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research in the theory and application of computational methods in problems 

of biological significance. Presentations are rigorously peer reviewed and are 

published in an archival proceedings volume. PSB 2019 will be held on January 

3 – 7, 2019 in Kohala Coast, Hawaii. Tutorials and workshops will be offered 

prior to the start of the conference.

PSB 2019 will bring together top researchers from the US, the Asian Pacific 

nations, and around the world to exchange research results and address open 

issues in all aspects of computational biology. It is a forum for the presentation 

of work in databases, algorithms, interfaces, visualization, modeling, and other 

computational methods, as applied to biological problems, with emphasis on 

applications in data-rich areas of molecular biology.

The PSB has been designed to be responsive to the need for critical mass in 

sub-disciplines within biocomputing. For that reason, it is the only meeting 

whose sessions are defined dynamically each year in response to specific 

proposals. PSB sessions are organized by leaders of research in biocomputing’s 

“hot topics.” In this way, the meeting provides an early forum for serious 

examination of emerging methods and approaches in this rapidly changing field.

11263_9789813279827eb_PT.indd   2-3 22/10/18   10:52 AM



 

 i 

Preface ..............................................................................................................................................v 
 
PATTERN RECOGNITION IN BIOMEDICAL DATA: CHALLENGES IN PUTTING 
BIG DATA TO WORK 
 
Session introduction .......................................................................................................................................1 

Shefali Setia Verma, Anurag Verma, Dokyoon Kim, Christian Darabos 
 

Learning Contextual Hierarchical Structure of Medical Concepts with Poincairé Embeddings to Clarify 
Phenotypes .....................................................................................................................................................8 

Brett K. Beaulieu-Jones, Isaac S. Kohane, Andrew L. Beam 
 

The Effectiveness of Multitask Learning for Phenotyping with Electronic Health Records Data ..............18 
Daisy Yi Ding, Chloe Simpson, Stephen Pfohl, Dave C. Kale, Kenneth Jung, Nigam H. Shah 
 

ODAL: A one-shot distributed algorithm to perform logistic regressions on electronic health records data 
from multiple clinical sites ...........................................................................................................................30 

Rui Duan, Mary Regina Boland, Jason H. Moore, Yong Chen 
 

PVC Detection Using a Convolutional Autoencoder and Random Forest Classifier .................................42 
Max Gordon, Cranos Williams 
 

Removing Confounding Factors Associated Weights in Deep Neural Networks Improves the Prediction 
Accuracy for Healthcare Applications .........................................................................................................54 

Haohan Wang, Zhenglin Wu, Eric P. Xing 
 

DeepDom: Predicting protein domain boundary from sequence alone using stacked bidirectional  
LSTM ............................................................................................................................................................66 

Yuexu Jiang, Duolin Wang, Dong Xu 
 

Res2s2aM: Deep residual network-based model for identifying functional noncoding SNPs in trait-
associated regions ........................................................................................................................................76 

Zheng Liu, Yao Yao, Qi Wei, Benjamin Weeder, Stephen A. Ramsey 
 

DNA Steganalysis Using Deep Recurrent Neural Networks .......................................................................88 
Ho Bae, Byunghan Lee, Sunyoung Kwon, Sungroh Yoon 

 
Bi-directional Recurrent Neural Network Models for Geographic Location Extraction in Biomedical 
Literature ...................................................................................................................................................100 

Arjun Magge, Davy Weissenbacher, Abeed Sarker, Matthew Scotch, Graciela Gonzalez-
Hernandez 
 

Automatic Human-like Mining and Constructing Reliable Genetic Association Database with Deep 
Reinforcement Learning .............................................................................................................................112 

Haohan Wang, Xiang Liu, Yifeng Tao, Wenting Ye, Qiao Jin, William W. Cohen, Eric P. Xing 
 

Estimating classification accuracy in positive-unlabeled learning: characterization and correction 
strategies ....................................................................................................................................................124 

Rashika Ramola, Shantanu Jain, Predrag Radivojac 
 

 
PLATYPUS: A Multiple–View Learning Predictive Framework for Cancer Drug Sensitivity  



 

 ii 

Prediction ...................................................................................................................................................136 
Kiley Graim, Verena Friedl, Kathleen E. Houlahan, Joshua M. Stuart 
 

Computational KIR copy number discovery reveals interaction between inhibitory receptor burden and 
survival .......................................................................................................................................................148 

Rachel M. Pyke, Raphael Genolet, Alexandre Harari, George Coukos, David Gfeller, Hannah 
Carter 
 

Exploring microRNA Regulation of Cancer with Context-Aware Deep Cancer Classifier ......................160 
Blake Pyman, Alireza Sedghi, Shekoofeh Azizi, Kathrin Tyryshkin, Neil Renwick, Parvin 
Mousavi 
 

Implementing and Evaluating A Gaussian Mixture Framework for Identifying Gene Function from TnSeq 
Data  ...........................................................................................................................................................172 

Kevin Li, Rachel Chen, William Lindsey, Aaron Best, Matthew DeJongh, Christopher Henry, 
Nathan Tintle 

 
SNPs2ChIP: Latent Factors of ChIP-seq to infer functions of non-coding SNPs .....................................184 

Shankara Anand, Laurynas Kalesinskas, Craig Smail, Yosuke Tanigawa 
 
Extracting allelic read counts from 250,000 human sequencing runs in Sequence Read Archive ............196 

