )A(g“) > )A(g,? holds, scores better on OPT-COPACAR than a model
with the two relationships ranked in the reversed order of their scores. (2) For relationships that are both

considered relevant, i.e. ng) =1and Xé’}? =1, or both considered irrelevant, i.e. ng) =0and XS,? =0,
we cannot infer any preference for their degree of relevance and the loss is unaffected by them.

4.2. Connection to the AUC Optimization

We now show the analogy between OPT-COPACAR and area under the ROC curve (AUC). The AUC
under the ROC curve corresponds to the probability that a random existing (positive) relationship will be
scored higher than a random non-existing (negative) relationship. The maximization of the AUC statistic
is especially attractive in biomedical data domains, where the real objective is to optimize the sorting or-
der, for example, to sort the relationships into a list so that relevant relationships are concentrated towards
the top of the list.>* However, the problems with using the AUC statistic as an objective function are that
it is non-differentiable, and of complexity O(mn*) in the number of entities n, i.e., O(n?) relationships
need to be compared with themselves, and relations m in the domain. The AUC for relation £ is usually
defined across all pairwise comparisons of the relationships:

_ 1 Kk _g®
AUC(k) = N 0 Vo) Z zh: §(X5 =Xy, > 0), 9)
Xﬁlj.’)]=1 ngk,) =0
where § denotes the indicator function, and N, (k) and Ny(k) count the existing (positive) and non-existing
(negative) relationships in kth relation, respectively.

It is easy to see the analogy between the above formula and the maximum likelihood estimator in
Eq. (7). They differ in the normalization constant 1/(N;(k)No(k)) and the definition of the loss func-
tion. In contrast to the non-differentiable stepwise ¢ function used by the AUC, we employ the smooth
loss logo(x) in Eq. (8). Unlike many algorithms, which select a differentiable counterpart of a non-
differentiable loss function in a heuristic manner,*® the COPACAR adopts the AUC statistic as its objective
function and specifies the loss function in Eq. (8) based on the maximum likelihood estimation.

4.3. Related Tensor Factorizations

The factorization scheme specified in Eq. (5) builds on the RESCAL tensor decomposition'! and is
related to other tensor decompositions. Specifically, it can be regarded as a generalization of the estab-
lished DEDICOM, or an asymmetric extension of IDIOSCAL.!! The DEDICOM tensor model is given
as X*) ~ ADWRD®AT for k = 1,2,..., m. Here, the model assumes there is one global model of
interactions between the latent components, i.e. an r x r latent matrix R. Notice that its variation across
relations is described by the r x r diagonal factors Dy. The diagonal matrices Dy, contain memberships
of the latent components in the ktk relation. This is in contrast to Eq. (5) where we allow the relation-
specific interactions for the latent components. While DEDICOM has been successfully applied to many
domains, for example to model the changes in the corporate communication and international trade over
time, our results suggest that its assumptions appear to be too stringent for multi-relational biological
data, which is aligned with the observations made by Nickel et al.!!
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Furthermore, the model in Eq. (5) is also different from traditional multi-way factor models, such as
the Tucker decomposition®*' and CANDECOMP/PARAFAC (CP).?? The Tucker family defines a multi-
linear form for a tensor X € R™*"*m a3 X = R x; A x5 A? x5 A®) where x;, denotes the mode-k
tensor-matrix multiplication. Here, R is the global r; x o x r3 tensor, and A %) models the participa-
tion of the latent components in the kth relation. The CP family is restricted form of the Tucker-based
decompositions. The definition of rank-r CP for a tensor X € R™*"™*™ is given as a sum of component
rank-one tensors, a; € R, b; € R” and ¢; € R™, for [ = 1,...,r. Elementwise, the CP decomposition is
written as X ~ > ;_; agbjcy fori=1,...,n,j=1,...,nand k = 1,..., m. The model in Eq. (5) can
be seen as a constrained variation of the CP model.'!

One major difference of the COPACAR model in Eq. (7) to the existing tensor decompositions is
the objective criterion used for finding the latent matrices. Other tensor decompositions are restricted to
least-squares regression and cannot solve classification tasks, whereas COPACAR optimizes for a latent
model with respect to ranking based on pairwise classification.

S. COPACAR Learning Algorithm

So far we derived the optimization criterion for collective pairwise classification on multi-relational data.
As the criterion in Eq. (7) is differentiable, gradient descent based algorithms are a natural choice for its
optimization. However, standard gradient descent is not the most effective choice for our problem due
to the complexity of OPT-COPACAR (see Sec. 4.2). Instead, we propose a stochastic gradient descent
algorithm based on bootstrap sampling of training triplets.

Our aim is to find the latent matrices A and R for k = 1,2, ..., m that optimize for:
min —OPT-COPACAR. (10)
A, R®
k=1,2,....m

The gradients of the pairwise loss from Eq. (8), the integral part of OPT-COPACAR, with respect to the
model parameters are:

B k 9 (k S (k S (k K 0 Sk

oA K X ) = = g a X 080 X) = (X F) = DX 2 X+ AaA (D)
O 4 x® xW yo O x® 006 XE )2 (o X® ) nx® I _g® R
OR.(F) igigh? “Tigigh/) = gR(k) T isgh g ij;gh/ T ij;gh ijigh gR, (k) idigh R ’

where for simplicity of notation we write }A(Z(f)gh = }A(g“) - )A(;]Z).

Let Sy, denote observed relationships in kth relation and let I, represent non-edges in kth relation. If
kth relation corresponds to the human disease symptoms network, then Sy, contains all disease pairs with
shared symptoms and I holds disease pairs for which shared disease symptoms have not been recorded.
To achieve descent in a correct direction, the full gradient shall be computed over all training data in each
iteration and model parameters updated. However, since we have O(_, |Sk||Ix|) training triplets in the
data, computing the full gradient in each iteration is not feasible.

Furthermore, optimizing OPT-COPACAR with a full gradient descent can lead to poor convergence
due to skewness of the training data. Consider for a moment a disease 7 with high symptom-based simi-
larity to many other diseases. We have many terms for triplets of the form (E;, REY™o™ E.) in the loss
because for many diseases j the disease 7 is compared against all diseases to which a particular disease
j 1s not related. Therefore, the gradients would be largely dominated by the terms depending on disease
i. This means that very small learning rates would need to be chosen and also regularization would be
difficult because the gradients would differ substantially.

To address the above issues we propose to use a stochastic gradient descent, which subsamples en-
tity pairs (E;, E;) randomly (uniformly distributed) and forms an appropriately scaled gradient. In each
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iteration we use a bootstrap sampling without replacement to pick entity combinations, and the Armijo-
Goldstein step size control to determine the maximum amount to move along a given direction of descent.
The chance of picking the same entity combination in consecutive update steps is hence small.

6. Evaluation

Next, we test our algorithm for collective pairwise classification on two highly multi-relational data
domains. First, we apply it to the collection of relations between drugs, where we aim to predict different
types of drug relationships. We then study human disease data retrieved from the molecular and clinical
contexts. We compare our method to tensor-based relational learning methods from Sec. 4.3.

6.1. A Case Study on Pharmacogenomic Data
6.1.1. Data and Experimental Setup

We obtained a list of 1,451 drugs with known pharmacological actions from the DrugBank database.®
Examples of considered drugs include ospemifene, riluzole, chlormezanone and podofilox. Vast majority
of considered drugs contained links to the corresponding chemicals in the PubChem database,** where
we obtained information on similarity of their chemical structures. We also included information on
drug-target interactions®® and drug interaction data extracted from the literature through co-occurrence
text mining.3> Due to space constraints we refer to Kuhn er al.® for a detailed description of relationships
derived from text. We also mined the drug-drug interaction network, where we connected two drugs if
they are known to interact, interfere or cause adverse reactions when taken together.?? The preprocessed
dataset consisted of four drug-drug relations X (%) € {0, 1}1451<1451 for = 1, ..., 4 and contained 59,990
text associations, 2,602 interactions based on chemical structures, 1,315 interactions based on shared
target proteins and 48,614 drug-drug interactions based on adverse effects.

We performed 10-fold cross-validation using (E;, R¥)| E;) triplets as statistical units. Model param-
eters, i.e. regularization strength and factorization rank, were selected using the grid search on a random
data subsample that was later excluded from performance evaluation. For kth relation, we partitioned all
drugs into ten folds and deleted the kth relation-specific information of the drugs in the test fold. We then
estimated the CP, DEDICOM, RESCAL and COPACAR models, and recorded the area under the ROC
curve (AUC-ROC) and the area under the precision-recall curve (AUC-PR). Values of the performance
metrics that are closer to one indicate better performance.

6.1.2. Results and Discussion

Fig. 2 shows the results of our evaluation. It can be seen that COPACAR gives better results than RESCAL,
CP and DEDICOM on all data relations. The results of COPACAR and RESCAL outperform CP and
DEDICOM by a large margin and show clearly the usefulness of our approach for relational drug data do-
main where collective learning is an important feature. A significant performance difference between the
results of DEDICOM and COPACAR indicate that the constraints imposed by DEDICOM (see Sec. 4.3)
are too restrictive. Another important aspect of the results in Fig. 2 is the good performance of COPACAR
relative to RESCAL, which has been shown to achieve state-of-the-art performance on several relational
datasets.''” One possible explanation is that RESCAL is restricted to least-squares regression, which
limits its ability to solve classification tasks, whereas COPACAR is designed to optimize the parameters
with respect to pairwise classification.

6.2. A Case Study on Human Disease Data
6.2.1. Data and Experimental Setup

We related diseases through three dimensions. We considered the comprehensive map of disease-
symptoms relationships,® the map of molecular pathways implicated in diseases,?” and the map of dis-
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Fig. 2. The area under the ROC and the precision-recall (PR) curves via 10-fold cross-validation on drug data.

eases affected by various chemicals from the Comparative Toxicogenomics Database.’” We used the
recent high-quality disease-symptoms data resource of Zhou ef al.*® to generate a symptom-based rela-
tion of 1,578 human diseases, where the link between two diseases indicated significant similarity of their
respective symptoms. The details of the network construction based on large-scale medical bibliographic
records and the related Medical Subject Headings (MeSH) metadata are described in Zhou et al.*® Ex-
amples of considered diseases are Hodgkin disease, thrombocytosis, thrombocythemia and arthritis. The
preprocessed dataset consisted of three disease-disease relations X(¥) e {0, 1}1578x1578 for ; = 1,2, 3 and
contained 117,021 relationships based on significant symptom similarity, 446,488 disease relationships
derived from disease pathway information and 770,035 disease connections related to drug treatment.
In the evaluation we followed the experimental protocol described in Sec. 6.1.1.

6.2.2. Results and Discussion

Results in Fig. 3 show the good capabilities of our COPACAR method for predicting any of the three
considered disease dimensions. We see that COPACAR achieves comparable or better results than CP,
DEDICOM and RESCAL models. The RESCAL and COPACAR models, which can perform collective
learning, considerably boost the predictive performance of the less expressive CP and DEDICOM mod-
els by more than 20% (AUC-ROC) across all three relations. These results highlight an advantage of
applying collective learning to this dataset.

The results also bear evidence that shared clinical manifestations of diseases indicate shared molec-
ular interactions, e.g., genetic associations and protein interactions, as has already been recognized in
systems medicine.* It should be noted that when predicting disease phenotypes (left panel in Fig. 3)
the models were trained solely based on molecular-level disease components, i.e. relationships based
on disease pathways and disease-chemical associations (middle and right panels in Fig. 3). Hence, the
extent to which collective learning of the COPACAR has improved the quality of modeling is especially
appealing. Furthermore, this result is interesting because it is known that the relations between geno-
type and phenotype components remain unclear and highly entangled despite impressive progress on
the genetic and proteomic aspects of human disease.*® The phenotype map?® we use in the experiments
strictly considers symptom features, excluding particular disease terms themselves, anatomical features,
congenital abnormalities, and includes all disease categories rather than only monogenic diseases. Our
results therefore provide robust evidence that interactions at the chemical and cellular pathway levels are
also connected to similar high-level disease manifestations.

At last we want to briefly demonstrate the link-based clustering capabilities of COPACAR. We com-
puted a rank-30 decomposition of the disease dataset and applied hierarchical clustering to the matrix
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Fig. 3. The area under the ROC and the precision-recall (PR) curves via 10-fold cross-validation on disease data.

A (Fig. 4b). Diseases from the six randomly chosen clusters in Fig. 4a illustrate that we obtained a
meaningful partitioning of the diseases and suggest that low-dimensional embedding of the data found
by COPACAR can be a useful resource for further data modeling. Here, we were especially interested in
the diseases grouped within the white bands in Fig. 4b (middle, right). Diseases therein have extremely
sparse, if any at all, data profiles at the molecular or chemical levels. On the other hand, it can be seen
from Fig. 4b (left) that these diseases have many common clinical phenotypes. Interestingly, COPACAR
was able to make a leap across the three modeled disease dimensions and assigned poorly characterized
diseases to clusters with richer molecular knowledge, such as phenylketonuria to the cluster centered
around Parkinson’s disease. Even when not category-jumping, COPACAR grouped diseases, such as seb-
orrheic dermatitis and herpes, based on their symptom similarity.

6.3. Runtime Performance and Technical Considerations

We recorded the runtime of CP, DEDICOM, regularized RESCAL and COPACAR on various datasets
and for different factorization ranks (exact times are not shown due to the space limit). The COPACAR
shows training times below 3 minutes per fold on the disease data and below 5 minutes per fold on the
drug data. In comparison to CP and DEDICOM, it is the case that COPACAR as well as RESCAL often
give a huge improvement in terms of runtime performance on real data.

In comparison to COPACAR, we observed that RESCAL can run up to three times faster on the
same data and using the same rank. We believe this is the case because RESCAL is optimized using the
alternating least squares, which is possible due to its squared loss objective. In contrast, COPACAR is op-
timized by a stochastic gradient descent due to the nature of its optimization criterion: in each iteration,
it constructs a random data subsample and makes the update. The COPACAR algorithm has two impor-
tant advantages over RESCAL. First, the algorithm naturally allows for parallelization of the gradient
computation on a data subsample, which further increases scalability of COPACAR. Furthermore, we do
not need to have collected the entire data relations to run the algorithm. Because COPACAR operates on
subsamples, it gives a natural approach for interleaving data collection and model estimation.

We also studied the technical aspects of the COPACAR learning algorithm. Specifically, we were
interested in (1) the stability of algorithm performance w.r.t. the data subsample size, (2) its empirical
convergence rate, and (3) its sensitivity to model parameters. Fig. 5 shows the results of this evaluation.
In our experiments the algorithm typically required less than 100 iterations to converge and operated on
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to the disease partitioning. Black squares indicate existing disease relationships, white squares are unknown relationships.

subsamples of size at most 10% of the total number of data triplets. This means that discarding the idea
of performing full cycles through the data may be useful because often only a fraction of a full cycle is
sufficient for convergence. We also note that its performance is stable with regard to the wide range of
values for factorization rank and regularization strength.
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Fig. 5. The results for the area under the ROC curve (AUC-ROC) obtained by 10-fold cross-validation on the disease data.
The bands indicate performance variation across folds. Shown is performance of COPACAR as a function of the subsampled
data size, the number of iterations, the latent dimensionality and the regularization strength (from left to right).

7. Conclusions

Methods that can accurately estimate different types of relationships from multi-relational and multi-
scale biomedical data are needed to better search through the hypothesis space and identify hypothe-
ses that should be pursued in a laboratory environment. Towards this end, we have attempted here to
address a significant limitation of current approaches for collective relational learning by developing a
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method for collective classification that is designed to optimize for a pairwise ranking metric. Our method
achieves favorable performance in resolving which entity pairs (e.g., drugs) are most likely to be asso-
ciated through a given type of relation (e.g., adverse effects or shared target proteins) by appropriately
formulating a probabilistic model for pairwise classification of relationships.

Most likely, the most substantial advantage of our proposed approach is “category-jumping,” which
we exemplify in a case study with several relations about diseases. Category-jumping has helped us to
make predictions about disease interactions at the molecular level that stem from clinical phenotype data
collected far outside the molecular contexts. The implications for utility of such inference are profound.
Predictions that arise from category-jumping may reveal important relationships between biomedical
entities that are withheld from today-prevailing models that are trained on data of a single relation type.
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1. Introduction

Despite the increasing prevalence of Whole Genome Sequencing (WGS) and Whole Exome
Sequencing (WES) in clinical settings, it is still very difficult to determine the causal variant for
any given disease and most such explorations fall into research contexts rather than routine clinical
diagnostics. There are literally thousands of studies and talks at human genetics conferences
regarding the determination of causality, and a plethora of techniques available for statistical
association of variants to disease phenotypes (e.g. GWAS). However, for rare diseases, the small
number of individuals prevents statistical correlation techniques used for more common diseases.
For complex diseases without Mendelian inheritance patterns, the challenge is even greater.
Because we know the phenotypic consequences of mutation in approximately less than 40% of
human coding genes, it is necessary to utilize a diversity of other data sources and algorithms to
help determine causality. What is clinically actionable is an even more difficult assessment.
Further, the methods and provenance of the data by which determinations of causality and
actionability are often lacking and/or produce conflicting results. Finally, to realize truly precision
medicine, we must embrace the idea that all diseases are rare in that each person has their own
diversity of genotypic, phenotypic, and environmental variation.

Recent work has highlighted some of the exciting new possibilities to inform rare disease
diagnostics. For example, use of model organism phenotyping data, interactome data, orthology,
phylogenetic inference, and epigenomics can help fill some of the gaps. Further, methods that
utilize semantic inference and probabilistic modeling have also been shown to aid diagnostics.
Such methods combine standard WES or WGS prioritization techniques with an increasing
diversity of phenotyping data and approaches. However, all of these combined approaches depend
upon highly curated data and a diversity of software tools and algorithms, all of which provide the
provenance for making any sort of causal or actionability judgment, the conclusions of which may
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change over time as the data and algorithms change. In addition, the quality of the phenotyping
data varies widely and is not always accessible via clinical notes. Finally, few such combined
approaches attempt to include life history data such as exposures and chronological representation
of disease progression.

2. Session Summary

This session includes an invited talk, five reviewed oral presentations, and two additional accepted
papers. The studies presented in this session explore problems in combining genotype and
phenotype data to support rare disease and/or precision diagnostics and treatment, and spanning
multiple types of data. In particular, we selected contributions from those whose methodologies
leveraged multiple data modalities in their analysis of genetic variation, such as clinical measures,
imaging, natural language processing, semantics, homology, mined electronic health records
(EHR) and manually curated data.

2.1. Invited Talk

The invited talk is given by Elissa Chessler, Ph.D. an Associate Professor of Bioinformatics and
Computational Biology at the Jackson Laboratory, whose work spans a diversity of biological,
genomic, and behavioral data toward identifying the biological basis for the relationships among
behavioral traits, particularly in mouse models of disease. The resemblance of objectively
measured phenotypic characteristics across species is limited by the extent to which the
phenotypic inferences supported by these assays are relevant to the disease under investigation and
reflect similar characteristics across species. ‘Construct validity’ is a more important criterion for
the matching of phenotypes across species, and to the matching of phenotypes to disease.
Construct-valid assays are expected to be associated with similar molecular and other biological
characteristics across species, even when the external manifestation of the disease related
phenotypes is quite different in humans and model organisms. There is a wealth of relevant data
consisting of gene-phenotype associations obtained through high throughput, whole genome
experimentation, including genetic mapping, expression correlation, differential expression,
systems genetics, mutant screens, proteomic assays and curated functional genomics
experiments. A variety of statistical and combinatorial approaches may then be applied to match
data from various experiments and known gene-disease or gene phenotype associations. This
approach to data driven inference of the relationships among the biological characteristics of
animal models, assays and disease features has been implemented in the GeneWeaver.org system,
a web service consisting of a database and analytic tools for collaborative integration of functional
genomic experiments.

2.2. Papers

In Discovering Patient Phenotypes Using Generalized Low Rank Models, Schuler et al. develop a
methodology for capturing phenotypic information within EHRs. The authors show that inherited
challenges on the analysis of EHRs for phenotype discovery, such as missing data, sparsity, and
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data heterogeneity, can be overcome by using the generalized low ranking model framework for
such analysis.

In Diagnosis-guided method for identifying multi-modality neuroimaging biomarkers associated
with genetic risk factors in Alzheimer’s Disease, Hao et al present a novel, diagnosis-oriented,
framework for selecting multi-modality quantitative traits associated with SNPs in the context of
Alzheimer’s Disease. This method has the potential to improve classification of patients with
respect to their likelihood of developing Alzheimer’s, by leveraging new data types and variables
in their analysis algorithms.

In Metabolomics Differential Correlation Network Analysis of Osteoarthritis, Hu et al. describe a
differential network approach to analyzing the metabolomics of an osteoarthritis (OA) cohort. The
authors identified key metabolites that differ in OA and subsequently the cellular processes in
which they are involved, with the goal of eventually leveraging these markers for the development
of targeted therapies.

In Integrating Clinical Laboratory Measures and ICD-9 Code Diagnoses in Phenome-wide
Association Studies, Verma et al describe a workflow that associates SNPs with clinical lab
measures extracted from EHRs as well as ICD-9 codes. The suggested workflow would enable the
use of clinical measures and their association with disease toward bringing clinical diagnoses and
treatment to the level of individuals in the clinic for precision medicine.

In Investigating the importance of anatomical homology for cross-species phenotype comparisons
using semantic similarity, Manda et al studies the influence of anatomical homology information
on gene semantic similarity measures for phenotypic comparisons across species. Their findings
are relevant to merging functional and anatomy-based gene homologue analyses.

In Personalized Drug Targets via Network Propagation, Shnaps et al present a computational
strategy to simulate drug treatment in a personalized setting. The method is based on integrating
patient mutation and differential expression data with a protein-protein interaction network.

In Testing population-specific quantitative trait associations for clinical outcome relevance in a
biorepository linked to electronic health records: LPA and myocardial infarction in African
Americans Dumitrescu et al combine genomic variant assessment (variants in LPA) and EHR
phenotyping to determine risk in an unevaluated population, African Americans. This is important
from the perspective of understanding how quantitative trait studies differ in different populations
and highlights the challenges for complex clinical outcomes such as myocardial infarction.

2.3. Acknowledgements

We would like to thank all of the reviewers who provided valuable feedback for the authors of this
session.
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Previous candidate gene and genome-wide association studies have identified common genetic
variants in LPA associated with the quantitative trait Lp(a), an emerging risk factor for
cardiovascular disease. These associations are population-specific and many have not yet been
tested for association with the clinical outcome of interest. To fill this gap in knowledge, we
accessed the epidemiologic Third National Health and Nutrition Examination Surveys (NHANES
IIT) and BioVU, the Vanderbilt University Medical Center biorepository linked to de-identified
electronic health records (EHRs), including billing codes (ICD-9-CM) and clinical notes, to test
population-specific Lp(a)-associated variants for an association with myocardial infarction (MI)
among African Americans. We performed electronic phenotyping among African Americans in
BioVU >40 years of age using billing codes. At total of 93 cases and 522 controls were identified
in NHANES III and 265 cases and 363 controls were identified in BioVU. We tested five known
Lp(a)-associated genetic variants (rs1367211, 1s41271028, rs6907156, 1510945682, and
1s1652507) in both NHANES III and BioVU for association with myocardial infarction. We also
tested LPA rs3798220 (I14399M), previously associated with increased levels of Lp(a), MI, and
coronary artery disease in European Americans, in BioVU. After meta-analysis, tests of association
using logistic regression assuming an additive genetic model revealed no significant associations
(p<0.05) for any of the five LPA variants previously associated with Lp(a) levels in African
Americans. Also, 14399M rs3798220 was not associated with MI in African Americans (odds ratio
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= 0.51; 95% confidence interval: 0.16 — 1.65; p=0.26) despite strong, replicated associations with
MI and coronary artery disease in European American genome-wide association studies. These
data highlight the challenges in translating quantitative trait associations to clinical outcomes in
diverse populations using large epidemiologic and clinic-based collections as envisioned for the
Precision Medicine Initiative.

1. Introduction

Labs ordered in a clinical setting provide valuable diagnostic and prognostic data at the individual
patient level. In a research setting, labs can be studied to better understand the biological basis of
clinical outcomes. As an example, lipid labs such as low-density lipoprotein cholesterol (LDL-C)
are frequently ordered in a clinical setting to monitor the cardiovascular disease risk in patients. In
turn, these labs or quantitative traits have been extensively studied in genomic research settings to
identify genetic variants predictive of extreme LDL-C levels and cardiovascular disease risk [1].

A major advantage of quantitative trait genetic studies compared with case-control outcome
studies is sample size resulting in statistical power [2]. As a result, there are more or larger
genome-wide association studies (GWAS) and significant findings for lipid traits compared with
cardiovascular disease outcomes [1], particularly for diverse populations. The emergence of
electronic health records (EHRs) linked to biorepositories, however, provides contemporary
opportunities to apply quantitative trait genetic variants to assess clinical relevance with an eye
towards precision medicine.

We describe here the application of LPA genetic variants, previously associated with Lp(a)
levels [3], to assess myocardial infarction associations in both an epidemiologic and clinical
African American population. Lipoprotein (a) [Lp(a)] is considered an emerging biomarker or
risk factor for cardiovascular disease [4-6] whose relationship with cardiovascular disease varies
across races/ethnicities. Elevated plasma Lp(a) levels have been reported to be associated with
cardiovascular disease in European Americans but have not been clearly documented in African
Americans [7]. Paradoxically, among participants with no previous history of cardiovascular
disease, the mean Lp(a) level is two- to three-fold higher in African Americans compared with
European Americans [8,9]. The underlying cause(s) for this difference has not yet been
determined.

Recent studies have identified common SNPs in LPA as strongly associated with Lp(a) levels,
explaining up to 36% of the trait variance in populations of European-descent [10,11]. In a recent
epidemiologic study conducted in the Third National Health and Nutrition Examination Survey
(NHANES III), we demonstrated that LP4 common genetic variants were associated with Lp(a)
levels in a population-specific manner [3]. LPA SNP rs3798220 (I4399M) has also been
associated with cardiovascular disease [11-14] and severe cardiovascular disease [15] in several
European-descent populations. Thus, common genetic variants in LPA are strong predictors of
both Lp(a) levels and cardiovascular disease risk in at least one population. We test here whether
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LPA variants associated with Lp(a) levels in African Americans are associated with myocardial
infarction in African Americans ascertained from epidemiologic and clinical settings.

2. Methods

2.1. Study population

The study populations presented here include the epidemiologic Third National Health and
Nutrition Examination Survey (NHANES III) and the clinical BioVU, Vanderbilt University
Medical Center’s biorepository linked to de-identified electronic health records. NHANES Il is a
cross-sectional survey conducted between 1988 and 1994 by the National Center for Health
Statistics at the Centers for Disease Control and Prevention. NHANES ascertained non-
institutionalized Americans regardless of health status. Demographic, health, and lifestyle data
were collected on NHANES participants through surveys, labs, and physical exams in the Mobile
Examination Center (MEC). DNA is available on consenting phase 2 participants (ascertained
between 1991 and 1994). The present study was approved by the CDC Ethics Review Board.
Because the study investigators did not have access to personal identifiers, this study was
considered non-human subjects research by the Vanderbilt University Internal Review Board.

BioVU operations [16] and ethical oversight [17] have been previously described. Briefly,
DNA is extracted from discarded blood drawn for routine clinical care at Vanderbilt outpatient
clinics in Nashville, Tennessee and surrounding areas. The DNA samples are linked to a de-
identified version of the patient’s EHR. The de-identified version of the EHR is referred to as the
“Synthetic Derivative.” The data in this study were de-identified in accordance with provisions of
Title 45, Code of Federal Regulations, part 46 (45 CFR 46); therefore, this study was considered
non-human subjects research by the Vanderbilt University Internal Review Board.

2.2. Phenotyping

Race/ethnicity in NHANES III is self-identified, which is concordant with global genetic ancestry
for non-Hispanic whites and non-Hispanic blacks [18]. Myocardial infarction (MI) case status in
NHANES III was based on data collected from a physical examination, administered by a
physician, in the MEC. A continuous cardiac infarction/injury score (CIIS) was calculated based
on 12 lead electrocardiogram (ECG) multiplied by 10. Those participants with a CIIS > 20 were
considered to have probable infarction/injury and those with a CIIS < 20 but > 15 were considered
to have possible infarction/injury. These thresholds correspond to an estimated specificity level of
98% and 95% [19], respectively. Our NHANES III MI case definition included participants
classified as having possible or probable infarction/injury.

Race/ethnicity in BioVU is administratively assigned, which is highly concordant with genetic
ancestry for European Americans and African Americans [20,21]. The de-identified EHR in
BioVU contains both structured (International Classification of Diseases, Ninth Revision, Clinical
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Modification billing codes [ICD-9-CM]; current procedural terminology codes; problems lists;
labs) and unstructured (clinical free text) data that are accessible for electronic phenotyping. We
explored five different electronic phenotyping strategies to identify cases of MI using mentions of
ICD-9-CM codes (Table 1) among African American adults > 40 years of age. MI case review
was performed in 2013 using the browser search function in the Synthetic Derivative user
interface to find the following keywords in the patient’s clinical notes: myocardial infarction, MI,
infar, STEMI, and NSTEMI. If none of the keywords were found in the record, the case reviewer
searched for ICD-9-CM code 410 in the record and extracted the clinic visit date associated with
the ICD-9-CM code. The case reviewer then searched the remainder of the patient’s records on
that clinic visit date for evidence of an MI. The ECG records of all possible cases were also
accessed for review. Patients were considered unconfirmed for MI if EHR review failed to
identify evidence of MI in the patient’s medical history. Unconfirmed cases of MI were excluded
from genotyping as cases. Positive predictive values (PPVs) were calculated as the total number
of confirmed cases divided by the total number of potential cases. A total of 311 MI cases were
identified for genotyping in BioVU.

Controls in BioVU were defined as African American adults >40 years of age with no
mention of ICD-9-CM codes of MI (410) or any other codes relating to ischemic heart disease
(ICD-9-CM 411-414). A total of 5,883 potential controls were identified in BioVU. Controls
were frequency matched to cases by age and sex prior to selection for genotyping.

2.3. Genotyping

Genotyping in NHANES III was performed using the Illumina GoldenGate assay (as part of a
custom 384 OPA) by the Center for Inherited Disease Research (CIDR) through the National
Heart Lung and Blood Institute’s Resequencing and Genotyping Service, as previously described
[3]. Vanderbilt Technologies for Advanced Genomics (VANTAGE) genotyped BioVU samples
for six LPA SNPs (rs3798220, rs41271028, rs6907156, rs10945682, rs1652507, and rs1367211)
using Sequenom. Genotyping quality control for NHANES III was performed using SAS version
9.2 and for BioVU using PLINK [22].

2.4, Statistical methods

Tests of association in NHANES III were performed using SAS version 9.2 (SAS Institute, Cary,
NC). Each LPA variant associated with Lp(a) levels in non-Hispanic blacks [3] was tested for
association with MI status (dependent variable) using logistic regression assuming an additive
genetic model adjusting for 1) age and sex and 2) age, sex, and In(Lp[a]+1). Data was accessed
remotely from the CDC’s Research Data Center (RDC) in Hyattsville, Maryland using Analytic
Data Research by Email (ANDRE) [23]. In BioVU, tests of association between MI (the
dependent variable) and LPA SNPs were performed with PLINK using logistic regression
assuming an additive genetic model and adjusting for age and sex (Lp[a] levels are not available in
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BioVU). Meta-analyses were performed with METAL using a fixed-effects inverse-variance
weighted approach [24], and results were visualized using Synthesis-View [25,26].

3. Results

As noted in the Methods section, cases of MI in NHANES III were identified using a continuous
cardiac infarction/injury score applied to ECGs, an exam administered by public health
professionals as part of the survey.

Table 1. Phenotyping criteria and case review results for five definitions of
myocardial infarction based on mentions of billing codes. Overall, a total of
311 individual cases of confirmed MI were identified and 297 had sufficient
DNA for genotyping. Abbreviations: International Classification of Diseases,
Ninth Revision, Clinical Modification (ICD-9-CM); positive predictive value
(PPV).
Case Phenotyping Potential Confirmed
o o e PPV
definition criteria cases cases
ICD-9-CM code
1 410.* on 3 108 107 99.1%
consecutive days
ICD-9-CM code
2 410.* on 2 159 158 99.4%
consecutive days
>3 ICD-9-CM o
3 codes 410.* ever 159 158 99.4%
>2 ICD-9-CM o
4 codes 410.* ever 209 205 98.1%
>1ICD-9-CM o
> codes 410.* ever 393 311 87.6%

In contrast, we used electronic phenotyping approaches to extract cases of MI from EHRs of
African American patients. We used ICD-9-CM billing codes in various combinations in an
attempt to achieve the largest samples size possible with acceptable PPV. As might be expected,
the most stringent case definitions (Table 1; definitions 1 and 2) where codes for MI were required
on three and two consecutive days identified the fewest number of cases at PPVs >99% after
manual review. These cases of MI likely represent incident inpatient cases of MI in BioVU at the
time of data extraction. Equally high in PPV but low in case count was case definition 3 where
three or more ICD-9-CM codes were required. The least stringent case definitions 4 and 5 yielded
the most confirmed cases (205 and 311, respectively) at acceptably high PPVs (Table 1). The high
PPVs observed here are consistent with other studies examining the accuracy of using ICD-9-CM
codes to identify cases of acute MI [27-30]. Of the 311 total cases identified in the Synthetic
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Derivative, only 265 passed quality control after genotyping (12 had insufficient DNA for
genotyping; two were compromised samples; 14 failed genotyping).

Table 2. Association between myocardial infarction and Lp(a)-associated
SNPs in non-Hispanic blacks from NHANES III. A total of 19 SNPs were
tested for an association with Lp(a) levels [3] and MI in non-Hispanic blacks
from NHANES III. LPA4 SNPs associated with MI at p < 0.05 are shown here.
MI case status was defined as participants with possible or probable cardiac
infarction/injury (CIIS score > 15). Associations with MI and transformed
Lp(a) levels were performed unweighted using logistic and linear regression,
respectively. 'Adjusted for age and sex. *Adjusted for age, sex, and Lp(a)
levels. *Associations between Lp(a) and LPA in non-Hispanic blacks in
NHANES I1I as reported in Dumitrescu et al 2011 [3]. Abbreviations:
confidence interval (CI); odds ratio (OR).
SNP Lp(a) levels"? mr' MI?
n=1,711 Neases = 93 Negses = 91
Neontrols = 922 Neontrols = 498
B p-value OR p-value OR p-value
95% 95% 95%
CI) Cl) CI)
rs41271028 -0.06 0.3608 2.12 0.0470 2.12 0.0476
(-0.18, (1.01, (1.01,
0.07) 4.46) 4.45)
rs6907156 0.15 0.0031 0.53 0.0231 0.53 0.0241
(0.05, (0.30, (0.30,
0.25) 0.92) 0.92)
rs10945682 -0.14 0.0003 1.41 0.0481 1.37 0.0725
(-0.21, - (1.00, (0.97,
0.06) 1.98) 1.93)
rs1652507 -0.45 1.06 1.88 0.0308 1.79 0.0510
(-0.59,- | x10™ | (1.06, (1.00,
0.32) 3.34) 3.2)
151367211 -0.27 3.67 1.46 0.0306 1.42 0.0518
(-0.34, | x10™ | (1.04, (1.00,
-0.20) 2.07) 2.01)

We previously tested 19 LPA SNPs for an association with Lp(a) levels in non-Hispanic blacks
in NHANES III, 12 of which were associated at p < 0.0001 [3]. We tested here the same 19 LPA
SNPs for an association with MI in non-Hispanic blacks from NHANES III. Despite the
limitation of small sample size (Ncases = 93), five LPA variants (rs1367211, rs1652507, rs6907156,
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rs10945682, and rs41271028) were associated with risk of MI in non-Hispanic blacks at p < 0.05
(Table 2; Figure 1). Interestingly, four of the five alleles associated with increased risk of MI
were also associated with decreased Lp(a) levels at p < 0.003.

To determine if the association of LPA variants and MI in non-Hispanic blacks from NHANES
IIT was due to the putative causal role of increased Lp(a) levels in coronary artery disease, we
adjusted for Lp(a) level (Table 2). This adjustment attenuated the associations for three of the five
single-SNP associations with MI (p = 0.05, 0.05, and 0.07 for rs1367211, rs1652507, and
rs10945682, respectively). In contrast, two LPA SNPs (rs6907156 and rs41271028) remained
associated with MI at p < 0.05 after adjustment for Lp(a) levels. The first SNP, rs6907156, was
originally associated with decreased Lp(a) levels (p = 0.0031) while the second, rs41271028, was
not (p = 0.36).

Figure 1. Synthesis-View plot of associations between Lp(a)-associated variants and myocardial
infarction in non-Hispanic blacks from NHANES III and African Americans from BioVU. Tests of
association were performed in non-Hispanic blacks NHANES III (n = 93 cases; n = 522 controls) and
African Americans from BioVU (n = 265 cases; n = 343 controls) for myocardial infarction and each of
five LPA SNPs previously associated with Lp(a) levels in NHANES III non-Hispanic blacks. Analyses
were performed using logistic regression assuming an additive genetic model adjusted for age and sex.
Odds ratios, 95% confidence intervals, and —logo(p-values) are plotted by study (NHANES III in blue and
BioVU in red) in a forest plot generated by Synthesis-View. The red line denotes a level of significance at

p = 0.05. Significant odds ratios are denoted by the larger squares.

To replicate the NHANES III findings, we genotyped all five LP4A SNPs from Table 2 in
BioVU African American cases (n = 265) of MI and controls (n = 343). None of the five tests of
association were significant at p <0.05 (Figure 1). We meta-analyzed NHANES III and BioVU
tests of association and found two (rs10945682 and rs41271028) of the five associations had
consistent directions of effect. However, none of the five LPA SNPs were associated with MI in
the meta-analysis at p < 0.05.

Previous studies have suggested that rs3798220 (14399M) is associated with higher Lp(a)
levels and coronary artery disease risk [31,32] in European-descent populations. In the present
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study, we genotyped rs3798220 in BioVU African American MI cases and controls to determine if
the association generalized to African-descent populations. In unadjusted tests of association,
rs3798220 was not associated with MI in BioVU African Americans (odds ratio = 0.51; 95% CI:
0.16 — 1.65; p-value = 0.26).

4. Discussion

Genome-wide association studies have identified thousands of common variants significantly
associated with quantitative traits, and a fraction of these, in turn, are associated with risk for
specific clinical outcomes [33]. The emergence of EHRs linked to biorepositories is enabling
larger clinical outcome association studies, an important step in translating quantitative trait
associations into precision medicine efforts. In the present study, we tested genetic variants
associated with Lp(a) levels, an emerging risk factor for cardiovascular disease, for associations
with MI in African Americans ascertained from epidemiologic and clinic-based collections.
Overall, Lp(a)-associated genetic variants were not associated with MI in this small sample of
African Americans, highlighting the challenges of translating strong genetic associations identified
for quantitative traits to clinically relevant outcomes such as cardiovascular disease.