Brian Tsui, Michelle Dow, Dylan Skola, Hannah Carter 
 

Semantic workflows for benchmark challenges: Enhancing comparability, reusability and  
reproducibility ............................................................................................................................................208 

Arunima Srivastava, Ravali Adusumilli, Hunter Boyce, Daniel Garijo, Varun Ratnakar, Rajiv 
Mayani, Thomas Yu, Raghu Machiraju, Yolanda Gil, Parag Mallick 

 
 

PRECISION MEDICINE: IMPROVING HEALTH THROUGH HIGH-RESOLUTION 
ANALYSIS OF PERSONAL DATA 
 
Session introduction ...................................................................................................................................220 

Steven E. Brenner, Martha Bulyk, Dana C. Crawford, Jill P. Mesirov, Alexander A. Morgan, 
Predrag Radivojac 

 
CrowdVariant: a crowdsourcing approach to classify copy number variants ..........................................224 

Peyton Greenside, Justin Zook, Marc Salit, Madeleine Cule, Ryan Poplin, Mark DePristo 
 
A repository of microbial marker genes related to human health and diseases for host phenotype 
prediction using microbiome data .............................................................................................................236 

Wontack Han, Yuzhen Ye 
 
AICM: A Genuine Framework for Correcting Inconsistency Between Large Pharmacogenomics  
Datasets ......................................................................................................................................................248 

Zhiyue Tom Hu, Yuting Ye, Patrick A. Newbury, Haiyan Huang, Bin Chen 
 

Outgroup Machine Learning Approach Identifies Single Nucleotide Variants in Noncoding DNA 
Associated with Autism Spectrum Disorder ...............................................................................................260 

Maya Varma, Kelley Marie Paskov, Jae-Yoon Jung, Brianna Sierra Chrisman, Nate Tyler 
Stockham, Peter Yigitcan Washington, Dennis Paul Wall  
 



 

 iii 

Detecting potential pleiotropy across cardiovascular and neurological diseases using univariate, 
bivariate, and multivariate methods on 43,870 individuals from the eMERGE network ..........................272 

Xinyuan Zhang, Yogasudha Veturi, Shefali Verma, William Bone, Anurag Verma, Anastasia 
Lucas, Scott Hebbring, Joshua C. Denny, Ian Stanaway, Gail P. Jarvik, David Crosslin, Eric B. 
Larson, Laura Rasmussen-Torvik, Sarah A. Pendergrass, Jordan W. Smoller, Hakon Hakonarson, 
Patrick Sleiman, Chunhua Weng, David Fasel, Wei-Qi Wei, Iftikhar Kullo, Daniel Schaid, 
Wendy K. Chung, Marylyn D. Ritchie 
 

Integrating RNA expression and visual features for immune infiltrate prediction ....................................284 
Derek Reiman, Lingdao Sha, Irvin Ho, Timothy Tan, Denise Lau, and Aly A. Khan 

 
Influence of tissue context on gene prioritization for predicted transcriptome-wide association  
studies .........................................................................................................................................................296 

Binglan Li, Yogasudha Veturi, Yuki Bradford, Shefali S. Verma, Anurag Verma, Anastasia M. 
Lucas, David W. Haas, Marylyn D. Ritchie 

 
Precision drug repurposing via convergent eQTL-based molecules and pathway targeting independent 
disease-associated polymorphisms ............................................................................................................308 

Francesca Vitali, Joanne Berghout, Jungwei Fan, Jianrong Li, Qike Li, Haiquan Li, Yves A. 
Lussier 
 

An Optimal Policy for Patient Laboratory Tests in Intensive Care Units .................................................320 
Li-Fang Cheng, Niranjani Prasad, Barbara E Engelhardt 
 
 

SINGLE CELL ANALYSIS, WHAT IS IN THE FUTURE? 
 
Session introduction ...................................................................................................................................332 

Lana X. Garmire, Guo-Cheng Yuan, Rong Fan, Gene W. Yeo, John Quackenbush 
 
LISA: Accurate reconstruction of cell trajectory and pseudo-time for massive single cell RNA-seq  
data .............................................................................................................................................................338 

Yang Chen, Yuping Zhang, Zhengqing Ouyang 
 
Topological Methods for Visualization and Analysis of High Dimensional Single-Cell RNA Sequencing 
Data ............................................................................................................................................................350 

Tongxin Wang, Travis Johnson, Jie Zhang, Kun Huang 
 
Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single 
cell RNA transcriptomics ...........................................................................................................................362 

Qiwen Hu, Casey S. Greene 
 
Shallow Sparsely-Connected Autoencoders for Gene Set Projection ........................................................374 

Maxwell P. Gold, Alexander LeNail, and Ernest Fraenkel 
 
WHEN BIOLOGY GETS PERSONAL: HIDDEN CHALLENGES OF PRIVACY AND 
ETHICS IN BIOLOGICAL BIG DATA 
 
Session introduction ...................................................................................................................................386 

Gamze Gürsoy, Arif Harmanci, Haixu Tang, Erman Ayday, Steven E. Brenner 
 
Leveraging summary statistics to make inferences about complex phenotypes in large biobanks ...........391 



 

 iv 

Angela Gasdaska, Derek Friend, Rachel Chen, Jason Westra, Matthew Zawistowski, William 
Lindsey, Nathan Tintle 
 

Protecting Genomic Data Privacy with Probabilistic Modeling ...............................................................403 
Sean Simmons, Bonnie Berger, Cenk Sahinalp 

 
Evaluation of patient re-identification using laboratory test orders and mitigation via latent space 
variables .....................................................................................................................................................415 

Kipp W. Johnson, Jessica K. De Freitas, Benjamin S. Glicksberg, Jason R. Bobe, Joel T. Dudley 
 

Implementing a universal informed consent process for the All of Us Research Program .......................427 
Megan Doerr, Shira Grayson, Sarah Moore, Christine Suver, John Wilbanks, Jennifer Wagner 
 

 
WORKSHOPS 
 
Merging heterogeneous clinical data to enable knowledge discovery ......................................................439 

Martin G. Seneviratne, Michael G. Kahn, Tina Hernandez-Boussard 
 

Reading between the genes: interpreting non-coding DNA in high-throughput .......................................444 
Joanne Berghout, Yves A. Lussier, Francesca Vitali, Martha L. Bulyk, Maricel G. Kann, Jason H. 
Moore 

 
Text Mining and Machine Learning for Precision Medicine .....................................................................449 

Graciela Gonzalez, Zhiyong Lu, Robert Leaman, Davy Weissenbacher, Mary Regina Boland, 
Yong Chen, Jingcheng Du, Juliane Fluck, Casey S. Greene, John Holmes, Aditya Kashyap, Rikke 
Linnemann Nielsen, Zhengqing Ouyang, Sebastian Schaaf, Jaclyn N. Taroni, Cui Tao, Yuping 
Zhang, Hongfang Liu 

 
Translational informatics of population Health: How large biomolecular and clinical datasets  
unite ............................................................................................................................................................455 

Yves A. Lussier, Atul Butte, Haiquan Li, Rong Chen, Jason H. Moore 
 
 



 

 v 

PACIFIC SYMPOSIUM ON BIOCOMPUTING 2019 
 
2019 marks the 24th Pacific Symposium on Biocomputing (PSB).  The world is in a tizzy about big data, data 
science and AI (especially deep learning).  Machine learning is everywhere and many of the tools and approaches that 
have been discussed at PSB for the last 24 years are becoming mainstream.  This is in some ways gratifying and other 
ways worrisome, as the hype of these technologies is staggering.  The PSB community, however, continues to 
innovate in the application of these ideas to critical problems in biology and medicine.  More importantly, through peer 
review the PSB community has maintained a realistic understanding of the capabilities of emerging technologies.  It is 
our duty to continue applying appropriate pressure on ourselves to test the real-world utility of these techniques, figure 
out how to optimize their use for problems in biology and medicine, and ensure that we contribute to a scholarly 
literature that realistically portrays the power and the limitations of emerging technologies.  The focus of PSB on 
emerging scientific questions and methodologies is a clear strength of the conference, and one that we must protect 
and preserve. 
 
PSB depends on the community to define emerging areas in biomedical computation. Its sessions are usually 
conceived at the previous PSB meeting as people discuss trends and opportunities for new science. The typical 
program includes sessions that evolve over two to three years as well as entirely new sessions. This year we 
revisit topics such as precision medicine, pattern recognition, while nurturing emerging interest in single cell 
analysis, privacy/ethics and other topics.  
 
In addition to being published by World Scientific and indexed in PubMED, the proceedings from all PSB 
meetings are available online at http://psb.stanford.edu/psb-online/. PSB has 1125 papers listed in PubMED (as 
of today). These papers are routinely cited in archival  journal articles and o f t en  represent important early 
contributions in new subfields—many times before there is an established literature in more traditional journals; for 
this reason, many papers have garnered hundreds of citations. The Twitter handle PSB 2019 is 
@PacSymBiocomp and the hashtag this year will be #psb19. 
 
The efforts of a dedicated group of session organizers have produced an outstanding program. The sessions of 
PSB 2019 and their hard-working organizers are as follows: 
 
Pattern recognition in biomedical data: challenges in putting big data to work 
Shefali S. Verma, Dokyoon Kim, Anurag Verma, Christian Darabos 
 
Precision medicine: improving health through high-resolution analysis of personal data 
Steven Brenner, Martha Bulyk, Dana Crawford, Jill Mesirov, Alexander Morgan, Predrag Radivojac 
 
Single cell analysis--what is in the future? 
Lana Garmire, Guo-cheng Yuan, Rong Fan, Gene Yeo, John Quackenbush 
 
When biology gets personal:  hidden challenges of privacy and ethics in biological big data  
Gamze Gursoy, Arif Harmanci, Haixu Tang, Erman Ayday, Steven E. Brenner 
 
We are also pleased to present four workshops in which investigators with a common interest come together to 
exchange results and new ideas in a format that is more informal than the peer-reviewed sessions. For this year, 
the workshops and their organizers are: 
 
Merging heterogeneous data to enable knowledge discovery 
Martin G. Seneviratne, Tina Hernandez-Boussard, Michael Kahn 
 
Reading between the genes: interpreting noncoding DNA in high throughput 
Joanne Berghout, Yves A. Lussier, Francesca Vitali, Martha L. Bulyk, Maricel G. Kann, Jason H. Moore 
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Text mining and machine learning for precision medicine  
Graciela Gonzalez, Hongfang Liu, Zhiyong Lu, Robert Leaman 
 
Translational informatics of population health: how large biomolecular and clinical datasets unite 
Yves A. Lussier, Atul Butte, Rong Chen, Haiquan Li, Jason H. Moore 
 
The PSB 2019 keynote speakers are Russ Altman (Science keynote) and Lawrence Hunter (Ethical, Legal and 
Social Implications keynote). 
 