The lack of statistical associations may be due to a combination of imprecise phenotyping and
small sample size. Indeed, precise phenotyping and phenotype harmonization across studies is a
major challenge for genetic association studies. We used both an epidemiologic cross-sectional
survey and an EHR-based biorepository to identify cases and controls of MI. Prevalent NHANES
IIT cases were based on ECG scores (as opposed to self-report), and BioVU cases were likely a
mixture of prevalent and incident cases identified using primarily billing codes. As detailed
above, we deliberately applied the least stringent MI case definition to identify the largest number
of cases for manual review, a strategy that identifies “silver standard” cases that can then be
combined with gold standard cases to potentially boost statistical power [34]. This silver standard
strategy is likely to play a major role in the Precision Medicine Initiative as it is anticipated that
the one million participants will be a combination of prevalent and incident cases of various
common disease drawn from epidemiologic and clinic-based collections [35].

In the meta-analysis, we assumed that the case and control definitions were roughly
equivalent. While there were a few tests of heterogeneity with p-values < 0.05 (such as LPA
151652507 at p = 0.03), none were statistically significant when accounting for multiple tests.
Despite the lack of evidence for gross differences in case-control definitions between the two
collections, it is likely that subtle differences and possible case misclassification impacted
statistical power. The NHANES III case-control definition has been shown to have high
specificity, most likely resulting in good control classification (i.e., ruling out MI). Conversely,
the BioVU case-control definition has high PPV or precision. Neither case-control definition
addresses the underlying genetic and environmental heterogeneity typical of complex, common
human diseases that, like misclassification of case-control status, decreases statistical power [36].

The present study had a small sample size, which in combination with imprecise phenotyping,
led to low statistical power. The small sample size available for MI cases and controls in both the
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epidemiologic and EHR-based collection was disappointing given that both were drawn from
relatively large collections of DNA linked to demographic and health information. Although there
were 2,108 African American participants with biospecimens, NHANES III had relatively few
cases of MI. At the time this study was conducted, BioVU contained DNA samples linked to
EHRs for ~12,000 African Americans. However, from among these patients, only 311 cases of
MI were identified through billing codes and of these, 265 were available for genotyping. It is
possible that additional cases could have been identified using the clinical notes and more
sophisticated natural language processing techniques, but it is doubtful that a sufficient number of
additional cases would have been identified for a substantial increase in power. It is widely noted
that genome-wide studies in general are not conducted in diverse populations [37], and those that
are available generally have smaller sample sizes compared with their European counterparts [38].
This trend is unlikely to change with the rise in EHRs linked to biorepositories, and even
concerted efforts such as the proposed Precision Medicine Initiative with one million participants
[35] will be hard-pressed to muster sufficient sample sizes for clinically relevant outcomes in
diverse populations.

In addition to imprecise phenotyping and low case-control counts available for study, low
allele frequencies also contributed to low statistical power for specific tests of association.
Overall, LPA rs3798220 is not common in African Americans, with a minor allele frequency of
2% in the present study. This minor allele frequency is similar to African Americans in third
phase of the International HapMap Project as well as to European-descent cases and controls of
coronary artery disease meta-analyzed by the CARDIOGRAM consortium [31].  The
CARDIoGRAM consortium reported an odds ratio of 1.51, and assuming the same coded allele
(C) and the same minor allele frequency (2%), we had ~17% power to detect an association with
rs3798220 at p < 0.05.

Despite the numerous limitations, this study had several strengths. This study accessed both
epidemiologic and clinic-based collections to identify cases and controls for MI among African
Americans. Continued case-control collection for this and other clinically relevant outcomes is
sorely needed to better translate genetic associations identified using quantitative traits to
prevention, diagnosis, and treatment options for MI and other forms of cardiovascular disease at
the bedside.
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Many recent imaging genetic studies focus on detecting the associations between genetic markers
such as single nucleotide polymorphisms (SNPs) and quantitative traits (QTs). Although there exist
a large number of generalized multivariate regression analysis methods, few of them have used
diagnosis information in subjects to enhance the analysis performance. In addition, few of models
have investigated the identification of multi-modality phenotypic patterns associated with
interesting genotype groups in traditional methods. To reveal disease-relevant imaging genetic
associations, we propose a novel diagnosis-guided multi-modality (DGMM) framework to discover
multi-modality imaging QTs that are associated with both Alzheimer’s disease (AD) and its top
genetic risk factor (i.e., APOE SNP rs429358). The strength of our proposed method is that it
explicitly models the priori diagnosis information among subjects in the objective function for
selecting the disease-relevant and robust multi-modality QTs associated with the SNP. We evaluate
our method on two modalities of imaging phenotypes, i.e., those extracted from structural magnetic
resonance imaging (MRI) data and fluorodeoxyglucose positron emission tomography (FDG-PET)
data in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The experimental results
demonstrate that our proposed method not only achieves better performances under the metrics
of root mean squared error and correlation coefficient but also can identify common informative
regions of interests (ROIs) across multiple modalities to guide the disease-induced biological
interpretation, compared with other reference methods.

1. Introduction

Neuroimaging genetics emerges as one of the hottest research topics in recent studies, which
identifies genetic variant associations with imaging phenotypes such as structural or
functional imaging measures. Since neuroimaging plays an important role in characterizing
the neurodegenerative process of many brain disease such as Alzheimer’s disease (AD) [1],
the quantitative imaging phenotypes can provide valuable information so that it holds great
promise for revealing the complex biological mechanisms of the disease.

Genome-wide association studies (GWAS) have been widely used to identify the
associations between single nucleotide polymorphisms (SNPs) and the quantitative traits (QTs)
such as neuroimaging measures. To address the high dimensionality of the GWAS data and
small effect size of individual SNPs, in recent imaging genetic studies, researchers have
developed several generalized multivariate linear regression analysis methods by considering
the priori knowledge such as inherent structural information to boost the detection power [2,
3]. Although those methods may have the potential to help discover phenotypic imaging
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markers related to some candidate risk SNPs [4], another problem of existing methods in
imaging genetics is that the subjects’ diagnosis information (e.g., class labels such as patients
or healthy controls) is not fully used for revealing disease-specific imaging genetic
associations. More recently, some diagnosis induced methods have been proposed to solve the
imaging genetics problem [5, 6]. A two-step strategy was adopted by [5]: 1) initially, the
authors identified the voxels that could provide an imaging signature of the disease with high
classification accuracy using penalized linear discriminant analysis; 2) then they detected the
SNPs associated with the multivariate phenotypic markers discovered in the first step.
Moreover, a Bayesian framework for detecting genetic variants associated with a disease while
exploiting imaging as an intermediate phenotype was proposed in [6], which was designed to
jointly identify relevant imaging and genetic markers simultaneously. In addition, most of
imaging genetic studies focus on discovering the associations between single imaging
modality (e.g., magnetic resonance imaging (MRI)) and SNPs, while ignoring the underlying
interacting relationships among multiple modalities.

With these observations, our general motivation is to identify multimodal imaging
phenotypes serving as intermediate traits between a given AD genetic marker and disease
status, where we hope to design a simple and powerful model to maximize disease-relevant
imaging genetic associations. Accordingly, the ideas introduced in [7, 8] can be adopted and
incorporated into the imaging genetics studies. Specifically in [7, 8], subjects’ similarity has
been successfully used for designing more powerful multi-modal models on AD classification
and clinical score regression solutions, which are inspired by multi-task modeling integrated
with the priori relationship between sample data and the corresponding labels in machine
learning community [9].

In this study, we propose a novel diagnosis-guided multi-modality (DGMM) framework
that considers robust and common regions of interests (ROIs) as well as diagnosis labels such
as patients or healthy controls to handle the multi-modality phenotype associations with an
AD genetic risk factor. We evaluate our DGMM method on two modalities of phenotypes, i.e.,
voxel-based measures extracted from structural MRI and fluorodeoxyglucose positron
emission tomography (FDG-PET)) scans, as well as apolipoprotein E (APOE) SNP rs429358
(the best known AD genetic risk factor [10, 11]) data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort. The empirical results show that our method not only
yield improved performances under the metrics of correlation coefficient and root mean
squared error, but also detect a compact set of consistent and robust ROIs across two imaging
modalities which are relevant to the studied genetic risk marker.

2. Method

2.1. Genotype and Phenotype Association

In this section, we systematically develop our computational models to explore the association
between a candidate AD risk SNP and multimodal imaging phenotypes. That is, our proposed
method mainly addresses the problem based on the general linear (least square) regression
approach. Given imaging phenotypes X = [xy, ..., Xp, ..., xy] € R¥*4as input and a candidate
risk SNP y= [yy, ..., Vn, -, ¥n]T € RN as output in the regression model, where N is the number
of participants (sample size) and d is the number of imaging phenotype ROIs (feature
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dimensionality). The association model is designed to solve:
min%||y—Xw||2+/1R(W) (D
w

where R(w) is aregularization term and A is the corresponding parameter. The weight vector
w measures the relative importance of the imaging phenotypes (i.e., ROI measures) in
predicting the response of the SNP.

In the work, the goal of the learned regression model is not to discover relevant SNPs, but
to select biologically meaningful imaging phenotypes that are associated jointly with a given
risk SNP and the disease status. Using the linear general regression model formulated by Eq
(1), we aim to identify interesting imaging phenotypes that can serve as intermediate traits on
the pathway from an AD genetic risk factor to the clinical diagnosis.

2.2. Diagnosis-Guided Single-modality Phenotype Association

In this study, we consider the relationship between imaging phenotypes and the diagnosis
information among subjects which are not fully used in conventional association analysis
methods. More specifically, we will utilize the relationship information among subjects with
diagnosis labels, i.e., AD, mild cognitive impairment (MCI) or healthy controls (HC). That is, if
subjects are similar to each other in the original diagnosis feature space, their respective
response values should be also similar. To solve this problem, we induce a new regularization
term that can preserve the class level diagnosis information:

min N () = £(x)115S;; = 2wTXTLXw (2)

where S = [S;;] € R™" denotes a similarity matrix that measures the similarity between every
pair of samples. L = D — S represents a Laplacian matrix, where D is the diagonal matrix with
element defined as D;; = Z]N=1 Sij- Then, the similarity matrix can be defined as:

S { 1, if x; and X;j are from the same class
ij =

(3)

0, otherwise
The penalized term Eq. (2) enforces that, after being mapped into the label space, the distance
between the within-class data will be small, which preserves the local neighborhood structure
of the same class. We induce the diagnosis labels constraint into the single modality

phenotypic solution and then formulate a diagnosis-guided single modality (DGSM)
phenotype association model as follows:

min= ||y — Xw||? + awTXTLXw (4)
w

The strength of DGSM method is that it explicitly models the priori diagnosis information
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among subjects in the objective function that minimize distance within each diagnosis class
for selecting the disease-relevant QT associated with the SNP. Especially, the DGSM model can
generalize and handle the progressive disease with multi-diagnosis status, comparing to the
binary diagnosis analysis methods that were adopted in [5, 6].

2.3. Multi-modality Phenotype Associations

We assume that there are N training subjects or samples, with each represented by M
modalities of phenotypes. Denote X™ = [XT, ..., X1, ..., Xﬁ]T € RNXd 35 the data matrix of the
m-th modality, and Y= [Yy, ..., Y,, ..., Ya]T € RN be the corresponding response values (i.e.
APOE SNP rs429358). Let w™ € R9 be the linear discriminant function corresponding to the
m-th modality. Then the multi-modality phenotype association model can be formulated as
follows:

.1
mv\llnEZ%ﬂIIY—Xme||2+[3||W||2,1 (5)

where W = [wh,w?, ..., w"] € R®M jis the weight matrix whose row w; is the vector of
coefficients assigned to the j-th feature across different modalities, and ||W||,; = ;1=1 [[wjll,
is penalize all coefficients in the same row of matrix W for joint feature selection. First, the 12,1-
norm regularization term is a “group-sparsity” regularizer, which forces only a small number
of features being selected from different modalities [12]. Second, the parameter Bis a
regularization parameter that is used to balance the relative contributions of the two terms in
Eq (5). Finally, it is worth noting that our objective function Eq (5) is formatted as a multi-task
learning framework, where each imaging modality is used to predict the same response
independently (i.e, Y; =Y, = - =Y,), but the feature selection is regularized jointly by the
second term in Eq (5) to identify a set of consistent ROIs.

2.4. Diagnosis-Guided Multi-modality Phenotype Association

In this study, we try to develop a novel diagnosis-guided multi-modality (DGMM) framework
to discover the multi-modality phenotypic associations with an AD genetic risk factor, where
it explicitly models the priori diagnosis information among subjects in the objective function
for selecting disease-relevant and robust multi-modality QTs associated with the SNP. We
induce the diagnosis label constraint into the multi-modality phenotypic solution and design
a diagnosis-guided multi-modality (DGMM) phenotype association model as follows:

.1
min s Y (Y = X"w™ |2 +4,[|W[ |21 + 2z Xpoa W™ T X™TLTX™W™ - (6)

where S = [S;i'] € R™" denotes a similarity matrix that measures the similarity between

every pair of samples on the m-th modality across different subjects. Here, L™ = D™ — S™
represents a combinational Laplacian matrix for the m-th modality, where Dm is the diagonal
matrix with element defined as Dj{ = ]N=1 Sf]“ A, and 4, denote control parameters of the

regularization terms, respectively. Their values can be determined via inner cross-validation
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on training data. It is promising to find the better solution that is robust to noises or outliers
via considering both multimodalities and the rich information inherent in the observations.
The objective function can be efficiently solved using the Nesterov’s accelerated proximal
gradient optimization algorithm which was used in [7], which is shown in the Algorithm 1.

Firstly, we separate the objective function into the smooth part Eq (7) and non-smooth
part Eq (8) as following:

fW) = 2 ZM_1 1Y = XPw™ |12 4+ 2, T, (W) T (™) T L wmx™ )

gW) =1 [[W]]2,1 8)

We define the approximation function Eq (9) as following, which is composited by the above
smooth part and non-smooth one:

QW, W) = F(W,) + (W — W, VEW)) + > || W — Wi |3 + g(W) 9)

where|| - ||2 denotes the Frobenius norm, Vf(W,) denotes the gradient of f(W) on point W; at
the i-th iteration, and | is the step size. Then, the update step of Nesterov’s APG is defined as:

1 2 1 . 1 A
Wipq = argmin= |[W = V|| +-g(W)=arg  min_ -5, [|w; — vj||5 + 3| [w;][2(10)
wW 2 F 1 W1,Wa,..,Wq 2 1

where w;j and v; denote the j-th row of the matrix W and V, respectively. NAGP performs a
simple step of gradient descent to go from W; to V, and then it slide a little bit further than

V=W - VE(W) (11)

Therefore, through Eq (9), this problem can be decomposed into d separate sub-problems. The
key of APG algorithm is how to solve the update step efficiently. The analytical solutions of
those sub-problems can be easily obtained:

LY ] > 2
W]>k = ||V]||2 y ) 2 1 (12)
0, otherwise

Instead of performing gradient descent based on Wj, we compute the search point as:

Zi = (1 + o)W; — oW (13)
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_ Pi-1—1

1+ [1+44p%
where a; = and p; = ——.

pi 2

Algorithm 1: to minimize ] in Equation (6)
Input: APOE genotype y= [y, ..., Vn, -, YnIT € RN,
Multimodal imaging data X™ = [XI, ..., X™, ..., X1 T € RNxd,
Subject diagnosis information (i.e., AD, MCI or HC)
Output: W;, J*
Initialization: A; > 0,2, > 0,10 > 0,6 > 1, Wy =W, =0,py, =1
Repeat (For i=1 to max_iteration I)
1. Computed the search point Qi according to Eq (13)
2.1=1_4
3. while (f(Wiy1) + 8(Wiy1)) > QU(Wiy1,Qy), 1 = ol;
Here is computed by Eq. (10)
4. Setl; « 1
Until Converges
Calculate |*

3. Experiments

In this section, we evaluate the effectiveness of the proposed method on the ADNI-1 database.
For up-to-date data access information, see http://adni.loni.usc.edu/data-samples/access-
data/. One goal of ADNI is to test whether serial MRI, positron emission tomography, other
biological markers, and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early AD. For more details,
see www.adni-info.org. In our experiments, baseline structural MRI, FDG-PET scans, the top
AD risk SNP APOE rs429358, another AD risk SNP CD33 rs386544 and non-risk SNP
rs56283507 (for comparison purpose) are included. This yields a total of 357 subjects,
including 87 AD, 182 MCI and 88 HC participants. Table 1 shows the numbers for each
diagnosis code and each SNP.

Table 1. Diagnostic distributions on APOE SNP rs429358 and CD33 rs386544
and random non-risk SNP rs56283507

Diagnosis APOE rs429358 Code CD33rs386544 Code  non-riskrs56283507 Code

Label 0 1 2 0 1 2 0 1 2
AD 29 45 13 41 34 12 37 37 13
MCI 83 74 25 87 82 13 79 82 21

HC 66 21 1 40 36 12 39 40 9
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3.1. Imaging Phenotype Data

The SPM Statistical Parametric Mapping software package (SPM version 12, for more details,
see www.fil.ion.ucl.ac.uk/spm/software/) was used to: (1) create normalized gray matter
density maps from MRI data in the standard MNI space, and (2) register the FDG-PET scans
into the same space. The MarsBaR ROI toolbox [13] was used to extract mean gray matter
density and FDG-PET glucose utilization values for each of 116 MarsBaR ROIs. These measures
were pre-adjusted for age, gender, handedness and education.

3.2. Genotype Data

APOE (located on chromosome 19) has a key role in coordinating the mobilization and
redistribution of cholesterol, phospholipids, and fatty acids, and it is implicated in mechanisms
such as neuronal development, brain plasticity, and repair functions [14]. In imaging genetics
research experiments, several whole-brain studies focused on mapping this risk genetic
variable [10, 11]. In this work, we focused on studying the susceptibility SNP rs429358, which
was determined using APOE €2 /g3 /€4 status information from the ADNI clinical database for
each participant. We also selected another AD risk SNP CD33 rs386544 and a random non-
risk SNP rs56283507 for the comparison purpose to evaluate the performance of the proposed
model.

3.3. Experimental Settings

In our experiment, for the input of multimodal imaging phenotypes, we normalized the FDG
and VBM whose ranges are -5.29 to 6.49 and -5.34 to 4.73, respectively. For the outcome, each
SNP value is coded in an additive fashion as 0, 1 or 2, indicating the number of minor alleles.
We have inserted this information in our revised manuscript. 5-fold cross-validation strategy
was adopted to evaluate the effectiveness of our proposed method. As for parameters of
regularization, we determined the values by nested 5-fold cross-validation on the training set.
In current studies, we used SM (denoting single modality based method with Lasso [15] to
detect a sparse significant subset from imaging phenotypic features (i.e., ROIs)), MC (denoting
modalities concatenation with Lasso to detect a sparse subset from imaging phenotypes), MM
(denoting multi-modality method to detect imaging phenotypes from a sparse subset of
common ROIs), DGSM, DGMC and DGMM (the standard SM, MC and MM with DG, respectively,
where DG denotes the diagnosis-guided strategy).

3.4. Results

We compare our proposed diagnosis-guided based methods (including DGSM, DGMC and
DGMM) with conventional methods (including SM, MC and MM), respectively. The
performance on each dataset is assessed with root mean squared error (RMSE) and
correlation coefficient (CC) between actual and predicted response values, which are widely
used in measuring performances of regression and association analysis. The average results
of RMSE and CC among the 5-fold test on MRI-VBM and FDG-PET modalities are calculated
respectively as shown in Table 2 and Table 3. The corresponding values on the whole test data
entirety (denoted Ent for short) are included in both tables, where predicted values from all
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cross-validation trials are pulled together for calculating a single RMSE or CC.

As shown in Table 2, the proposed DG based methods consistently outperform their non-
DG based methods in the RMSE performance measure. This demonstrates that diagnosis-
guided information can help improve regression performance from imaging phenotypes to
genotype. DGMM and DGMC methods yield the best RMSE values of 0.9097 and 0.9096.
Compared with the DG strategy, the joint regularization across multiple modalities showed
negative effects on the RMSE performance in some cases (e.g., from SM to MM). Regarding the
CC results in Table 3, our proposed method shows the best CC of 0.1499 with the MRI-VBM
modality. The best CC of 0.1471 is obtained by DGMM in terms of the FDG measure while the
second best performance is 0.1140 by our DGMM method. These results demonstrate the
proposed methods can take advantage of consistent and robust multimodality information to
find more important associations. Compared with the joint regularization across multiple
modalities, the DG strategy had very limited contributions in most cases except the DGMM on
MRI-VBM (compared with MM).

Table 2. Comparison of regression performances of the competing methods in
terms of Root Mean Square Error (RMSE)

MRI-VBM FDG-PET
Method
(Mean * Std) 5-fold Ent (Mean * Std) 5-fold Ent

SM 1.0103+0.1123  1.0185 0.9538+0.0549  0.9569
DGSM 0.9097+0.0342 0.9107 0.9205+0.0446  0.9225
MC 0.9547+0.1088  0.9635 0.9127+0.0364  0.9138
DGMC 0.9096+0.0342 0.9635 0.9096+0.0342 0.9106
MM 1.3358+0.1081  1.3417 1.2267+0.0400  1.2280

DGMM 0.9097+0.0342 0.9107 0.9097+0.0342 0.9106

Table 3. Comparison of regression performances of the competing methods in
terms of Correlation Coefficient (CC)

MRI-VBM FDG-PET
Method
(Mean # Std) 5-fold Ent (Mean * Std) 5-fold Ent

SM -0.0154+0.1015  -0.0997 -0.1307+0.1323  -0.0557
DGSM 0.0090+0.1326 0.0039 -0.0322+0.0857 0.0363
MC -0.0913+£0.1609  0.0345 0.0164+0.0605  -0.1037
DGMC -0.0241+0.1318  -0.0650 -0.0354+0.1251 0.0525
MM 0.0928+0.0796 0.0886 0.1471+0.0804 0.1492

DGMM  0.1499+0.0384 0.1465 0.1140+0.0780  0.1002

We also selected another AD risk SNP CD33 rs386544 and a random SNP rs56283507 as
the comparison to evaluate the performance on the proposed model. As shown in Table 4, the
DGMM method with APOE rs429358 yield the best RMSE and CC performance measures,
which outperform the same method involved the CD33 rs386544 or the random SNP. This
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matches our expectation, since the APOE SNP has a larger effect size than the CD33 SNP and
the random SNP. The originality of the work is to make full use of the risk genotype and
corresponding disease samples to find the intermediate phenotype between an AD genetic
marker and the disease status. For evaluation purpose, it is desired to select the top AD risk
SNP to demonstrate our proposed model.

Table 4. Comparison performances (RMSEs and CCs) in our proposed model with
top risk SNP APOE rs429358, another risk SNP CD33 rs386544, and a random
non-risk SNP rs56283507.

MRI-VBM FDG-PET
RMSE CcC RMSE CcC
APOE-rs429358 0.9097+0.0342 0.1499+0.0384 0.9097%0.0342 0.1140+0.0780
CD33-rs386544 0.9123+0.0779 0.0582+0.1134 0.9123+0.0779 0.0960+£0.0823
rs56283507 0.9628+0.0346 0.0677+0.1495 0.9628+0.0346 0.0125+0.0686

Candidate SNPs

Besides the improved performances, one major goal of this study is to identify some
significant and robust phenotypes that are highly correlated to risk genotype marker to
capture imaging genetics associations in AD research.

Fig. 1. Visualization of the top 10 VBM ROIs selected by the proposed method.

The top 10 selected MRI-VBM imaging features, as well as their average regression
coefficients on 5-fold test, are visualized in Fig. 1 by mapping them onto the human brain. The
colors of the selected brain regions indicate the regression coefficients of the corresponding
MRI-VBM markers. As expected, Hippocampus_Left, Hippocampus_Right and Amygdala_Left
have been detected on top 10 ROIs associated with risk genotype biomarker by the proposed
DGMM method. It’s worth noting that these stable markers are in accordance with the existing
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findings. For example, the reduction of hippocampal gray matter has been correlated with
APOE SNP rs429358 [16]. The APOE polymorphism is the best established genetic risk factor
for pathological changes that is also associated with anatomical brain changes.

Fig. 2. Heat map of the top VBM and FDG ROI associations with APOE SNP rs429358
learned by the proposed method.

The weights of the top 20 ROIs by every fold DGMM test on the heat map are plotted in
Fig. 2. Our proposed method tends to select the stable ROIs such as Vermis_7, Vermis_10,
Hippocampus_Left, Hippocampus_Right and Frontal_Inf_Oper_Left that span across five cross-
validation trials. The APOE SNP is the best established genetic risk factor for pathological
changes that is also associated with reductions of hippocampal gray matter and glucose
metabolism [10, 16, 17]. It also demonstrates the robust and consistent ROIs should be
selected among the independent and different modalities, which discovers the imaging genetic
associations through biological interpretation. Although reduced volume of cerebellar vermis
has been associated with dementia [18], the imaging genetic finding of Vermis_7 warrants
further investigation.
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4. Conclusion

In this study, we have developed a diagnosis-guided multi-modality (DGMM) framework for
identifying neuroimaging phenotype associations with risk genetic biomarkers. This approach
explicitly models the priori diagnosis information among subjects in the objective function for
selecting the most relevant and robust multi-modality QTs (i.e, MRI-VBM and FDG-PET)
associated with top risk SNP (i.e., APOE rs429358). Experimental results on the ADNI database
showed that our proposed DGMM method not only achieved better prediction performances
under the metrics of correlation coefficient and root mean squared error compared with other
single modality and non-diagnosis-guided methods, but also detected a compact set of robust
and consistent ROIs across the multimodal phenotypes among the populations to guide the
disease-induced biological interpretation. The similar model can be also extended to the
investigation of association analyses between multi-modal brain imaging measures and any
other biomarkers such as those in cerebrospinal fluid. Furthermore, the DGMM framework
can be applied to other genetic associated diseases to investigate the complex biological
mechanisms from genetics to intermediate traits to diagnostic outcome. An interesting future
direction is to improve the efficiency of our implementation and apply it to larger scale studies
such as analyzing high dimensional voxel based imaging data as well as a comprehensive set
of genetic risk factors.
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Osteoarthritis (OA) significantly compromises the life quality of affected individuals and imposes
a substantial economic burden on our society. Unfortunately the pathogenesis of the disease is till
poorly understood and no effective medications have been developed. OA is a complex disease that
involves both genetic and environmental influences. To elucidate the complex interlinked structure
of metabolic processes associated with OA, we developed a differential correlation network approach
to detecting the interconnection of metabolite pairs whose relationships are significantly altered due
to the diseased process. Through topological analysis of such a differential network, we identified key
metabolites that played an important role in governing the connectivity and information flow of the
network. Identification of these key metabolites suggests the association of their underlying cellular
processes with OA and may help elucidate the pathogenesis of the disease and the development of
novel targeted therapies.

Keywords: Differential correlation; Osteoarthritis; Metabolomics; Urea cycle abnormal; Obesity; Car-
diovascular diseases; Differential networks; Dynamical networks; Interaction mapping.
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1. Introduction

Osteoarthritis (OA) is the most common form of arthritis. It causes a substantial morbidity
and disability in the elderly populations, and imposes a great economic burden on our soci-
ety.1? Despite high prevalence and societal impact, there is no medication that can cure it,
or reverse or halt the disease progression, partly because that its pathogenesis is still unclear
and there is no reliable method that can be used for early OA diagnosis.

Recent developments in the field of metabolomics provide an array of new tools for the
study of OA. A large number of small-molecule metabolites from body fluids or tissues can be
quantitatively detected simultaneously, which promises an immense potential for early diagno-
sis, therapy monitoring and understanding the pathogenesis of complex diseases.? Metabolites
are intermediate and end products of various cellular processes and their levels of concentra-
tion serve as a good indicator of a sequence of biological systems in response to genetic and
environmental influences.

In the reported studies on metabolomics analysis of OA case-control population data, the
mostly adopted methodology is to test and identify metabolites that are significantly associ-
ated with the disease class using principal component analysis (PCA),%® partial least square
discriminant analysis (PLS),%” or other individual testing techniques, and then to deduce
their likely biological interrelationship with OA. Testing correlations of the concentrations of
metabolites has not seen wide adoption likely due to the limited availability of methodologies.
However, these correlations likely exist because metabolites are intermediate or end products
of interconnected cellular processes. Analyzing their correlations provides an avenue captur-
ing the relationships of their represented cellular processes and biological reactions associated
with OA, and thus holds a great potential in OA metabolomics research.

Meanwhile, many biological systems are increasingly viewed and analyzed as highly com-
plex networks of interlinked molecular or cellular entities or metabolites,® and network science
has been applied to capture the interactome maps of gene-gene or protein-protein interac-
tions? 13 as well as transcriptional and metabolic data.!*16

The interaction maps of proteins, genes, metabolites or diseases can reveal the overall
physical and functional landscape of a biological system, and these networks have been mostly
generated under a particular static condition. More recently, differential network analysis
has been promoted as a powerful framework for analyzing biological interaction maps when
biological systems are considered undergoing differential changes that are dependent on the
environment, tissue type, disease state, development or speciation.!”18

Recent interaction mapping studies have demonstrated the power of differential correlation
analysis for elucidating the re-wiring of the interaction architecture of fundamental biologi-
cal responses in adaptation to changing conditions.'® 2 Analyzing the rewiring of biological
networks across disease conditions provides a unique insight into the dynamic response of
a biological system. Instead of looking at the absolute properties of a system, differential
network analysis emphasizes on the characteristics that are the most affected by genetic or
environmental influences.

In this study, we proposed a differential network approach to analyzing the metabolomics
population-based data of OA. We used differential analysis to quantify the variation of pair-
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wise correlation of metabolites across case and control populations, and used networks to
characterize the global interconnecting structure of such differentially correlated metabolites.
Our methodology is distinct from most existing metabolomics analyses of OA in that we in-
vestigated the correlations of metabolite concentrations, and more importantly the variations
of such correlations by comparing different disease status, to help elucidate the underlying
biological processes specifically associated with the pathogenesis of OA. Using topological
analysis of such a differential correlation network, we identified key metabolites and subse-
quently their represented cellular processes that may play an important role in the clinical
development of OA. Our findings could be very helpful in designing novel and more targeted
therapies for OA.

2. Methods
2.1. Osteoarthritis metabolomics data

In the current study, we used a two-stage case-control design with a discovery phase and a
validation phase. For both phases, knee OA patients were selected from the Newfoundland
Osteoarthritis Study (NFOAS) initiated in 2011.26 The NFOAS aimed at identifying novel
genetic, epigenetic, and biochemical markers for OA. The NFOAS recruited OA patients who
underwent a total knee replacement surgery due to primary OA between November 2011
and December 2013 at the St. Clare’s Mercy Hospital and Health Science Centre General
Hospital in St. John’s, the capital city of Newfoundland and Labrador (NL), Canada. Healthy
controls for both phases were selected from the CODING study (The Complex Diseases in
the Newfoundland population: Environment and Genetics), where participants were adult
volunteers.?”

Both cases and controls were from the same source population of Newfoundland and
Labrador. Knee OA diagnosis was made based on the American College of Rheumatology
clinical criteria for classification of idiopathic OA of the knee*® and the judgment of the at-
tending orthopedic surgeons. Controls were individuals without self-reported family doctor
diagnosed knee OA based on their medical information collected by a self-administered ques-
tionnaire. We collected 64 OA cases and 45 healthy controls in the discovery phase and 72
cases and 76 controls in the replication phase.

Blood samples were collected after at least 8 hour fasting and plasma was separated from
blood using the standard protocol. Metabolic profiling was performed on plasma using the
Waters XEVO TQ MS system (Waters Limited, Mississauga, Ontario, Canada) coupled with
Biocrates AbsoluteIDQ p180 kit, which measures 186 metabolites including 90 glycerophos-
pholipids, 40 acylcarnitines (1 free carnitine), 21 amino acids, 19 biogenic amines, 15 sphin-
golipids and 1 hexose (above 90 percent is glucose). The details of the 186 metabolites and
the metabolic profiling method were described in the previous publication.?? Over 90% of the
metabolites (167/186) were successfully determined in each sample.

Age and BMI are known factors correlated with OA. Therefore, the residual of a linear
regression using attributes age and BMI was applied to remove any partial correlations as a
result of those two factors, and to adjust the data for our metabolomics differential correlation
analysis of OA.
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2.2. Dafferential analysis of metabolite correlations

Metabolite concentrations in plasma may be correlated as a result of their represented biolog-
ical processes, and the correlation may change in different phenotypic or disease conditions.
Such a dynamic correlation was quantified by a differential correlation statistic in our study.

The correlation of a pair of metabolites was calculated using Pearson’s correlation coef-
ficient r in the two phenotypically distinguished samples, i.e. cases and controls. The corre-
lation coefficients rcase and 7eontror Were then used to compute the change of the correlation
between two metabolites across two different disease classes. Specifically, for metabolites i and
J, their differential correlation rqig(i, ) is calculated as the normalized difference of Fisher’s
z-transformations of r¢ase (i, 7) and reontro1(i, 7),

.. n -3 .o Tcontrol — 3 .o
Tdiff(/L?j) =/ % X anse(lv.]) - % X Zcontrol(zaj)v (1)

where z is the Fisher’s z-transformation of correlation coefficient r,

1+ Tcase(iaj) . 1 1+ 7"comtrol(ia ])

1- Tcase(i’j)}, Zcontml(Z’]) - 5 I [1 - Tcontrol(iaj) . (2)
We used ncase and neontrol to denote the total numbers of samples in cases and controls. This
differential correlation statistic captures the change of the normalized correlation across two
distinguishing conditions, and we used it to test if two metabolites are differentially corre-
lated by comparing diseased and healthy populations. Note that rg¢ describes the change of
correlations by subtracting the correlation in controls from that in cases, and can take either
positive or negative values.

The significance levels of differential correlations were assessed using a 1000-fold permu-
tation test. For each permutation, we randomly shuffled the disease status of all samples
combining both cases and controls to remove the association among metabolite correlations
and the disease outcome. By repeating this process 1000 times, we were able to generate a
null distribution under the assumption that the pairwise correlations of metabolites were not
statistically distinguishing in cases and in controls. Then for each pair of metabolites, the
significance (p-value) of their differential correlation was estimated as the proportion of per-
muted differential correlations that were greater than the observed value calculated using the
original real data.

. 1
anse(zvj) = an[

2.3. Dafferential correlation network

Network is a powerful tool to characterize the properties of entities and their complex rela-
tionships. In this study, we used networks to represent the global structure of differentially
correlated metabolites by comparing OA cases and healthy controls.

Pairs of metabolites that had significant differential correlations were included to build the
network. In such a differential correlation network, each node stood for a metabolite, and edges
linking two metabolites represented the significant differential correlations between them. The
differential correlation of a metabolite pair could be either positive or negative, meaning that
their correlation in cases are significantly stronger than their correlation in controls or vice
versa.
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Fig. 1. Comparison of pairwise metabolite correlations (red for positive; blue for negative) in case and control
populations. Only significant correlations (Pearson’s correlation coeflicient p-value cutoff 0.05 with Bonferroni
multiple-testing correction) were included in this comparison. (A) For the total of 6599 (= 1346 + 5252 + 1)
pairs of positively correlated metabolites in cases, the majority of them were also found positively correlated
in controls. (B) For the total of 145 (= 92 + 28 + 25) pairs of negatively correlated metabolites in cases, a
third of them were found positively correlated in controls and another third of them were found negatively
correlated in controls.

3. Results
3.1. Metabolite correlations in case and control populations

The pairwise Pearson’s correlations of 167 metabolites were calculated in both case and control
samples in the discovery dataset. Of all 13,861 pairs, the majority of them were positively
correlated in both cases and controls. We used a p-value threshold 0.05 and Bonferroni multiple-
testing correction to define the statistical significance of pairwise correlations.

About 80% of the positively correlated pairs in cases were found also positively correlated
in controls (Fig. 1A), and a similar link was observed for negatively correlated pairs as well
(Fig. 1B). This large overlapping of metabolite correlations from the two phenotypic condi-
tions suggests that the majority of the observed correlations were a result of “housekeeping”
biological reactions and were not related to the disease of OA.

3.2. D:ifferentially correlated metabolites

We calculated the differential correlations of all pairs of metabolites by comparing their corre-
lations in cases and controls as described in the section of Methods. By subtracting correlations
in controls from correlations in cases, metabolite pairs that were differentially correlated across
these two conditions were magnified, while the persistent correlations in both conditions were
removed. This differential correlation method allowed us to focus on the dynamic correlations
that were specifically associated with the disease.

In the discovery dataset, 232 pairs of metabolites had significant positive differential cor-
relations and 1060 pairs had significant negative differential correlations (permutation testing
p < 0.05). The strongest and most significant pair of metabolites that has a positive differential
correlation is Ala and Sarcosine (rqir = 9.33, p < 0.001), and that has a negative differential
correlation is lysoPCaC24:0 and PCaaC40:2 (rqig = —5.40, p < 0.001). Fig. 2A shows a scatter
plotting of all the pairs of metabolites with their correlations in the case population (x-axis)
and the control population (y-axis). In addition, positive and negative differential correla-
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Fig. 2. (A) Scatter of metabolite pair correlations in cases (x axis) and controls (y axis) and identification of
significant (p-value cutoff 0.05 using a 1000-fold permutation test) pairs with positive differential correlations
(red) and with negative differential correlations (blue). (B) Distribution of all pairwise differential correlations,
with a mean value of —0.283 (black dashed line). The means of significant differential correlations are also shown
using dashed lines. The average significant positive correlations was 3.820 (red) and the average significant
negative correlations was —2.589 (blue).

tions were shown as colored points. They represented the metabolite pairs whose correlations
significantly changed across the two phenotypic conditions.

The distribution of the differential correlations of all metabolite pairs is shown in Fig. 2B.
It follows a normal distribution approximately with a mean of —0.283. The shift of this distri-
bution towards the negative values explained the observation that there were more significant
negative differential correlations (1060 pairs) than positive ones (232 pairs). However, positive
differential correlation distribution has a longer tail towards larger values, and the mean of
significant positive differential correlations, i.e. 3.820, was greater than the absolute of the
mean of negative ones, i.e. —2.589.

3.3. D:ifferential correlation network of OA

We applied differential correlation analysis to both the discovery and replication datasets. We
used the set of metabolite pairs that were significantly differentially correlated (permutation
testing significance cutoff p < 0.05) in both datasets to build the differential correlation network
of OA.

A total of 100 pairwise differential correlations were statistically significant in both
datasets, including 71 metabolites. The network was comprised of four connected components
and the largest component included 63 metabolites and 95 edges (Fig. 3). The remaining three
components had only two or four nodes and were not included in the network visualization.