Tiffany Murray has managed the peer review process and assembly of the proceedings since 2003, and also plays a 
key role in many aspects of the meeting. We are grateful for the support of the Cleveland Institute for 
Computational Biology, Second Genome, Icahn Institute for Data Science and Genomic Technology, Cipherome, and 
DNANexus for their support of PSB 2019. We also thank the National Institutes of Health1 and the International 
Society for Computational Biology (ISCB) for travel grant support. The research parasite and symbiont awards benefit 
by support from: GigaScience, Lifebit, Communications Biology, and the Gordon and Betty Moore Foundation. 

We are particularly grateful to the onsite PSB staff Al Conde, Paul Murray, Ryan Whaley, Mark Woon, BJ 
Morrison-McKay, Cynthia Paulazzo, Jackson Miller, Kasey Miller, Heather Sanchez, and Nicholas Murray for 
their assistance. We also acknowledge the many busy researchers who reviewed the submitted manuscripts on a 
very tight schedule. The partial list following this preface does not include many who wished to remain 
anonymous, and of course we apologize to any who may have been left out by mistake. 
 
We look forward to a great meeting once again. Aloha! 
 
Pacific Symposium on Biocomputing Co-Chairs, 
October 13, 2018 
 
Russ B. Altman 
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1 Funding for this conference was made possible (in part) by Grant # 5 R13 LM006766 – 21 from the National Library of Medicine. The 
views expressed in written conference materials or publications, and by speakers and moderators, does not necessarily reflect the official 
policies of the Department of Health and Human Services; nor does mention by trade names, commercial practices, or organizations imply 
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 Pattern Recognition in Biomedical Data: Challenges in putting big data to work 
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Introduction 

Technological advances are leading to an exponential increase in the size of biomedical 

data. Demand is high for novel computational techniques that can cope with these large datasets 

and have the potential to support translational research. Methods to analyze biomedical data in 

order to handle its complexities require sophisticated algorithms for pattern recognition and to 

handle complexities such as sparesenss and noisiness in these datasets. The availability of high 

throughput techniques in generating highly resourceful multi-omic biomedical data (genomic, 

transcriptomic and epigenomic to name a few) gave rise to a whole new set of challenges in 

identifying patterns. Modern statistical, machine learning, and even artificial intelligence (AI) 

methods can be used to integrate multiple resources to understand complex phenotypic traits. 

However, most of these methods pose multiple challenges either in fitting models or in 

analyzing the resulting models, whether using multiple species or multi-omic datasets for the 
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same species. This session focuses on innovative ways to address the challenges arising from 

the quality and quantity of data and also integrating biomedical data from various sources to 

identify patterns in biomedical datasets[1–3].  

While cloud computing aids in analysis performance by improving computing time and 

storage, it is limited to the software package and there is considerable room for improvement 

in the cloud-based big-data analysis. Our session also aims at discussing the optimization of 

tool development for large scale datasets and challenges that are associated with the 

computational cost as well as resources for pattern recognition. Manuscripts listed in this 

session can be classified into following 4 categories: 

 

 

1. Identifying patterns in EHR data:  

Electronic Health Records (EHRs) is a collection of longitudinal health information 

from an individual’s point of care. It includes diagnosis, procedure, laboratory 

measurement, medication, imaging, and clinical note. Many retrospective case-control 

studies have already demonstrated meaningful use of EHR data and its potential to 

improve understanding of disease risk and prevalence in the general populatio[4–7].  

However, the data within EHR has not been utilized to its full extent due to several 

challenges, such as missing data, institutional biases in coding practice, and high 

throughput electronic phenotyping. 

 

In the manuscript titled “Learning Contextual Hierarchical Structure of Medical 

Concepts to Clarify Phenotypes”, Beaulieu-Jones et al present an innovative 

application of Pointcaré embeddings to model data-driven hierarchy of ICD-9 

diagnosis codes. The Pointcaré embeddings approach uses hyperbolic space to learn 

the embedding from a vector of nodes in a network graph as opposed to traditional 

Euclidean space-based methods such as Word2Vec[8]or GloVe[9] Since it is shown 

that the hyperbolic space is more appropriate for hierarchical information[10], so its 

application of ICD-9 codes shows potential in improving phenotype definitions while 

keeping the global structure and hierarchy of ICD-9 codes. 

 

Similarly, as the new methods are showing improvement in electronic phenotyping in 

EHR data, it is also important to identify patient cohort for a disease more accurately. 

In manuscript titled “The Effectiveness of Multitask Learning for Phenotyping with 
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Electronic Health Records Data”, Ding et al investigated the effectiveness of a 

supervised approach called Multitask Learning (MTL) to define phenotypes using 

EHR data. Authors demonstrated that MTL approach performed better for complex 

phenotype definition whereas traditional supervised approaches such as linear models 

can be preferable for simple phenotype definitions. 

 

Integrating EHR data from various health providers across the country has great 

potential to predict disease risk across the large population. However, there are 

various disparities across different health providers such as clinical care bias, 

population differences, ethical, and privacy policies. In the manuscript “ODAL: A 

one-shot distributed algorithm to perform logistic regressions on electronic health 

records data from multiple clinical sites”, Duan et al propose an algorithmic approach 

to integrate EHR data from multiple health providers in an efficient way, and 

preserving privacy. They propose a use of a common data model developed by 

Observational Health Data Sciences and Informatics (ODSHI) and further perform 

statistical analysis in a distributed manner across multiple sites. Authors address a key 

issue of data sharing using ODAL by performing large-scale association analysis 

without explicitly sharing of sensitive data. 

 

2. Machine/Deep Learning approaches:  

The current explosion of biomedical big data, including imaging, genomic, and EHR, 

provide a great opportunity to improve understanding of the genetic architecture of 

complex diseases and ultimately to improve health care.  With the explosion of the 

biomedical big data, machine learning and deep learning techniques are becoming an 

integral component of evaluating biomedical data. In particular, deep learning has 

been extensively used in the field of biomedical informatics, such as healthcare and 

genomic data analyses as well as text mining. 

 

In the context of healthcare data analysis, the accurate detection of premature 

ventricular contractions (PVC) in patients is an important task in cardiac care for 

some patients. Gordon et al developed a novel PVC detection algorithm based around 

a convolutional autoencoder to address the weaknesses, such as the need to use 

difficult to extract morphological features, domain-specific features, or large number 

of estimated parameters, and validated their method using the MIT-BIH arrhythmia 
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database.  Although many deep learning methods have been shown with great 

successes in biomedical informatics, the “black-box” nature of deep learning and the 

high-reliability requirement of biomedical applications have created new challenges 

regarding the existence of confounding factors. In the manuscript titled “Removing 

Confounding Factors Associated Weights in Deep Neural Networks Improves the 

Prediction Accuracy for Healthcare Applications”, Wang et al present an efficient 

method that can remove the influences of confounding factors, such as age or gender, 

to improve the across-cohort prediction accuracy of deep neural networks. 

 

Deep learning is also applied to many genomic data analyses. Protein domain 

boundary prediction is usually an early step to understand protein function and 

structure. Most of the current computational domain boundary prediction methods 

suffer from low accuracy and limitation in handling multi-domain types, or even 

cannot be applied on certain targets, such as proteins with the discontinuous domain. 

Jiang et al developed an ab-initio protein domain predictor using a stacked 

bidirectional Long Short-Term Memory Units (LSTM) model in deep learning.  

Additionally, a deep residual network (deep ResNet) is a type of specialized neural 

network that helps to handle more sophisticated deep learning tasks and models. Liu 

et al describe the use of a deep ResNet-based model that fuses flanking DNA 

sequence information with additional SNP annotation information for identifying 

functional noncoding SNPs in trait-associated regions.  As another interesting study, 

steganography serves to conceal the existence and content of messages in the media 

using various techniques. Recent advances in next-generation sequencing 

technologies have facilitated the use of deoxyribonucleic acid (DNA) as a novel 

covert channel in steganography. Bae et al propose a general sequence learning-based 

DNA steganalysis framework using deep recurrent neural networks (RNNs). The 

proposed approach learns the intrinsic distribution of coding and non-coding 

sequences and detects hidden messages by exploiting distribution variations after 

hiding these messages. 

 

In addition to many applications, deep learning technique is widely used in text 

mining. Phylogeography research involving virus spread and tree reconstruction relies 

on accurate geographic locations of infected hosts. Insufficient level of geographic 

information in nucleotide sequence repositories such as GenBank motivates the use of 
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natural language processing methods for extracting geographic location names 

(toponyms) in the scientific article associated with the sequence and disambiguating 

the locations to their coordinates. Magge et al present an extensive study of multiple 

recurrent neural network architectures for the task of extracting geographic locations 

and their effective contribution to the disambiguation task using population heuristics. 

Additionally, in the manuscript titled “Automatic Human-like Mining and 

Constructing Reliable Genetic Association Database with Deep Reinforcement 

Learning”, Wang et al aim to improve the reliability of biomedical text-mining by 

training the system to directly simulate the human behaviors, such as querying the 

PubMed, selecting articles from queried results, and reading selected articles for 

knowledge. They take advantage of the efficiency of biomedical text-mining, the 

flexibility of deep reinforcement learning, and the massive amount of knowledge 

collected in UMLS into an integrative artificial intelligent reader that can 

automatically identify the authentic articles and effectively acquire the knowledge 

conveyed in the articles. 

Although classification has been extensively studied over the past decades, there 

remain understudied problems when the training data violate the main statistical 

assumptions relied upon for accurate learning and model characterization. This 

particularly holds true in the open world setting where observations of a phenomenon 

generally guarantee its presence, but the absence of such evidence cannot be 

interpreted as the evidence of its absence. Learning from such data is often referred to 

as positive-unlabeled learning, a form of semi-supervised learning where all labeled 

data belong to one (say, positive) class. To improve the best practices in the field, 

Ramola et al study the quality of estimated performance accuracy in positive-

unlabeled learning in the biomedical domain. 

 

3. Identifying patterns in omic data sets:  
Complex traits are often heterogeneous in nature, which means that they are likely not 

only explained by one data type (for example genomic variations). Thus, integrative 

methods in combining data from various sources (on same or different samples) is 

demanding. Graim et al present a new method for integrating multiple data types to 

predict cancer-drug sensitivity.  The proposed method PLATYPUS (Progressive 

LAbel Training bY Predicting Unlabeled Samples) combines prior knowledge with 

raw input data to make predictions in testing dataset. This method when compared to 
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ensemble approach on using single dataset yields better prediction even in samples 

where missingness is observed. Marty et al represent an integrative approach for 

utilizing exome and transcriptome to study the highly heterogeneous Killer 

Immunoglobulin-like receptor (KIR) region that is known to be associated with 

cancer phenotypes. Lastly, Pyman et al use deep learning methods to classify 26 types 

of cancer cells from normal tissue cell by analyzing microRNA dataset. 