As seen in the figure, the majority of metabolite pairs were negatively differentially cor-
related, denoted by blue edges in the graph. Positive differential correlations, however, were
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Fig. 3. The differential correlation network by comparing the discovery and replication data. Only pairs
of metabolites that have significant differential correlations in both datasets are shown. There is one major
connected component of the network, which has 63 nodes and 95 edges. The network is visualized using the
force-directed layout with a closer node layout distance representing a stronger pairwise correlation. Edge
width is proportional to the corresponding correlation strength and edge color codes for positive (red) and
negative (blue) differential correlations. This network visualization was generated using Cytoscape.3°
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less observed and clustered together in sub-structures of the network. The node degree of this
network had a mean of 3.02 and a heavy-tail distribution (inset of Fig. 3), showing that the
majority of nodes have a very low degree but a few of them were considerably more connected
than the others. This property suggests the robustness of connectivity and information flow
in the network.

3.4. Identification of key metabolites in the osteoarthritis differential
correlation network

In network science, the importance of an individual node in a network is captured by measuring
its centrality. Besides the most commonly used centrality measure, node degree, there are more
sophisticated metrics on node importance that characterize not only the number of connections
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Fig. 4. Node importance characterized by (A) betweenness centrality and (B) closeness centrality in relation
to node degree. Key nodes, either with high degrees, or high betweenness/closeness, or both, are identified
and labeled with their represented metabolite names.

a node has, but also on how important those connections are in the global structure of an
entire network. Betweenness centrality quantifies the number of times a node v is part of the
shortest path between any pair of nodes,3! represented as Y, LutteV ”;—(f’), where o4 is the
total number of shortest paths from node s to node ¢ and o4 (v) is the number of those paths
that pass through node v. Betweenness captures how important a given node acts on the

connectivity of all other pairs of nodes. Closeness centrality is defined as ﬁ, where d,s

is the distance between nodes v and s.3233 This metric describes how easily a given node can
reach all other nodes in a network. In the context of differential correlation networks, those
centrality measures were used to identify key metabolites that play an essential role in the
global interconnected structure.

Nodes with high degrees are usually referred to as “hubs” since they have more connections
than the rest of the nodes in the network, and nodes with high betweenness or closeness are
often referred to as “bottlenecks” since they are crucial in controlling the information flow in
the network. Fig. 4 shows metabolites that are hubs, or bottlenecks, or both. The betweenness
and closeness centralities are shown in relation to node degrees in the figure. The same set of
11 metabolites were identified as key nodes in both centrality measures (Fig. 4A and B).

4. Discussion

Identification of metabolic markers associated with OA holds a great potential to better un-
derstand the cellular processes in response to genetic and environmental influences that lead
to the clinical outcome of the disease. The identified metabolites and their represented cellular
processes will in turn help us to develop targeted therapies for OA. In this study, we developed
a differential network approach to characterizing the variations of metabolite correlations in
relation to different phenotypic conditions.
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In our methodology, we used networks to represent the global inter-connected structure of
metabolites that showed significant correlation variations in case and control populations. By
exploring the topological properties of such a differential correlation network, we identified a
set of key metabolites for modulating connectivity and information flow in the network, and
thus hypothesized the association of their represented cellular processes with the disease.

When metabolite correlations were analyzed separately in cases and controls, we saw a
large overlap of correlated metabolite pairs (Fig. 1), an observation indicating that most of
the metabolite associations are not specifically related to OA. The differential analysis took a
unique route by subtracting correlation coefficient of a metabolite pair in controls from that
in cases, such that all the persistent pairwise correlations across the two phenotypic classes
were removed and the pairs with significant variations were magnified. These differentially
correlated metabolites are expected to provide useful insights into the underlying biologi-
cal processes of the clinical development of OA. We observed considerably more significant
negative differential correlations than positive ones (Fig. 2), which indicates that important
biological processes might be compromised in OA patients.

By comparing the independent discovery and replication datasets, we built a differential
correlation network of metabolites associated to OA (Fig. 3) The network included 63 metabo-
lites and 95 pairwise differential correlations. The majority of the differential correlations
were negative while the positive ones were clustered together around certain metabolites. The
metabolites that have positive differential correlations are mainly coming from the same class
of acylcarnitines, e.g. C18, C10, C10:2, C8, C5-OH(C3-DC-M), C12 and C16:1-OH; C18:2 and
C16; C6:1, C16-OH and C16:1. From the view point of physiology function, the relationship
between these metabolites is more likely a parallel relation rather than a causality.

The node degrees of this differential network had a heavy tail distribution (Fig. 3 inset),
which suggests a robust property of connectivity and information flow subject to random
perturbations. That is, random removal of nodes will have a very limited impact on the
global connectivity of the network, a property that has been found in many biological sys-
tems including metabolic networks,'* protein-protein interaction networks,?* gene-regulatory
networks® and gene-gene interaction networks.?® In the context of OA metabolite differential
correlation networks, this robustness property indicates the complexity of the molecular and
cellular processes underlying the pathogenesis of OA.

Topological analysis on the node importance using centrality measures revealed a set of
key metabolites that play an essential role modulating the connectivity and information flow
in the network (Fig. 4). They were identified as “hubs”, i.e. nodes that connect to many
other nodes, and “bottlenecks”, i.e. nodes that are located on major information flow paths in
the network. Identification of these key metabolites may provide important insights into the
pathogenesis of OA. Based on the node centrality measures, the metabolites in the network
can be roughly classified into three categories. The hub-and-bottleneck metabolites Ac-Orn
and Arg with their close neighbors Ala and Orn comprise the core of the network. On the
network peripheral, metabolites are mostly glycerophospholipids (PC and LysoPC). Between
the core and peripheral of the network is where acylcarnitines mixed with glycerophospholipids
are located.
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Ac-Orn, Arg, Ala and Orn have a close relationship with urea cycle in the body. Previ-
ous studies have proposed that urea cycle disorders may be related to the OA pathogene-
sis.3637 Glycerophospholipids form the essential lipid bilayer of all biological membranes and
are closely involved in signal transduction, regulation of membrane trafficking and many other
membrane-related phenomena.?®39 It has been suggested that alterations in phospholipid com-
position and concentrations are associated with the development of OA.%°

Acylcarnitines are related to energy metabolism. Carnitine and its acyl esters acylcarnitines
are essential compounds for the metabolism of fatty acids. Carnitine can assist in the transport
and metabolism of fatty acyl-CoA from the cytosol to the mitochondrial matrix, where the
enzymes of oxidation are located and fatty acids are oxidized as a major source of energy.
Acylcarnitine abnormal have been detected in obesity, type-2 diabetes, and cardiovascular
diseases. 142

The clustering of metabolites in the differential correlation network based on their central-
ities and the observation of urea cycle related metabolites locating on the core cluster of the
network suggest that urea cycle abnormality may be a driving cause for metabolic disorders
and may have a significant influence on OA development.
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There is growing use of ontologies for the measurement of cross-species phenotype similarity. Such
similarity measurements contribute to diverse applications, such as identifying genetic models for
human diseases, transferring knowledge among model organisms, and studying the genetic basis of
evolutionary innovations. Two organismal features, whether genes, anatomical parts, or any other
inherited feature, are considered to be homologous when they are evolutionarily derived from a
single feature in a common ancestor. A classic example is the homology between the paired fins
of fishes and vertebrate limbs. Anatomical ontologies that model the structural relations among
parts may fail to include some known anatomical homologies unless they are deliberately added
as separate axioms. The consequences of neglecting known homologies for applications that rely on
such ontologies has not been well studied. Here, we examine how semantic similarity is affected when
external homology knowledge is included. We measure phenotypic similarity between orthologous
and non-orthologous gene pairs between humans and either mouse or zebrafish, and compare the
inclusion of real with faux homology axioms. Semantic similarity was preferentially increased for
orthologs when using real homology axioms, but only in the more divergent of the two species
comparisons (human to zebrafish, not human to mouse), and the relative increase was less than 1% to
non-orthologs. By contrast, inclusion of both real and faux random homology axioms preferentially
increased similarities between genes that were initially more dissimilar in the other comparisons.
Biologically meaningful increases in semantic similarity were seen for a select subset of gene pairs.
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Overall, the effect of including homology axioms on cross-species semantic similarity was modest at
the levels of divergence examined here, but our results hint that it may be greater for more distant
species comparisons.

Keywords: homology; phenotype; semantic similarity; Uberon; EQ annotation

1. Introduction
1.1. Cross-species phenotype matching

Organisms exhibit similarities with each other in their genetic content, anatomical structures,
and other biological features due in large part to common evolutionary descent. This similarity
is what allows non-human organisms to serve as models for human diseases and for biological
knowledge to be transferred from model organisms to related species. In the area of biomedical
informatics, an important recent application is the use of cross-species phenotype matching
algorithms to generate candidate gene lists for rare and undiagnosed diseases.!? Given a
phenotypic profile for a human disease (e.g. a list of terms from The Human Phenotype
Ontology,? cross-species profile matching tools generate a ranked list of candidate genes based
on matches to the phenotypic profiles of orthologous genes in mutant models. This process can
be automated by using phenotype ontologies and semantic similarity methods that quantify
the degree of similarity.*® A number of methods make use of the Uberon anatomy ontology to
connect phenotype terms across species.%” For example, the human phenotype “Abnormality
of the upper limb” (HP_0002817) is connected to the mouse phenotype “abnormal forelimb
morphology” (MP_0000550) via the Uberon class “forelimb” (UBERON_0002102).

1.2. Homology

Two organismal features, whether genes, anatomical parts, or another inherited feature, are
considered to be homologous when they are evolutionarily derived from a single feature in a
common ancestor. Orthologous genes are a particular class of homologous features, ones that
are found in two different organismal lineages and that split evolutionarily into two genetic lin-
eages during a speciation event. It is a foundational premise for much of comparative genomics
that orthologous genes retain comparable functions even in distantly related organisms.® For
example, in chick, Thzd and Tbx4 genes control early development of wing and hindlimb buds
respectively, and the orthologs of these genes in zebrafish control development of anatomically
homologous structures, the pectoral and pelvic fins? (Figure 1). Thus, it appears that these
two gene lineages were distinct in the common ancestor of fish and birds and were deployed
similarly in the development of the ancestral fore and hind appendages.

Recognizing similar phenotypes grows increasingly challenging as the evolutionary dis-
tance increases between species and anatomical features diverge in structure. Comparative
anatomists have given a great deal of attention to identifying homologous anatomical struc-
tures among distantly related species.'® Uberon does not contain explicit homology relation-
ships,'' such as between a hindlimb and a pelvic fin, or between the mammalian adrenal
gland and the zebrafish interrenal gland. Instead, these classes are grouped according to sim-
ilar structure, function or cellular composition. For example, both forelimb and hindlimb are
grouped under the more general class limb based on their shared morphology, and limbs and
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fins are grouped under the general paired appendage (Figure 1). The situation is complicated
by the fact that homology assumptions do necessarily leak into the construction of the on-
tology. The fact that the forelimb and hindlimb are similar morphologically is no accident if
it is accepted that these are anatomical serial homologs. In fact, Uberon includes a grouping
class paired limb/fin (UBERON_0004708) based on homology. Despite the above, homologous
structures may sometimes be placed relatively distant to each other within Uberon when struc-
tural similarities are not as apparent (e.g. as is the case for certain bones in the jaw of fish
that are homologous to the inner ear bones of mammals). Phenotypes affecting anatomical
features that are homologous, but distantly placed within the ontology, will appear artificially
dissimilar to one another.

We wish to quantify the extent to
which the accuracy of cross-species phe-
notype matching is increased by includ- (a)
ing assertions of homology, such as those
compiled by Bgee,'? into Uberon. We do
this by assessing how measures of semantic
similarity are affected for orthologous rel-
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Phenotype annotations for these genes cally' similar only at the level of “paired append.age . (b)
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were obtained from the Monarch Initia-

anatomical similarity between orthologous pairs.
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which aggregates data from the Human
Phenotype Ontology (HPO), Mouse Genome Informatics (MGI), and Zebrafish Information
Network (ZFIN) (see http://monarchinitiative.org for details).

Gene pairs in which one or both genes lacked phenotype annotations were not in-
cluded in the final analysis. We removed 503 mouse genes whose annotations indi-
cate a lack of phenotypic assay (MP_0003012: no phenotypic analysis) and/or the ab-
sence of an abnormal phenotype (MP_0002169: no abnormal phenotype detected). Ze-
brafish and human genes for which no phenotypes are presently annotated were pre-
filtered by the source model organism databases (ZFIN, HPO). Anatomical homol-
ogy axioms for Uberon classes were obtained from the GitHub repository of Bgee
v0.2 (https://github.com/BgeeDB/anatomical-similarity-annotations/blob/master/
release/raw_similarity_annotations.tsv).!® Non-orthologous gene pairs across zebrafish,
mouse, and human were randomly sampled with a uniform distribution from the set of gene
pairs not asserted to be orthologous by PANTHER.

There are a variety of different semantic similarity measures used in the bioinformatics
literature.'® Here, we present results for a commonly used measure, Sim;c, which is based
on the concept of Information Content (IC), or the specificity of the match between two
annotations relative to a chosen annotation corpus.!'” We also examined another commonly
used measure, Jaccard similarity (Sim ;) which measures the ontological graph overlap between
two annotations.'® They differ in that Simyc takes into account the distribution of annotations
among ontology terms while Sim; considers ontology structure independent of annotation
density. These metrics were compared because of their prior use as measures of phenotypic
similarity between orthologous genes.?

We also have a choice in how to summarize the set of pairwise semantic similarities between
two genes, both of which typically have multiple annotations. We refer to the union of the
individual phenotype annotations for all alleles of one gene as a phenotype profile. Here, we
evaluated two summary statistics for semantic similarity between two phenotype profiles, as
detailed below, which we call Best Pairs and All Pairs. We only report full results for one
combination of statistics, Sim;c with Best Pairs, based on a test for which combination best
discriminated between orthologs and non-orthologs (see Results).

The IC of ontology graph node N in an annotation corpus with Z genes is defined as the
negative logarithm of the probability of a gene being annotated to N.

IC(N) = —log(Zx/2)

where Zy is the number of genes annotated to N. The IC for a pair of annotations, K and L,
is defined as the IC of their most informative common ancestor (MICA), which is their most
specific common subsumer in the ontology. Raw IC scores range from [0, IC,q.], with 0 being
the score of the root node of the ontology graph, and IC),.. = —log(1/Z) the score of a node
with only one gene annotation in the dataset. To obtain an IC score with a range of [0, 1], the
IC-based similarity measure, Sim;c(K, L), is normalized as follows.

Simic(K, L) = IC(K, L)/ — log(1/Z)

The Jaccard similarity for a pair of annotations K, L is defined as the ratio of the number
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of nodes in the intersection of their subsumers in the ontology graph over the number of nodes

in the union of their subsumers.®

SimJ(K, L) = |AK ﬂAL|/|AK UAL|

where Ax and Ay, are the sets of subsumers of K and L, respectively.

2.1.1. Similarity between phenotype profiles

To compute the Best Pairs score between two phenotype profiles X,Y, for each annotation
in X, the best scoring match in Y is determined, and the median of the |X| values is taken.
Similarly, for each annotation in Y, the best scoring match in X is determined, and the median
of the |Y'| values is taken. The Best Pairs score Spp(X,Y) is the mean of these two medians.

Spp(X,Y) = (1/2)[Sim(X,Y) + Sim(Y, X)]
where

Simic(A, B) = median{SimIc(Ai, B;)|ie{l...|Al},j = arg max Simsc(A;, Bj)}
j=1...|B|
To compute the All Pairs score, one instead takes the median of of all pairwise phenotype
similarities between X and Y.

Sap(X,Y) = median{Sz‘m(Xi,Yj) lie{l...|X|}.jell... |Y|}}

For both Spp and Sap, similarity may be measured using either Sim;c or Sim.

2.2. Construction of ontologies

We constructed three ontologies for computing semantic similarity: one without homology
axioms (R), one with valid homology axioms (H) and one with a random set of homology ax-
ioms (H'). Figure 2 illustrates the process by which these were built. Following the approach
of Kohler et al.,' R, H and H’ were seeded with the ontologies used by the gene phenotype
annotations for all three species in the corpus: the mammalian phenotype,?° zebrafish Phe-
notype,' and human phenotype?! ontologies, as well as the cross-species Uberon anatomy
ontology!! and the phenotypic quality ontology PATO.%2

There already exist a number of homology_grouping classes in the Uberon ontology that
bundle morphologically or functionally distinct subclasses based entirely on homology. As
we are seeking to determine the effect of anatomical homology on cross-species phenotype
similarity of orthologous genes, we removed a number of homology_grouping classes from R,
H, and H' (Table 1).

Next, 1,836 homology axioms from Bgee!® relating homologous anatomical structures were
added to H. For example, “pectoral fin” is asserted as being homologous to “forelimb” and
“pelvic fin” to “hindlimb”. These axioms restored the relations indicated by the excluded
homology_grouping classes in Table 1. We generated a set of 1,836 ‘random’ homology axioms
by sampling anatomy terms from a permuted list of those used in the real homology axioms;
these were then added to H'.
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Table 1. homology_grouping classes in Uberon excluded from R, H, and H'.

Name UBERON_ID | Name UBERON_ID
adrenal/interrenal gland 0006858 paired limb/fin bud 0004357
limb/fin segment 0010538 paired limb/fin cartilage 0007389
paired limb/fin skeleton 0011582 pelvic appendage 0004709
paired limb/fin 0004708 pectoral appendage 0004710
paired limb/fin field 0005732 bone of free limb or fin 0004375

We then created grouping classes to subsume annotations based on different ontology class
properties. These grouping classes are classified by an OWL reasoner into the pre-existing
phenotype class hierarchy by virtue of subsumption reasoning and equivalence axioms. These
axioms follow the standard Entity-Quality (EQ) template.”!® In their simplest form, EQ
expressions describe a phenotype in terms of a quality (Q) and an entity (E) that is the
bearer of the quality. These EQ expressions are represented in OWL as “¢) and ‘inheres
in’ some E”.7? The following three EQ expressions were created to serve as templates for
equivalence axioms of grouping classes.

e FQi: ) and ‘inheres in’ some F
e FQ-: () and ‘inheres in” some (‘homologous to’ some F)
e FQ3: () and ‘inheres in’ some (£ or ‘homologous to’ some E)

In the above expressions, @) is the root of the PATO ontology and E can be any entity
from the Uberon ontoloev. One class of the form EQ. was created for each entitv class (E) in

Uberon. "

Base ontologies

MP ZP HPO
equivalence
PATO Uberon axioms

[ Ontology R ] ! Anatomical homology axioms F\’[ Ontology H ]

/
3 Q and ‘inheres in’ some (E or ‘homologous to’ some E)
'

Fig. 2. Construction of ontologies for computing semantic similarity without or with supplemented knowledge
of anatomical homology. First, ontology R is created by adding building block phenotype ontologies and
equivalence axioms. H (and H') are created by adding anatomical homology axioms to R. Finally, one set of
grouping classes is added to R and three sets of grouping classes are added to H (and H').
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The templates FQ2 and EQ3 generate classes that group annotations whose anatomical
structures are related via homology. For each entity class (E) in Uberon, we added to ontologies
H and H’ one class of form FQs and one of form EQs. It is the presence of these grouping

classes th to infer common
subsumer sween ontologies
for which which has FQ-
template sh level of paired
appendag e grouping class
for a mor mology.

T T T T T T T N Q and ‘inheres in’ some

(pectoral fin or Q and ‘inheres in’ some

‘homologous to’ some pectoral
fin)

I

|

I

. |

paired appendage ) J‘A {

/ \ P I B |
X X . . | Qand ‘inheres in’ some | Qand ‘inheres i’ some |
Q and ‘inheres in’ Q and ‘inheres in’ | (‘homologous to’ some pectoral+—>  (‘homologous to’ some |
some fin some limb ! fin) ! forelimb) i
- ___. . __ )

1

L Q and ‘inheres in’ } { Q and ‘inheres in’ }

Q and ‘inheres in’

|

} (forelimb or
| some

|

|

‘homologous to’ some forelimb)

Qand ‘inheres in’
some
pectoral fin

some some
pectoral fin forelimb

(a) Portion of ontology R (b) Portion of ontology H

Fig. 3.  An example of subsumption hierarchies without and with anatomical homology. Least common sub-
sumers for annotations of the pectoral fin and forelimb (dashed boxes) can be seen to differ for the R ontology,
without homology (a) and the H ontology, with homology (b). Arrows denote subsumption relationships. It
can be seen here that knowledge of homology enables the inference of more informative common subsumers
for annotations with homologous anatomical structures.

2.3. Assessing the impact of homology

Our overall goal is to assess how the semantic similarity between the phenotypic profiles of two
genes is affected by the addition of explicit homology statements in H lacking in R. Specifically,
we hypothesized that there would be a greater increase in the similarity score for orthologous
than non-orthologous genes when real homologies were included, and no differential increase
when random homology assertions were included. We tested this hypothesis for two species
pairs: mouse-human and zebrafish-human, with the expectation that the effect of homology
on semantic similarity scores would be greater for the more distant evolutionary comparison.

To carry out this test, we measured the difference in similarity using R versus using either
H or H'. We performed unpaired, one-sided ¢-tests for the null hypothesis that the distribu-
tion of differences was identically distributed for orthologs and non-orthologs. The alternate
hypothesis is that the difference would be greater for orthologs. We performed four such tests,
for both the zebrafish-human and mouse-human comparisons and for both H and H’.
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3. Results

We obtained 1,253 orthologous gene pairs between zebrafish and mouse, 640 between zebrafish
and human, and 2,034 between mouse and human, from PANTHER. Equal numbers of non-
orthologous gene pairs were obtained for each species pair by sampling from permuted lists
of the genes included in the orthologous pairs and requiring that the sampled pair not be
included in the PANTHER orthology list. 10,055 grouping classes were added to ontology R
and 30,165 to ontologies H and H’'. As noted above, 1,836 anatomical homology axioms were
obtained from Bgee for inclusion in H; they come from a wide variety of sources (Table 2).
The same number of random homology axioms were added to H'.

Table 2. Sources of Bgee homology axioms classified by Evidence Code.?*

Evidence Code No. axioms | Evidence Code No. axioms
Used in automatic assertion 709 Morphological similarity 66
Curator inference 361 Traceable author statement 55
Developmental similarity 213 Positional similarity 36
Phylogenetic distribution 197 Gene expression similarity 32
Non-traceable author statement 137 Compositional similarity 30

One of three confidence codes, “high confidence” (34.13% of axioms), “medium confi-
dence” (61.72%), or “low confidence” (4.15%) was associated with each homology axiom by
Bgee. 1,680 of the axioms assert a class to be a homolog of itself, while only 156 of the homol-
ogy axioms, belonging to 12 taxonomic groups, assert homology between pairs of anatomical
structures (Table 3). Thus, only a fraction of the homology axioms would be relevant for the
taxonomic comparisons being made here; for example, there are only 10 non-self homology
axioms that would affect comparisons between mammals.

Table 3. Distribution of Bgee homology axioms among taxa, exclud-
ing self-homologies.

Taxon name  No. axioms | Taxon name No. axioms
Vertebrata 38 Mammalia 10
Tetrapoda 28 Metazoa 6

Bilateria 16 Sarcopterygii 8
Chordata 14 Eumetazoa 6

Amniota 10 Gnathostomata 8
Euteleostomi 10 Dipnotetrapodomorpha 2

We calculated phenotype semantic similarity for each orthologous and non-orthologous
gene pair using the four combinations of semantic similarity measures described in the Meth-
ods above and for each of the three different ontologies, R, H, and H’. In order to select
one semantic similarity measure for subsequent analyses, we determined which one best dis-
tinguished orthologous from non-orthologous gene pairs, reasoning that this would be an
informative indicator of biological accuracy. We calculated the difference in median rank be-
tween orthologs and non-orthologs for the zebrafish-human comparison using H. We found
that the combination of Sim;c and Spp gave the greatest discrimination between orthologous
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and non-orthologous gene pairs and so report results for that statistic in what follows. Full
results for all four statistics, together with analysis scripts used in this study, are available
from Zenodo (doi:/10.5281/zenodo.31833).

Our hypothesis that orthologs would experience a disproportionate increase in similarity
when real homology axioms were used was supported by the t-tests in the case of the zebrafish-
human comparison (Table 4). A one-tailed unpaired ¢-test found a significantly greater differ-
ence for orthologs than non-orthologs with real homology axioms but no significant difference
with random axioms. However, this pattern was not seen in the mouse-human comparison,
where orthologs were not significantly different than non-orthologs for H. In fact, the reverse
trend was seen in all other comparisons; the mean similarity was preferentially increased for
non-orthologs in the zebrafish-human H’, mouse-human H, and mouse-human H’ comparisons
(Table 4). The underlying profile similarity values can be seen in Figure 4.

Table 4. Differences in similarity between orthologs and non-orthologs upon
adding either real or random homology axioms to R. t: one-tailed, unpaired
t-statistic; df: degrees of freedom; ns: not significant; dp, dyo: mean percent
increase + 2 standard errors relative to R for orthologs and non-orthologs, re-

spectively.

species pair real homology (H) random homology (H')
zebrafish-human ¢, df=1278 t = 2.36, p = 0.009 t =1.46, ns

do 5.81 £0.70 4.854+0.98

SNO 4.88+0.72 7.99 +3.11
mouse-human t, df=4066 t =—-3.17, ns t = —2.16, ns

oo 2.44 4+ 0.27 3.22 £0.61

oNO 4.39 +0.53 5.83 +0.81

4. Discussion

We wished to measure the extent to which addition of homology axioms to an anatomy on-
tology affects the semantic similarity of phenotypes between distantly related species. The
pattern whereby orthologs between distantly related species (zebrafish and human) show a
greater increase in similarity than non-orthologs when real homology axioms are added pro-
vides evidence that the inclusion of homology improves biological accuracy. However, there
are three caveats. One, the relative difference in score between orthologs and non-orthologs,
while significant, is less then < 1%. Two, there was, unexpectedly, a larger increase in the sim-
ilarity score for non-orthologs in the mouse-human comparison using real homology axioms.
Third, non-orthologs had a greater increase in similarity for both species pairs when random
homology axioms were added.

These results may be due to a combination of the hypothesized biological trend and a
countervailing methodological artifact. First, the significant result for zebrafish-human with
real homology axioms is consistent with the idea that the strength of the effect of including
real homology axioms is in proportion to the evolutionary distance between the species pair.
Second, the greater response of non-orthologs than orthologs in the three other comparisons,
may stem from both real and faux homology axioms having a greater effect on semantic
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Fig. 4. Sic,pp for orthologs (blue) and non-orthologs (yellow) for the zebrafish-human (a,b) and mouse-
human (c,d) species comparisons. The z-axis shows the scores without homology axioms (R) and the y-axis
shows the scores for real (H) homology axioms (a and c¢) or random axioms (b and d).

similarity when phenotypes are dissimilar, as can be seen in Figure 4. When the species are
closely related and orthologs are already highly similar, or when the axioms are random,
then non-orthologs, which are less similar to begin with, preferentially experience the gain in
similarity.

Despite the noisiness of the trends overall, we can see examples of individual gene pairs for
which homology axioms have a large effect that makes biological sense. One such pair is the hu-
man gene TFAP2A (NCBI:gene:7020), which is annotated to “Fusion of middle ear ossicles”,
and the zebrafish gene tfap2a (ZFIN:ZDB-GENE-011212-6), annotated to “abnormal(ly) de-
creased length quadrate”. The homology between the quadrate, part of the jawbone of basal
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vertebrates, and the incus, a middle ear ossicle in mammals, is a textbook example of verte-
brate evolution.?> When homology was excluded, “abnormal(ly) decreased length quadrate”
was matched to “Micrognathia” and grouped under the relatively uninformative grouping
class “(@) and ‘inheres in’ some bone of jaw” with an Sim;c score of 0.32. When homology
assertions were included, these annotations were subsumed under the grouping class “¢) and
‘inheres in” some (‘homologous to’ some auditory ossicle)” with an Simjc score of 0.56.

Despite examples such as this, the modest effect of homology overall was unexpected.
One explanation could be that so much anatomical homology is already implicit within the
Uberon ontology that homology axioms are only needed in rare cases. In practice, it is difficult
to extricate groupings in the ontology that are based on characteristics such as morphology,
function, and shared development from those based on homology, potentially rendering some
homology axioms redundant. Another explanation for the modest effect of homology is the
relatively low number of homology assertions added to H that are not self-homologies, and
the fact that only a subset of those assertions are relevant to the taxonomic groups compared
here. It is not clear to what extent the results might be affected by homologies known in the
literature that have yet to be curated by Bgee.

Our analysis focused on humans and two vertebrate model organisms for which abundant
mutant phenotype data and a convenient set of anatomical homology statements are available.
Given that the effect of homology seemed to be more pronounced in the zebrafish-human com-
parison than that of mouse, it would be of interest to examine species pairs with even more
divergent body plans. Unfortunately, there are relatively few anatomical homology axioms
linking vertebrates with model organisms outside the vertebrates, such as fruitflies and nema-
todes. Nonetheless, these results suggest that it would be worthwhile to explore the impact
of “deeper” homology statements, either those sourced from the literature, or those derived
computationally, such as by the phenolog approach.?8 In future work, we intend to explore
the impact of homology reasoning on measurement of semantic similarity for phenotypes that
vary naturally among vertebrate lineages, such as those in the Phenoscape Knowledgebase.?”
Independent of the use of homology axioms, some of the semantic similarity statistics that we
examined showed relatively poor discrimination between orthologs and non-orthologs, suggest-
ing the need to take a critical look at the biological accuracy of different phenotype semantic
similarity measures.
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The practice of medicine is predicated on discovering commonalities or distinguishing characteristics among patients
to inform corresponding treatment. Given a patient grouping (hereafter referred to as a phenotype), clinicians can
implement a treatment pathway accounting for the underlying cause of disease in that phenotype. Traditionally,
phenotypes have been discovered by intuition, experience in practice, and advancements in basic science, but these
approaches are often heuristic, labor intensive, and can take decades to produce actionable knowledge. Although our
understanding of disease has progressed substantially in the past century, there are still important domains in which
our phenotypes are murky, such as in behavioral health or in hospital settings. To accelerate phenotype discovery,
researchers have used machine learning to find patterns in electronic health records, but have often been thwarted by
missing data, sparsity, and data heterogeneity. In this study, we use a flexible framework called Generalized Low
Rank Modeling (GLRM) to overcome these barriers and discover phenotypes in two sources of patient data. First, we
analyze data from the 2010 Healthcare Cost and Utilization Project National Inpatient Sample (NIS), which contains
upwards of 8 million hospitalization records consisting of administrative codes and demographic information. Second,
we analyze a small (N=1746), local dataset documenting the clinical progression of autism spectrum disorder patients
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using granular features from the electronic health record, including text from physician notes. We demonstrate that
low rank modeling successfully captures known and putative phenotypes in these vastly different datasets.

1. Introduction
1.1. Learning phenotypes from the electronic health record

With the advent and proliferation of electronic health records, phenotyping has become a popular
mechanism with which to define patient groups based on shared characteristics- typically for
conducting observational studies, defining quality metrics, or targeting clinical interventions.
Current phenotyping methods vary: some rely on rules crafted from domain knowledge, others
relying on statistical learning, and some employ hybrid approaches.'” Regardless of the method,
phenotyping has clear utility when the resulting groups are well defined, but may fail when the
situation is unclear. Instead of presupposing phenotypes, recent work has leveraged advances in
unsupervised learning to discover phenotypes from the data.**

A major barrier to applying machine learning approaches to phenotype discovery using health
records data is that these data are often sparse, biased by non-random missingness, and
heterogeneous.” An emerging framework, Generalized Low Rank Modeling (GLRM), offers a
potential solution to address these limitations. Specific low rank models have already been
successfully applied to various biomedical problems.*** However, no prior study has considered
low rank modeling as an overarching framework with which to perform phenotype discovery via
models tailored to the qualities of the dataset at hand. Here, we demonstrate the use of this flexible
framework to discover phenotypes in two datasets of different quality, granularity, and which
represent diverse clinical situations.

1.2. Standardizing hospital care using phenotype discovery has high impact

Each year, Americans are admitted to hospitals over 37 million times, in aggregate spending more
than 175 million days as inpatients.” In addition, hospitalizations cost the US economy $1.3
trillion dollars annually.® In light of this enormous impact, improvements in hospital care can yield
dramatic results. For example, the Institute of Medicine estimated that up to 98,000 patients die
each year from preventable medical errors.” Recent coordinated efforts to improve safety resulted
in a staggering 1.3 million fewer patients harmed, 50,000 lives saved, and $12 billion in health
spending avoided.'® These efforts shared a simple premise: uncovering common phenotypes
bridging diverse inpatient cohorts can drive substantial improvements in care and outcomes.'
Given that phenotype discovery is such a critical step towards improving hospital care, existing
methods for subgroup discovery are often slow and labor-intensive. For example, the codification
of sepsis has taken decades'', despite the fact that it contributes to as many as 1 out of every 2
hospital deaths'? and is the single most expensive cause of US hospitalization.'

1.3. Autism spectrum disorder phenotypes are poorly defined and badly needed
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Autism spectrum disorder (ASD) is a leading cause of mental illness in children, with an estimated
52 million cases globally.'* In the United States, its prevalence has been estimated to be as high as
1 in 68, resulting in $11.5 billion in social costs'>'®. ASD has eluded precise characterization of
either its biological underpinnings or its clinical presentation, leading to substantial challenges in
diagnosis and treatment, particularly in light of a wide range of heterogeneous phenotypes and
comorbidities'’. Although symptoms of the disorder are commonly present by age 18 months,
ASD is typically not diagnosed until age 4 or later, after significant irreversible impairments in
learning and neurodevelopment have already occurred". Even after diagnosis, the progression of
ASD is different across individuals, which has led to efforts to define subgroups that are at
differential risk of comorbidities."® A systematic and data-driven approach for phenotype
discovery can precisely characterize this heterogeneous disorder and its progression over time.

2. Methods

We analyze two datasets of different sizes, feature granularity, data-types, domains, and timelines.
Instead of taking a one-size-fits-all approach, we create a tailored low rank model within the
generalized low rank model framework to account for the specific qualities of each dataset and
then fit the model to discover hidden phenotypes.

2.1. Generalized low rank models

The idea behind low rank models is to represent high-dimensional data in a transformed
lower-dimensional space. Generalized low rank models'® begin with a matrix or data table A that
is populated with n samples or observations (rows) of m different features (columns; Figure 1).
These features may take values from different sets (e.g. some may be real numbers, others
true/false, enumerated categories, etc.) and each observation may have missing values for some
features. The number of features in the dataset is referred to as its dimensionality.

We approximate 4 by XY, where X € % and ¥ € B (Figure 1). We interpret the rows of
this “tall and skinny” Xas observations from A4 represented in terms of the £ new latent features.
We interpret each row of the “short and wide” Y as a representation of one of the k latent features
in terms of the m original features. In a sense, ¥ encodes a transformation from the original
features into the latent features.
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FIGURE 1: A data matrix is approximated as the product of two matrices. By construction, the resulting
approximation is of lower algebraic rank. The data matrix A may contain features of different data-types and missing
entries, as illustrated here. Each row of X is an encoding of an observation in A in the latent feature space. Each
column of Y is an encoding of a feature of A in the latent feature space.

To find Xand Y, we pose the following optimization problem:

min ¥ Ay (XY)) + &) + ry(¥) (1)
IjE

XY

This expression consists of two parts: a loss function and regularizers. The loss
L= 3 {4 (XY)) 2
ijEQ

is a measure of the accuracy of our approximation of the data. Different losses may be more or
less appropriate for different types of data (to reflect different noise models), so we allow the loss
to be decomposed over the different elements of the dataset to account for heterogeneity in the
types of features present. In addition, we only calculate the loss over the set 2, which represents
the non-missing entries in our dataset. This strategy allows us to ‘borrow’ statistical power from
partially-filled or incomplete observations where other methods would discard the entire
observation. The regularizers r.and ry,constrain or penalize the latent feature representation.
Using appropriate regularization can prevent overfitting and improve model interpretability.

To impute missing or hidden values, we solve: 1:1,-]- =argmin [;(a, (XY);), where arepresents the
a€a

set of possible values that a can take (e.g. if a is a boolean feature, a = {1, —1}).

Particular choices of losses and regularizations result in many well known models. For instance,

using L(A4,XY) =||4—-XY ||§ and no regularization is mathematically equivalent to principal
components analysis (PCA). A well-written and detailed description of GLRM and the kinds of
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models that can be created using this framework can be found in the seminal work by Udell et.
al.”

2.2. Hospitalization dataset and phenotype discovery model

We used data from the 2010 National Inpatient Sample, the largest all-payer nationally
representative dataset of US hospitalizations.*® Each hospitalization record includes a variety of
fields providing information about patient diagnoses (up to 25 different ICD-9-CM codes) and
procedures (up to 15 ICD-9-CM procedure codes), as well as demographics,
admission/discharge/transfer events, and comorbidities (a set of 30 AHRQ comorbidity measures,
e.g. AIDS). For efficiency, we processed the dataset to consolidate the ~18,000 ICD-9-CM
diagnosis and procedure codes into a total of 516 Clinical Classification Software (CCS) codes.”!
Additionally, we used 44 variables regarding patient demographics, admission circumstances,
hospitalization outcome, and patient comorbidity. We expanded all categorical variables into sets
of boolean dummy variables (one for each possible value) to yield a total of 557 boolean,
continuous, and ordinal features. We focused specifically on adult hospitalizations (age > 18
years) as the causes, demographics, and outcomes of pediatric hospitalizations differ substantially.
To speed computation, we selected a random subsample of 100,000 hospitalizations to fit our
models to.

Hospitalization records contain a diversity of data-types. We measured the accuracy of the
approximation for different data elements by data-type appropriate loss functions, e.g. quadratic
loss for real-valued variables such as age, hinge losses for boolean variables such as presence or
absence of procedures. Real, categorical, ordinal, and boolean, and periodic data-types are familiar
to most researchers, and appropriate losses for these kinds of variables are known in the machine
learning and optimization communities. "

We defined an epistemic boolean variable as a boolean variable where we have a lopsided
confidence about whether a true value actually indicates truth or a false value actually indicates
falsehood. For example, consider diagnoses: if a clinician codes a patient for a diagnosis, it is
highly likely that that patient experienced the condition that the code represents -- in other words,
we are confident that “True” means true. On the other hand, if a patient did not receive a particular
diagnosis, that variable would simply be missing in that patient’s hospitalization record. In reality,
we are less sure that the patient did not experience that condition because it may have escaped
diagnosis, remained unrecognized, or simply gone uncoded. We developed a loss function to
account for lopsided epistemic uncertainty of this sort. Correct predictions are not penalized
regardless. Our loss function for epistemic booleans is a generalization of the boolean hinge loss
and is defined as follows:

la,u) = (wpl @)+ wrl (@) * max(1 +au, 0) 3)
where 1 ,(x)1s an indicator function for x € 4. When w; > wy, this loss function penalizes false

negatives more than false positives, reflecting our greater certainty about observations labeled as
“True” compared to those labeled as “False”.
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In light of the divergent scales and domains of the features, all loss functions and regularizers were
adjusted for scaling and offsets."