 

Understanding gene function is an important aspect of interpretation of findings. 

Rapid advancements have been made in sequencing microbial genome. Li et al 

present a Bayesian approach to analyze transposon mutagenesis with next generation 

sequencing (TnSeq) data. Anand et al represent a method to link non-coding variants 

to gene functions by using CHIP-Seq data for interpreting association study signals. 

 

Publicly available open source large datasets also provide unique opportunities for 

pattern recognition. Leveraging these resources are highly important. Tsui et al 

utilized datasets from Sequence Read Archive (SRA) and designed a pipeline to 

extract allele counts from variety of datasets, such as RNA seq, whole exome 

sequencing and whole genome sequencing.  

 

4. Computational challenges: 

The data-intensive nature of the computational problem in the field of biomedical 

informatics also warrants the development of software approaches to efficiently use the 

existing institutional computer infrastructure as well as cloud computing. Additionally, 

the tools and workflows are changing at a rapid pace as new data types are being 

generated from new techniques in biology such as sequencing, gene expression data, 

among others. This raises two key issues: assessment of new software workflows and 

their reproducibility. There is community effort like Dialogue for Reverse Engineering 

Assessments and Methods (DREAM) Challenges to compare and benchmark new tools 

and workflows.  In the manuscript “A Workflow-based Approach to Benchmark 

Challenges Enhances Reusability, and Reproducibility”, Srivastava et al present an 

approach to improve the reproducibility and interpretability associated with 

bioinformatics benchmark challenges. To achieve this, the authors used the WINGS 

system as the model and modified it to allow each step of the submitted algorithms to 

be analysed. 
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Learning Contextual Hierarchical Structure of Medical Concepts with Poincairé
Embeddings to Clarify Phenotypes
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Biomedical association studies are increasingly done using clinical concepts, and in particu-
lar diagnostic codes from clinical data repositories as phenotypes. Clinical concepts can be
represented in a meaningful, vector space using word embedding models. These embeddings
allow for comparison between clinical concepts or for straightforward input to machine learn-
ing models. Using traditional approaches, good representations require high dimensionality,
making downstream tasks such as visualization more difficult. We applied Poincaré embed-
dings in a 2-dimensional hyperbolic space to a large-scale administrative claims database
and show performance comparable to 100-dimensional embeddings in a euclidean space. We
then examine disease relationships under different disease contexts to better understand
potential phenotypes.

Keywords: Clinical Concept Embeddings, Poincaré, Contextual Disease Relationships,
Context-dependent Phenotypes, Deep Learning.

1. Introduction

Word embeddings1 are a popular way to represent natural language and have seen wide use
in machine learning applied to document classification,?,? machine translation,?,? sentiment
analysis,2 and question answering.3,4 Clinical concept embeddings extend this approach to
model healthcare events,5–8 and have been particularly useful modeling longitudinal clinical
data.?,9–11 Traditional approaches such as word2vec1 and GloVe12 embed entities within a
Euclidean space.

However, recent work by Nickel and Kiela on Poincaré embeddings13 claims to provide bet-
ter embedding representations of hierarchically structured data using a hyperbolic embedding
space within the Poincaré ball. This n-dimensional hyperbolic space has a significantly higher
capacity than the Euclidean space, which allows it to effectively embed structured trees while
preserving distance relationships.14–17 Moreover, this space allows for embedding of hierarchi-
cal, tree-like structures, as Nickel and Kiela13 observed high fidelity embeddings of ontologies.
This has an obvious relevance to medical concepts, given many have an inherent tree structure
(e.g. disease nosology) that should be recapitulated in the embedding space.

When clinicians consider a disease, they examine the disease in the context of the patient’s

c© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0
License.
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overall environment.18 For example, renal failure caused by poor blood flow to the kidneys
as a result of long-term hypertension would be considered differently from renal failure as
the result of a specific infection or immune system disorder like Lupus.19 Accurate and precise
phenotyping is critical to modern clinical studies using the electronic healthcare record (EHR)
and other ’-omic’ associations studies (e.g. genomic, transcriptomic, metabolomic). Misclassi-
fied phenotypes have a severe effect on tests of association and require increased sample sizes
to maintain constant power.20–22 Increases in genetic testing and the availability of clinical
data repositories (Electronic Health Record, Administrative Claims, large-scale Cohort) have
enabled PheWAS association studies to be performed without the need to target and recruit
specific populations for each individual study.23–25 It is important to develop methods that
enable researchers to consider a specific disease or phenotype in the context of the overall
patient and environment.

We applied Poincaré embeddings to a large-scale administrative claims database to exam-
ine how the relationships of different conditions changed in distinct contexts. Our hypothesis
was that the increased representational capacity offered by Poincaré embeddings and their
ability to naturally model hierarchical data would result in improved embeddings for clinical
concepts. We first demonstrate this by showing they can accurately reconstruct the ICD-9
hierarchy on synthetic data. Next we show that they find an improved representation on real
data relative to traditional embedding approaches at the same number of dimensions. We
conclude with a disease-specific embedding hierarchy within an obese population. Our results
could provide a better representation of disease and allow for more accurate machine learning
models as well as the fine-tuning of targeted phenotypes for association studies.