2.3. Autism spectrum disorder dataset and phenotype discovery model

We used data from the Stanford Translational Research Integrated Database Environment
(STRIDE), a de-identified patient dataset that spans 18 years and more than 1.2 million patients
who visited Stanford Hospital & Clinics. From all patients in STRIDE, we identified 1746 patients
with at least 2 autism spectrum disorder (ASD) related visits (visits assigned a 299.* ICD9 code).
For these patients, we analyzed billing data from all visits (ICD9 and CPT codes), prescribed
drugs, as well as mentions of clinical concepts in their medical notes found using our previously
described text annotation pipeline.* We restricted our analysis to data recorded when these 1746
patients were at most 15 years old because we are interested in modeling ASD phenotypes in
children and adolescents. We generated a feature vector for each patient by calculating the
frequency of occurrence of each visit-associated ICD9 code, prescribed drug, and medical concept
mentioned in any note of that patient, binned by 6 month intervals (Figure 2). To capture the
nature of this data, we used a Poisson loss over all elements in the dataset. This low rank model
specification is mathematically equivalent to Poisson PCA.*

FIGURE 2: Illustration of the hospitalization (left) and ASD (right) datasets. For each ASD patient, we created a
vector from the frequency of occurrence of each concept (C-1, C-2...) mentioned in their medical notes, ICD9 codes
associated with a visit (ICD9-1, ICD9-2...) and medications prescribed (DRUG-1, DRUG-2...) within each 6 month
period of their medical history captured in our database.

2.4. GLRM implementation

To fit our models, we used the Julia package LowRankModels*, which implements the algorithm
described by Udell et. al."” This software employs a general purpose, fast, and effective procedure
called alternating proximal gradient descent to solve a broad class of optimization problems.
Although model-specific solvers (i.e. algorithms that take advantage of the structure of a particular
GLRM) could be faster, this general-purpose software allowed us to rapidly iterate through model
design decisions and test choices of parameters and robustness.
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The Julia LowRankModels package is still under active development. We dedicated substantial
effort to learning and clarifying the code, contributing bug fixes, adding needed features, and
optimizing performance. Our contributions will accelerate our future work and the work of other
researchers using low rank models.

3. Results
3.1. Tailored low rank models outperform PCA

As an intrinsic evaluation, we benchmarked our tailored models against naive low rank models
(PCA) of equal rank by artificially hiding a portion of the elements in the dataset and judging each
model’s ability to correctly impute the missing values. This procedure was repeated in a 5-fold
cross validation for each model (Figure 3). In both datasets, the tailored models outperformed
PCA in terms of the imputation error for held out values. Imputation errors are evaluated using a
merit function specific to the data, not the model. While minimizing the merit function is the
ultimate goal, models are fit using loss functions because the merit function is generally
nonsmooth and nonconvex.

FIGURE 3: Training and testing imputation error in 5-fold cross validation of each model across a range ranks. The
tailored models perform better than their naive counterpart (PCA). Imputation error is mean-normalized within each
feature and by the number of data entries tested over.

3.2. Low rank models discover hospitalization phenotypes
We began our analysis of our hospitalization model by inspecting the latent features. Recall that

each latent feature in a low rank model is a row vector in the computed matrix Y . Each entry in
this vector corresponds to the influence of an original feature within this latent feature. We
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examined the representation of the original features in terms of the latent features by clustering the
latent feature representations of the original features (the columns of the matrix Y ). Hierarchical
clustering clearly reproduced known associations between diagnoses, procedures, comorbidities,
and demographics (not shown).

TABLE 1. Hospitalization phenotypes closely mirror common reasons for hospitalization.

To discover phenotypes, we clustered the low rank representation of our subsample of the NIS
dataset (the matrix X). We chose a hierarchical cluster cutpoint for eight clusters of
hospitalizations and compared cluster characteristics (Table 1) in terms of the original feature
space. The eight clusters had widely divergent baseline characteristics and could be well defined
within recognizable hospital phenotypes. For example, patients in clusters 4 and 5 were nearly all
young females who were hospitalized for pregnancy and childbirth. They differed in that patients
in cluster 5 had a slightly longer length of stay, likely associated with the marked difference in the
need for C-sections (6.2% for cluster 4 vs 88.4% for cluster 5). Cluster 1 appeared to contain
patients hospitalized for orthopedic procedures, while cluster 2 largely included patients with
psychiatric or substance abuse hospitalization -- the most common procedure was alcohol
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detoxification (16.7%). Cluster 7 was nearly exclusively patients undergoing procedures for acute
myocardial infarction with a 91.0% rate of cardiac percutaneous transluminal coronary
angioplasty. Clusters 6 and 8 included medically complex patients with cluster 6 having a high
mortality (8.1%) with a younger mean age of 61 years.

3.3. Phenotypes discovered from a low rank model of ASD progression

To discover ASD phenotypes we first examined the composition of the latent features in our
models. Regardless of the parameterization or the rank, the primary effect that we observed in our
latent feature vectors was differential enrichment for original features coming from different
6-month time-bins (Figure 4). For instance, the second latent feature shown has relatively high
weights on original features corresponding to medical concepts observed in patients during the
second time bin, while the first has relatively high weights on original features corresponding to
clinical concepts observed in patients during the fourth time bin. This “useage timeline” effect was
evident in all models we considered, regardless of rank.

FIGURE 4: Each panel represents one latent feature vector in the matrix Y. Vertical gray lines are manually overlaid
boundaries between time bins. Time bins are ordered temporally from left to right. The weights of the original
features in each latent feature representation are predominantly associated according to the time bin in which each
original feature was recorded, and not by clinical similarity between the original features.

To discover phenotypes, we clustered the low rank representations of our ASD dataset (the matrix
X). Using k-means clustering, we derived cluster centroids (phenotypes) in terms of their latent
feature representations (each phenotype is a vector in ka). To inspect these in terms of our original
features, we multiplied each phenotype vector by the matrix Y . The derived phenotypes were not
differentially enriched for specific clinical concepts. Instead, these “temporal phenotypes” grouped
patients by the timings of their interactions with the healthcare system.

4. Discussion

4.1. Hospital phenotypes suggest streamlining or compartmentalizing hospital organization

Our analysis of a nationally-representative hospitalization administrative dataset revealed that low
rank modeling could identify clinically distinguishable hospital phenotypes. These phenotypes are
immediately familiar to clinicians and hospital administrators with each cluster representing

recognizable ‘wards’ or ‘service lines’ provided by hospitals. For example, it distinguished
patients primarily admitted for orthopedic surgeries from those admitted for substance abuse or

152



Pacific Symposium on Biocomputing 2016

psychiatric diagnoses, essentially rediscovering hospitals’ ‘orthopedics’ and ‘psychiatric’ wards.
Our approach also identified sub-phenotypes within larger classes. For example, hospitalizations
for childbirth are the most common reason for US inpatient stays, and our results revealed two
subtypes within the obstetric population differentiated by their need for procedural intervention.
Our current results establish the validity of using the low rank modeling approach for identifying
known hospital phenotypes with the hope that extending this approach will yield the discovery of
new phenotypes for which streamlined care pathways can be implemented.

4.2. Time-binning masks phenotype signals in ASD dataset

In our ASD model, we saw that the discovered phenotypes were not differentially enriched for
specific clinical concepts. However, the phenotypes were not the product of random noise--they
succeeded in capturing the primary source of variation in the data, which was temporality.
Analysis of the latent features revealed that mentions of different clinical concepts within a time
bin are more associated with each other than mentions of the same clinical concept with itself in
another time bin. The model remarkably learned these associations without any a priori
knowledge that the features represented time-binned counts. The model successfully detected a
clear structure in the data, although that structure reflects an artifact of featurization and the
clinical challenges associated with early diagnosis in ASD. There may be clinically relevant
phenotypes present in the data, but our analysis shows that this signal is masked by time-binning.
Our result is emblematic of what lies at the crux of low-rank models: the algorithm will discover
the clearest and most robust signals, whether or not these signals are meaningful to the user’s
research interest or insight. Thus low rank models should be used to understand the profile of the
dataset in order to inform future data collection or featurization. In our case, our result suggests
that we should employ a different featurization method in future studies or that we should
incorporate time explicitly, perhaps using tensor factorization or a convolutional approach.

4.3 Summary

In this study, we applied a novel and flexible machine learning method -- generalized low rank
modeling -- to two very different datasets. Instead of forcing the same model onto different
datasets or creating specific methods with little hope of reuse, we built two unique models united
by one overarching framework and software package. Furthermore, we demonstrated different
approaches to analyzing low rank models and used these techniques to discover phenotypes
present in the data.

Accelerating the process of phenotype discovery has high potential to improve care and outcomes
for patients, but additional work in the validation and care standardization of such phenotypes is
still required. Nonetheless, using such a high-throughput approach for finding patient subgroups
could dramatically shorten the time necessary to make new discoveries, especially when applied to
massive datasets documenting poorly understood phenomena.
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We present a computational strategy to simulate drug treatment in a personalized setting. The method
is based on integrating patient mutation and differential expression data with a protein-protein
interaction network. We test the impact of in-silico deletions of different proteins on the flow of
information in the network and use the results to infer potential drug targets. We apply our method to
AML data from TCGA and validate the predicted drug targets using known targets. To benchmark
our patient-specific approach, we compare the personalized setting predictions to those of the
conventional setting. Our predicted drug targets are highly enriched with known targets from
DrugBank and COSMIC (p < 1075), outperforming the non-personalized predictions. Finally, we
focus on the largest AML patient subgroup (~30%) which is characterized by an FLT3 mutation, and
utilize our prediction score to rank patient sensitivity to inhibition of each predicted target,
reproducing previous findings of in-vitro experiments.
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1. Introduction

Precision medicine, an approach in which medical treatment is tailored for a specific group of
patients, is an arising paradigm in medical research and practice. Indeed, it is well known that some
drugs affect only a specific subgroup of patients, while even harming other patients suffering from the
same disease [1-2]. In recent years, computational tools have emerged to stratify diseases into
informative subtypes [3] and to predict drug sensitivity per subtype in order to optimally match
patients with existing medical treatments [4].

In spite of these advances, the development of new treatments in the context of precision medicine
is still scarce. Consequently, there is an increasing interest in computational prediction of drug targets.
Previous works [6-9] used similarity among diseases to employ drugs designed for one disease to
medicate another, as well as to prioritize new compounds as potential drugs. Lamb et al. [7] created a
database containing ranked drug response gene expression profiles, allowing to query the database
with a disease-specific genetic signature to identify drug response profiles that correlate with it. GBA
[9] predicts novel associations between drugs and diseases by assuming that if two diseases are
treated by the same drug, alternative drugs treating only one of them might treat also the other.
Finally, Gottlieb et al. [6] predict novel associations between drugs and diseases by utilizing multiple
drug—drug and disease—disease similarity measures for the prediction task. Some of the methods, such
as [6-7] could be extended for personalized prediction of drugs, yet to this date efforts for
personalized design of drugs had focused on experimental work [10] or small scale networks tailored
for specific condition [11-12].

As drugs often act by inhibiting their targets, attempts were also made to predict candidates for
drug targets by predicting the effect of gene knockouts. These attempts focused on metabolic drugs
and used metabolic network models, testing the impact of in-silico deletion of genes on the network’s
fluxes. For example, Fatumo et.al. [13] simulated knockouts by deleting reactions from a metabolic
network to identify enzymes essential for the malaria parasite Plasmodium falciparum. Papp et al.
[14] used a metabolic flux model to predict the knockout fitness effect of nonessential genes in
Saccharomyces cerevisiae. In their review of current paradigms for predicting inhibitory effects,
Csermely et al. [15] conclude with the need for approaches allowing the examination of multi-targets
inhibition, as our new approach allows.

In this work we present a novel approach to tackle the drug target inference problem from a
personalized perspective using in-silico knockouts based on propagation methods in a protein-protein
interaction (PPI) network. Figure 1 provides an overview of the method: we start from a general PPI
network and personal disease-related data. We rely on the framework described by Vanunu et al. [16]
to prioritize casual genes by network propagation. We perform multiple network propagations in
order to simulate the current patient state, the patient state after gene knockouts (by removing the
corresponding nodes from the network) and an estimated "healthy" state. We use these different states
in order to rank the gene knockouts and retrieve a list of candidate drug targets.
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The framework we present is general and could potentially be applied to any personalized disease-
related data, with cancer being a pronounced candidate for application. Cancer is a wildly
heterogeneous disease, in which a group of patient phenotypically categorized into the same cancer
type (or even subtype) may have only little overlap in the underlying genotype. This is especially true
in acute myeloid leukemia (AML), which has striking heterogeneity in gene mutations and expression
aberrations across samples [17-19]. We therefore evaluate our performance by applying it to patients
suffering from AML, based upon data generated by the TCGA Research Network:
http://cancergenome.nih.gov/ of mutated and differentially expressed genes [19].

Fig. 1. An overview of the algorithmic pipeline.

2. Results

We present a novel approach to tackle the drug target inference problem from a personalized
perspective using in-silico knockouts in a PPI network. As described in Figure 1, we start from a
general PPI network and individual-specific disease-related data. We perform multiple network
propagations in order to simulate the current patient state, the patient state after gene knockouts (by
removing the gene's node from the network) and an estimated "healthy" state (see Methods). We use
these different states in order to rank the gene knockouts and retrieve a list of potential drug targets.

To evaluate our performance we applied our method to TCGA gene expression and mutation data
of patients suffering from acute myeloid leukemia (AML, see Methods for dataset description). First,
we show that we can identify AML causal genes by synthesizing the individual propagations. Second,
we show that by integrating results from a personalized knockout process we can infer potential drug
targets and rank their efficacy in a patient or a subgroup of patients.
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Our algorithm relies on network propagations to rank the relevance of different genes to a prior
set. In order to set its parameters, we first tested the algorithm’s performance in retrieving known
causal genes for AML. The algorithm has two parameters (see Methods): a, determining the relative
weight of the prior knowledge vs. the network in the scoring; and P, the prior set, according to which
the propagation is carried out. We executed the algorithm using different settings for these
parameters. To evaluate the results, we used three sets of known AML causal genes from KEGG and
COSMIC, varying in confidence and size (see Methods). The application of the method to each
patient resulted in a propagation score for each gene (excluding the prior set, to focus on novel
discoveries). We aggregated the rank of each gene over all patients to yield a gene-based score,
retaining the top 10% affected genes in the network. We then computed the hypergeometric
enrichment of this set of genes with the different sets of known causal genes. All choices of a resulted
in significant and similar p-values (p < 107°), which shows that the results are robust to the choice
of a, as shown in Figure 2A. We use a = 0.9 in the sequel. For the prior set, we tried four settings,
defining P based on (i) mutated genes; (ii) differentially expressed genes; (iii) both, but running them
separately and averaging the propagation scores obtained; and (iv) same as (iii) but taking the
maximum scores rather than averages. Note that all types of mutations within coding genes were
considered (missense, nonsense and silent). All prior knowledge variants resulted in significant p-
values (p < 107°). The best variant was the first — setting P to be the set of mutated genes in each
patient (Figure 2B), a choice which we use in the sequel. The mutated genes all belong to AML
patients, but they are not limited only to AML-related genes.

The causal genes are thought to trigger malignant behavior by perturbing signaling pathways that
regulate three core cellular processes: cell fate, cell survival, and genome maintenance [23]. In AML,
cell survival and proliferation are enhanced through an aberrant signal pathway [24] represented in
the KEGG database [21]. We computed the hypergeometric enrichment of the top 10% affected genes
within the AML KEGG pathway (ID: hsa05221) and found that the affected genes comprise 15 out of
21 pathway components with a significant p-value (p < 10711), exceeding that achieved by using
common mutated genes (p < 1077, mutations appearing in at least two patients) and capturing its
downstream effect (Figure 3). It is interesting to note that although FLT3 is mutated in approximately
30% of the patients, it is not included in the top 10% affected genes after aggregation, underscoring
the importance of a personalized approach.
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Fig. 2. Performance evaluation under different parameter (A) and prior knowledge set (B) choices. The red
line denotes a p-value of 0.01.
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Fig. 3. The AML KEGG pathway, with top 10% affected genes (as predicted by our method) highlighted in
green and commonly mutated genes framed in a red box.

The previous results imply that our propagation based scores are able to infer disease-related
genes and agree with observations made by Rufallo et al. [25]. We hypothesized that good drug
targets for the disease could be genes whose knockout is predicted to reverse the disease-related
effects [7]. To identify such genes in-silico, we rerun the propagation based scoring while removing
each gene in turn from the network, assessing the similarity between the obtained scores and those
that characterize a ‘“healthy” state. To this end, we use a Back2Healthy distance score (B2H; See
Methods), taking the top scoring genes as our candidates for potential personalized drug targets. As
above, we focus on non-trivial targets by excluding the patient's mutated genes from our ranking.
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The process above infers drug targets for each patient individually. As information about
personalized drug targets is very scarce and hard to validate, we aggregated the results over all
patients, evaluating the results using known AML drug targets derived from the DrugBank database
[26-29] and COSMIC [20]. The top 10% scoring genes were highly enriched with known drug targets
from both sources (Figure 4A, DrugBank: p < 107>, COSMIC: p < 10719). In comparison, a naive
approach that focuses on common mutations (appearing in at least two patients), yields a set of
candidate targets containing only one of the known targets (p = 0.18). To assess the personalized
approach we took, we generated a "consensus patient", using common (appearing in at least five
patients) mutated and differentially expressed genes, and applied our method to the "consensus
patient". Applying the enrichment test described above, the results were insignificant (Figure 4B,
DrugBank: p = 0.22, COSMIC: p = 0.23), underscoring the utility of a personalized approach.

Fig. 4. Performance in drug target prediction. The candidate genes are represented by a shaded rectangle,
where the top 10% are shaded cyan. Every overlaid bar stands for a single gene in a collection of known or
potential drug targets. The bars are located according to their position in the candidate list generated by our
method, where the rightmost bars represent the best candidates. Traces above/below the bar represent
relative enrichment. (A) The barcode plot was generated by running our method on each AML patient
independently and aggregating the results. (B) The barcode plot was generated by running a similar single
pipeline on a “consensus” patient.
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To further show the utility of our method, we used it to predict the sensitivity of the largest
subgroup of AML patients — carriers of the FLT3 mutation — to known inhibitors. The following
inhibitors were experimentally examined as potential drug targets and their influence on FLT3
mutated cell lines was carefully documented: Jin et al. [30] tested PI3K inhibitor and found FLT3
mutated cell lines to be poorly responsive to it; Nishioka et. al [31] showed that the MEK inhibitor
caused those cell lines to respond moderately by leading to decreased abnormal proliferation, nearly
resembling a healthy cell phenotype, yet showing unchanged abnormal levels of apoptosis; and
Keeton et al. [32] demonstrated how PIM inhibitor caused FLT3 mutated cell lines to respond with
high sensitivity, which led to development of the PIM inhibiting drug AZD1208. Our method shows
in-silico sensitivity to PIM knockout, intermediate sensitivity to MEK knockout, and low sensitivity
to PI3K knockout (Figure 5). These results corroborate the findings of [30-32].

B2H distribution per known drug target

B2H score

Drug target candidates

Fig 5. Sensitivity of FLT3 mutated cell lines, as predicted by B2H scores, corroborating the findings of [30-32]
via in-vitro experiments.

3. Methods

3.1. Computing propagation scores

We use the network propagation method described in Vanunu et al. [16]. In the following we briefly
describe it for the sake of completeness. The input consists of a network G = (V, E,w) over a set V of
proteins, where E represents the set of protein-protein interactions, and w(u,v) represents the
reliability of the interaction between u and v. In addition, a prior knowledge protein set P is given.
The propagation process computes a scoring function F:V — R that is both smooth over the network
and accounts for the prior knowledge about each node.
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To run the propagation process the weights are first normalized. Let W be the |V| X |V| matrix of
initial weights, and let D be a diagonal matrix with D[i,i] = ;WI[i,j]. The normalized edge weight
matrix is computed as W = D~2WD="/2. We further define a prior knowledge function Y:V —
{0,1} such that:

1 veP

VvEeV: Y(v)={0 VP

We use the iterative procedure described by Law et al. [27] to compute F. Namely, starting with
F© =y, we update F at iteration t as follows:

F® =qw F&Y + (1 - )Y
The procedure is repeated iteratively until convergence, i.e., when:
|[F® — FED|| <107

The final propagation score for each gene is its rank among all genes, where lower ranks mean higher
F (v) values. In case of ties, the ranks of the corresponding genes are averaged. The genes of the prior
set are assigned the highest ranks to focus the algorithm on novel discoveries.

3.2. The Back2Healthy distance score

Let Spefore » Safter be vectors of propagation scores for a chosen gene set (here, the set of
differentially expressed genes of some patient) A, where Sperore Was generated by propagating on the
original PPI network, while S .. was generated by propagating on a “knockout” network, where one
of the genes was removed. We define the Back2Healthy (B2H) distance between Sperore and Sgrier
as follows:

Let & be the size of the prior gene set of the patient (the patient’s set of mutated genes). For
1 <i<n(n=1000), we generate a score vector S; for A by propagating the original PPI network
and setting the prior knowledge set P to be k random nodes (disjoint from A) in order to simulate a
“healthy” distribution of propagation scores for A.

Next, for a € A, define

|{ 1<i< nlsi[a] < Sbefore[a]}l

Qbeforea = n
0 {1 < i< nlSilal < Sapeerlal}l
afterg — n

Hence, Qpefore, represents the quantile of Syefore[q) in our simulated distribution, and similarly for
Qafter,- Finally, B2ZH (S before,Safter) is defined as:

aEAlQbefore - Qafter |
BZH(Sbefore’Safter) = |IZ| =
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3.3. Data Sets

3.3.1. Patient, network and drug target data

The TCGA data portal [7] contains information on 200 clinically annotated adult cases of AML
(updated to 29/04/2015). The data include whole-genome sequencing of the primary tumor and
matched normal skin samples from 50 patients and exome capture and sequencing for another 150
paired samples of AML tumor and skin [19]. For 174 of the patients both mutation and expression
data were collected. Genes exhibiting significant expression changes were determined by the
COSMIC methodology [20], by computing their z-scores based on the sequencing platform.

To construct individual-specific networks, we projected the mutations and differentially
expressed genes of an individual on a human PPI network taken from HIPPIE [33], which contains
186,217 interactions among 15,029 proteins. The projected networks have on average 7.6 mutated and
340 differentially expressed genes.

We retrieved the known targets of AML drugs from the DrugBank version 4.3 database [27],
obtaining 22 drug targets overall.

3.3.2. Known causal genes

We use three sets of known AML causal genes, varying in confidence and size. 10 causal genes were
collected from the KEGG database [21,22], 94 causal genes were taken from COSMIC (72 of which
are in our PPI network), and a third set of 533 cancer causal genes were collected from COSMIC (363
are in the network).

4. Conclusions

The approach we presented succeeds in predicting known drug targets for AML and could potentially
be applied to other diseases with mutation and expression information, such as other cancer types
recorded in TCGA. It should be noted that our method is limited to mutations that affect proteins that
are part of the PPI network. More careful consideration of mutations in non-coding regions could
improve its sensitivity.
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Electronic health records (EHR) provide a comprehensive resource for discovery, allowing
unprecedented exploration of the impact of genetic architecture on health and disease. The data of
EHRs also allow for exploration of the complex interactions between health measures across
health and disease. The discoveries arising from EHR based research provide important
information for the identification of genetic variation for clinical decision-making. Due to the
breadth of information collected within the EHR, a challenge for discovery using EHR based data
is the development of high-throughput tools that expose important areas of further research, from
genetic variants to phenotypes. Phenome-Wide Association studies (PheWAS) provide a way to
explore the association between genetic variants and comprehensive phenotypic measurements,
generating new hypotheses and also exposing the complex relationships between genetic
architecture and outcomes, including pleiotropy. EHR based PheWAS have mainly evaluated
associations with casel/control status from International Classification of Disease, Ninth Edition
(ICD-9) codes. While these studies have highlighted discovery through PheWAS, the rich
resource of clinical lab measures collected within the EHR can be better utilized for high-
throughput PheWAS analyses and discovery. To better use these resources and enrich PheWAS
association results we have developed a sound methodology for extracting a wide range of clinical
lab measures from EHR data. We have extracted a first set of 21 clinical lab measures from the
de-identified EHR of participants of the Geisinger MyCode™ biorepository, and calculated the
median of these lab measures for 12,039 subjects. Next we evaluated the association between
these 21 clinical lab median values and 635,525 genetic variants, performing a genome-wide
association study (GWAS) for each of 21 clinical lab measures. We then calculated the association
between SNPs from these GWAS passing our Bonferroni defined p-value cutoff and 165 ICD-9
codes. Through the GWAS we found a series of results replicating known associations, and also
some potentially novel associations with less studied clinical lab measures. We found the majority
of the PheWAS ICD-9 diagnoses highly related to the clinical lab measures associated with same
SNPs. Moving forward, we will be evaluating further phenotypes and expanding the methodology
for successful extraction of clinical lab measurements for research and PheWAS use. These
developments are important for expanding the PheWAS approach for improved EHR based
discovery.
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1. Introduction

Precision medicine aims to find clinical treatments based on the phenotypic and genetic makeup of
each individual. Electronic health records (EHR) are a powerful resource for the investigation of
common and rare disease, with the potential for discovery that will lead to meaningful and data-
driven individualized patient care. Accessing de-identified EHR data linked to DNA
biorepositories has already proved useful for a wide range of genetic association discovery efforts,
such as through the Electronic Medical Records and Genomics (eMERGE) network .

In PheWAS, the association between thousands of phenotypes and any number of single
nucleotide polymorphisms (SNPs) are evaluated in a high-throughput manner to identify new
hypotheses, biologically relevant associations, and the identification of potential pleiotropy,
highlighting important connections between networks of phenotypes and genetic architecture .
To date, de-identified EHR data coupled with genetic data have been used for multiple PheWAS,
primarily through using International Classification of Disease, Ninth Edition (ICD-9) based
case/control status for identifying significant associations between medical record diagnoses and
genetic data *°.

There are other data within the EHR that can also be used for high-throughput PheWAS research,
with one of the most readily available additional sources of data being clinical lab measures.
Clinical lab measures are an important part of clinical decision-making, providing clues and
measures of a variety of conditions as well as important reflections of health. Many of these lab
measures are found in multiple diagnoses, for example, blood cell count information is important
for a variety of clinical conditions and diagnoses. To date, high-throughput use of clinical lab
measures from the EHR have been underutilized for multiple reasons. These include the variability
and error in the units recorded that can occur across measurements, error that can occur in the
collected laboratory result, change in laboratory assays, sensitivity of different assays, lack of
documentation for fasting, and changes in biological function due to treatment of injury or disease
(e.g. medication use). Even with these challenges there is an opportunity for further discovery by
using more of the comprehensive clinical lab data available within the EHR for both high-quality
phenotype algorithm development as well as expanding EHR based PheWAS beyond the use of
ICD-9 based case/control status. The clinical lab measures of the EHR can more closely reflect the
impact of genetic variation on phenotype, and some phenotypes observed from the clinical lab
data collected in EHR are not reflected at all in case/control diagnoses or common to multiple
case/control diagnoses. Using a wide range of clinical lab measures within the PheWAS
framework also creates a series of results to compare and contrast with the findings of ICD-9
based PheWAS, providing a complementary set of information pertinent to health and disease and
genetic association studies, enriching the interpretation and exploration of ICD-9 based Phe WAS.
There is also the potential for improved power for association analyses, as case numbers for ICD-9
based PheWAS can be very low depending on the ICD-9 based diagnosis compared to larger
sample sizes for quantitative clinical lab measures.

We describe here our preliminary algorithmic development for high-throughput extraction of

clinical lab measures from de-identified data linked to genetic data from the Geisinger Health
System (GHS) MyCode™ Biorepository. For these analyses we used our approach to extract 21
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clinical lab measurements with some of the largest sample sizes within the EHR from, or derived
from, blood: alanine amino transferase (ALT), albumin aspartate aminotransferase (AST), carbon
dioxide (CO2), cholesterol, creatinine, free T3, free T4, glucose, hemoglobin A,- (Hb-A,c), high
density lipoprotein (HDL), insulin-like growth factor (IgF-1), low density lipoprotein (LDL),
platelets, urine protein, red blood cell counts (RBC), thyroglobulin antibody (TgAb), thyroid
peroxidase antibody (TPO), thyroid stimulating hormone (TSH), triglycerides (TG), white blood
cell counts (WBC). We also extracted body mass index measurements (BMI). We calculated the
median value for each of 12,039 individuals and performed comprehensive genome-wide
association analyses (GWAS) with these measurements in European-Americans within the
MyCode Biorepository, and then explored associations with highly-significant SNPs from the
GWAS with an ICD-9 diagnosis code based PheWAS. These preliminary analyses show the
success of our approach, and the ultimate success possible in high-throughput extraction of a wide
range of clinical lab measurements from the EHR.

2. Methods

2.1 Study Participants

In this study we used de-identified genetic and phenotypic data from MyCode™ biorepository of
Geisinger Heath System (GHS). MyCode is a biorepository that stores blood samples and
Electronic Health Record (EHR) data from consented individuals for research to improve patient
healthcare. GHS is located in central Pennsylvania, which is a primarily European American (EA)
population with 95.7% of individuals in the study of European decent. Thus we only focused on
individuals from EA ancestry for these analyses.

2.2 Genotypic data and Quality Control

GHS MyCode subjects were genotyped using the Illumina HumanOmniExpressExome Bead
Chips, with coverage of a total of 964,193 SNPs. We performed Genotype Quality Control (QC)
procedures to account of genotyping error prior to association testing using the R programming
statistical package ° and PLINK software . We filtered out the missing data using 99% genotype
and sample call rates and minor allele frequency (MAF) threshold of 1%. Also, relatedness
between the individuals was calculated by Identity by Descent (IBD) and related samples were
dropped using kinship coefficient of 0.125. After these QC steps and MAF filter, the genotypic
data consisted of 635,525 SNPs and 12,278 samples. While individuals within GHS are primarily
from EA populations, we calculated principle components to further correct for global ancestry in
our associations using EIGENSOFT .

2.3 Clinical Lab Extraction

We extracted a total of 21 clinical lab measurements from, or derived from, blood of participants
in the study. We selected an initial set of lab measurements to extract by choosing the measures
with the large sample sizes that we have commonly used for other phenotype algorithm
development using data from the EHR. All the summary information on the clinical lab
measurements is provided in Table 1. We also extracted data to calculate body mass index (BMI).
BMI is known to have confounding effects on various metabolic traits and many of the clinical lab
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measurements could be affected by BMI of study participants. We extracted height and weight to
calculate BMI. We calculated the median value for each of these clinical lab measures over the
course of all visits of each individual.

We extracted these clinical lab measurements as follows: First, we extracted each clinical
laboratory measures from the de-identified EHR and log base ten transformed the results. We then
standardized units within each clinical lab measure. Different Geisinger Health laboratories and
Point of Care devices can have differing units of measure within the same Logical Observation
Identifiers Names and Codes (LOINC) code and thus standardization and transformation of
individual values needed to be performed so that all units were consistent across each clinical lab
measure. We excluded measurements where the unit of measure reported on the result was
different than the suggested unit of measure from LOINC when conversion was not possible. We
then excluded results that were identified as implausible through a process of comparing
individual level and population level medians greater than a deviation threshold determined by
each LOINC code, +/- 3 standard deviations from the median. After the process of excluding these
results, we transformed the results back to their original values. For TG, HDL, LDL, glucose
levels and cholesterol, we omitted all observations that were not known to be fasting, i.e.,
observations with non-fasting or unknown fasting state. When calculating medians and standard
deviation we accounted for the number of results over a patient’s lifetime to adjust where
exclusions are applied. Using this approach, as proof-of-principle, we extracted 21 different
clinical lab tests from the entire GHS cohort, ~1.25 million people.

After these clinical lab measurements were extracted and prepared for further analyses, we
calculated the lifetime median value from each individual for each of the lab measures for those
individuals we had genetic data for, for association testing. We then created histograms and
calculated the population median and max values for each clinical lab measure. This identified any
measurements with non-normal distributions, and identified some of the most extreme outliers.
We only removed outliers for white blood cell counts, values > 20K cells per/uL.. We used natural-
log transformation to improve the normality of the distributions for glucose and platelet measures.
Our summary information of the median and mean of each measure, and whether or not each lab
measure was transformed before association testing, is listed in Table 1.

Table 1: Summary of clinical lab measures, and any transformation of the variable before analysis

Phenotype Median  Mean Min/Max SD 9% Male % Female

Alanine Amino Transferase 3.09 3.10 1.79/4.48 043 41.47 58.53
(ALT) (Log Transform)

Albumin 4.30 426 3.45/5.30 0.26 41.19 58.81
Aspartate Aminotransferase 3.13 3.16 2.35/4.04 0.26 41.23 58.77
(AST) (Log Transform)

Carbon Dioxide (CO2) 27.00 26.97 21.29/34 1.98 42.06 57.94
Cholesterol 183.00 184.55 110/320 33.56 43.13 56.87
Creatinine 57.03 57.45 21.07/105.76  13.58 63.36 36.64
Free T3 2.90 2.94 1.64/5.19 0.53 24 48 75.52
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Free T4 (Log Transform) 0.19 0.22 0.009/0.63 0.14 29.95 70.05
Glucose (Log Transform) 4.60 4.64 4.14/5.12 0.18 41.83 58.17
Hemoglobin A1C (Hb-A ) 6.20 6.50 4.09/10.80 1.17 4301 56.99
High Density Lipoprotein 3.87 3.88 3.13/4.70 0.27 4331 56.69
(HDL) (Log Transform)

Insulin-like Growth Factor 4.96 4.90 3.08/6.08 0.62 41.67 58.33
(IgF-1) (Log Transform)

Low Density Lipoprotein 102.00 104.08 48/237.5 2844  43.17 56.83
(LDL)

Platelets 238.50 243.80 112/526 60.16  40.67 59.33
Urine Protein (Log 240 2.60 0.09/6.53 1.24 4426 55.74
Transform)

Red Blood Cell Count (RBC) 448 448 3.27/6.09 0.43 40.75 59.25
Thyroglobulin antibody 20.00 26.83 1.70/305 31.95 21.12 78.88
(TgAb)

Thyroid Peroxidase Antibody 2.30 3.27 0.09/7.94 1.74 18.38 81.62
(TPO) (Log Transform)

Thyroid Stimulating Hormone 0.75 0.77 0.009/2.04 041 3743 62.57
(TSH) (Log Transform)

Triglycerides (TG) (Log 4.88 4.88 3.46/6.25 0.47 43.32 56.68
Transform)

White Blood Cell Count 7.42 7.68 3.15/16.84 2.00 40.80 59.20
(WBC) (Log Transform)

2.4 ICD-9 Based Case-Control Status

We used International Classification of Diseases, Ninth Revision (ICD-9) codes as the phenotypic
data to define case-control status for PheWAS. Patients in MyCode were diagnosed with 7,039
different ICD-9 codes, these codes have been used at least once during clinic visits at GHS
facilities. We defined cases as individuals with three or more visits of a specific ICD-9 code at the
5-digit code level (e.g. 250.12), no visits of an ICD-9 code were defined as a control. If an
individual had one to three visits of an ICD-9 code, they were not included as a case or control
(i.e. excluded from analysis). A total of 200 or more case subjects per ICD-9 code were required
for inclusion in our association study. Using our criteria for inclusion/exclusion for cases and
controls there were a total of 165 ICD-9 codes used for the case/control association testing.

2.5 Genetic Associations

To evaluate the association between SNPs and the 21 clinical lab measures, we used linear
regression with an additive encoding for the SNPs. We used the software Platform for the
Analysis, Translation and Organization of large-scale data (PLATO), freely available here:
http://ritchielab.psu.edu/software/plato-download. We have implemented PLATO in DNANexus
(https://www.dnanexus.com/) to use cloud-computing resources for analyses. Covariates in the
models included for each association were gender, age, age’ (age-squared), body mass index
(BMI), and the first 4 principal components. We made Manhattan plots of the results of these
associations, as well as a table of the results passing our Bonferroni correction based p-value
available in supplementary materials (http:/ritchielab.psu.edu/publications/supplementary-
data/psb-2016/clinical-measure-phewas). After filtering the clinical lab measure association results
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by our Bonferroni threshold (described further in methods), and performing a PheWAS using
ICD-9 based case/control status for these SNPs, we compared and contrasted the results of the
clinical lab measurements with results of case/control ICD-9 based PheWAS. Further, we
annotated the results of the clinical lab measure association testing using Biofilter ', to add
information about any genes that the SNPs from the p-value filtered results were in or near, as
well as to annotate the SNPs with any known results from the NHGRI GWAS catalog. The
NHGRI GWAS catalog contains results from published GWAS in the literature reaching genome-
wide significance . To have the magnitude and direction of effect values more comparable across
the association results, we divided each beta by the standard deviation of the respective clinical lab
measure for the association.

2.6 Multiple Hypothesis Testing

In terms of independent SNPs used for multiple testing adjustment, independence of SNPs varies
across different populations and appropriate measures are necessary '*. In this study, we used a
linkage-disequilibrium (LD) pruning approach to identify the number of independent SNPs used
in our association testing. We used PLINK to prune the 635,525 SNPs based on pairwise linkage
disequilibrium (LD) at r*= 0.3 and that resulted in total of 174,401 SNPs. An r* of 0.3 is estimated
to be a reasonable threshold for finding independent SNPs based on pairwise LD . For our
clinical lab measures PheWAS, our Bonferoni threshold was o value divided by the number of
independent tests: 0.05/(174,401 x 21) = 1.37 x 10®. We used the same approach for multiple
hypothesis correction for the ICD-9 based PheWAS, where we calculated LD between the 286
SNPs resulting in a total of 61 independent SNPs and thus a Bonferoni threshold: 0.05 / (61 x 165)
=49x 10°.