2. Methods

To examine the effectiveness of Poincaré embeddings for clinical concept embedding, we: 1.)
trained Poincaré embeddings on the ICD-9 hierarchy as validation of parent-child tuples, 2a.)
selected and preprocessed chronological member sequences of each diagnosis experienced for
a specified cohort (e.g. obese vs. no metabolic disorders diagnosed), 2b.) Learned distributed
vector representations for the real data by training a Poincaré embedding model in a two-
dimensional space. 3.) Visualized the Poincaré embeddings in a two dimensional space. 4a.)
Constructed a distance matrix within the hyperbolic space. 4b.) Analyzed the distance matrix
to measure how effectively the embeddings represent clinical groupings (e.g. ICD9 Chapter,
Sub-chapter and major codes).

2.1. Source Code

The source code used for the analyses in this work are freely available on Github
(https://github.com/brettbj/poincareembeddings) under a permissive open source license.
The optimized C++ Poincare Embedding implementation by Tatsuya Shirakawa is available
under the MIT license (https://github.com/TatsuyaShirakawa/poincare-embedding).
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2.2. Data Source

These analyses were performed using de-identified insurance administration data including
diagnostic billing codes from January 1, 2008 until February 29, 2016 for more than 63 million
members. The database does not include any socioeconomic, race or ethnicity data. The
Institutional Review Board at Harvard Medical School waived the requirement for approval
as it deemed analyses of the de-identified dataset to be non-human subjects research.

The data to rebuild the reference ICD9 hierarchy tree is available in the GitHub repository
(https:/github.com/brettbj/poincareembeddings/data/icd9.tsv).

2.3. Data Selection and Preprocessing

2.3.1. Reference ICD9 Example

We first benchmarked against a known hierarchy, the ICD9 2015-Clinical Modification code
ontology. To do this we extracted the ICD9 codes into four levels: 1.) Chapters (e.g. codes 390-
459: Diseases of the circulatory system), 2.) Sub-chapters (e.g. codes 401-405: Hypertensive
disease), 3.) Major Codes (e.g. code 401: Essential hypertension), and 4.) Detail level codes
(e.g. code 401.0: Hypertension, malignant). We assigned relationships between each detail
level code and the chapter, sub-chapter and major code it belonged to, each major code to
the appropriate sub-chapter and chapter, and each sub-chapter to the chapter it belonged to.

2.3.2. Real Member Analyses

We performed cohort analyses by defining different study groups. First we included ten million
randomly selected members (without replacement) who were enrolled for at least two years
from the database of 63 million members. Next we separated two groups based on obesity
diagnoses: 1.) ten million members who do not have a diagnosis for metabolic disorders with
ICD9 codes between 270 and 279 2.) 3.38 million members who were diagnosed with obesity
ICD9 codes (278.00 and 278.01).

Poincaré embeddings learn distributed vector representations from hierarchical data (e.g.
a directed graph or tree). The input to the model is a list of tuples of the form < A,B >, which
indicates that A and B have some form of unspecified relationship (e.g. parent of, co-occurs
with, etc). In our case, the list of relationships specify that two diagnoses occurred sequentially,
within a one year period, and had to occur more than ten total times and in more than 2%
of all diagnoses.

2.4. Poincaré Embeddings

The key way in which Poincaré embeddings differ from traditional approaches is the distance
metric which is used to compare the embeddings for two concepts. This distance metric is
given in equation 1:

dist((x1, y1), (x2, y2)) = arccosh(1 +
(x2 − x1)

2 + (y2 − y1)
2

2y1y2
) (1)

Equation 1 shows the distance between two points in the Poincaré ball hyperbolic space.
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Training a Poincaré embedding model occurs by maximizing the distance (Equation 1)
between unconnected nodes or diagnoses while minimizing the distance between highly con-
nected nodes. This is done using a stochastic Riemannian optimization method, specifically
stochastic gradient descent on riemmanian manifolds as seen in Bonnabel.15

2.5. Processing and Evaluating Embeddings

Once each concept is embedded into a two dimensional space, it is possible to calculate the
pair-wise distance between all concepts using Equation 1. To assess how well the embeddings
captured the ICD hierarchy on real data, we compared the average distances between concepts
in the same ICD9 major code, sub-chapter and chapter against the distances of all other
concepts. We then compared the capacity of a two-dimensional Poincairé space with varying
size euclidean spaces. To do this, we repeated distance calculations with the clinical concept
embeddings trained in a euclidean space on more than 63 million members in 2, 10 and 100
dimensions from Beam et al.5 To normalize the distance comparisons between hyperbolic and
euclidean spaces, we compared the ratio of distances between ICD codes within the same
major, sub-chapter and chapter and the other ICD codes outside of the major, sub-chapter,
and chapter.

3. Results

3.1. ICD9 Hierarchy Evaluation

To evaluate the method with a known ground truth, we embedded the ICD9 hierarchy and
then reconstructed it as a tree. Because there are no counts included, stochasticity for all
relationships at the same level (Chapter, Sub-chapter, Major, Detail) was expected. Figure
1 shows the reconstructed tree of the predefined ICD9 tree. This served as evidence that
Poincairé embeddings can effectively embed a clean ICD9 hierarchy.