3. Results
3.1 Clinical Lab Measure GWAS

In this study, we first calculated the association between 635,525 SNPs and 21 clinical lab
measurements using linear regression. Figure 1 shows the Manhattan plots from each of the
clinical lab measure genome-wide association studies (GWAS), points indicated in red, for p-
values < 0.01. We provide higher-resolution copies of the figures of this paper, as well as
Quantile-Quantile plots for the associations in supplementary materials. A total of 286 SNPs were
found significantly associated with our Bonferroni defined p-value threshold of 1.37 x 10, with a
total of 344 SNP-clinical lab measure associations. A total of 163 out of 347 associations were
found to be associated with same or similar previously reported phenotypic traits in the literature.
Several associations were also for SNPs in high LD with SNPs for previously reported
associations with the same or similar previously reported phenotypic trait. We observed that
almost half of associations related to a previously reported association were with triglyceride and
HDL-cholesterol levels, where we found 109 SNPs associated with triglycerides and 66 SNPs
associated with HDL. For example, the association between SNP rs247616 downstream of CETP
and HDL was the most significant association of all the GWAS we performed at p = 5.25 x 10™, 3
= -0.22, this association has been previously reported in the literature””. CETP is protein-coding
gene involved in cholesterol ester transfer from HDL to other lipoprotein '®. The most significant
association for TG was with SNP rs964184 downstream from ZPRI withp=1.9 x 10", =-0.27,
that has also been previously reported in the literature'*"’.
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A novel GWAS association found in this study was for DPP4 SNP rs2302872 associated with
thyroid globulin antibody (TgAb). TgAb is a diagnostic measure used for thyroid related
autoimmune disorders like Hashimoto’s disease and a measure to evaluate the treatment
effectiveness of thyroid cancer. The SNP rs2302872 was associated with TgAb at p=1.48 x 10°* 3
= -1.28. DPP4 has known expression in cancerous thyroid tissue in comparison to no expression
in a healthy thyroid tissue'. TgAb as a tumor marker for thyroid cancer has been controversial
where many studies suggest no association as a tumor marker’”' and others suggest TgAb levels
can be used to identify increased risk of thyroid cancer”. In our case we see a potentially
protective effect of this SNP in the direction of the association. In another thyroid measure,
thyroid stimulating hormone (TSH), we report 4 novel loci on chromosome 5 mapped to PDESB.
There are other variants in PDESB with known association with TSH*, but we found 4
polymorphisms (rs1351283, rs13158164, rs6885813, rs9686502) not in LD with the previously
known variants with p-values of p=1.16 x 10", =-0.13; p=2.60 x 10", =-0.16; p =4.74 x
10", B = -0.13; p=9.10 x 10”, p = -0.08. We also found 7 novel SNPs associated with aspartate
amino transferase (AST) levels, where all 7 variants mapped to MRC1, where the most significant
association was for SNP rs35038329 with p = 2.87 x 10", B =0.12. AST levels are used for the
diagnosis of various liver diseases like hepatitis and cirrhosis. In a recent study variants in MRC1
were reported to be associated with treatment outcomes for hepatitis C **.

3.2 Targeted ICD-9 PheWAS

We selected the SNPs from the top associations of the clinical lab measure PheWAS (p-value <
1.37 x 10, resulting in 286 SNPs. We then performed an ICD-9 code based Phe WAS with these
SNPs, performing comprehensive associations testing between these SNPs and the ICD-9 based
case/control status using logistic regression. Figure 1 shows in blue the ICD-9 based diagnosis
associations with p-values less than 0.01. We found 39 associations passing our Bonferoni p-
value threshold adjusted for the smaller number of SNPs for the ICD-9 base analyses, these
additional association results are reported in detail within the supplementary materials. The most
significant association was between SNP rs9273363 and the ICD-9 diagnosis 250.01 “Diabetes
mellitus, Type I’ with p = 4.39 x 10%, § = -0.8. This SNP is located in the HLA region that is
known to have high susceptibility for type 1 diabetes, and is one of the most high-risk
polymorphisms in HLA region for Type I diabetes™. There were other significant associations
with ICD-9 diagnoses such as SNPs associated with the diagnosis of 250.00 “Type II Diabetes” (
original associated clinical lab measures of Glucose and Hb-A,.), 272.4 “Hyperlipidemia”
(original associated clinical lab measure: Cholesterol, LDL, TG), and 244.9 “Hypothyroidism”
(clinical lab measure: TSH).

3.3 Comparing Clinical Lab Measure GWAS and ICD-9 Based PheWAS

PheWAS frequently identifies cross-phenotype associations, where one SNP is associated with
more than one phenotype. These cross-phenotype associations highlight potential relationships
between the phenotypes, and can also identify pleiotropy. Thus, one of the potential benefits of
using clinical lab measures in addition to ICD-9 codes is the addition of a complementary set of
phenotypic information for exploring the multiple cross-phenotype associations that arise in
PheWAS. In this study we started with SNPs highly associated with clinical lab measures, thus
have compared and contrasted what the ICD-9 diagnoses were also associated with these clinical
lab measures. Table 2 shows what the clinical lab measures were, and for SNPs associated with
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those specific clinical lab measures what the ICD-9 codes diagnoses were also associated those
SNPs.

First we identified results between the two clinical lab measures and ICD-9 diagnoses were highly
related between the two sets of associations. For instance, for lipid related phenotypes and
diagnoses we found the SNP rs445925 in APOCI associated with LDL levels (p=1.75x 107, =
0.30) also associated with the ICD-9 diagnosis 272.4 “Hyperlipidemia” (p = 1.5 x 10", = 0.30).
We also found the SNP rs602633 associated with LDL levels (p= 8.03 x 10", = 0.12) and the
ICD-9 diagnosis 272.4 (p=4.55 x 10°, $ = 0.18). A SNP in LD with rs599839 (r’=1) has known
associations with LDL concentrations *° and coronary artery disease >’.

Figure 1. Manhattan plots of all 21 GWAS for clinical lab measures and the results of the following ICD-9 based
PheWAS. For each of 21 clinical lab measures, the results of associations are marked as -log(10) of the p-value in red,
with the abbreviation of each clinical lab measure indicated above each plot, abbreviations explained in Table 1.
Plotted in blue are —log10 (p-value) from the associations of distinct ICD-9 code based case/control diagnoses. All
results are from p-values < 0.01. The red dashed line in each Manhattan plot is at the Bonferroni corrected p-value of
1.37 x 10°® for the clinical lab GWAS, and the blue dashed line is the Bonferroni corrected p-value 4.9 x 10 for the
ICD-9 diagnoses based Phe WAS.

Table 2. Phenotypes for SNPs significantly associated with clinical lab measures also significantly
associated with highly related ICD-9 diagnoses

Clinical Lab Measure ICD-9 Diagnoses
Cholesterol 272 4: Hyperlipidemia
Glucose 250.00: Type II Diabetes Mellitus
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Hemoglobin A, 250.01: Type I Diabetes Mellitus;
250.00: Type II Diabetes Mellitus
Low Density Lipoprotein (LDL) | 272.4: Hyperlipidemia

Thyroid Stimulating Hormones | 244.9: Hypothyroidism
Triglycerides 272 4: Hyperlipidemia

White Blood Cell Count 250.01: Type I diabetes mellitus

For thyroid diagnoses and TSH levels we also found related phenotypic associations for specific
SNPs. For example, a cluster of variants in PTSC2 were associated with thyroid stimulating
hormone levels (TSH) and also significantly associated with the ICD-9 diagnosis 244.9
“Hypothyroidism”. Another PTSC2 SNP rs10759944 was associated with TSH levels (p = 4.12 x
107, B = 0.16) and the ICD-9 diagnosis 244.9 “Hypothyroidism” (p = 9.48 x 10®, p = 0.21). The
SNP is in LD with rs965513 (1* =0.9), a SNP with a known association with thyroid cancer **%.

jary
2 GROUPS
>
o Clinical Lab
S
=20-
2 A ICD-9 Code
T A A
4 4
A
1
4 3 A
10- 2
A s A ﬁ

Phenotype

Figure 2. (a) Comparison of significant SNPs between clinical lab measures and ICD-9 code PheWAS. The x-axis
has the clinical lab measures and y-axis shows its association p-value with the SNP, where red dots are the top SNPs
from clinical lab PheWAS and blue triangle are the same SNPs associated with ICD-9 diagnoses. Table 2 lists what
the ICD-9 diagnoses were for each of the clinical lab measures. (b) In this chromosomal ideogram, lines link SNP
chromosomal locations to colored diamonds (representing clinical lab measures) or circles (representing ICD-9
diagnoses) showing the cross-phenotype associations for the SNPs identified first with associations with clinical lab
measures.

For Type 2 diabetes we had another significant finding with the known Type II diabetes risk gene
TCF7L2, with variants in TCF7L2 associated with the ICD-9 diagnosis 250.00 “Type II diabetes”
and clinical lab measures related to Type Il diabetes including glucose levels and Hb-A . levels.
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We did find potentially novel pleiotropic associations with a cluster of SNPs in LD on
chromosome 6. These SNPs were associated with WBC as well as Hb-A,., and also associated
with the ICD-9 based diagnosis of 250.01 “Type I diabetes”. While diabetes has an impact on Hb-
A levels the associations with WBC are more novel. White blood cell counts have been found to
impact insulin sensitivity and diabetes development *°.

Using a less stringent cutoff for p-value for ICD-9 codes, which are often under powered
associations due to the number of cases, Figure 3 shows an example of the ICD-9 PheWAS results
for LDLR SNP rs6511720. The associated clinical lab measure was LDL levels, a previously
reported association in the literature, and Figure 3 shows the spectrum of PheWAS results
associated with this SNP with p < 0.01, a series of comorbidities related to cholesterol levels.

Figure 3. Spectrum of phenotypic associations for LDLR SNP rs6511720, for PheWAS p-values < 0.01. This SNP
was originally associated in our study with the clinical lab measure of LDL.

4. Discussion

The goal of this study was preliminary work in the process of accessing clinical lab measurements
in a high-throughput way and developing algorithms, methodologies, and ultimately an analysis
pipeline to be able to use a wide range of clinical lab measure for PheWAS. We have shown here
that we can successfully extract clinical lab measures for association research and use these
measures for association testing. The process of extracting and preparing these clinical lab
measurements has been informative. Some of the challenges with these measurements,
surmounted through our research, may provide information to inform better practices for
collecting these data within the clinic in terms of standardization, which could benefit patients and
clinicians as well as researchers. Facing the challenges of using clinical lab measurements is also
providing preliminary information for how to address the challenge of accessing medication
information within the EHR for use in research, which has many of the same issues as clinical lab
measurements but additional challenges for research use.

We did identify association results replicating previously published associations indicating our
clinical lab measure extraction is functional, as well as a number of novel associations. We intend
moving forward to do an expanded study including additional clinical lab measurements,
including additional measures that have been previously studied to continue expanding our proof-
of-principle results, as well as a wide array of additional measures little studied in genetic
association testing. The development of algorithms for obtaining summary information about
these measures, when moving to hundreds of measures, will be important for quick evaluation of
these phenotypes, and sub-setting of data based on specific criteria. Of further importance will be
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better use of the longitudinal nature of these clinical lab measures, in health and disease, as we are
currently using median values in our association testing.

A challenge within PheWAS is to understand if we find associations due to correlated phenotypes
(such as glucose levels and diabetes), or if we find associations related to the impact of genetic
variation on more than one phenotype (pleiotropy). A future direction is to expand our use of
clinical lab measurements in addition to the use of ICD-9 codes in PheWAS to help provide more
insight into the findings we have for both clinical lab measurements and ICD-9 code based
case/control status to begin to understand more of the complex relationship between genetic
architecture and the complex networks of signaling and phenotypic outcomes. Further, with the
longitudinal nature of the EHR, we can leverage more of these data for longitudinal analyses.
Clinical laboratory measures fluctuate for an individual in health and disease, and also with
medication usage and age, and this complexity can be leveraged in future association testing for
further discovery.

Clinical lab measurements provide an important area of exploration for PheWAS. The results of
using more phenotypic measurements in a high-throughput way can enrich and expand our results
of PheWAS based on ICD-9 code case/control status. Further, potential pleiotropy identified
through cross-phenotype associations could show new important relationships between
phenotypes through an expansion of phenotypic data available for PheWAS. Identifying a wide
range of standardized and “cleaned” clinical lab measurements can also be used in the future to
subset individuals based on clinical lab measure criteria before association testing. These
approaches will also open the door to using more of the longitudinal nature of clinical lab
measurements in future PheWAS analyses. These clinical lab measurements could also prove
useful for continued development of high-quality phenotypic algorithms. The discoveries with
these expanded PheWAS could prove important for discovery that leads to improvements in
precision medicine as well as drug development.
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During January 2015, President Obama announced the Precision Medicine
Initiative [1], strengthening communal efforts to integrate patient-centric molecular,
environmental, and clinical “big” data. Such efforts have already improved aspects of
clinical management for diseases such as non-small cell lung carcinoma [2], breast cancer
[3], and hypertrophic cardiomyopathy [4]. To maintain this track record, it is necessary to
cultivate practices that ensure reproducibility as large-scale heterogeneous datasets and
databases proliferate. For example, the NIH has outlined initiatives to enhance
reproducibility in preclinical research [5], both Science [6] and Nature [7] have featured
recent editorials on reproducibility, and several authors have noted the issues of utilizing
big data for public health [8], but few methods exist to ensure that big data resources
motivated by precision medicine are being used reproducibly. Relevant challenges
include: (1) integrative analyses of heterogeneous measurement platforms (e.g. genomic,
clinical, quantified self, and exposure data), (2) the tradeoff in making personalized
decisions using more targeted (e.g. individual-level) but potentially much noisier subsets
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of data, and (3) the unprecedented scale of asynchronous observational and population-
level inquiry (i.e. many investigators separately mining shared/publicly-available data).

In this session of the Pacific Symposium on Biocomputing (PSB) 2016, we
feature manuscripts that explore and propose solutions to some of the challenges of
reproducibility in the era of precision medicine.

Two submissions to the session address challenges to reproducibility in
observational (e.g., Electronic Health Record [EHR]) and clinical trial settings. Chen et
al. [9] study the stability of predicting clinical practice patterns by varying the duration of
EHR data used in training clinical order association rules, finding that larger longitudinal
datasets may not improve, and might worsen, some predictions given the importance of
secular practice trends. Ma et al. [10] provide a method for finding questionable
exclusion criteria commonly used in clinical trials for mental disorders deposited in
ClinicalTrials.gov.

Another challenge for the implementation of precision medicine involves novel
methods for assessing data quality. Koire et al. [11] study threats to reproducibility when
repurposing publicly available genome sequencing data, using data from The Cancer
Genome Atlas [12] to study false positive variant calls and systematically evaluate
variant call quality.

Software that enables analysts to transparently document analysis protocols can
also help ensure reproducibility. Callahan et al. [13] create a reproducible workflow for
microbiome studies using the Bioconductor [14] and knitr [15] R packages, providing a
principled way to share protocols and explore how a multiplicity of analysis choices can
sway results [16], [17]. Further, Manrai et al. [18] develop a shareable computational
framework for quantifying widely-used pathogenicity assertions that relate genetic
variation to disease, enabling users to identify how genetic model parameters influence
risk estimates for genetic variants used in clinical practice.

These manuscripts address aspects of maintaining reproducibility as large-scale
and heterogeneous datasets become increasingly common in the era of precision
medicine. Concerted community-wide efforts will be critical to ensure that our ability to
collect diverse types of patient-centric data is tantamount to our ability to distill
reproducible findings from these data.

References

[1] F. S. Collins and H. Varmus, “A New Initiative on Precision Medicine.,” N. Engl.
J. Med., vol. 372, no. 9, pp. 793-5, Jan. 2015.

[2] W. Pao and N. Girard, “New driver mutations in non-small-cell lung cancer.,”
Lancet. Oncol., vol. 12, no. 2, pp. 175-80, Feb. 2011.

[3] S. M. Domchek, T. M. Friebel, C. F. Singer, D. G. Evans, H. T. Lynch, C. Isaacs,
J. E. Garber, S. L. Neuhausen, E. Matloff, R. Eeles, G. Pichert, L. Van t’veer, N. Tung, J.
N. Weitzel, F. J. Couch, W. S. Rubinstein, P. A. Ganz, M. B. Daly, O. 1. Olopade, G.
Tomlinson, J. Schildkraut, J. L. Blum, and T. R. Rebbeck, “Association of risk-reducing
surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality.,” JAMA,
vol. 304, no. 9, pp. 967-75, Sep. 2010.

[4] H. L. Rehm, “Disease-targeted sequencing: a cornerstone in the clinic.,” Nat. Rev.
Genet., vol. 14, no. 4, pp. 295-300, May 2013.

181



Pacific Symposium on Biocomputing 2016

[5] F. S. Collins and L. A. Tabak, “Policy: NIH plans to enhance reproducibility.,”
Nature, vol. 505, no. 7485, pp. 612-3, Jan. 2014.

[6] M. McNutt, “Reproducibility.,” Science, vol. 343, no. 6168, p. 229, Jan. 2014.
[7] “Journals unite for reproducibility.,” Nature, vol. 515, no. 7525, p. 7, Nov. 2014.
[8] M. J. Khoury and J. P. A. Ioannidis, “Medicine. Big data meets public health.,”
Science, vol. 346, no. 6213, pp. 1054-5, Nov. 2014.

[9] J. H. Chen, M. K. Goldstein, S. M. Asch, and R. B. Altman, “Dynamically
evolving clinical practices and implications for predicting medical decisions,” Pac Symp
Biocomput., 2016.

[10] H.Maand C. Weng, “Identification of questionable exclusion criteria in mental
disorder clinical trials using a medical encyclopedia,” Pac Symp Biocomput., 2016.

[11] A.Koire, P. Katsonis, and O. Lichtarge, “Repurposing germline exomes of the
cancer genome atlas demands a cautious approach and sample-specific variant filtering,”
Pac Symp Biocomput., 2016.

[12] J. N. Weinstein, E. A. Collisson, G. B. Mills, K. R. M. Shaw, B. A. Ozenberger,
K. Ellrott, I. Shmulevich, C. Sander, and J. M. Stuart, “The Cancer Genome Atlas Pan-
Cancer analysis project.,” Nat. Genet., vol. 45, no. 10, pp. 1113-20, Oct. 2013.

[13] B. Callahan, D. Proctor, D. Relman, J. Fukuyama, and S. Holmes, “Reproducible
research for the fine scale analyses of personalized human microbiome data,” Pac Symp
Biocomput., 2016.

[14] R.C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B.
Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R.
Irizarry, F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith, G. Smyth,
L. Tierney, J. Y. H. Yang, and J. Zhang, “Bioconductor: open software development for
computational biology and bioinformatics.,” Genome Biol., vol. 5, no. 10, p. R80, Jan.
2004.

[15] Y. Xie, Dynamic Documents with R and knitr. 2014.

[16] S.S. Young and A. Karr, “Deming, data and observational studies.”

[17] C.J. Patel, B. Burford, and J. P. A. Ioannidis, “Assessment of vibration of effects
due to model specification can demonstrate the instability of observational associations,”
J. Clin. Epidemiol., Jun. 2015.

[18] A.K.Manrai, B. L. Wang, C. J. Patel, and I. S. Kohane, “Reproducible and
shareable quantifications of pathogenicity,” Pac Symp Biocomput., 2016.

182



Pacific Symposium on Biocomputing 2016

REPRODUCIBLE RESEARCH WORKFLOW IN R FOR THE ANALYSIS OF
PERSONALIZED HUMAN MICROBIOME DATA.

BENJAMIN CALLAHAN
Statistics Department, Stanford, CA 94305, USA

DIANA PROCTOR, DAVID RELMAN

Departments of Microbiology € Immunology, and Medicine
Stanford University, Stanford, CA 94305 and VA, Palo Alto, CA 94304, USA

JULIA FUKUYAMA, SUSAN HOLMES*
Statistics Department, Stanford University,

Stanford, CA 94305, USA
* E-mail:susan@stat.stanford.edu, statweb. stanford. edu/ “susan/

This article presents a reproducible research workflow for amplicon-based microbiome studies in per-
sonalized medicine created using Bioconductor packages and the knitr markdown interface. We show
that sometimes a multiplicity of choices and lack of consistent documentation at each stage of the
sequential processing pipeline used for the analysis of microbiome data can lead to spurious results.
We propose its replacement with reproducible and documented analysis using R packages dada2,
knitr, and phyloseq. This workflow implements both key stages of amplicon analysis: the initial
filtering and denoising steps needed to construct taxonomic feature tables from error-containing
sequencing reads (dada2), and the exploratory and inferential analysis of those feature tables and
associated sample metadata (phyloseq). This workflow facilitates reproducible interrogation of the
full set of choices required in microbiome studies. We present several examples in which we leverage
existing packages for analysis in a way that allows easy sharing and modification by others, and
give pointers to articles that depend on this reproducible workflow for the study of longitudinal and
spatial series analyses of the vaginal microbiome in pregnancy and the oral microbiome in humans
with healthy dentition and intra-oral tissues.

Keywords: llumina; amplicon; DADA?2; phyloseq; microbiota; microbiome; microbial ecology; longi-
tudinal data; spatial; personalized medicine; random effects models.

1. Introduction

High-throughput (HT) DNA sequencing is allowing major advances in microbial studies; our
understanding of the presence and abundance of microbial species relies heavily on the ob-
servation of their nucleic acids in a “culture independent” manner.! At present, the most
common and cost-effective method for characterizing microbes and their communities is am-
plicon sequencing: PCR amplification of a small ( 100-500 bp) fragment of a conserved gene
(phylogenetic marker) for which there are taxonomically-informative reference sequences avail-
able. The standard phylogenetic marker gene for bacteria is the small subunit ribosomal RNA
(16S rRNA) gene,! for which there are also convenient tools and large reference databases.?™
16S rRNA amplicon sequencing provides a census of the personalized bacterial communities
present in a sampled individual.

After obtaining the amplicon sequences, a standard series of bioinformatic and statistical
analyses are used to evaluate these data: filtering out low quality sequences and samples, con-

183



Pacific Symposium on Biocomputing 2016

structing a taxonomic feature table of observations from each sample, incorporating the sample
metadata, transforming and normalizing the feature table, and performing exploratory and
inferential analyses. Here we explore the multiplicity of choices made during this process, show
examples of their consequences, and motivate the need for better and easier reproducibility of
the standard analytic workflow on amplicon data?.

We focus here on two Bioconductor® packages — dada2° and phyloseq”® — created specif-
ically to analyze amplicon sequencing data within the R environment, and show how they
enable reproducible research in several microbiome studies. We begin by illustrating the need
for reproducible research workflows in microbiome studies with a typical workflow example.

2. A Case study in multiple outcomes: the Enterotypes

A few years ago, Arumugam, M. et al.® published an article in Nature that concluded that
humans could be grouped into intestinal gut types. In fact, some bioinformatic forensics (pre-
sented in detail in the supplementary material) shows that during the course of the analysis,
the following choices were made.

e A preliminary choice of data transformation from the original counts to proportions was
made, although the authors could have chosen to take logarithms, variance stabilizing trans-
formations!® (here proportions replaced the original counts),

choose between log, rlog, subsample, prop, orig (5)
e Nine points were dropped from the study as they were considered outliers; of course the

authors could have chosen to .. leave out 0, 1, 2 ,..,9, + criteria (100)
e Certain taxa were filtered out as they were considered too rare or unlabeled.

filter taxa ... remove rare taxa, ie threshold at 0.01%, 1%, 2%,...(10)
e A distance was chosen (Jensen-Shannon, JSD) to quantify similarities between samples.

Distances ... 40 choices in vegan/phyloseq (40)
e An ordination method and number of coordinates has to be chosen.

Ordination and axes ... MDS, NMDS, DCA, k=2,3,4,5.. (16)
e A clustering method and a number of clusters

is chosen ... PAM, KNN, hclust ... (16)
e The authors chose an underlying continuous variable, an alternative could have been a linear

or curved latent variable or group of variables. latent variable choices... (4)

According to this rough list, there are more than 200 million possible ways of analyzing these
data P. Thus, there is a combinatorial explosion of the number of possible choices that an
investigator makes. Some choices can impact conclusions drawn from microbiome studies; it
becomes necessary for experimentalists to develop and adopt pipelines documenting choices
used in these analyses with the intention of providing an assessment of the robustness and

aThroughout this article we use regular or texttype font for packages/applications with names that are
capitalized or uncapitalized, respectively. We use a courier style font for R code, including function and class
names. The supplementary material contains Rmd files of the complete R code that enable the reproduction of
all the figures in the article.

b5 x 100 x 10 x 40 x 16 x 16 x 4 = 204800000
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reproducibility of the analyses. In fact, an errata was published to the paper,® substantially
weakening the original conclusions. Figure 1 shows graphical representations made after the
Jensen-Shannon distance was computed on the data. The authors made an inappropriate sup-
plementary step using the data based clusters as labels in a supervised classification between
group analysis that separated the clusters more than they actually appear in the middle figure.
There is unfortunately no way to use multiple hypothesis testing corrections for this number of

7

W

Fig. 1: On the left we show the analysis as done in® | in the middle we have done the same
analysis with the Jensen Shannon distance but without the extra (invalid) supervised separation
and on the right we have the minimum spanning tree exhibiting a clear gradient in the data.

possible analyses, thus the only way of ensuring robustness of the conclusions is to repeat the
analyses with many different settings. In the supplementary material we include the output
showing the ordination with 40 different distances. In particular, the clustering is not always
as obvious; different choices of distance such as chisquare or Jaccard give very different results.

As this re-analysis demonstrates, access to reproducible analysis workflows is necessary
for the interpretation of modern microbiome studies. In this example, in just one stage of the
analysis (clustering of samples based on taxonomic features), the reported outcome was one
out of millions of analogous alternatives, many of which differed qualitatively. Other parts
of standard amplicon analysis, such as the construction of OTU tables and the evaluation of
differential abundances, are accompanied by a similar myriad of choices. For this reason it is
crucial that the analysis of amplicon data be made accessible — sharing the data alone is not
enough.

3. A reproducible workflow in R

Here we present a workflow for the analysis of amplicon data within R (Figure 2). This
workflow takes as input the amplicon sequencing reads and associated sample metadata, and
provides as output exploratory and inferential statistical analyses as well as sharable analysis
scripts and data files that fully reproduce those analyses. Here we focus on two particular
packages developed by our group for the analysis of amplicon data within the R environment:
dada2 and phyloseq.

185



Pacific Symposium on Biocomputing 2016

3.1. Inferring sample sequences and abundances using DADA2

Sequences and Metadata and
qualities additional info

1 1
1 1
1 dada2 phyloseq ‘ggplot2 . Rmd
; infer sample > transform, visualization I_} Workflow,
composition subsample, > versions,
1 test, track 1 choices
1 N 1
1 1
1 \ 1
deseq2 vegan 1
R differential ecological 1 Rdata
abundance statistics . ’ All data,
[ testing results,
! o / ! one file
1 1
\ 1

____________________________

Fig. 2: Diagram of the new reproducible workflow including denoising, data integration and
statistical analyses.

The DNA sequence errors introduced by PCR and sequencing complicate the interpretation
of amplicon data, and present different challenges than the more well known problem of
resequencing. When re-sequencing a diploid organism (like a human being) it is known that
there exist either 1 or 2 variants at every position in the genome. Thus increasing depth
eventually trivializes the problem of making genotype calls by overwhelming the error rate with
data. However, when amplicon sequencing microbial communities the number of variants and
their associated frequencies are unknown, which fundamentally changes the inference problem.
When increasing sampling depth reveals new sequence variants, these might represent rare
errors or rare members of the community. In addition, the PCR amplification step introduces
chimeras and additional errors with a different structure than sequencing errors.

Most current studies use two methods to deal with amplicon errors, reducing their incidence
by filtering out low quality reads, and lumping similar sequences together into Operational
Taxonomic Units (OTUs). However, there are a significant number of choices made during
this process: the type and stringency of quality filtering, the minimum abundance threshold,
the size of the OTUs, the OTU construction method, and more. All of these choices can have
significant downstream consequences for later analysis.!!

This has led to serious problems for the reproducibility of amplicon-based studies. The
methods used to filter sequences, construct OTUs and then perform analysis are often per-
formed in separate environments (e.g., shell scripts vs. python vs. R). This makes the creation
of a single coherent record of the analysis from input data to final product difficult and time-
consuming. In practice few studies can be reproduced from the original raw data.

We have addressed this shortcoming by developing the dada2 package® for R which per-
forms the crucial filtering and sample inference steps that turn a set of raw amplicon sequences
into a feature table of the types observed in each sample (e.g., an OTU table). Because dada2
shares the R environment with downstream analysis methods already present in R, such as
those in the phyloseq package, the publication of reproducible workflows encompassing the
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entirety of the analysis is far easier. One unified R script, and one unified Rdata data object,
can provide a complete record of the published analysis, and allows interrogation of the full
set of choices made in that process.

3.2. Performing exploratory and inferential analysis with phyloseq

Phyloseq allows the user to import a species by sample contingency table matrix (aka, an
OTU Table) and data matrices from metagenomic, metabolomic, and or other —omics type
experiments into the R computing environment. Phyloseq is unique in that it allows the
user to integrate the OTU Table, the phylogenetic tree, the “representative sequence” fasta
file, and the metadata mapping file into a single “phyloseg-class” R object. The microbial
ecologist can then harness all the statistical and graphical tools available in R, including
knitr, ggplot2 to generate reproducible research reports with beautiful graphics, as detailed
in our supplementary .Rmd file and in the case studies below.

Combining this environment with a number of other important R packages (e.g., vegan,
aded, DESeq2, multtest ...) allows for powerful and specific analyses to be performed on
amplicon-sequenced microbiome data. We share several such examples, along with the data
and code necessary to reproduce them.

4. Examples: Longitudinal data analysis

Tackling the challenges involved in longitudinal patient-dependent data requires methods
specifically tailored for the human body sites studied. For instance, the vaginal community is
the one human body habitat that has been shown to robustly cluster into discrete community
state types (CSTs).12 This feature allows the complex information about community composi-
tion to be simplified by projecting into a small number of CSTs. Combined with longitudinal
sampling information, this simplified projection is then amenable to analysis as a Markov
chain.

In a 2015 study'? we used this Markov chain representation to analyze the dynamics of
the vaginal community during pregnancy. Transition rates were estimated from a set of 652
pairs of samples collected one week apart during the pregnancies of 40 women, producing an
estimation of the dynamics of the vaginal community as illustrated in Figure 3. These results
reproduced previous qualitative and semi-quantitative observations,'® such as the high stability
of Lactobacillus crispatus communities, but also provided a more detailed quantification of the
stability of each CST as well as the connectivity between them.

Markov chain analysis is a powerful way to quantify and visualize dynamics, but it can only
be applied to systems that are representable by a set of discrete states (a property which is
often not trivial to establish as in Section 2). In the context of microbial communities this is a
substantial limitation, as few communities can be so represented. A second concern, especially
when applied to human-associated communities, is how the estimation of the transition rates
should be performed across subjects. If the community dynamics are subject-independent,
then an average over the observed transitions in each subject is appropriate, and this was the
method used in our analysis of pregnant vaginal communities. However, it is possible that
subject-specific factors (eg. host genetics) may influence transition rates, in which case the set
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of states should be expanded to include the subject effect.

Finally, the uncertainties that exist in mapping community states to discrete CSTs can
also have significant consequences for the estimation of transition rates between those states,
as in the case where a rare and unmodeled community state exists intermediate between the
centers of two CSTs and is sometimes assigned to one or the other.

Even in the relatively very simple case of the vaginal community, this set of concerns
cannot be comprehensively addressed within a single manuscript. Thus the need for access
to the analytical workflow. In this study, we used the reproducible R workflow, and Rmd and
Rdata files, to make our analysis easily accessible and modifiable and have deposited the data
and code in a permanent repository (permanent url) maintained by the Stanford Digital
Repository at http://purl.stanford.edu/hgl40kw6221.

0.98
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Fig. 3: Markov chain modeling of CST states across pregnancy and preterm birth.!? Numbers
indicate the one-week self-transition rate for each state. The high-diversity, low Lactobacillus
class 4 is the least stable and most connected to the other CSTs. A more complete version of
this figure appears in the aforementioned PNAS paper.'?

5. Example: Spatial data analysis

Patterns of diversity and community composition across human body-sites have been well
characterized.'* When comparing human-associated microbial communities across different
anatomic sites, skin and gut for instance, dramatic differences in the acquisition, development,
and maintenance of microbial community composition are observed. Few studies have yet
examined the extent to which microbial communities vary across fine scale spatial gradients
on the human body, such as between and across individual tooth surfaces in the oral cavity.
Datasets that have attempted to examine the spatial variation of oral microbial communities
have shown interpersonal variation to be the strongest effect with secondary effects exerted
by tooth position.'®!6 We have extended the current exploratory approaches through the use
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of the statistical packages available in R specifically tailored to analyze spatial or longitudinal
data.

In this study, we demonstrate the usability of the phyloseq” package for applied spatial
analysis of microbial communities in the oral cavity. As a test case, we generated data for this
demonstration, collecting 186 independent samples from the facial (cheek-facing) and lingual
(tongue-facing) surfaces of every tooth (excluding the third molars) of one adult female on
each of two non-consecutive days. We extracted DNA from each sample, amplified the V3-V5
region of the 16S rRNA gene using golay-barcoded primers, and sequenced the amplicons using
the 454-Titanium platform, generating 216,965 sequences with a median sequencing depth of
2,479. We use two methods to examine the spatial variation of oral microbial communities: a

Between Class Analysis and a Principal Components Analysis with respect to Instrumental
Variables.

5.1. Between Class Analysis

When dealing with a priori classes in which we know teeth communities segregate, we want to
highlight differences in a supervised analysis. The segregation of supragingival communities
might arise because teeth are situated along an ecological gradient. As a first examination of
the spatial relationship between the oral communities, after filtering and preprocessing the
data we used ade4 to perform a Between Class Analysis (BCA) in which tooth class was used
as the spatial partition.

Using teeth groupings, we found that 12% of the total variance could be explained by
Tooth-Class with the first component accounting for 56.5% of the explained variance. The
BCA revealed that not only can communities be distinguished from one another based on
tooth class, but that these communities may exist along an ecological gradient. Molar and
Premolar communities appeared to be associated with positive scores along the first BCA axis
while the Central Incisors and Lateral Incisors appeared to be associated with more negative
scores along the first BCA axis, regardless of whether we examine communities in the top
(Maxillary) or bottom (Mandibular) jaws or whether we examined the buccal or the lingual
aspect of teeth. The distribution of teeth along the first and second components suggested
that supragingival plaque varies along a gradient in the mouth. Interestingly, the variance of
community scores along CS1 varied according to tooth class (Figure 4) with Central Incisor
communities appearing to be the most variable community class especially if communities
were sampled from the lingual aspect of the teeth or from the buccal aspect of teeth in the
lower jaw. This is interesting given the relative proximity of these sites to the secretions of the
submandibular/sublingual glands, which may give rise to the observed structure.

5.2. Principal Components with Instrumental Variables

It can be challenging to incorporate covariates such as spatial variation into studies of microbial
communities. Here, we explicitly model the spatial variation of microbial communities in the
human mouth using a Principal Components Analysis with respect to Instrumental Variables
(PCA-IV)'" where a third-order polynomial function of the geographic coordinates was used
as the constraint.
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Fig. 5: A representation of the output from PCA-IV. The left and right panels show scores along
the first and second PCA-IV axes, respectively. Each dot represents a sample, and its position
with respect to the image of the teeth shows the area it was sampled from. Color represents
whether the sample scored high (blue) or low (red) on the first and second PCA-IV axes. The
first PCA-IV axis reveals a complex interaction between tooth aspect, the front vs. the back of
the mouth, and jaw. Communities on the lingual aspect of most anterior teeth share negative
scores along the first coordinate with a more pronounced difference between tooth aspect in the
bottom jaw. The second axis describes a posterior to anterior gradient.

The PCA-IV accounts for 27% of the variance. The first principal coordinate separates
buccal from lingual communities with lingual communities being associated with more positive
scores along Axis 1 compared to buccal communities, especially for communities in the bottom
jaw. Examining multiple individuals should confirm whether this pattern is consistent across
multiple subjects and may reveal the sum of factors that structure the spatial variation of
microbial communities. For now, we speculate that in this subject the relative proximity of
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the the submandibular glands to the upper anterior sites, the lower anterior, and posterior
sites are important factors contributing to variation along Axis 1.

Axis 2, on the other hand, accounts for 23.4% of the total variance and appears to separate
molar from incisor communities with molar communities being associated with positive scores
along Axis 1 and incisors being associated with negative values along Axis 1.

While the data presented here pertain to just a single subject, and therefore our ability to
make population level inferences limited, in this analysis we generated and provided an .Rmd
script that can be used by other expeirmentalists to test hypotheses related to the spatial
structure of host-associated communities in the oral cavity or at other body sites.

6. Relevance to Precision Medicine

The vaginal and oral community examples provided above both have relevant applications
to personalized medicine. In the first example, the state of the vaginal community during
pregnancy has been shown to be related to the likelihood of preterm birth outcomes in some
women, with higher relative abundances of particular taxa such as Gardnerella vaginalis and
Ureaplasma implicated as specific risk factors.'? Furthermore, the duration of time spent in
the high-risk states further stratified preterm risk. This suggests that longitudinal monitoring
of the vaginal community during pregnancy, concomitant with the standard schedule of pre-
natal care, might provide a biomarker for preterm birth risks early in pregnancy allowing for
pre-emptive intervention and education.

In the second example, we show an unpublished example of a spatial analysis of the oral
microbiome which will have broad applicability in the dental clinic. Dentists have long known
that most people experience greater difficulty brushing the lingual aspects of posterior teeth as
compared to the buccal aspects of those same teeth, and that whether an individual is right or
left handed impacts brushing efficacy. Differences in brushing technique may therefore give rise
to differences in microbial community composition in different areas of the mouth, and these
differences may be highly specific to individual patients and may relate to the incidence of
dental disease. One possible application of this type of analysis in the dental clinic would be to
provide patients with customized diagrams of the microbial inhabitants of their oral cavities in
order to help them to better understand the impact of brushing technique on their oral health.
If analyses were conducted at every semi-annual dental exam the relative impact that different
dental interventions have on the spatial structure of communities could be elucidated on a per-
patient basis. By wrapping up this type of metadata with phylogenetic sequence analysis and
depositing the information into public repositories, we increase our ability to make this type
of inference. Analysis of spatial and temporal series may also have relevance to dental disease,
which is patchy. Cavities (which are not generalized) are known to form on discrete, localized
surfaces of dental enamel, and in the healthy individual a single cavity typically takes years to
develop. Our ability to decompose the spatial and temporal components of health-associated
supragingival communities would enable clinicians to develop models that detect deviations
from health, such as incipient caries, which are reversible. These types of models might then
allow clinicians to detect and reverse early carious lesions before the need for costly and
invasive dental restorations arises.
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These examples demonstrate the need for reproducibility in microbiome research and the
relevance of the reproducibility problem to the precision medicine initiative.

7. Difficulties encountered in the production of Reproducible Research

There are many biological and technical choices, which are challenging to standardize across
projects, institutions, and investigators, that make experimental and analytical findings diffi-
cult to replicate. Studies that examine the ecological structure of human-associated microbial
communities are tough to compare when data are generated using different sequencing tech-
nologies (e.g., 454 vs. Illumina), or even when investigators simply sequence different regions
of the 16S rRNA gene. The rapid increase in the number of sequencing technologies makes
it difficult to standardize the highest level technical factors that give rise to irreproducible
data. In contrast, how we make use of data that have already been generated is one of the
easiest ways to increase the reproducibility of experimental findings. The difficulty that any
investigator faces in replicating the steps and choices of another investigator in executing
their data analysis, when provided with the same raw data, is a more subtle, often-overlooked
problem that is easily addressed. When considering this question in the context of precision
medicine it is easy to recognize that a clinician trying to provide an individualized report on,
say, oral health must be able to generate a record exactly as intended by the investigators
who developed the report. To facilitate the use of these analyses in the clinic, reports could be
developed to run with the Shiny Phyloseq® interface, which places the computational power
of R in the hands of individuals less customized to working with scripts. Experimentalists
will benefit from considering their data analysis pipelines from this point of view. While most
bench scientists use a laboratory notebook to document choices that guide their decisions
at the bench, fewer bench scientists have adopted the tools (e.g., LaTex, RMarkdown, etc.)
widely used in mathematics and statistics to document the analytic choices used during data
analysis. The pipelines presented here provide microbial ecologists with a single platform with
which to analyze 16S rRNA gene amplicon data, providing bench scientists with the ability
to generate scripts that can be executed by other scientists (or eventually by clinicians in the
clinic) and enabling the genesis of figures and findings that are precisely replicable and usable
in a variety of other related contexts. Here we have provided examples of three statistical
analyses using R and in particular the Rmd format, easily available in RStudio.

7.1. Open Data Access Barriers to Reproducibility

The NIH Open Data Access Policy should dramatically increase our ability to reproduce find-
ings from published datasets in addition to allowing researchers to leverage existing findings
in analyses of new experiments. Nonetheless, researchers face several other barriers when try-
ing to access these files. Non-standardized or non-existent mapping files make it difficult to
analyze data that have been deposited in public repositories as multiple short read archives.

We advocate the use of platforms (e.g., Github, Bioconductor, CRAN) used by statisticians
and bioinformaticians in which experimentalists can deposit not just their sequencing data
but also packages containing their complete metadata mapping files, taxonomy files, reference
sequence files, which can all be wrapped into a single phyloseq object within R.
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7.2. Advantages and weaknesses of the R workflow

While rarely achieved in practice, the need for reproducible analysis in amplicon studies has
been recognized and there are several existing approaches. The two most common pieces of
pipeline software — mothur'® and qiime!? — allow analysis workflows to be shared as batch
files or IPython notebooks?® respectively. Also, restricted versions of a number of amplicon
analysis tools are available through cloud based platforms such as Galaxy.?!

However, an amplicon analysis workflow in R provides several advantages over these exist-
ing approaches. The most compelling advantage is R’s access to a constellation of state-of-the
art statistical methods. While common statistical tests have been implemented by pipelines
like mothur and QIIME, there is no other platform that has a suite of statistical tools as broad
as that implemented in R. In practice, many studies use the popular amplicon pipelines for the
initial stages of their analysis, and then transition into R for deeper analysis, with the result
being that even when analysis scripts are shared, they only cover part of the full workflow.
Additionally, R markdown, as implemented by the knitr package, allows the construction of
R analysis for which both the underlying code and the full output of that code can be easily
shared.

There are also weaknesses in the workflow we present. One of those weaknesses is that
our current R workflow does not include the optimal storage of raw sequence data. A sec-
ond weakness is in the taxonomic assignment of amplicon sequences or OTUs. While one R
package does exist for this purpose (clstutils), it requires parallel computation in an exter-
nal program (pplacer??), preventing full reproducibility from the R script alone. Taxonomic
assignment fully within R is an area of particular interest for future development.

8. Conclusions

We describe reproducible research in the context of studies of the human microbiome. Bio-
conductor packages, dada2, phyloseq, allow for denoising, handling, filtering, and analyzing
high-throughput phylogenetic sequencing data. The phyloseq package provides extensions for
leveraging analysis from other ecology-related packages, such as spatstat for spatial data
analyses, ade4 for multiway data analyses and 1me4 for mixed model analyses. We believe
that this workflow provides a useful way to document choices in the analyses of phylogenetic
sequencing data, its quality control, filtering, processing and its inferential validation.
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Automatically data-mining clinical practice patterns from electronic health records (EHR) can enable
prediction of future practices as a form of clinical decision support (CDS). Our objective is to
determine the stability of learned clinical practice patterns over time and what implication this has
when using varying longitudinal historical data sources towards predicting future decisions. We
trained an association rule engine for clinical orders (e.g., labs, imaging, medications) using structured
inpatient data from a tertiary academic hospital. Comparing top order associations per admission
diagnosis from training data in 2009 vs. 2012, we find practice variability from unstable diagnoses
with rank biased overlap (RB0)<0.35 (e.g., pneumonia) to stable admissions for planned procedures
(e.g., chemotherapy, surgery) with comparatively high RBO>0.6. Predicting admission orders for
future (2013) patients with associations trained on recent (2012) vs. older (2009) data improved
accuracy evaluated by area under the receiver operating characteristic curve (ROC-AUC) 0.89 to 0.92,
precision at ten (positive predictive value of the top ten predictions against actual orders) 30% to
37%, and weighted recall (sensitivity) at ten 2.4% to 13%, (P<10-19). Training with more longitudinal
data (2009-2012) was no better than only using recent (2012) data. Secular trends in practice patterns
likely explain why smaller but more recent training data is more accurate at predicting future
practices.
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1. Introduction

Variability and uncertainty in medical practice compromise quality of care and cost efficiency,
with overall compliance with evidence-based guidelines ranging from 20-80%.1 Clinical
decision support (CDS) tools, like order sets and alerts, reinforce best-practices by distributing
information on relevant clinical orders (e.g., labs, imaging, medications),2-5 but production is
limited in scale by knowledge-based manual authoring of one intervention at a time by human
experts.6 If medical knowledge were fixed, manual approaches might eventually converge
towards a comprehensive set of effective clinical decision support content from the top-down.
The reality is instead a perpetually evolving body of knowledge that responds to new evidence,
technology, and epidemiology that requires ongoing content maintenance to adapt to changing
clinical practices.”

The meaningful use era of electronic health records (EHR)8 creates an opportunity for
data-driven clinical decision support (CDS) to reduce detrimental practice variability through
the collective expertise of many practitioners in a learning health system.9-13 Specifically, one of
the “grand challenges” in CDS!4 is automated production of CDS from the bottom-up by data-
mining clinical data sources. Such algorithmic approaches to clinical information retrieval could
greatly expand the scope of medical practice addressed with effective decision support, and
automatically adapt to an ongoing stream of evolving clinical practice data. This would fulfill
the vision of a learning health system to continuously learn from real-world practices and
translate them into usable information for implementation back at the point-of-care. The Big
Datal3.15 potential of EHRs makes this vision possible, but the dynamic nature of clinical
practices over time calls into question the presumption that learning from historical clinical
data will inform future clinical practice. To fulfill the potential of real-time clinical prediction,
we need to better understand how far back in time to mine EHRs while retaining predictive
value for future decision making.

2. Background

To understand clinical practice patterns and inform potential decision support, we focus on the
clinical orders (e.g., labs, imaging, medications) that concretely manifest point-of-care decision
making. Prior research into data-mining for clinical decision support content includes use of
association rules, Bayesian networks, and unsupervised clustering of clinical orders and
diagnoses.16-23 This prior research has largely ignored the temporal relationships between
clinical data elements when training predictive models, treating individual patients or
encounters as an unordered collection of items. In our own prior work, inspired by analogous
information retrieval problems in recommender systems, collaborative filtering, and market
basket analysis, we automatically generated clinical decision support content in the form of a
clinical order recommender system?24 analogous to Netflix or Amazon.com’s “Customer’s who
bought A also bought B” system.25> This prior work?s first examined the importance of matching
the temporal relationship between clinical data elements to the respective timing of evaluation
outcomes. For example, orders co-occuring within a short time period, such as the antibiotics
vancomycin and piperacillin-tazobactam being ordered within one hour of each other, inform a
more useful association than orders separated by several days of time. The impact of the
temporal relationship between training and validation data has not been explored in this prior
research (including our own). Instead, any evaluation of these predictive models was conducted
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by separating patients into random train-test subsets. This is not representative of realistic
applied scenarios however, where we would have to learn from historical clinical data to inform
recommendations and predictions towards future patient encounters that have never
previously occurred.

In this work, we seek to determine how varying longitudinal historical training data
usage can impact prediction of future clinical practices. Furthermore, we seek to quantify which
inpatient admission diagnoses exhibit the most stability vs. variability of clinical practice
patterns over time.

3. Materials and Methods

We extracted deidentified patient data from the (Epic) electronic medical record for all
inpatient hospitalizations at Stanford University Hospital via the STRIDE clinical data
warehouse.?” The structured data covers patient encounters from their initial (emergency
room) presentation until hospital discharge. With five years of data spanning 2008-2014, the
dataset includes >74K patients with >11M instances of >27K distinct clinical items. The clinical
item elements include >7,800 medication, >1,600 laboratory, >1,100 imaging, and >1,000
nursing orders. Non-order items include >1,000 lab results, >7,800 problem list entries, >5,300
admission diagnosis ICD9 codes, and patient demographics. Medication data was normalized
with RxNorm mappings?8 down to active ingredients and routes of administration. Numerical
lab results were binned into categories based on “abnormal” flags established by the clinical
laboratory. To compress the sparsity of diagnosis items, we duplicated ICD9 codes up to the
three digit hierarchy, such that an item for code 786.05 would have additional items replicated
for code 786.0 and 786. The above pre-processing models each patient as a timeline of clinical
item instances, with each instance mapping a clinical item to a patient at a discrete time point.

With the clinical item instances following the “80/20 rule” of a power law distribution,?®
most clinical items may be ignored with minimal information loss. In this case, ignoring rare
clinical items with <256 instances reduces the effective item count from >27K to ~3K (11%),
while still capturing 10.8M (95%) of the 11.4M item instances. After excluding common process
orders (e.g., vital signs, notify MD, regular diet, transport patient, as well as most nursing and all
PRN medications), 1,270 clinical orders of interest remained.

Using our previously described method,2* we algorithmically mined association rules for
clinical item pairs from past clinician behavior. Based on Amazon’s product recommender,?s we
collected patient counts for all clinical item instance pairs co-occurring within 24 hours of each
other to build time-stratified item association matrixes.2¢6 Each matrix defines a 2x2
contingency table for each pair of clinical items, from which various association statistics are
derived (e.g. odds ratio (OR), positive predictive value (PPV), baseline prevalence, and Fisher’s
P-value).30 To assess the varying impact of historical training data time, separate item
association matrix models were built from training data from 2009, data from 2012, and data
from 2009 through 2012.

We identify clinical order associations that reflect practice patterns by using query items
(e.g., admission diagnosis or first several clinical orders and lab results) to score-rank all
candidate clinical order items by an association statistic relative to the query items. Score-
ranking by PPV (positive predictive value) prioritizes orders that are likely to occur after the
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query items, while score-ranking by Fisher’s P-value for items with odds ratio > 1 prioritizes
orders that are disproportionately associated with the query items.26

To find clinical orders associated with different admission diagnoses, we generated a
score-ranked list of the 1,270 candidate clinical orders for each of the most common admission
diagnoses (those with at least 36 instances per year), sorted by Fisher’s P-value. To assess for
stability in clinical order patterns, we generated two such clinical order lists for each admission
diagnosis, one from the matrix built on 2009 data and the other from the 2012 data. Traditional
measures of list agreement like Kendall’s 13! are not ideal here, as they often require identically
sized, finite lists, and weigh all ranks equivalently. To compare ranked clinical order lists, we
instead calculate their agreement by Rank Biased Overlap (RB0O).32 When comparing two ranked
lists, we define Ix as the intersection of the top k items in each list, and X as the size of the
overlap at rank depth = |Ix]. The ratio of Xk to the maximum possible value (k) is the fractional
overlap agreement Ax = (Xi/k). RBO is a weighted summation of these agreements where the
weight wy = (1-p)*p*1, based on the “persistence” parameter p that reflects the probability that
an observer reviewing the top k items will continue to observe the (k+1)-th items. The fixed (1-
p) factor normalizes the sum of weights to 1. For our calculations, we used a default
implementation p parameter of 0.98.33

RBO = Z Wy -Ak
k=1

The geometric weighting scheme of RBO serves to emphasize items at the top of the list and to
ensure numerical convergence regardless of list length. RBO values range from 0.0 (disjoint
lists) to 1.0 (identical lists).

To assess the utility of historical clinical item associations towards predicting future
practices, we performed a variation of our prior experiments to predict hospital admission
orders.2* Specifically, using association matrices trained on data from 2009, 2012, or 2009
through 2012, we used the first four hours of clinical items from every future patient admitted
to the hospital in 2013 to query for a ranked list of associated clinical orders. We compared
these generated order lists against the actual next 24 hours of subsequent clinical orders (that
did not already occur within the query time) by area under the receiver operating characteristic
(ROC-AUCQ), precision (positive predictive value) at 10 items, and inverse frequency weighted
recall?é (sensitivity) at 10 items. Statistical tests (t-tests, Pearson’s correlation) were calculated
with the SciPy Python package.3*

4. Results

Table 1 reports patient demographics and the flux of new and departing ordering providers in the clinical
data over the years studied. Table 2a,b,c illustrate examples of the top associated clinical orders for
different admission diagnoses based on 2009 vs. 2012 data, with corresponding calculations of ranked
item overlap that define the Rank Biased Overlap (RBO) score for each pair of lists. Figure 1 depicts the
Rank Biased Overlap (RBO) between 2009 vs. 2012 for each of the most common admission diagnoses.
Figure 2 depicts the correlation between diagnosis stability (RBO) and accuracy towards predicting
future order patterns (weighted recall). Table 3 reports the overall average accuracy metrics for
predicting future (2013) clinical order patterns based on association matrices trained on different
subsets of historical data (2009, 2012, or 2009 through 2012).
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Table 1 - Patient demographics and provider flux over the evaluation period. New providers reflect those
authorizing clinical orders during a given year, but not in the prior year. Similarly, departing providers
reflect those from a given year, that are not found in the subsequent year.
Patients 13,493 18,459 19,070 19,327 19,523
Age (mean) 58.4 58.1 58.6 58.5 58.6
Age (std dev) 18.5 18.8 18.7 18.7 18.6
Female 52% 52% 52% 51% 51%
White 60% 63% 62% 60% 58%
Hispanic/Latino 12% 13% 13% 13% 14%
Asian 11% 11% 11% 12% 12%
Black 5% 5% 5% 5% 5%
Providers 1,709 1,892 1917 1,798 1,821
New Providers 41% 33% 29% 34%
Departing Providers REL 32% 33% 33%

Table 2a - Top associated clinical orders for admission diagnosis of “Encounter for Chemotherapy” (ICD9:
V58.11) based on 2009 and 2012 data, score-ranked by Fisher’s P-value. At each rank k, the intersection
of the top k items from each list (/) defines the “Overlap at Rank Depth” (Xi). The ratio of overlap to rank
yields a “Fractional Overlap” agreement (Ax). For the full list of 1,270 candidate clinical orders, averaging
the Fractional Overlap column with a geometric weighting scheme emphasizes the importance of the top
items and ensures numerical convergence. The Rank Biased Overlap (RBO) score uses a weight for each
Ax term, wy = (1-p)*p*1, where p represents a “persistence” parameter reflecting the probability that the
observer of k items is willing to continue to inspect the k+1 items. RBO = 0.67 for this diagnosis,
indicating relatively stable rankings compared to other diagnoses. This reflects standardized practices
that have not significantly changed, including chemotherapeutic agents (cyclophosphamide, rituximab)
and anticipatory co-medications for side effects (filgrastim for neutropenia; ondansetron,
dexamethasone, aprepitant, and diphenhydramine for nausea).

Overlap at Fractional

2009 Top Items Rank Depth Rank Overlap 2012 Top Items
Cyclophosphamide (IV) 0 1 0.00 Ondansetron + Dexamethasone (IV)
Ondansetron + Dexamethasone (IV) 1 2 0.50 Aprepitant (Oral)
BMT Panel 1 1 3 0.33 Filgrastim (Subcutaneous)
Ondansetron (Oral) 2 4 0.50 Cyclophosphamide (IV)
BMT Panel 2 3 5 0.60 Ondansetron (Oral)
Rituximab (IV) 3 6 0.50 Dexamethasone (Oral)
Dexamethasone (Oral) 4 7 0.57 Diphenhydramine (Intravenous)
Aprepitant (Oral) 6 8 0.75 Rituximab (IV)
Filgrastim (Subcutaneous) 7 9 0.78 D5NS KCl NaAcetate Furosemide (IV)
Diphenhydramine (Intravenous) 8 10 0.80 D5NS KCl NaAcetate (IV)

199



Pacific Symposium on Biocomputing 2016

Table 2b - Top associated clinical orders for admission diagnosis of “Pneumonia” (ICD9: 486) based on
2009 and 2012 data, score-ranked by Fisher’s P-value. Rank Biased Overlap (RBO) = 0.35 between the
two lists, indicating a substantial shift in the item rankings between the two lists. A dynamic change in
practice patterns is evident in response to external, epidemiologic factors as 2009 saw much more testing
(Respiratory DFA Panel, Influenza A PCR) and empiric treatment (Respiratory Isolation, Oseltamavir) for
the HIN1 swine flu pandemic.353¢ The viral pandemic dissipated by 2012, with the most prominent
orders shifting towards empiric treatment for community acquired pneumonia3’ (azithromycin,
ceftriaxone, levofloxacin) and antibiotic resistant organisms causing health care associated pneumonia38
vancomycin, piperacillin-tazobactam).

Overlap at Fractional
2009 Top Items Rank Depth Rank Overlap 2012 Top Items
Levofloxacin (IV) 0 1 0.00 Azithromycin (IV)
Blood Culture (2x Aerobic) 1 2 0.50 Levofloxacin (IV)
Blood Culture ((An)Aerobic) 1 3 0.33 Vancomycin (IV)
Respiratory DFA Panel 1 4 0.25 Piperacillin-Tazobactam (IV)
Respiratory Isolation 1 5 0.20 Ceftriaxone (IV)
Oseltamivir (Oral) 1 6 0.17 Azithromycin (Oral)
Vancomycin (IV) 2 7 0.29 Albuterol-Ipratropium (Inhalation)
Respiratory Culture 2 8 0.25 Sodium Chloride (Inhalation)
Albuterol-Ipratropium (Inhalation) 4 9 0.44 Blood Culture (2x Aerobic)
CBC w/ Diff 5 10 0.50 Blood Culture ((An)Aerobic)
Influenza A PCR 5 11 0.45 Ipratropium (Inhalation)

Table 2c - Top associated clinical orders for admission diagnosis of “Joint Pain” (ICD9: 719.4) based on
2009 and 2012 data, score-ranked by Fisher’s P-value. Rank Biased Overlap (RBO) = 0.29 between the
two lists, indicating a substantial shift in the item rankings between the two lists. Prominent orders in
2009 reflect diagnostic workup of arthritis (including fluid cell count and culture) while 2012 reveals
more prominent symptomatic treatment with intravenous opioids (hydromorphone) that concomitantly
require laxatives (sennosides, polyethylene glycol, magnesium citrate) to manage the predictable
constipating side effects of opioids. The 2012 prominence of “Consult Orthopedics” suggests a shift in

primary treatment teams from surgical to medical services since 2009.
Overlap at Fractional
2009 Top Items Rank Depth Rank Overlap 2012 Top Items

Overhead Bed Frame & Trapeze 0 1 0.00 Sennosides (Oral)
XR Pelvis 1V 0 2 0.00 Polyethylene Glycol (Oral)
Prothrombin TIME (PT/INR) 1 3 0.33 XR Pelvis 1V
CBC w/ Diff 1 4 0.25 Consult Orthopedics
Metabolic Panel, Basic 2 5 0.40 Overhead Bed Frame & Trapeze
XR Femur RT 2 6 0.33 Magnesium Citrate (Oral)
XR Shoulder 1V RT 2 7 0.29 Enoxaparin (Subcutaneous)
Cell Count, Synovial Fluid 2 8 0.25 XR Hip 2V LT
Fluid Culture and Gram Stain 2 9 0.22 Hydromorphone (Intravenous)
Bupivacaine (Nerve Block) 2 10 0.20 XR Femur LT
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Rank Biased Overlap of Related Orders per Admit Diagnosis

(2009 vs. 2012)
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Table 3 - Accuracy measures for predicting 2013 admission orders when using training data from
different subsets of prior years. For ~15K patients with ~26K hospital admissions in 2013, data from the
first four hours for each admission was used to query an association matrix trained on prior year(s) data
for a list of clinical orders. The list of generated orders is score-ranked by PPV (positive predictive value
~ post-test probability) to identify orders likely to occur or by P-value to prioritize orders
disproportionately associated with the query items. Generated order lists were compared against the
subsequent 24 hours of clinical orders that actually occurred in each 2013 admission. Full list ranking is
evaluated by the area under the receiver operating characteristic curve (ROC-AUC), while precision at ten
evaluates only the top ten items. Inverse frequency weighted recall identifies methods most effective at
retrieving less common, but specifically relevant orders.26 Compared against the 2013 results, all bolded
average results differed with P<10-> by two-tailed paired ¢t-tests.

Average Weighted
Training Training Average ROC-AUC Average Precision at Ten Recall at Ten
Data Year(s) Patients PPV Associations PPV Associations P-value Associations

2009 10,727 0.888 29.8% 2.4%

2012 12,503 0.922 36.8% 13.4%
2011-2012 21,901 0.921 36.1% 12.9%
2009-2012 34,812 0.919 35.4% 12.2%

2013 11,278 0.924 38.0% 16.5%

5. Discussion

These results support the general supposition that clinical practices dynamically change over time
(Figure 1). Elective admissions for planned procedures like chemotherapy and surgeries appear to exhibit
relatively less variability over time with higher RBOs. This could of course be disrupted if future practices
shifted in response to newly discovered different chemotherapy or surgical regimens, though the
identified associations could still be reasonably used to suggest co-medications that are not enforced
through a strict protocol. Diagnoses subject to epidemiologic shifts (i.e., pneumonia) and medical
admissions for non-specific symptoms (e.g., joint pain, malaise) may trigger variable approaches to
workup, represented by their lower RBOs. This method provides a quantitative assessment of clinical
practice areas with the most dynamic changes, with respective implications on the reproducibility and
reliability of predicting future clinical practice patterns based on historical data. It also has implications
for ongoing debates on the appropriate interval for continuing medical education and maintenance of
certification for individual clinicians.3?40 For example, it could be used to identify areas where frequent
education is required to adapt to rapidly shifting standards of practice vs. areas with years of stable
practices that diminish the value of repetitious education maintenance.
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Table 3 Table 3 reports the accuracy of models trained on different subsets towards predicting
future practices by multiple measures. The area under the ROC curve (ROC-AUC) assesses
discrimination accuracy for the full ranked list of candidate orders. Precision at ten items pays
particular attention to the top items that a human user could realistically be expected to review.
Weighted recall highlights retrieval of more “interesting” and specifically relevant suggestions
over common, but potentially mundane, suggestions.26 As might be expected, clinical order
recommenders trained on more recent (2012) data are more accurate at predicting future
(2013) practices than older (2009) data by all measures. The more compelling question
answered is whether training on a larger longitudinal dataset (2009-2012) yields better results
than just using the most recent data (2012). In this case, the extended data set is no better to
slightly worse than just using the most recent data. While larger datasets are generally
expected to improve the power of statistical learning methods, the correlation with RBO in
Figure 2 suggests the changing clinical practice patterns over time makes older data less
relevant when predicting future events.

This study focuses on the relevance of learned clinical order patterns towards predicting
future events, but provides no assurance that common or strongly associated behaviors actually
reflect “good” decisions. Short of randomized trials, we are evaluating our order associations
against the external standards-of-care established in clinical practice guidelines.*3 With the
results of this study however, it is not surprising that practice guidelines themselves must
undergo regular revision, resulting in an ambiguous and moving target of clinical decision
making quality that defies the existence of a fixed gold standard for clinical decision support.

A potential limitation in our evaluation of clinical practice pattern stability is the
presumption that changing patterns reflect changes in clinical decision making at the
management and treatment level. The nature of the EHR data source likely results in changing
order patterns due to non-clinical data changes, such as shifts in diagnosis coding practices from
pneumonia to sepsis.*! Administrative infrastructure changes are expected to occur despite
having little semantic difference for clinical decision making, such as the hospital orders for
Respiratory Virus DFA (direct fluorescent antibody) panels being replaced with Respiratory
Virus PCR (polymerase chain reaction) panels. Related work we are undertaking on
probabilistic topic models of clinical data could provide opportunities to detect and resolve such
“semantic” differences by noting that both such respiratory virus tests are related to
“respiratory infection” scenarios, even though the two are never found together for a single
patient. There may also be a substantial shift in patient characteristics insufficiently captured by
admission diagnosis stratification, such as patient admissions for “joint pain” that might
represent anything from elective orthopedic surgery admissions, workup for suspected septic
arthritis, to pain management for a rheumatoid arthritis flare. Using more robust cohort
identification methods than admission ICD9 codes, such as through natural language processing
of clinical notes or SNOMED-CT codes could help normalize such factors. Individual patients
could be hospitalized multiple times within each evaluation period, which could bias the
association statistics without clustering statistics to mitigate internally correlated data. With all
data deriving from a single medical center, significant cultural shifts in practice patterns could
also be unduly influenced by the large flux of providers noted in Table 1 or even a small number
of prominent clinicians.

Even if learned clinical practice patterns change for “non-clinical” reasons above, the
overarching caution of depending on historical data to predict future clinical events remains
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relevant. The evolving clinical patterns reinforce the challenge of manually producing clinical
decision support and knowledge guides for order entry, as they must be followed by ongoing
manual effort to maintain them against new clinical evidence and standards that may
substantially shift within just a few years. Automated algorithms to learn clinical decision
support are thus even more important to not only cover the breadth of medical knowledge
efficiently, but to automatically adapt to continuous streams of new information. While
historical data will not predict the advent of new therapeutics or diseases, incorporating a
continuous stream of data could allow automated methods to rapidly detect and adapt to
shifting practice changes and alert authors to dynamic areas in need of additional decision
support, just as Google Flu Trends can detect local flu activity more rapidly than conventional
methods.#2 The results above inform such an approach, indicating that using the most recent
data may be more important than simply accumulating a massive repository of historical data
whose interpretation does not even remain internally consistent. Future opportunities could
explore weighted or online learning algorithms that emphasize the relevance of recent data
without completely ignoring the older data that may still capture useful information.

6. Conclusions

Clinical practice patterns for hospital admission diagnoses (automatically) learned from
historical EHR data can vary substantially across years, particularly for non-specific symptom-
based diagnoses and those influenced by external epidemiology (e.g., pneumonia). Elective
admissions for planned procedures (e.g., chemotherapy, surgery) demonstrate more stable
practice patterns over time. If the goal is predicting relevant future practices, using more recent
training data is more accurate than using older data, likely due to secular trends in changing
practice. Consequently, using a larger longitudinal data set from many years may be no better,
and possibly worse, than using a smaller but more recent data set. Decision support and
predictive analytic models should take these patterns into account.
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When seeking to reproduce results derived from whole-exome or genome sequencing data that could advance
precision medicine, the time and expense required to produce a patient cohort make data repurposing an attractive
option. The first step in repurposing is setting some quality baseline for the data so that conclusions are not
spurious. This is difficult because there can be variations in quality from center to center, clinic to clinic and even
patient to patient. Here, we assessed the quality of the whole-exome germline mutations of TCGA cancer patients
using patterns of nucleotide substitution and negative selection against impactful mutations. We estimated the
fraction of false positive variant calls for each exome with respect to two gold standard germline exomes, and
found large variability in the quality of SNV calls between samples, cancer subtypes, and institutions. We then
demonstrated how variant features, such as the average base quality for reads supporting an allele, can be used to
identify sample-specific filtering parameters to optimize the removal of false positive calls. We concluded that
while these germlines have many potential applications to precision medicine, users should assess the quality of
the available exome data prior to use and perform additional filtering steps.

1. Introduction

Although the costs of whole-exome sequencing continue to decrease [1], the resources needed to
identify, enroll, and sequence an entire cohort of interest will remain significant for the foreseeable
future. This process is especially cumbersome when investigating rare phenotypes, including certain
cancers and tumor subtypes. A more convenient alternative path is to identify and then repurpose
publicly accessible datasets in order to test new hypotheses or to reproduce findings of studies
performed on independent cohorts. Federal policies explicitly promote data sharing and repurposing,
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by supporting public repositories like the database of Genotypes and Phenotype (dbGaP) and the
Sequence Read Archive (SRA) [2,3]. The challenge, however, is that diverse datasets each developed
with different goals in mind will often have unique features that require special care before they can
be pooled together for repurposing. Clearly, the quality of exome variant calls varies by platform and
depth of the sequencing [4,5] and also depends on the stringency of downstream pipelines for SNV
identification and variant filtering [6]. Currently most whole-exome quality assessment tools focus on
evaluating the quality of the raw input data [7,8] rather than on the output calls; moreover, approaches
that do assess the output generally limit themselves to comparing calls to 1000 Genomes or dbSNP
variants [9,10] without providing recommendations for filtering or even clear conclusions on whether
the data is acceptable for use. Yet if a dataset is repurposed inappropriately, systematic biases and
variability in noise levels may slant results, lower reproducibility, yield artifacts, or prevent
confirmation of prior findings [11]. This presents a major problem for precision medicine in
particular, since targeting a falsely called variant may result in ineffective treatment.

In order to probe the impact that dataset and variant filtering choices can have on the quality of
repurposed data, we assessed in detail germline exomes from The Cancer Genome Atlas (TCGA)
[12]. TCGA currently gathers diverse information from more than 11,000 patient samples across 34
cancer types. Final germline variant calls for some cancer types are available through the TCGA Data
Portal, with additional lower level sequence data also available from the CGHub repository
(https://cghub.ucsc.edu/). However, the primary goal of sequencing cancer patient germline samples
was to provide the background information that will enable the recognition of somatic variants unique
to the tumor. Secondary use of these germline exomes to further precision medicine has thus far been
uncommon but shows the promise of using these germlines to predict response to treatment within a
cancer cohort, detect genetic differences in individuals who develop cancer, and identify germline
contributions to the process of tumorigenesis [13,14,15].

Here, we evaluated the quality of TCGA germline single nucleotide variation (SNV) calls in a
given exome by testing whether two features of their collected variant calls followed the known
biology of substitution and purifying selection or whether these features were lost and suggested that
the variant calls were of non-biological origin.

The first feature, called Ti/Tv, has been previously described and is based on the biology of
spontaneous base substitutions. In the germline, these are more often transitions (from purine to
purine, or from pyrimidine to pyrimidine) than transversions (from purine to pyrimidine or pyrimidine
to purine) so the Ti/Tv ratio is normally >3 across an exome, whereas for random base changes as one
might produce computationally Ti/Tv is equal to 0.5 [10]; this difference can then serve as a proxy for
germline variant call quality [10,16,17].

The second and novel feature, called A, is based on the biology of purifying selection of germline
mutations. Fisher’s geometric model [18] predicted in 1930 that the distribution of fitness effect of
germline mutations would follow a decaying exponential. For the first time, a recent study of the
Evolutionary Action (EA) of human polymorphisms [19] provides a measure for the fitness effect of
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mutations and hence for selection constant A decay constant of their distribution, and this selection
constant is much larger for biological germline mutations than for random mutations.

Therefore, we hypothesized that Ti/Tv and A related to the substitution and selection processes,
respectively, should be complementary measures of variant call quality. Our findings support this
view and also emphasize the importance of using multiple, orthogonal quality measures. Using these
measures we estimate the fraction of false positive variant calls in TCGA exomes and reveal
substantial variability in quality by sample, cancer subtype, and sequencing source. The methods
described in this study provide an easy way to assess the quality of germline exome data and suggest,
for the first time to our knowledge, the importance and feasibility of sample-specific filtering
parameters.

2. Methods

2.1. Exome data acquisition

Gold standard germline exome variant callsets were obtained from
http://www.illumina.com/platinumgenomes/ [20]. The NAI12877 and NAI12878, v7 (released
December 2014) merged callsets were downloaded, and only ‘platinum’ calls limited to those with a
‘PASS’ designation in the filter field were considered confident calls in subsequent analysis. 1000
Genomes Project [21] Phase 3 exomes were downloaded from http://www.1000genomes.org/ on
5/11/15. All cancer germline exomes available on 10/23/14 were downloaded from TCGA [12] and
separated by cancer type and institution.

2.2. Quality Assessment

The Ti/Tv ratios were calculated for each exome variant callset by counting all coding purine to
purine and pyrimidine to pyrimidine (transition) SNV mutations, and dividing this value by the
number of purine to pyrimidine and pyrimidine to purine (transversion) SNV mutations.

To measure the selection decay A of variant callsets, the corresponding vcf files were annotated
with ANNOVAR [22] and the Evolutionary Action (EA) was computed to measure the fitness effect
of all missense mutations. Histograms of the distribution of EA scores, binned by deciles, were fitted
to an exponential curve (Eq. 1) using a least-squares-fit to estimate A. In Eq. 1 the ‘x’ values represent
Evolutionary Action, ‘y’ represents proportion of mutations, and A and A are constants.

In(y) = In(4) — Ax (1)

2.3. Simulated Variant Callsets

Both Ti/Tv and A were calculated for 100 datasets with different fractions of computer-generated
false positive variant calls. The fraction varied from 0 to I, in increments of 0.01. Each dataset
consisted of 1000 simulated exome files, each of which contained a total of 10000 missense
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mutations. The mutations were drawn either from the ‘true positive’ pool of variants from gold
standards NA12877 and NA12878, or randomly from the ‘false positive’ pool of all possible human
SNVs in order to create the proper ratio. The average and standard deviations of A and Ti/Tv for each
fraction of false positives were calculated, and their correlations with percent noise fitted with
exponential.

2.4. Application of A to TCGA cohorts

For each of 21 cancer types, all germline datasets were separated by institutional source, curation, and
sequencing platform. When multiple variant callsets were available for a given cancer type, files
marked ‘curated’ were chosen over those which were not marked curated. If multiple curated sets
were available, A values were calculated for each and the set with the highest average A was chosen. If
no curation was noted on any of the files, A values were calculated for all available sets and the set
with the highest average A was chosen. For each sample, the predicted percentage of false positive
calls was then calculated from Eq. 2.

3. Results

3.1. Calculating quality measures for ‘gold standard’ germline exomes

First, we calculated the quality

scores Ti/Tv and A (Figure 1) for

gold standard germline exome calls:

[llumina Platinum v7.0 variant calls

for samples NA12877 and NA12878

[9]. These samples were sequenced

to 200x depth on a HiSeq 2000

system, and 15 other members of

their pedigree were sequenced to

50x depth on the same system.

Variant calls deemed ‘platinum’

take into account inheritance

constraints in the pedigree as well as

concordance of variant calls across

multiple  aligners and callers

Fig. 1. Illustration depicting the steps taken to calculate A and Ti/Tv [24,25,26,27,16]. As described in
parameters from exome data. Methods, the transition to
transversion ratio (Ti/Tv) detects a

biological bias in the types of mutations that occur in the call set, while the A shows the purifying
pressure against coding mutations as a function of their Evolutionary Action (EA) [19]. For the
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platinum whole-exome calls for NA12877 and NA12878, we found the Ti/Tv ratios to be 3.046 and
3.036 for whole-exome variant calls and 1.97 and 1.96 for missense variant calls respectively, while A
was 0.0379 and 0.0380 respectively. These values were also reasonably consistent with exome data
from The 1000 Genomes Project [21] and were independent of ethnic background; the average A is
0.0379+0.0008 and the average Ti/Tv is 3.11+0.05 for whole-exome variants and 2.06+0.04 for
missense variants. These data show a gold standard ‘target’ for these quality parameters that were
used to assess other datasets.

3.2. Quality measures A and Ti/Tv decrease in a predictable fashion as false positives are added to a
variant call set

We next calculated the A and Ti/Tv for SNV sets with varying fractions of false positive calls. Using
the Illumina Platinum calls as a pool of true positives (TP) and all possible human SNV's generated by
random nucleotide changes as a pool of false positives (FP), 1000 simulations of 10000 missense
mutations were produced for each of 100 TP:FP ratios. As the fraction of the variant calls composed
of random noise increases, both A and Ti/Tv decrease in an exponential fashion (R* > 0.99) such that

1= 0_0389—0.013*percentFP (2)
(Figure 2A). In addition, the two quality measurements were strongly correlated with one another
(Pearson R = 0.9993, p < 0.0001) (Figure 2B). Use of this simulated data enables us to estimate, for a
set of real exome variant calls, the degree of contamination by false positives in the sample.

Fig. 2. Simulated noise in exome SNV calls. (a) Effect of increased noise on A and Ti/Tv values. Shaded regions indicate

the standard deviation around the mean. (b) Correlation between A and Ti/TV.
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3.3. TCGA germline datasets vary in the amount of noise they contain

Next, we estimated the fraction of false positive variant calls in whole-exome germline data from
TCGA and assessed whether the fraction is consistent within each cancer subtype. Germline variants
were available through TCGA for 21 cancer types, where they were organized by sequencing

Fig. 3. Application of A to TCGA cohorts. (a) Predicted noise across 21 TCGA cancer types. The data are represented in a
box-and-whiskers plot that uses the center line to indicate median, the box to indicate quartiles, and the whiskers to
indicate range. Cancer types are ordered by median. (b) Exponential relationship between A and number of missense
SNVs in Lung Adenocarcinoma. Associated open-access clinical data provided by TCGA was used to separate patients
by their self-identified race. The average lambda/number of missense mutations for the 1000 Genomes Project Caucasian
(CEU) and African-American (ASW) cohorts are noted with a blue and red star, respectively.

institution, sequencing platform, and curation level. Some tumors were sequenced by multiple
institutes, though the extent of this overlap depended on the cancer type. We focused on data marked
‘curated’, rather than those marked ‘automated’, and when there were still multiple versions we chose
the (presumably best) dataset with the largest A (see Methods). The predicted percent of false positive
calls for each exome was calculated based on Eq. 2, and the distribution for each cancer type is shown
in Figure 3A. At the extremes, pheochromocytoma and paraganglioma (PCPG) exomes were
predicted to uniformly contain less than 5% false calls, while most cervical cancer (CESC) exomes
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were predicted to contain more than 35% false calls. The datasets also differed greatly in variance,
with rectal adenocarcinoma (READ) exomes having less than 10%, and lung adenocarcinoma
(LUAD) having more than 60% variances. These results do not necessarily reflect intrinsic
differences between cancer types. Large numbers of variant calls in an exome corresponded to lower
A scores and indicated an excess of false positives, as shown for LUAD in Figure 3B. However, using
the number of mutations as a proxy for the false positive rate may be misleading when the cohort
consists of individuals with diverse ethnic backgrounds; for example, exomes from patients of
African ancestry consistently had more variants when compared to other exomes with the same A
values (Figure 3B), in agreement with data from the 1000 Genomes Project. The estimated number of
‘true’ missense SNV calls was consistent between samples of the same ethnic background and fit the
numbers of missense mutations seen in the 1000 Genomes cohorts. These data show the marked
heterogeneity of false variant call rates in TCGA germline exomes and highlight the hazards of using
these datasets as-is.

3.4. Data quality is not consistent across calling centers

In order to test reproducibility of data across sequencing centers, we focused our analysis on the
chromophobe renal cell carcinoma (KICH) dataset, which consisted of SNV germline calls from three
separate institutions for the same patients. For each sequencing center, we calculated the average
Ti/Tv ratio as well as the A selection decay constant for the germline variants of each exome, as
shown in Figure 4A. The center with the highest average Ti/Tv ratio also had the highest A, which
corresponded to an average of ~5% false positive calls per sample. For the second center, both the
Ti/Tv ratio and A were lower, and A predicted an average of ~12% false positive calls per sample. For
Center 3, although the average Ti/Tv ratio was nearly as good as the other two centers (2.60 compared
to 2.66 and 3.1, respectively), the average A was radically different (0.014 versus 0.032 and 0.036,
respectively) and suggested that on average 76% of the calls in each sample were false positives.
Indeed, the average number of missense SNV calls from this center (31000+5000) was over 3 times
higher than the Illumina platinum exomes defined above as gold standard, which further supported a
false positive rate of at least 70%. The different sensitivity of Ti/Tv and A to lower quality variant
calls in this case may be due may be due to technical aspects of the calling methods themselves; if the
known biological bias toward transition mutations was built into the calling algorithm used by Center
3 and it was used as a factor in deciding whether to report a variant, even false positive mutations will
have a high Ti/Tv. In this case, A detected noise whereas Ti/Tv was equivocal, stressing the
importance of using multiple quality measures in exome data assessment. For centers 1 and 3,
additional internal filters separated the reported calls into those that ‘pass’ and those that do not.
Restricting our analysis only to passing calls improved quality but was not sufficient to eliminate
either the detected noise or the center-specific differences. These data show that the germline variant
calls of TCGA patients made by different sequencing platforms and calling pipelines are sometimes
very different and require careful examination by multiple, orthogonal quality measures.
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Fig. 4. KICH SNV calls for three centers (a) A and Ti/Tv of calls. For each patient assessed by each center, A and Ti/Tv
were calculated and the average and standard deviations of these values are displayed by institution. For centers 1 and 3,
internal ‘pass’ filters were available and are displayed as well. (b) Predicted percentage of true calls for calls agreed upon
by 1, 2, or 3 institutions. For 65 KICH patients assessed by all three centers, all calls regardless of internal filtering were
separated by the institution(s) that identified them. The average number of missense mutations per patient, as well as the
predicted percentage of true positive calls derived from the A value of the call set, is shown for each possible combination
of sites.

A common practice to address such inconsistency in reproducibility is either to merge the
available data or to use their intersection. In the first case, combining the calls from all centers would
add substantial noise from Center 3. Using the intersection of all three centers, on the other hand,
would result in high quality but roughly two thousand true positive calls per exome would be left out.
Restricting to calls made by at least two of the centers may seem like a reasonable middle ground, but
even this may not be the optimum solution. Figure 4B shows that calls made by Center 1 alone were
still predicted to be of higher quality than calls agreed upon by Centers 2 and 3. These data
demonstrate the caveats of ‘common sense’ filtering and highlight the importance of examining data
quality carefully before integrating information from multiple sources.

3.5. Appropriate filtering parameters for SNV calls are sample-dependent

Having used A to detect and quantify the presence of noise within these datasets, we next explored
whether A can be used for filtering false positive SNV calls. For illustration, we used exome data from
two head and neck squamous cell carcinoma (HNSC) cancer patients. Each SNV in these data was
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associated with an average base quality for reads supporting alleles (BQ value) and a Phred-scaled
quality score (QUAL value), amongst other features. For each patient, missense mutations were
partitioned by BQ value and QUAL value in turn and each bin was assessed for A. We found that A
depended on the BQ score with a sigmoidal relationship (R? > 0.9), which indicated that below a BQ
cutoff the SNV calls became random (Figure 5A). Strikingly, this cutoff is specific to each exome,
even those sequenced on the same date, by the same center, on the same sequencing platform, and
using the same SNV calling pipeline. For example, SNVs with a BQ of 25 appeared to retain high
quality in one patient but to be comprised entirely of noise in the other (see blue curve in Fig. 5A).
We also found that A depended on the QUAL value of SNVs, such that the fraction of true positive
calls was lower for QUAL values near zero and gradually increased with QUAL value till it reached a
plateau at about QUAL=40 (Figure 5B). For the two exomes of Figure 5b the QUAL value did not
correspond to the same fraction of false positive data, since the two exomes reached different
maximum A values. These sample-dependent differences suggested that BQ and QUAL values should
only be interpreted as relative measures within the context of a given exome, and that filtering
parameters should be customized for each exome using A in order to achieve optimal separation of
true and false positive calls.

Fig. 5. Relationship between SNV features and A for two HNSC patients. (a) Relationship between BQ and A. For each
patient, all missense SN'Vs were partitioned by BQ value such that every bin contained at least 50 calls; points represent
the A and average BQ of the bin. Solid lines represent sigmoidal fits. (b) Relationship between QUAL and A. For each
patient, all missense SNVs were partitioned by QUAL value such that every bin contained at least 50 calls; points
represent the A and average QUAL of the bin. Solid line represents fit to equation y = Ae™** + b. For display
purposes values of QUAL higher than 200 were not shown.
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4. Discussion

Assessing the quality of genetic variant calls has great practical importance to precision medicine,
since various sequencing platforms, coverage depths, and bioinformatics pipelines to call variants
result in the inclusion of an unknown number of false positive calls. This becomes a major concern
when naive users access and repurpose publically available exome data assuming all reported calls are
reliable. Here, we call attention to the hazards of this assumption by applying two measures of exome
data quality, the transitions-to-transversions ratio and the purifying selection pressure (A) of variant
calls, to publically accessible data. As a test system we used germline exomes of 21 cancer types
available through TCGA, which were generated with the primary purpose of being a reference for
calling somatic mutations. We found considerable variation in data quality between and within cancer
types, such that repurposing these data as-is may mislead scientists to conclude a lack of
reproducibility and unsuccessful validation of previous findings, which would hinder the progress of
precision medicine as a field.

As a gold standard of true germline variants we used the Illumina Platinum samples, NA12877
and NA 12878, which are the current state-of-the-art high-confidence variant calls. However, this gold
standard may still include some false calls, and future developments may allow for even more
accurate sequencing and variant calling. These estimates, however, have great practical importance in
comparing the calling confidence of two or more exomes. Indeed, the large differences in the average
fraction of false positive calls between TCGA germline exomes of different cancer types, as well as
the surprising variability within a cancer cohort, underscore the need to examine all data carefully
before reuse in order to improve the reproducibility of results.

When we compared the germline variants called from three different sequencing centers for the
same patients, we found a considerable lack in reproducibility between centers. However, classifying
variant calls by their concordance across centers was revealing. Variants called by all three centers
were assessed to contain only about 3% of false positive calls; in contrast, variants called by just one
of the three centers had deviant A values that matched the simulated introduction of up to 100%, 87%
and 37% false positives. For each given center, unique variant calls were predicted to contain more
false positives than those also called by at least one of the other centers; still, we found that depending
on the relative data quality between centers even the unique variants of a single center may contain
less noise than variants agreed upon by the other two centers. This calls into question the common
practices of merging data or using the overlap of calls from different centers, which may include
many false positive calls or exclude true positive calls, respectively. While it was useful to exclude
variants that were not annotated with “PASS” in vcf files, this filter was not able remove all or even
most false positive calls. Thus, the use of A selection pressure analysis presents a rational, quantitative
approach to determining which data should be used in association studies.

Features of the SNVs, such as quality scores, can also be used to filter out false positive calls. This
basic principle is already established in post-processing variant calls, but many users apply ‘hard
filters’ to all samples and express uncertainty regarding the appropriate filters to use. Using arbitrary
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cutoffs for all TCGA exomes without considering quality assessment will cause some samples to
retain substantial numbers of false calls and others to lose many true calls. Our results suggested that
BQ value produced the most effective separation between predicted true and false positives, and that
the appropriate BQ value cutoff was different for each exome, even when the data were produced by
identical procedures. This analysis allows users to leverage the relationship between A and BQ in
order to choose for each exome the optimum cutoff, allowing them to repurpose these datasets with
confidence and improve the reproducibility of their results.

Assessing the quality of germline variant calls is a pressing issue both to improve their intended
use as well as to facilitate their repurposing for secondary goals, and since an increasing amount of
exome data is being deposited in public databases. Here, we show that elementary evolutionary
considerations provide a general and simple approach to detect random sequencing errors. Whereas
high quality data contain variant calls that follow an invariant and known distribution of Evolutionary
Action, false positive variant calls recognizably distort this Action distribution. Remarkably, this
distortion can classify sequenced genomes by quality and also separate variant calls by quality within
single exomes on a case-by-case basis. This work reveals wide quality disparities in sequencing data
but also demonstrates how this can be overcome through the use of the Evolutionary Action concept.
In the future it should therefore be possible to apply, pool and repurpose public genome sequencing
data with full confidence in their quality leading to better correlations with clinical phenotypes and
enhancing reproducibility in precision medicine.
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Precision medicine requires precise evidence-based practice and precise definition of the patients included in clinical
studies for evidence generalization. Clinical research exclusion criteria define confounder patient characteristics for
exclusion from a study. However, unnecessary exclusion criteria can weaken patient representativeness of study designs
and generalizability of study results. This paper presents a method for identifying questionable exclusion criteria for 38
mental disorders. We extracted common eligibility features (CEFs) from all trials on these disorders from
ClinicalTrials.gov. Network Analysis showed scale-free property of the CEF network, indicating uneven usage
frequencies among CEFs. By comparing these CEFs’ term frequencies in clinical trials’ exclusion criteria and in the
PubMed Medical Encyclopedia for matching conditions, we identified unjustified potential overuse of exclusion CEFs in
mental disorder trials. Then we discussed the limitations in current exclusion criteria designs and made recommendations
for achieving more patient-centered exclusion criteria definitions.

" This study was funded by National Library of Medicine grant ROILMO009886 (Bridging the semantic gap between
clinical research eligibility criteria and clinical data).
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1. Introduction

Randomized controlled trials (RCT) produce high-quality evidence but often lack patient
representativeness of the real-world population. Clinical research eligibility criteria define the
characteristics of a research volunteer for study inclusion or exclusion. Typically, exclusion reasons
relate to age, gender, ethnicity, complex comorbidities, conflicting interventions, or patient
preference’. Although exclusion criteria do not bias the comparison between intervention and control
groups, which reflects a trial’s internal validity, exclusion criteria can impair the external validity of a
trial>®. It has been shown in various disease domains that clinical trial participants are often not
representative of the real-world patient population to which an RCT is intended to apply, and that the
lack of patient representativeness has impaired the generalizability of clinical trials™*.

Thus, it is imperative to develop methods for justifying the exclusion criteria in clinical trials.
However, this task is fraught with challenges. First, many eligibility criteria are vague and complex'
and cannot be easily represented in a computable format that allows for automated screening of
unjustifiable exclusion criteria’. Second, clinical researchers often do not have a sufficiently precise
picture of the real-world patient population to make informed decisions about exclusion criteria.
Although the wide adoption of Electronic Health Record (EHR) make this idea more promising than
ever®, aggregating EHR data to profile the real-world patient population is a nontrivial exercise, due
to common data fragmentation and data quality problems'’. Therefore, it is worthwhile to explore
alternatives to the EHR-based data-driven approach, especially through combining different data
sources in order to increase patient representativeness of clinical trial eligibility criteria. This paper
presents the feasibility of such a knowledge-based approach, using PubMed Health Medical
Encyclopedia knowledge. PubMed Health Medical Encyclopedia (hereinafter, PubMed Encyclopedia)
is a service created by the National Center for Biotechnology Information (NCBI), and made
accessible by the U.S. National Library of Medicine (NLM), to provide summaries of diseases and
conditions''. Such a meta-analysis with automatic data-mining methods across different data sources
provides us new insights into clinical trial design and can inform precise evidence-based practice.

2. Methods

We chose mental disorder clinical trials for a proof of principle but the method should generalize
to other fields of medicine. We hypothesized that the occurrence of a term in PubMed Encyclopedia
for a symptom, a medication, or a chemical compound could be used to indicate its relevance to the
mental disorder (condition) under consideration. For each term in each mental disorder, we compared
the term frequencies in the exclusion criteria of all the clinical trials on that condition in
ClinicalTrials.gov and the term’s occurrence in PubMed Encyclopedia. On this basis we identified
terms that occur frequently in both exclusion criteria and PubMed. We further hypothesized that a
term with a certain level of frequency of use in PubMed Health Encyclopedia about a mental disorder
should be deemed relevant to that disorder. Thus, its frequent use in excluding patients with this trait
from clinical trials on that disorder could be questionable.
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We built an exclusion criteria network including all mental disorders based on the method from
Boland and Weng et al.’s previous work'>. Using that network, we identified the common exclusion
criteria for mental disorders and assessed their appropriateness of use. We identified clinical trials for
84 mental disorders in the category of “Behaviors and Mental Disorders” in ClinicalTrials.gov. For
each condition, using our published tag-mining algorithm'’, we extracted all common eligibility
features (CEFs) that each occurred in at least 3% of all clinical trials related to each condition in
ClinicalTrials.gov. This method is capable of automatically deriving frequent UMLS tags from
clinical text using part-of-speech (POS) tagger, N-grams model, and UMLS unique concept identifier.
For example, we found the UMLS concept “ethanol”, which belongs to the “organic chemical -
pharmacologic substance” semantic type, occurred in 74.7% of the alcoholism clinical trials while
occurred in only 26.8% of depression trials. For each mental disorder, we were able to generate a list
of UMLS concepts with their frequencies of use in inclusion and exclusion criteria section.

We calculated the frequencies of use aggregated across all mental disorders for inclusion and
exclusion purposes, respectively, for each of these CEFs. We also analyzed the frequency distribution
of these CEFs by their UMLS semantic types. We constructed a two-mode network for all the 84
mental disorders and their top 20 CEFs, based on the disorder-CEF associations. Then we projected
this network to a one-mode network based on CEFs using the Newman (2001) method (tnet)', a
classic method used in detecting communities in networks. The process worked by selecting one set
of nodes (i.e., CEFs), and linking two nodes, if they were connected to the same node in the other set
of nodes (i.e., conditions). For each mental disorder, we analyzed the distribution of the degree of all
the nodes in this network to assess the usage of the CEFs in the mental disorder trials. Since most
CEFs occurred equally in inclusion and exclusion criteria section, we used a mutual information filter
to identify distinctive CEFs, regardless inclusion or exclusion, because Mutual Information is one of
the commonly used quantities that measure independence between variables. We calculated the

Mutual Information (MI) for each CEF. The formula is as follows (1):
P(U=et,C=¢ec)

1(U;C) = Zete{o,l}ZeCE{O,l}P(U = e, C = e;)log; P(U=e)P(C=ey)’ (D

For each mental disorder, U is a random variable indicating the presence (number 1) or absence
(number 0) of a CEF in every eligibility criterion (et) and C is a random variable representing the
inclusion (number 0) or exclusion (number 1) status of the eligibility criterion (ec). We used additive
smoothing to make sure CEF unique to only one section were included in the analysis. Since we
aimed to target the most informative CEFs used as exclusion criteria, we chose the CEFs with positive
MI scores in exclusion criteria as candidates for future comparisons. The cutoff of MI score retained
the CEFs that are more frequently used as exclusion criteria rather than inclusion criteria. We used
these CEFs to represent the common confounder patient characteristics excluded by clinical trials on
each condition.

To generate the PubMed dataset, due to the heterogeneous condition names, we used a semi-
automatic method to match the condition names in PubMed Health with the condition names in
ClinicalTrials.gov. For example, Alzheimer disease in ClinicalTrials.gov was manually matched with
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Alzheimer’s disease in PubMed Health database. A total of 38 mental disorders were matched and
manually validated. We processed the PubMed Encyclopedia’s website content'' for each matched
mental disorder and used the same tag-mining algorithm' to extract all the terms for risk factors,
causes, symptoms, signs, exams and tests, treatment options, and complications, and obtained their
aggregated frequencies across all 38 mental disorders. For each of the 38 identified mental disorders,
we aligned and ranked their CEF terms by their frequencies in ClinicalTrials.gov and their
occurrences in PubMed Health Medical Encyclopedia, respectively, and compared their relative
importance in each content source according to the ranks. Questionable CEFs were identified with
high frequencies of use in both clinical trials and PubMed Encyclopedia. The entire workflow was
shown in Fig. 1(a).

3. Results

3.1. CEF overlap between exclusion and inclusion criteria for mental disorder trials

We extracted 1304 exclusion CEFs and 1155
inclusion CEFs for all of the clinical trials for
mental disorders (Fig. 1 (a)). A total of 1403
unique CEFs were identified, 1056 of which
were present in both inclusion and exclusion
criteria. The large overlap necessitated CEF
selection to identify the most informative
exclusion criteria. The top three frequent
semantic types were disease or syndrome,
pharmacological  substance, and  finding,
respectively (Fig. 1(b)). Table 1 shows the top
10 most frequently used CEFs for Alzheimer’s
disease.

(a)
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Fig 1. (a) Workflow of Identifying Questionable CEF (b) CEF Overlap between Exclusion and Inclusion CEF
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Table 1. The top 10 most used exclusion CEFs for Alzheimer’s diseases trials

Mostly Used Exclusion CEF Frequency UMLS Semantic Type
Mental disorders 29% Mental or behavioral dysfunction
Allergy severity - severe 25% Finding
Ethanol 23% Organic chemical; pharmacologic substance
Depressed mood 23% Finding; mental or behavioral dysfunction
Unstable status 21% Finding
Cerebrovascular accident 21% Disease or syndrome; therapeutic or preventive procedure
Magnetic resonance imaging 20% Diagnostic procedure
Active brand of pseudoephedrine-triprolidine 17% Organic chemical; pharmacologic substance
Pharmaceutical preparations 16% Pharmacologic substance
Substance abuse problem 16% Mental or behavioral dysfunction

3.2. CEF distribution among mental disorders trials

Out of the total 1403 unique CEFs, very few were used in a large number of clinical trials, while
most of other CEFs were unique to one or several disorders (Fig. 2 (a)). On average, a CEF was
present in 7.49 mental disorders for exclusion purposes and 6.28 for inclusion purposes. Each
condition had 125.1 exclusion CEFs and 104.8 inclusion CEFs. Most of the frequently used CEFs
were general factors for mental disorders (such as hypersensitivity or pharmacologic substance).
Some were regularly used in clinical trials on other conditions (such as excluding gravidity, unstable
states and allergy severity - severe). The top five mental disorders with the most exclusion CEFs
were: Restless Legs Syndrome (226), Substance Withdrawal Syndrome (192), Pick Disease of the
Brain (186), Tic Disorders (184) and Front-temporal Dementia (180) (Fig. 2 (b)).

CEF distribution between different mental disorders
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(a) (b)

Fig 2. CEF distribution between mental disorders (a) CEFs are indexed and ranked based on disease count in
exclusion section. (b) Diseases are indexed and ranked based on exclusion CEF count.

3.3. Network construction and analysis for CEFs in mental disorder trials

We built a two-mode network for all mental disorders and CEFs based on the Disease-CEF
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linkages (Fig. 3(a)). In this network, there were two groups of nodes, the diseases and CEFs. The top
20 CEFs for each mental disorder were represented as orange ellipses and mental disorders were
represented by blue round rectangles. The diseases were connected with different sets of CEFs and
could be clustered based on the similarities of those connections. The edges were weighted as the
frequency for a CEF to be associated with a mental disorder. Edges were red (for CEFS used only for
exclusion), or orange (for CEFs used for both inclusion and exclusion), while edges of inclusion CEFs
were green and dark green, respectively. In the network, we identified some hubs with higher degrees
than other nodes, which indicated that a small portion of CEFs was frequently used for patient
selection in most mental disorder trials. For example, diseases like amnesia and bipolar disorder
shared more common CEFs with other mental disorders compared to diseases such as associative
disease and restless legs syndrome, etc. In the network, most of the related disorders were clustered
together using their CEF similarities such as panic disorder and phobic disorder, Tourette syndrome
and Tic disorder. From the network, we also found some of the mental disorders, while not
pathologically related, shared similar CEF sets. We also projected each of the three two-mode
networks (Inclusion, Exclusion and PubMed) into one-mode network based on CEFs. Our analysis
showed that three networks all display features of a scale-free network (Fig. 3(b)), which was similar
to that of many of the real-world giant networks. The attributes of the network are listed in Table 2.

Table 2. Attributes of the One-Mode CEF Network

Data CEF in network Degree One mode degree Closeness Betweenness
Inclusion 1155 7.60 £ 0.82 241.26 £12.00 6.3e-03 + 3.6e-05 1656.99 + 1685.7
Exclusion 1304 8.06+0.84 309.10 + 13.68 4.1e-03 +2.3e-05 1351.62+935.4
PubMed 1128 2.27+0.15 175.48 £8.04 8.6e-03 £ 3.9¢-05 1895.01 = 1407.6

* 95% confidence interval used
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Figure 3. Network Structure (a) and Degree Distribution (b) between Mental Disorders and CEFs (b)
Regression lines are plotted as solid or dashed lines.

3.4. CEF selection using Mutual Information (MI)

Some CEFs were equally used in inclusion and exclusion criteria. Using mutual information, we
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discarded CEFs with equal or higher occurrences in the inclusion section than in the exclusion
criteria. Of a total of 1403 unique CEFs, only 632 had an MI value greater than 0, 568 had an MI
value of 0 and 203 had an MI value below zero. The bigger the MI value is, the more frequently the
CEF is for exclusion uses. To preserve all informative CEFs to match with the PubMed dataset, we
selected all CEFs with a MI scores greater than O for further analysis. The benchmark analysis for
CEFs and their MI distributions are in Fig. 4. Through this selection step, many common but non-
discriminative CEFs were discarded, such as pharmacologic substance, physical assessment findings,
and intravenous infusion procedures. In contrast, discriminative CEFs (e.g., suicidal, unstable status,
psychotic disorders) were retained. However, it should be noted that some discriminative CEFs (such
as pregnancy tests, multiple endocrine neoplasia, etc.) might be missed by this selection step.

Distribution of candicate CEFs with different Ml cutoff
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Figure 4. Mutual Information Score Distribution for CEFs

3.5. Aggregated cross-condition occurrence comparison for retained CEFs

We contrasted the aggregated occurrences of exclusion CEFs (N=1422) across the 38 matched
disorders with partial results displayed in Table 3. For example, ethanol was a CEF present in all 38
mental disorders’ exclusion criteria, implying 100% prevalence, and was present in the PubMed
descriptions for 21 disorders (55.2%).
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Table 3. A contrast of exclusion and PubMed occurrences across 38 mental disorders for top exclusion CEFs

Exclusion CEFs Exclusion PubMed UMLS Semantic Types
Pharmaceutical preparations 38 38 Pharmacologic substance
Ethanol 38 21 Organic chemical; pharmacologic substance
Depressed mood 38 8 Finding; mental or behavioral dysfunction
Psychotic disorders 38 3 Mental or behavioral dysfunction
Hypersensitivity 37 3 Clinical attribute; finding; pathologic function
Hepatic 36 4 Body location or region
Antipsychotic agents 35 9 Pharmacologic substance
Unipolar depression 31 4 Mental or behavioral dysfunction
Anti-depressive agents 30 12 Pharmacologic substance
Screening for cancer 30 6 Diagnostic procedure
Benzodiazepines 30 5 Organic chemical; pharmacologic substance

The average CEF prevalence among the 38 mental disorders in the exclusion criteria and PubMed
were 7.33 and 1.86, respectively, so that CEFs occurred less often in PubMed than in exclusion
criteria. Among the top exclusion CEFs for the 38 mental disorders, we found some candidate CEFs
that simultaneously had frequent PubMed occurrences (i.e., questionable CEFs), such as ethanol,
malignant neoplasms, anti-depressive agents, and depressed mood.

We also analyzed the condition-specific CEF rankings between PubMed and exclusion criteria
and identified questionable CEFs that had high PubMed rankings. Some example questionable CEFs
for specific sleep disorder are listed in Table 4. Hepatic is associated with sleep disorder according to
PubMed Health but was frequently used for excluding patients from 6.82% of sleep disorder clinical
trials. Another questionable CEF is sleep apnea syndromes, whose frequency in exclusion criteria of
all sleep disorder trials was as high as 24.6%, was ranked as top two relevant PubMed description for
sleep disorder; therefore, we should be cautious when frequently using it as exclusion criteria.
Another example is hypersensitivity (to treatment), which is common in the real-world population but
is frequently excluded in randomized controlled trials (i.e., frequently as high as 13.6%).

Table 4. Questionable CEF's for excluding patients in sleep disorder clinical trials

Questionable CEF Frequenc ~ PubMed Rank UMLS Semantic Type
y

Hepatic 6.82% 1 Body location or region
Sleep apnea syndromes  24.6% 2 Disease or syndrome
Sleep apnea obstructive  12.5% 3 Biologically active substance; disease or syndrome
Narcolepsy 8.05% 3 Disease or syndrome
Caffeine 5.10% 3 Organic chemical; pharmacologic substance
Hypersensitivity 13.6% 4 Clinical attribute; finding; pathologic function
Malignant neoplasms 9.52% 4 Finding; neoplastic process
Psychotic disorders 7.56% 4 Mental or behavioral dysfunction
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4. Discussion

We investigated the exclusion criteria commonly used in mental disorder trials. The top four
UMLS semantic types that contained the most questionable CEFs were pharmacologic substance,
mental or behavioral dysfunction, disease or syndrome, and finding. Although some exclusion criteria
of these semantic types have been used for years, their use in exclusion remains unexplained
especially given their high prevalence among the real-world patients, most of who have several
mental comorbidities or take multiple medications concurrently. Most of the drugs are for treating
depressed mood or alcohol consumption or are anti-depressive drugs. If we exclude patients with
those traits, we may generate a “pure” but not “typical”'® test population, which may weaken the
generalizability of these trials.

For a single mental disorder, the method proposed herein also detected several questionable CEFs.
A recent study shows at least 50% of bipolar patient populations are excluded by at least one major
exclusion criterion'”. Using our method, we not only identified most of the exclusion criteria for
bipolar disorder aggregated from previous studies (drug abuse, alcohol abuse, significant medical
conditions, pregnancy or lactation, suicidal risk and psychotropic medications), but also retrieved
information about which medical condition or medication was frequently used to exclude patients.
Ethanol, antipsychotic agents, and antidepressive agents were questionable for excluding patients.
This prediction corresponds to previous findings'" that drug and alcohol abuse represent the most
exclusion for bipolar trials, and provides more details for locating questionable exclusion criteria.

Although this study only focused on mental disorders for the detailed analysis, this pipeline can be
easily applied to other disease domains. Most parts of the analyzing pipeline are fully automatic. The
clinical trial eligibility criteria and medical encyclopedia for other diseases exist in similar format as
used in this study, and can be processed in a large scale. However, considering the possible
uniqueness of mental disorder domain, it is necessary to clarify the predictive power of this pipeline
on a larger scale and different clinical settings, especially given poorly matched corpuses between
clinical trial eligibility criteria and disease encyclopedia.

Several findings of this study shed light on future eligibility criteria designs. First, the scale-free
feature of disease-CEF network suggests that a small number of exclusion criteria can be standardized
and reused for most mental disorder trials. Second, trials for different conditions shared similar
exclusion criteria, implying that some cohort selection criteria can be reused across conditions with
little modification. Third, the power of exclusion for a single clinical trial should be quantified to
avoid sampling biases in clinical trial designs.

5. Conclusion

This study demonstrates the promising value of applying a knowledge-based approach to
assessing the patient-centeredness of clinical trial exclusion criteria by linking different data sources,
including ClinicalTrials.gov and PubMed Medical Encyclopedia. In the future, proactive analyses like
this could be conducted during clinical research designs to optimize clinical research eligibility
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criteria design and study participant selection to better achieve precise evidence definition’.
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ABSTRACT: There are now hundreds of thousands of pathogenicity assertions that relate genetic variation
to disease, but most of this clinically utilized variation has no accepted quantitative disease risk estimate.
Recent disease-specific studies have used control sequence data to reclassify large amounts of prior
pathogenic variation, but there is a critical need to scale up both the pace and feasibility of such
pathogenicity reassessments across human disease. In this manuscript we develop a shareable
computational framework to quantify pathogenicity assertions. We release a reproducible “digital
notebook” that integrates executable code, text annotations, and mathematical expressions in a freely
accessible statistical environment. We extend previous disease-specific pathogenicity assessments to over
6,000 diseases and 160,000 assertions in the ClinVar database. Investigators can use this platform to
prioritize variants for reassessment and tailor genetic model parameters (such as prevalence and
heterogeneity) to expose the uncertainty underlying pathogenicity-based risk assessments. Finally, we
release a website that links users to pathogenic variation for a queried disease, supporting literature, and
implied disease risk calculations subject to user-defined and disease-specific genetic risk models in order to
facilitate variant reassessments.

231



Pacific Symposium on Biocomputing 2016

Introduction

1.1. Clinical genomics in 2015

Just 15 years since the completion of the Human Genome Project, researchers today can sequence
a whole genome for less than $1,000. Fundamental advancements in sequencing platforms [1]
coupled with concerted data-sharing efforts [2] have led to widespread and diverse uses of
genomic data. Decades before the advent of next-generation sequencing, clinicians and geneticists
were using targeted gene testing in diagnosis and prognosis, for example in calculating the familial
risk of cystic fibrosis [3]. More recently, whole-genome and whole-exome sequencing have led to
the discovery of causal lesions for numerous hitherto unsolved Mendelian disorders [4]. Other
common clinical uses of genomic data include familial risk stratification for diseases such as
hypertrophic cardiomyopathy [5], drug targeting based on activating mutations for cancers such as
non-small-cell lung carcinoma [6], and genetic counseling for disorders such as trisomy 21 using
fetal DNA circulating in maternal plasma (non-invasive prenatal testing, NIPT) [7].

While these efforts have led to real gains in diagnosis and treatment, it is now a central
challenge of clinical genomics to sort through an unwieldy literature of genetic associations: in
aggregate, there are hundreds of thousands of genetic associations across the entire spectrum of
human disease [8]. The usual scale for summarizing findings to the clinician and patient is based
on “pathogenicity,” [9], or the capacity of a genomic variant to cause disease. Pathogenicity is a
qualitative categorical concept, and its usual clinical scale consists of the values “Benign,” “Likely
Benign,” “Variant of Uncertain Significance,” “Likely Pathogenic,” and “Pathogenic” [9].

1.2. Recent inconsistencies between pathogenicity assertions

Although pathogenicity assertions have been in use for decades clinically, only recently have
systematic reinvestigations of pathogenicity been possible due to the widespread availability of
large-scale sequencing data from the general population. The typical study design involves
identifying all pathogenic variants for a given disease and then assessing the frequency of this
variation in the general population. If the aggregate or individual variant frequency exceeds a
disease-specific threshold, then pathogenicity for a variant or group of variants is challenged. This
frequency threshold depends on the mode of inheritance (e.g. autosomal dominant), age-of-onset,
prevalence in the tested population, molecular heterogeneity (fraction of disease due to a given
variant), and desired penetrance cutoff (probability an individual with the variant expresses
disease). For example, for an autosomal dominant disease caused by highly penetrant alleles,
variant pathogenicity is called into question if the aggregate pathogenic genotype frequency
exceeds the prevalence of the disease.

Several recent studies have used this approach to question the quality of pathogenicity ratings
and reclassify pathogenicity assertions. Testing large-scale non-diseased populations has
challenged prior pathogenicity assertions for X-linked intellectual disability [10], hypertrophic
cardiomyopathy [11], non-syndromic hearing loss [12], and several other diseases. However, this
is a small subset of the thousands of disorders with assertions regarding pathogenic genetic
variation [8]. There is a critical need to scale up both the pace and feasibility of systematic
reinvestigations of pathogenic variation using large-scale sequencing data from control
populations.
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1.3. The need for reproducible, shareable, and disease-specific quantitative investigations of
pathogenic variation

It is now a central challenge in clinical genomics to reassess a scattered literature of disease-
associated genetic variation as well as the large burden of novel variants discovered in whole
genome or whole-exome sequencing. After achieving the “$1,000 genome,” we may face the
“$100,000 analysis.” [13]. Several specific challenges hinder robust interpretation of potentially
pathogenic genetic variation. First, pathogenicity assertions are typically not quantitative risk
estimates. Second, it is usually unclear how a pathogenic variant should be interpreted in distinct
clinical contexts with different prior probabilities (e.g., pathogenicity in males versus females or
for patients with co-morbid conditions). Third, there is no accepted “false discovery rate” for the
majority of clinically utilized pathogenic variation and, further, multiple recent re-investigations
suggest that it is far greater than previously appreciated [10], [12], [14]. Fourth, and relatedly,
assertions are based on a fragmented literature. It remains a challenge to assimilate findings from
diverse studies with different analytic and design parameters [15]. Such re-investigations have
generally concentrated on a single disease or closely related set of diseases at a time [10], [12],
[14], and have required considerable bioinformatics resources to subset, clean, and work with
pathogenic variation and sequence data. There is a need for a new digital platform to efficiently
estimate, analyze, and share quantitative disease risk estimates for pathogenic variation.

In this manuscript we develop a shareable computational framework to quantify pathogenicity
assertions that have been reported in the literature. We release a reproducible “digital notebook”
which integrates executable code, text annotations, and mathematical expressions to enable
investigators to study how variation in the general population and genetic model parameters
dictate risk estimates underneath pathogenicity assertions. This notebook is written in the
interactive computing environment [Python [16]. We extend previous disease-specific
reinvestigations of pathogenicity to over 6,000 diseases and 160,000 assertions in ClinVar [17].
We document how reported pathogenicity assertions can mask large uncertainty over a wide range
of risk estimates, a critical consideration for clinicians and patients using such data for treatment
and diagnosis. We link pathogenicity assertions to their supporting literature and current ClinVar
annotations. Investigators can use this platform to carry out rapid disease-specific quantitative
analyses for pathogenic variants. Disease experts, such as genetic counselors, can tune population
parameters (such as prevalence and heterogeneity) to expose the determinants of pathogenicity and
prioritize pathogenicity assertions for reassessment. All code is made freely available.

2. Methods

2.1. Genetic models

Consider a population of » individuals. For simplicity, first consider a single bi-allelic site where
the reference allele frequency is p and non-reference allele frequency is ¢ = 1 - p. Under Hardy-
Weinberg equilibrium, genotypes AA (homozygous reference), Aa (heterozygous), and aa
(homozygous alternate) have frequencies p”, 2pgq, and ¢, respectively. Then the genotype
frequency of g, the fraction of individuals who carry at least one ¢ allele, denoted G(gq), is given by

G(@) = q*+2q(1—q)
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For a locus with £ distinct alleles (by state) under Hardy-Weinberg equilibrium, this equation still
holds,

k
G(q) = q2+22piq=q2+2q(1—q)
Pi¥Fq

We define the penetrance of a genotype as the conditional probability of expressing disease D for
an individual possessing the genotype V, P(D | V)= PV | D)P(D))/P(V), where h = P(V | D)
is an indicator of the molecular heterogeneity of the disease, P(D) is the prevalence, and P(V) is
the genotype frequency. Penetrance is a population-specific parameter—for a given variant,
penetrance can vary substantially based on clinical context (e.g. general population vs. testing
laboratory population). We consider autosomal dominant, autosomal recessive, additive, and
multiplicative genetic risk models. Under these risk models, we can write genotype frequencies
and relative risks given a non-reference allele frequency ¢ and per allele risk y for a bi-allelic
locus as follows:

Genetic model Affected genotype frequencies (relative risk)
Autosomal dominant q? + 2pq (¥)
Autosomal recessive q* (¥)
Additive q* (2y), 2pq (v)
Multiplicative q* (y®), 2pq (y)
Table 1: Genetic risk models. g denotes the non-reference allele frequency, y is the per
allele risk.

2.2. Clinical variant annotations

The ClinVar database [www.ncbi.nlm.nih.gov/clinvar]| aggregates genotype-phenotype assertions
across human disease [17]. ClinVar assertions are summarized on a qualitative pathogenicity
scale: (Benign, Likely benign, Uncertain significance, Likely pathogenic, Pathogenic). The
database further includes supporting evidence where available, such as in vitro and in silico
studies of pathogenicity. The database collects submissions from investigators around the world
and can be used to resolve conflicts [8]. If many investigators independently assert the same
relationship, this information is used to bolster the evidence for a variant-disease relationship. In
this manuscript, we use the clinvar 20150629 version of the ClinVar database retrieved from
ANNOVAR [18].

2.3. Allele frequency data from the general population

We incorporated allele frequency data from the NHLBI Exome Sequence Project (ESP) [19] and
the Broad Exome Aggregation Consortium (ExAc) [20]. These data include allele frequencies
from 6,503 individuals (ESP) and 60,706 individuals (ExAc). Both databases contain frequency
data separated by population groups (e.g. in ESP, allele frequency data is provided separately for
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the 2,203 African Americans and 4,300 European Americans that constitute ESP). ExAc has been
filtered for known causes of severe pediatric diseases, as it is intended for use as a “general
population” resource to filter variants [20].

2.4. Open source software stack

The analysis in this manuscript is performed entirely in the interactive computing environment
[Python [16]. IPython combines text annotations, executable code, mathematical expressions
(LaTeX), and embedded HTML in a single digital notebook. We also built a D3 visualization [21]
to allow users to explore pathogenicity assertions in the browser along with supporting evidence
and user-controlled genetic model parameters to compute penetrance. Genomic sequence data and
ClinVar annotations were retrieved using both ANNOVAR [18] and the ClinVar website [17].

3. Results

3.1. A reproducible and shareable workflow for quantifying pathogenicity assertions

We developed a reproducible and shareable platform for clinical genomics annotations (Figure 1).
We have released a digital notebook written in the interactive computing environment [Python
[16] that integrates executable code, text annotations, mathematical expressions, and embedded
HTML. Investigators can freely download this [Python notebook file, reproduce all data-gathering
steps, choose any disease from ClinVar, and specify the prevalence, heterogeneity, and genetic
model to estimate the penetrance of all ClinVar variants for the selected disease. All sensitivity
analyses described in this manuscript can be reproduced and customized in the [Python notebook.
Further, investigators can add cells of their own code and text to specify different disease-specific
genetic risk models and assumptions required to compute penetrance. The analysis steps and final
risk summary information, whether quantitative risks or qualitative assertions, can be stored
alongside supporting data and assumptions in a single document. Customized disease-specific
notebooks can be shared with collaborators to be run and customized locally.
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Figure 1: A reproducible and shareable workflow for quantifying pathogenicity assertions.
Screenshot from the IPython “digital notebook™ that accompanies this manuscript. The interactive
computing notebook combines executable code (written in blocks), mathematical expressions, and text
annotations. Code is provided to retrieve ClinVar annotations, PubMed references, and frequency data for
any disease in ClinVar. The user can explicitly specify genetic model assumptions to compute penetrance
and perform sensitivity analyses. Available at: https://github.com/manrai/Pathogenicity Notebook.

3.2. A diseaseome-wide investigation of pathogenicity assertions

We used our computational framework to perform a diseaseome-wide analysis of pathogenicity
assertions in ClinVar (Figure 2). Using the clinvar 20150629 version of ClinVar retrieved from
ANNOVAR, we observed 132,584 distinct variants, as defined by unique values of (Chromosome,
Start Position, Stop Position, Reference Allele, Alternate Allele) tuples in hgl9 coordinates. These
132,584 variants gave rise to 160,487 distinct pathogenicity assertions about disease. As such, the
majority of variants—114,107 out of 132,584 variants (86%)—were included in only a single
pathogenicity assertion (Figure 2a). The 160,487 total assertions spanned 6,427 distinct disease
names, although 42,761 assertions (27%) had disease names of “not specified” or “not provided.”
Of the 117,726 remaining assertions, just five out of 6,425 diseases (Lung Cancer, Malignant
Melanoma, Hereditary Cancer-Predisposing Syndrome, Familial Cancer of Breast, Lynch
Syndrome) accounted for 59,829 assertions (51%). 1,524 out of 6,425 diseases (24%) had at least
five assertions (Figure 2b). Of the 160,487 total assertions, 85,455 (53.2%) were either
“unknown” or “untested”; 37,871 (23.6%) were “pathogenic”; 15,483 (9.6%) were ‘“non-
pathogenic”; 11,357 (7.1%) were “probable-non-pathogenic”; 6,189 (3.9%) were “probable-
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pathogenic”; 3,964 (2.5%) were “other”; and 168 (0.1%) were classified as “drug-response”
(Figure 2c).
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Figure 2: A diseaseome-wide investigation of pathogenicity assertions in ClinVar. (a) Distribution of
160,487 pathogenicity assertions across 132,584 distinct variants. 86% of variants had exactly one
assertion. (b) Truncated distribution of pathogenicity assertions by disease. (¢) Clinical significance values
for assertions in ClinVar. 85,455 (53.2%) of the 160,487 total assertions were either “untested” or
“unknown.” “Pathogenic” assertions were the second largest overall group.

3.3. Uncertainty in the disease risk conveyed by pathogenic variation

The penetrance of a pathogenic variant—the probability that individuals with the variant express
disease—depends on the allele frequency in both case and control individuals, mode of
inheritance, age-of-onset, heterogeneity, and prevalence of the disease. To study this dependence,
we analyzed the disease hypertrophic cardiomyopathy (HCM), and documented how penetrance
values across all pathogenic single nucleotide variants (SNVs) for HCM vary under clinically
plausible parameter values (Figure 3). We retrieved 81 distinct pathogenic SNV's with frequency
data available in ExAc or ESP for HCM. We used the widely-accepted prevalence of 1:500
individuals [22] and varied the molecular heterogeneity parameter from conservative values (h =
0.1, 10% of HCM is explained by a single variant) to a more accepted model (e.g. h =0.001)
given that greater than a thousand causal variants have been identified for HCM [5]. All variants
display substantial variability based on the input genetic model parameters (Figure 3), however,
several pathogenic variants have consistently low penetrance due to their elevated non-reference
allele frequency.
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Figure 3: Uncertainty in the disease risk conveyed by pathogenic variation. Shown are
the 81 pathogenic SNVs from ClinVar for hypertrophic cardiomyopathy with ExAc or ESP
frequency data available. We computed a range of penetrance values for each variant by
varying heterogeneity linearly in the range [0.001, 0.1]. Several variants have consistently low
penetrance given their elevated non-reference allele frequency. Variants that were lower than
the 50% penetrance cutoff throughout these simulations are colored in red.
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3.4. Frequency of ClinVar variants in the general population

We studied the frequency of pathogenic variation in ClinVar by disease. Many diseases had
pathogenic variants with summed minor allele frequencies that were incompatible with even
moderately penetrant causal alleles (Figure 4). Considering only pathogenic SNV variation, 110
distinct disease terms in ClinVar had a summed minor allele frequency greater than 0.05 (Figure
4). The five highest frequency diseases were Neutrophil-Specific Antigens NA1/NA2, Severe
Combined Immunodeficiency Autosomal Recessive T-Cell Negative B-Cell Positive NK-Cell
Positive, Metachromatic Leukodystrophy, Trimethylaminuria, and Trimethylaminuria Mild.
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Figure 4: Summed frequency of pathogenic SNVs by disease. Many
diseases have summed pathogenic SNV minor allele frequencies that far
exceed the prevalence of the disease. 110 distinct disease terms have a
summed minor allele frequency greater than 0.05.

3.5. User-directed investigations of pathogenicity

We built a website to enable investigators to conduct disease-specific analyses of pathogenic
variation. After selecting a disease and specifying a genetic model, the investigator is provided
with all ClinVar entries for variants with questionable pathogenicity as governed by the user-
controlled parameters, as well as the supporting literature for these variants. Investigators can set
genetic model parameters based on, for example, genetic testing laboratory experience from other
patients with the same disease. Investigators are then provided with implied penetrance values for
each variant under these assumptions as well as supporting literature references in order to
efficiently prioritize pathogenic variants for reassessment.
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Figure 5: Exploring pathogenicity ratings. Screenshot from a website that enables users to explore disease-
specific pathogenic variation. The user can select the disease, prevalence, heterogeneity, cohort used for
frequency data, and penetrance threshold, and run an analysis for matching ClinVar variants. The user is linked
to variant assertions in ClinVar to re-evaluate pathogenicity assertions systematically. A live version of this site
can be found at http://people.fas.harvard.edu/~manrai/pathogenicity explorer.

4. Discussion

4.1. Summary of findings

We developed a reproducible and shareable computational framework to quantify pathogenicity
assertions across disease. We used this platform to extend previous disease-specific
reinvestigations of pathogenicity to over 6,000 diseases and 160,000 assertions in ClinVar. For
investigators wishing to conduct disease-specific quantitative reassessments of pathogenic
variation, we released a digital notebook written in the interactive computing environment [Python
that integrates executable code, text, and mathematical expressions to specify explicit genetic
model assumptions and quantify pathogenicity assertions. We documented the uncertainty in
disease risk estimates for pathogenic variants using, as an example, all pathogenic SNV variation
for the inherited condition hypertrophic cardiomyopathy. We released a website that allows users
to quickly explore pathogenic variation for individual diseases, prioritize variants for
reassessment, and obtain ClinVar records and supporting literature for variants that fall below an
adjustable clinical threshold for penetrance.
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4.2. Disease-specific reassessments of pathogenicity

Bottom-up approaches to reassessing pathogenicity allow investigators to specify genetic model
assumptions and filter pathogenicity assertions tailored to the individual disease in which they
have expertise. The clinical utility of genomic sequence data depends heavily on prior
probabilities and genetic model parameters [23], and as such it is critical to incorporate these
quantities into clinical decision-making. Expertise from clinical genetic testing laboratories in
measuring genetic heterogeneity and other parameters will improve reassessments going forward.
It will be increasingly important to quantify our understanding of the uncertainty of pathogenicity
assertions, and share these data widely to collectively improve clinical decision-making.

4.3. The publishable unit

Digital notebooks such as IPython/Jupyter [16] offer several advantages as a method of
documenting research progress. These notebooks combine executable code divided into
understandable blocks with text markup, the precision of mathematical notation, figures, and
embedded HTML in an easily shareable and coherent document that lets each user tailor code and
analyses for their goals. Building off of IPython, the Jupyter project (https://jupyter.org) is
language agnostic, enabling users to contribute to analysis workflows such as the Pathogenicity
Notebook using other popular programming languages for data analysis. Using these tools,
findings can be delivered alongside the underlying data and assumptions. For pathogenicity
reassessments, a digital notebook could serve as a new publishable unit of analysis.

4.4. Future work

It is important to stress that frequencies retrieved from ExAc and ESP are estimates of population
parameters. Future work could incorporate this uncertainty into disease-specific reassessments and
study the generalizability of penetrance estimates across different ethnicities using these databases.
It is also important to note that using frequency data from the general population will not
reclassify very rare variation that is erroneously classified as pathogenic. Additionally, a low
penetrance for a particular variant does not eliminate the possibility that the variant acts in concert
with other variants to impact disease. Future investigators could extend the IPython notebook
published here with new data sources and genetic models for their diseases of interest. The
feasibility of quantitative pathogenicity reassessments will grow both with the availability of
large-scale control sequence data as well as with domain expertise to specify quantitative
parameters needed to compute penetrance (e.g. heterogeneity, prevalence). The future of decision
theory in clinical genomics is bright if we rigorously vet pathogenicity assertions using shared
data and assumptions.
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Rapid advances in personal, cohort, and population-scale data acquisition, such as via
sequencing, proteomics, mass spectroscopy, biosensors, mobile health devices and
social network activity and other apps are opening up new vistas for personalized
health biomedical data collection, analysis and insight. To achieve the vaunted goals
of precision medicine and go from measurement to clinical translation, substantial
gains still need to be made in methods of data and knowledge integration, analysis,
discovery and interpretation. In this session of the 2016 Pacific Symposium on
Biocomputing, we present sixteen papers to help accomplish this for precision
medicine.

1. Introduction

Ultimately, precision medicine represents the significant enhancement of evidence-based
medicine, where clinical guidelines gleaned from population-level studies are able to be
precisely modified based on the attributes of the individual patient to both learn about new
significant biological determinants of individual subtypes, and to then optimally treat that
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individual. The age of precision medicine is already upon us. The evolution of medicine
from an art and craft to science was facilitated through the development of methods of
careful data collection and statistics for clinical trials, leading to medicine guided by
population level evidence. In an analogous way that industrialization in manufacturing
increased production volumes with standardization and systematic improvements in quality
metrics, medicine has been moving from a heuristic based craft to mechanistically-tethered
measures and guidelines. However, as we learn more about heterogeneity among the
strongest factors determining disease risk, progression, and response to therapies, we can
now identify highly significant factors that can forge new standards and individual-level
customization. In an analogous way that evidence based medicine now guides standard of
care practice at the population level, newer techniques will use data to guide practice at the
level of individuals. Informatics methods in this space need to take advantage of highly
multiplex heterogeneous mixes of categorical and numerical data, leverage related studies
taking advantage of approaches in meta-analysis and transfer learning, be robust to missing
data elements and sparsity, scale with superlinear interaction complexity, and be able to
deal with a feature space much greater than the number of patients/samples by using
approaches such as regularization and efficient use of priors.

Major efforts to create precision medicine datasets include the new national cohort as part of
the US precision medicine initiative,! the 100k genomes being sequenced by each of the
Geisinger-Regeneron collaboration? and the UK 100k genomes? projects and linked to
clinical data, the US Veteran's Administration's Million Veterans initiative,3 the many new
ongoing trials using Apple's Research Kit,b# Google's ambitious Baseline Study,© Vanderbilt's
BioVU repository,® Craig Venter's Human Longevity Inc.4 and the massive cancer molecular
profiling initiatives including The Cancer Genome Atlas.®’ Some of these data are already
publicly available, but some of these projects are clearly not intended to be made public. In
its most ambitious, precision medicine will require integration of data created by clinicians,
biomedical labs, and commercial devices. How the academic research community,
healthcare industry, commercial device industry, diagnostic test industry, and patient
advocacy groups will negotiate the challenges of collaboration and privacy in the face of
sometimes conflicting interests will be a challenge. However, recent efforts by groups such
as Sage Bionetworks have highlighted the value of network effects between researchers and
how new collaborative frameworks can accelerate and improve the discovery and

a https://www.genomeweb.com/sequencing/regeneron-launches-100k-patient-genomics-
study-geisinger-forms-new-genetics-cent

b http://www.apple.com/pr/library/2015/03/09Apple-Introduces-ResearchKit-Giving-
Medical-Researchers-the-Tools-to-Revolutionize-Medical-Studies.html

¢ http://www.wsj.com/articles/google-to-collect-data-to-define-healthy-human-
1406246214

d http://www.humanlongevity.com/human-longevity-inc-hli-launched-to-promote-healthy-
aging-using-advances-in-genomics-and-stem-cell-therapies/
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innovation process.8° Importantly, there is a moral imperative to accelerate the process of
healthcare innovation and improvement, as the successes are measured in lives.

The diversity of papers in this session reflect some of the exciting range of topics in precision
medicine. Informatics techniques for interpreting rare variation in complex genomes are
presented alongside approaches that leverage links between clinical data stores and those
genomic features. Methods for quantifying and analyzing complex phenotypes in patients in
their daily lives are presented along with techniques for creating patient subgroups for
targeting therapies. These papers reflect a sampling of the advances in informatics that are
needed as we move into the age of precision medicine. Forums such as the Pacific
Symposium for Biocomputing enable researchers to share ideas and help accelerate the
process of discovery.

"The future is already here — it's just not very evenly distributed.”
- William Gibson, National Public Radio interview

2. Session Contributions

2.1. Methods for managing data complexity and limited sample size

The explosion of rich and complex data in the age of precision medicine demands
fundamentally new methods of analysis. The number of discrete data points collected from a
patient can easily exceed the number of patients it would be possible to enroll in a single
study, and can even exceed the population of the planet!?. Victor Bellon and colleagues
describe using a regularized transfer learning approach using task descriptors to address
this problem. In addition to the sheer volume of data, the multivariate inter-relationships
and connections mean that the complexity can scale at a rate much greater than simple
linearity. Nattapon Thanitorn and colleagues present an approach using RDF Sketch Maps
to reduce representational complexity.

2.2. Probing rare genomic variation

Much of what drives individual differences requiring precision, personalized treatments
originates in the genome. However, rare or unique variants present an exceedingly difficult
challenge in genome analysis and interpretation. Anna Okula and colleagues present the
BioBin tool which builds on previous work!! to support variant aggregation and statistical
analyses. It is being used in the Marshfield Personalized Medicine Research Project.
Expanding out from SNP's and indels, Dokyoon Kim and colleagues develop an annotation
pipeline for copy number variants to support analysis of rare CNV's, also part of the
Marshfield Personalized Medicine Research project. Going beyond the genome, Yong Fuga
Li and colleagues describe diseaseExPatho, a tool that integrates transcription data with
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genomic variants to develop regulatory modules to aid in the interpretation of genetic
variation in rare diseases.

2.3. Leveraging demographic and clinical data, challenges in precision medicine

Performing studies and analyses in varying patient populations is challenging for many
reasons, including biases in levels of representation and the phenotypic data collected. Three
papers in this session describe how databases containing demographic and clinical data can
highlight some of these challenges and provide new opportunities for research. Sarah
Laper and colleagues discuss their inability to replicate previously well-established genetic
links with cardiovascular phenotypes represented in hospital clinical records; suggesting
that either the enthusiasm for the potential of clinical datasets linked to biorepositories
needs to be tempered by the significant challenge of using this data for basic science
research, or that this highlights the big gap between prior precision medicine results and
their translation into clinical significance, or some mixture of these two. Nophar Geifman
and Atul Butte focus their attention on a mismatch between the demographics of patients
sampled in clinical outcomes studies and high molecular resolution for studies like The
Cancer Genome Atlas and the general demography of cancer. Jessica N. Cooke Bailey and
colleagues present their work looking at genetic variants associated with kidney disease in
diverse ethnic subgroups, highlighting the particular challenges in investigating the genetic
basis of disease pathologies that disproportionately affect particular ethnic subgroups.

2.4. High-throughput holistic functional phenotypic profiling

One of the most exciting aspects of precision medicine is the ability to go beyond the high-
throughput molecular assays for genomics, transcriptomics, proteomics, and metabolomics,
and to move into measuring phenotypes at the level of the whole individual. Rather than
probing the function of a protein, we can probe the functioning of a whole human individual
and how they interact with their world. Two papers in this session present efforts at
phenotype profiling using mobile devices. Elias Chaibub Neto and colleagues describe
their work profiling patients with Parkinson's disease using smartphone sensor data.
Maulik R. Kamdar and Michelle Wu present their tool PRISM for monitoring mental
wellness using a smart, sensor laden commercial wrist-based wearable. In both cases, new
vistas for profiling patients are being opened up by these new data-streams and the
informatics techniques to analyze them.

2.5. Patient stratification and sample subgrouping
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Finally, our session includes five papers on subtyping patients and patient samples. An
important element of clinical research has already become differentiating subgroups based
on molecular/genomic level features. A recent review identified 684 registered clinical
cancer trials that required genetic profiling for enrollment.1? Disease subtyping may be done
through analysis molecular/genomic level features or through a deep analysis of differences
in phenotypic presentation, but either are playing an increasingly important role in clinical
trials.1314 Importantly, for diseases like cancer, the disease may not represent just a single
subtype, but may represent a population of different subtypes all coexisting simultaneously
in an afflicted patient,1>-17 subtypes which need to be treated in concert, perhaps in different
ways. Vladimir Gligorijevic and colleagues present an approach using non-negative
matrix factorization for tumor stratification. Sahand Khakabimamaghani and Martin
Ester describe a Bayesian bi-clustering approach for patient stratification using
transcriptomic data. Alex M. Fichtenholtz and colleagues present an approach for looking
at sub-groups of glial tumors to help in analysis of variants of unknown significance in a
collection of 800 tumor sequences. Subhajit Sengupta and colleagues describe an
approach for examining tumor heterogeneity using mutation pairs. Finally, Artem Sokolov
and colleagues describe a one-class method for identifying specific cell type signatures in
mixed samples.
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Next-generation sequencing technology has presented an opportunity for rare variant discovery and association of
these variants with disease. To address the challenges of rare variant analysis, multiple statistical methods have
been developed for combining rare variants to increase statistical power for detecting associations. BioBin is an
automated tool that expands on collapsing/binning methods by performing multi-level variant aggregation with a
flexible, biologically informed binning strategy using an internal biorepository, the Library of Knowledge
(LOKI). The databases within LOKI provide variant details, regional annotations and pathway interactions which
can be used to generate bins of biologically-related variants, thereby increasing the power of any subsequent
statistical test. In this study, we expand the framework of BioBin to incorporate statistical tests, including a
dispersion-based test, SKAT, thereby providing the option of performing a unified collapsing and statistical rare
variant analysis in one tool. Extensive simulation studies performed on gene-coding regions showed a Bin-KAT
analysis to have greater power than BioBin-regression in all simulated conditions, including variants influencing
the phenotype in the same direction, a scenario where burden tests often retain greater power. The use of Madsen-
Browning variant weighting increased power in the burden analysis to that equitable with Bin-KAT; but overall
Bin-KAT retained equivalent or higher power under all conditions. Bin-KAT was applied to a study of 82
pharmacogenes sequenced in the Marshfield Personalized Medicine Research Project (PMRP). We looked for
association of these genes with 9 different phenotypes extracted from the electronic health record. This study
demonstrates that Bin-KAT is a powerful tool for the identification of genes harboring low frequency variants for
complex phenotypes.

1. Introduction

Examining the genetic influence of low frequency or rare variation to complex disease
susceptibility may elucidate additional trait variability and disease risk which has largely remained
unexplained by traditional GWAS approaches[29]. In recent years, studies on multifactorial
diseases including Alzheimer’s disease and prostate cancer have provided compelling evidence
that rare variants are associated with complex traits and should be further examined[9, 16].
Advances in sequencing technologies and decreases in sequencing cost have provided an
opportunity for rare variant discovery. However, due to the frequency of these variants, there is
often low statistical power for detecting association with a phenotype, and therefore, a necessity
for prohibitively large sample sizes. Collapsing or binning methods are commonly used to
aggregate variants into a single genetic variable for subsequent statistical testing, reducing the

* This work is supported by NIH grant HG006389, and is also partly funded, under a grant
with the Pennsylvania Department of Health using Tobacco CURE Funds. The Department
specifically disclaims responsibility for any analyses, interpretations or conclusions.
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degrees of freedom in the analysis and improving power[23]. BioBin[33, 34] is an automated
bioinformatics tool initially developed for the multi-level collapsing of rare variants into user-
designated biological features such as genes, pathways, evolutionary conserved regions (ECRs),
protein families, and regulatory regions. BioBin follows a binning approach driven by prior
biological knowledge by using an internal biorepository, the Library of Knowledge Integration
(LOKI)[40]. LOKI combines biological information from over a dozen public databases providing
variant details, regional annotations and pathway interactions. The flexible knowledge-driven
binning design of BioBin allows the user to test multiple hypotheses within one unified analysis.

Rare variant association analysis of binned variants is often performed using burden or
dispersion tests. Burden methods test the cumulative effect of variants within a bin and are easily
applied to case-control studies as they assess the frequency of variant counts between these
phenotypic groups[24]. Burden tests assume that all variants influence the trait in the same
direction and magnitude of effect, and will suffer a loss of power if a mixture of protective and
risk variants is present. Standard burden tests include generalized linear model regression analyses
and the weighted sum statistic(WSS)[28]. Instead of testing the cumulative effect of variants
within a region, dispersion or nonburden methods will test the distribution of these variants in the
cases and controls thereby maintaining statistical power in the presence of a mixture of variants.
The SKAT[46] package is a dispersion test that has gained widespread use as it allows for easy
covariate adjustment, analyzes both dichotomous and quantitative phenotypes, and applies
multiple variant weighting options. SKAT is a score-based variance component test that uses a
multiple regression kernel-based approach to assess variant distribution and test for association.
Both standard burden tests and the SKAT dispersion method have been well assessed in rare
variant analysis.

While various tools have been specifically developed to facilitate rare variant association
analysis, many methods focus either on the creation of a relevant set of variants or on the
statistical analysis of already collapsed variants. This may often lead to file conversion issues for
specific tools, as well as more complicated and longer analysis time. Herein we expand the
framework of BioBin by integrating select statistical tests, regression and SKAT, as well as
capabilities for multiple phenotype analysis (or Phenome-wide Association Studies (PheWAS)),
thereby providing a comprehensive, unified bioinformatics tool for the biological binning and
association analysis of rare variants. We have evaluated the commonly used regression burden
analysis and SKAT in the context of BioBin with data simulations based on individuals of
European descent from 1000 Genomes Project Phase I. We have also applied a BioBin-SKAT, or
Bin-KAT, test to analyze nine complex human phenotypes from the Marshfield-PMRP
project[31], part of the eMERGE network[14]. Our analyses highlight the utility of BioBin as a
fast, comprehensive and versatile tool for the biological binning and analysis of low frequency
variants in sequence data for multiple complex phenotypes and PheWAS.

2. Methods
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2.1. BioBin

2.1.1.Overview of BioBin

BioBin is a unified command line bioinformatics tool written in C++ that utilizes the LOKI
database for biologically inspired binning of variants, and also provides a platform for the
association analysis of rare variant bins. The framework of a BioBin analysis is to determine
biological features upon which data will be binned, such as genes, pathways or intergenic regions,
execute bin generation using LOKI, and apply statistical association analysis to each bin. BioBin
follows an allele frequency threshold binning approach using the non-major allele frequency
(NMAF), defined as 1 minus the frequency of the most common allele. As NMAF and MAF are
interchangeable for biallelic markers, MAF will be used in this work. BioBin allows variants
below a user-specified MAF in the case or the control group to be binned thereby facilitating the
aggregation of both potential risk and protective variants. BioBin was originally developed solely
for the biologically informed binning of rare variants in an automated manner. To facilitate more
efficient statistical analysis, we have incorporated an extensible testing infrastructure,
implementing select burden and dispersion-based tests, namely regression, wilcoxon and
SKAT[46] into BioBin. These are commonly used statistical tests in rare variant association
analysis, and their direct implementation into BioBin streamlines the analysis, saves time, and also
avoids any potential file conversion issues. Also, if an alternate statistical test is desired, BioBin
may still be utilized strictly for its biologically inspired variant collapsing function. We have also
integrated multiple phenotype capabilities allowing the user to efficiently perform a binned rare
variant PheWASJ35, 41, 42]. BioBin analyzes each phenotype separately and uses parallel
processing to increase the speed of a Phe WAS analysis through a user-specified number of
processors. BioBin is open source and the code is freely available at https://ritchielab.psu.edu. It is
also available on demand from the authors. All supplemental files for this manuscript are
available at https://ritchielab.psu.edu/publications/supplementary-data/psb-2016/biobin-on-
multiple-phenotype.

2.1.2. Library of Knowledge Integration (LOKI)

BioBin collapses variants into biological features by consulting the Library of Knowledge
Integration (LOKI), an internal repository containing diverse knowledge from multiple sources
including NCBI dbSNP and gene Entrez[38], Kyoto Encyclopedia of Genes and Genomes
(KEGG)[18], Gene Ontology (GO)[11], and Pharmacogenomics Knowledge Base
(PharmGKB)[32]. LOKI integrates information from these external databases into a single local
repository containing knowledge from the downloaded raw data in each database. The main data
types used within LOKI are position, region, group, and source. Position refers to the chromosome
and base-pair position of single variants, and region represents biological features containing a
start and stop position including genes and copy number variants[33]. Sources are the external
databases compiled in LOKI, while groups represent various groupings of biological features such
as protein interactions, protein families and pathways. While LOKI is not distributed within the
BioBin code due to size constraints, tools are provided within the source distribution allowing a
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user to compile and perform a local installation of LOKI by downloading data directly from the
external sources. The data sources within LOKI can be individually updated as necessary in order
to provide the most up-to-date information.

2.2. Simulations

Simulation testing was performed in order to evaluate regression (a standard burden test) and
SKAT (a dispersion test) within the framework of a BioBin variant collapsing analysis. All tests
were performed using SeqSIMLAZ2[4] to simulate sequence data as it allowed for the simulation of
common burden and dispersion test assumptions. Randomly selected protein-coding variants with
a MAF<5% in individuals of European descent from the 1000 Genomes Project Phase I[8] dataset
were used as the basis for our simulations. This dataset was used to obtain a distribution of allele
frequencies across the whole exome for each non-monomorphic single nucleotide variant site in
the represented individuals of European descent (CEU, TSI, FIN, GBR, and IBS). This allele
frequency distribution was then used to create the input for SeqSIMLA?2. All simulations were
performed with 100 variants as we calculated this to be an approximate average number of
variants expected in a median sized 24,000bp gene[12]. For this calculation, we used known gene
regions in the UCSC Human Genome Browser[19] to define the total gene region length and the
1000 Genomes Project to estimate the number of SNPs identified in these gene regions.

Simulation tests and specific parameters are shown in Table 1. Our simulations focused on two
main tests: altering the odds ratio (OR) and altering the proportion of risk variants, with numerous
parameters tested in each of these categories. Multiple testing parameters separated by commas in
Table 1 correspond to independent simulations. The proportion of causal variants represents the
percentage of disease sites of the total 100 variants being simulated. Likewise, the proportion of
risk variants provides the number of risk variants of these causal sites. For instance, in our altering
OR test category, when simulating 40% causal variants, we had 40 disease sites, and either 40-risk
variants (when testing a 100% proportion of risk variants) or 20-risk variants and 20-protective
variants (when testing a 50% proportion of risk variants). The specified OR corresponds to that of
the individual causal variants. Type I error was estimated with 1,000 simulated null datasets using
an OR of 1. Significance was assessed using a=0.05.

Tablel. Simulation tests and Parameters

Test Parameter Altering OR Altering Proportion of Risk Variants
Number of Simulations 1000 1000

Sample Size 1000 cases and 1000 controls 1000 cases and 1000 controls
Proportion of Causal Variants (n=100) 40%, 10% 40%

Disease Prevalence 5% 5%, 50%

Odds Ratio (OR) 1.5,2.0,3.0 3.0

Proportion of Risk Variants 50%, 100% 25%, 40%, 50%, 60%, 75%, 100%
Variant Weighting No Weighting, Madsen and Browning No Weighting, Madsen and Browning

2.3. Application of Bin-KAT to natural dataset

A Bin-KAT test was used to analyze type II diabetes (TIID) and eight diagnosis indicators in
740 de-identified European American subjects from the Marshfield Clinic Personalized Medicine
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Research Project (PMRP) sequenced in the electronic Medical Records and Genomics (éeMERGE)
Network[15], as part of the eMERGE-PGX study[43]. Subjects were sequenced using
PGRNseq[43], a next-generation sequencing platform designed for the targeted capture of selected
pharmacogenes[43]. Case control status for TIID was determined using Mount Sinai’s diabetes
algorithm[20] from the Diabetes HTN CKD algorithm[37]. The eight diagnosis indicators
analyzed are asthma, benign prostatic hyperplasia (BPH), cataracts, diverticulosis,
gastroesophageal reflux disease (GERD), hypertension, hypothyroidism, and uterine fibrosis. For
each diagnosis indicator, a subject was considered a case if diagnosed with one of the listed ICD-9
codes in Table 2 on two or more dates. Controls were defined as non-cases who did not meet the
criteria of ICD-9 diagnosis on two or more dates.

Table 2. Analyzed Phenotypes

Phenotype Diagnosis Cases  Controls

TIID Diabetes HTN CKD algorithm 99 594

Asthma ICD-9 codes: Between '493.00" and '493.92' 90 650

(BPH) ICD-9 codes: '600', '600.0', '600.00', '600.01", '600.09', '600.2', 122 250
'600.20', '600.21', '600.9', '600.90', '600.91'

Cataracts ICD-9 codes: '366.10', '366.12', '366.14', '366.15', '366.16', 202 538
'366.17', '366.9'

Diverticulosis ICD-9 codes: '562.00', '562.01', '562.02', '562.03', '562.10", 134 606
'562.11','562.12','562.13'

GERD ICD-9 codes: '530.81','530.11' 204 536

Hypertension ICD-9 codes: Between '401.00' and '401.99" 374 366

Hypothyroidism ICD-9 codes: '244', '244.8','244.9', '245','245.2', '245.8', 245.9' 98 642

Uterine ICD-9 codes: 218.0', '218.1','218.2','218.9', '654.10', '654.11", 58 313

Fibroids '654.12','654.13','654.14'

To highlight the multiple variant collapsing functions within BioBin, we binned variants
having a MAF less than 0.05 by three features: gene, biological pathway and SNPEf{[5] functional
predictions with a minimum bin size of 5 variants. Gene binning analysis was performed on the 82
targeted pharmacogenes that passed QC. SNPEfT functional predictions were used as a secondary
collapsing strategy following gene binning. Variants annotated as having intergenic and intragenic
effects by SNPEff were excluded from the analysis. Biological pathway variant binning was
achieved using all pathway sources currently in the LOKI biorepository[40]. Overall Madsen and
Browning[28] weighting was used to weigh binned variants inversely proportional to their MAF.
SKAT was used to test for association between binned variants and each phenotype while
adjusting for sex, year of birth, and median BMI.

3. Results

3.1. Simulations

We evaluated regression and SKAT within a BioBin coupled collapsing analysis using data
simulations of 100 variants based on the allele frequencies of European subjects from the 1000
Genomes Project. All simulated conditions are shown in Table 1 and aim to test the assumptions
of burden and dispersion methods. Table 3 displays that Type I error was well controlled in the
analyses and was not being sacrificed in the regression or SKAT analysis.
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Table 3. Type I Error Results, standard error is in parentheses.
Variant Weighting SKAT Type I Error Rate Regression Type I Error Rate
None 0.045 (£0.011) 0.061(+0.011)
Madsen-Browning 0.037(£0.005) 0.039(x0)

A key limitation of burden tests is loss of statistical power in the presence of a mixture of
variant effects. We simulated the direction of effect by testing 100% risk variants and 50% risk,
50% protective variants. We evaluated the impact of differing directions of effect on statistical
power in a Bin-KAT and BioBin-regression analysis over a varying OR range from 1.5 to 3.0.
These results are shown with 10% and 40% causal variants in Figure 1 and 2, respectively. Both
figures highlight the influence of variant weighting by displaying results with and without Madsen
and Browning weighting.

Figure 1. Power plot of Bin-KAT and BioBin-regression analyses with a causal variant proportion of 10%.
SKAT results are represented by a dashed line; regression results have a solid line. Simulations of 100% risk
variants are in grey while 50% risk variants are black.

To further explore the impact of a mixture of variant effects on statistical power, we simulated
data altering the proportion of risk variants over a wide range, from 25% to 100%, as seen with a
disease prevalence of 5% in Figure 3. We increased this disease prevalence to 50% and present
these results in Supplementary Figure 1. While a disease prevalence of 50% is high, it allowed us
to create a balance in the case to control ratio and thereby symmetry in the results with comparable
statistical power between 25%-75%, and 40%-60%, and a significant loss of power at 50%. This is
not seen with a lower disease prevalence of 5% (Figure 3) as we are oversampling our population,
so that symmetry is likely shifted.
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Figure 2. Power plot of Bin-KAT and BioBin-regression analyses with a causal variant proportion of 40%.
SKAT results are represented by a dashed line; regression results have a solid line. Simulations of 100%
risk variants are in grey while 50% risk variants are black.

3.2 Application of Bin-KAT to natural dataset

As Bin-KAT consistently maintained greater power than a BioBin-regression, we applied this
method coupled with variant weighting to simultaneously analyze 9 phenotypes in subjects of
European descent from the Marshfield cohort of eMERGE-PGX project. These subjects were
target sequenced for 82 pharmacogenes. We found numerous association results with p-values less
than 0.05 in our gene, pathway, and SNPEfT functional prediction analysis. Due to the hypothesis
generating nature of this method we present all results with a p-value less than 0.05 or 0.01. As
sequencing was performed on specific, targeted genes, the statistical tests are highly correlated,
and therefore do not meet the independence assumptions of Bonferroni correction, which would
prove too stringent in our analysis[7]. In addition, this study is exploratory in nature and all
findings should be replicated in independent datasets in the future.

A full list of the results may be found in Supplementary Tables 1 and 2. Table 4 shows the
number of results per phenotype and binned biological feature below a p-value cutoff of 0.05 for
genes and SNPEff annotations, and an additional 0.01 cutoff for pathway analysis. We found
significant associations with binned variants in 59 of the 82 targeted pharmacogenes. Figure 4
shows a Phenogram plot of all significant results collapsed by gene and SNPEff functional
prediction displayed by chromosomal location of the gene. Details on the specific annotated
SNPE(ff effect and impact can be found in Supplementary Table 1.
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Figure 3. Power plot of a Bin-KAT and BioBin-regression analysis performed when altering the proportion of risk
variants between 25% and 100% with a disease prevalence of 5%. SKAT results are represented by a dashed line;
regression results have a solid line.

Table 4. Number of association results per phenotype and biological feature at the specified p
value cutoff. Total number of bins in each biological feature is noted in parentheses.

Phenotype Gene Pathway Pathway SNPEff annotation
(p-value <0.05) (p-value<0.05) (p-value<0.01) (p-value <0.05)

Type II Diabetes 4 (82) 233 (8911) 13 17 (458)
Cataracts 5(82) 777 (8964) 17 8 (458)
Hypothyroidism 6 (82) 324 (8991) 6 19 (458)
Hypertension 2 (82) 234 (8964) 62 1 (458)
Diverticulosis 2(82) 248 (8964) 148 14 (458)
Asthma 6 (82) 297 (8984) 135 16 (458)
GERD 2(82) 177 (8964) 19 3 (458)

BPH 2(82) 102 (8964) 18 4 (458)

Uterine Fibroids 10 (82) 390 (8991) 102 18 (458)

4. Discussion

In this work, we sought to expand the framework of BioBin by integrating statistical tests to
provide a tool for the automated, biologically-driven binning and association analysis of rare
variants. The choice of binning algorithm is often research specific, and BioBin supports this by
providing variant collapsing on multiple biological levels, as well as supporting user-customized
analysis. BioBin also includes multiple variant weighting schemes outside of those within a SKAT
analysis, including minimum and maximum variant weighting, as well as weighting based on
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Figure 4. Phenogram plot of significant association results (p-value<0.05) in a binned gene and SNPEfTf functional
prediction Bin-KAT analysis. The biological features are designated with different shapes, and each phenotype is
represented by a different color. The target capture of the PGRNseq platform is shown by blue horizontal bands
across the chromosome. The specific SNPEff effect can be found in Supplementary Table 1.

allele frequencies only within our phenotypic controls. Further, BioBin supports polyallelic variant
sites and will incorporate all allelic information from these sites, a characteristic that is not
supported by all tools. While multiple studies have performed exhaustive comparisons of burden
and dispersion methods[2,6,10], we specifically chose to focus on regression and SKAT.
Regression is a commonly used burden test, and several popular rare variant methods use a
regression framework[1, 26, 27, 36]. SKAT was chosen due to its vast popularity as a dispersion
method, its ease of covariate adjustment, and application to binary or quantitative phenotypes.
Regression and SKAT have previously been compared in rare variant analysis[2, 10, 22] and here,
are evaluated within the context of a biologically inspired binning method.

Simulation testing shows a Bin-KAT analysis maintains greater overall statistical power than
BioBin-Regression. We found SKAT to outperform regression even in conditions where a burden
analysis is assumed to have greater power than a dispersion test, such as variants influencing the
phenotype in the same direction, as is presented in Figure 1 with 10% causal variants. In the 40%
causal variant simulations (Figure 2), regression maintains higher power over SKAT in both
weighted and unweighted tests. This suggests that the power of regression may be affected by the
proportion of causal variants having the same direction of effect. However, when we encounter a
mixture of both risk and protective variants, regression suffers a significant loss of power. In fact,
SKAT maintains high power regardless of the proportion of risk variants simulated, and is held at
100% from an OR 2.0-3.0 (Figure 3). Our results also highlight that applying Madsen and
Browning variant weighting to the binning analysis increases power.
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We performed a Bin-KAT test with Madsen and Browning weighting to analyze 9 different
phenotypes from Marshfield-PGX subjects who were target sequenced for specific
pharmacogenes. We, and others, hypothesize that pharmacogenes related to drug response may
also be associated with the diseases for which the drugs are used to treat. Using Bin-KAT, a series
of significant associations were found. In the gene-binning analysis, an association between BDNF
and type II diabetes (p-val 0.000437) was identified. Literature indicates that low levels of BDNF
may be involved in type II diabetes pathogenesis, providing a potential explanation for the
clustering of dementia, depression and type II diabetes[13, 21]. BDNF may also play a role in
blood glucose metabolism and insulin resistance, a characteristic of type II diabetes[21, 30]. A
number of significant results in the pathway-binning analysis performed using asthma patients
included leukotriene pathways. Leukotrienes are inflammatory chemicals that can act as lipid
mediators and have been well established in the pathobiology of asthma[3, 17, 44]. Leukotriene-
B4 is being further investigated for its regulatory role in the development of asthma [17].

The results of this study show indications of potential pleiotropy where gene-binned variants
are associated with more than one phenotype. We see this with CYP2C19, which is significantly
associated with asthma, cataracts, hypothyroidism, and uterine fibroids. CYP2C19 has a highly
polymorphic sequence, accounting for its variability in drug metabolism as it acts on up to 10% of
clinical drugs[25]. In lung tissue, cytochrome P450 enzymes may be affected by air pollutants, and
the CYP2C19*2 genotype has been implicated as a risk factor for asthma[47]. Also, linkage
analysis on families with endometriosis, a disorder that may be correlated with uterine
fibroids[45], indicates a potential role of CYP2C19 in endometriosis risk[39]. Association results
with CYP2C19 present exciting connections that warrant further exploration. We have looked at
the co-occurrence of these four phenotypes and the correlation is fairly low. Future work will aim
to evaluate CYP2C19 and medication usage.

Bin-KAT serves as a powerful and versatile method for the biological binning and analysis of
rare variants in sequence data. This approach was successful in the identifying novel and well-
studied genes and pathways harboring low frequency variants in a multiple complex phenotype
analysis. Studying the influence of low frequency variants has the potential to identify underlying
risk factors, and uncover complex genotype-phenotype associations in multifactorial diseases.
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