3.2. Poincaré Embeddings on 10 Million Members

We then trained Poincaré embeddings in a two-dimensional space for 10 million randomly
selected members (Table 1).

Table 1 Member Demographics of the Training Data
Demographics

Male 40.4%
Female 59.6%
Age (2016) 48.66 (22.68)
ICD9 Diagnoses 22.38 (28.70)

Figure 2A shows the ICD9 concepts (labeled by chapter) embedded in a two-dimensional
space. While there were over 223 million total diagnoses, the majority of concepts had less
than 100 distinct relations (Figure 2B) and the number of distinct relations was correlated
with the distance from the origin (R2 = 0.61) (Figure 2C).
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Fig. 1. ICD Example All codes

Figure 2 shows that the ICD hierarchy is correctly reconstructed using by the Poincaré
embeddings in two dimensions. The distances between ICD codes in the same major, sub-
chapter and chapter are smaller than the distances across different major codes, sub-chapters
and chapters (Table 2). This shows that Poincaré embeddings are representing the data in a
way that has similarities with the human-defined ICD9 hierarchy.
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Fig. 2. A.) ICD9 Diagnoses Codes Embedded in a two-dimensional space. B.) Examination of the
number of distinct relations for each ICD9 code. C.) Examination of the Correlation between the
number of distinct relations and hyperbolic distance.
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Table 2. Hyperbolic Distance comparison within Major, Sub-chapter and Chapter
Category In Category Outside of Category
Major 3.87 (1.71) 5.89 (1.92)
Sub-chapter 4.47 (1.73) 5.89 (1.92)
Chapter 4.91 (1.81) 5.91 (1.94)

3.3. Comparison with Euclidean Embeddings

To evaluate Poincaré embeddings against traditional euclidean embeddings, we compared the
2-dimensional Poincaré embeddings with 2, 10 and 100 dimension embeddings. The Poincaré
embeddings were trained on 10 million randomly selected members. Running the preprocessing
pipeline required 42 minutes on 16 cores but training the embeddings required only 49 seconds
on 16 cores. All euclidean embeddings were trained on more than 63 million members. Table
3 shows the ratios of the mean distances of ICD codes in the same category over ICD codes
in all other categories. We show the ratio to allow for comparison between Poincaré and
Euclidean distances. As the dimensionality of the euclidean embeddings increased, the ratio
of distance in-group vs. out of group decreased, indicating that the higher capacity enabled a
better representation. The 2-dimensional Poincaré embeddings compared most closely to the
100-dimensional euclidean embeddings.

Table 3 Distance (ratio) comparison between Poincaré (2-dimensional) and Euclidean (2, 10,
& 100-dimensional) within Major, Sub-chapter and Chapter.

Category Poincaire (2d) Euclidean (2d) Euclidean (10d) Euclidean (100d)
Major 0.657 0.758 0.668 0.649
Sub-chapter 0.759 0.863 0.794 0.774
Chapter 0.831 0.894 0.856 0.830

3.4. Cohort Specific Embeddings

Finally, we trained two separate Poincaré embeddings on patients with either: 1.) no
prior diagnoses from the sub-chapter of metabolic disorders between ICD code 270 and
279 (N=10,000,000) and 2.) members diagnosed with obesity (ICD codes 278.00, 278.01,
N=3,377,267) to first visualize the differences in the context of type 2 diabetes mellitus (Figure
3). Because the Poincaré embedding model was trained in 2-dimensions this was done without
any further dimensionality reduction step.

We then examined the diseases in the closest quartile of either cohort to determine which
showed the greatest movement from type 2 diabetes (Table 4). Of note, 22 of the top 50 were
pain related and there are numerous links in the literature between both obesity (particularly
joint and fibromyalgia26,27) and type 2 diabetes (particularly neuropathy28) with pain.

4. Discussion and Conclusion

Machine learning has great potential to improve the delivery of healthcare to patients, but
many methodological challenges remain before this potential can be realized.29,30 In this work,
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Fig. 3. A.) Poincaré Embeddings trained on 10M members with no metabolic disorder diagnoses
(centered on type 2 diabetes). B.) Poincaré Embeddings trained on 3.38M members diagnosed with
obesity (centered on type 2 diabetes).

Table 4. ICD9 Codes with the largest changes in distance from Type 2 Diabetes (250.00).
ICD Description

1 553.21 Incisional hernia
2 786.09 Other Respiratory Abnormalities
3 599.0 Urinary tract infection
4 285.9 Anemia
5 571 Chronic Liver Disease
6 583.6 Nephritis
7 724.5 Backache, unspecified
8 710.5 Eosinophilia myalgia syndrome
9 796.2 Elevated blood pressure w/o hypertension
10 719.46 Pain in Leg

we showed the increased capacity and hierarchical positioning of Poincaré embedding models
can be useful to learn representations of disease diagnosis codes. Two-dimensional Poincaré
embeddings were on par with 100-dimension euclidean embeddings when compared to the
human-defined ICD hierarchy. Importantly the extra capacity of Poincaré embeddings may
directly allow for visualization in a two-dimensional space, while traditional euclidean embed-
ding techniques require an additional dimensionality reduction step (PCA, t-SNE, UMAP).
Many of these techniques are non-deterministic and may not preserve global structure.

An important limitation of our current method is that the pre-processing step constructs
binary relations between concepts whenever they occur with a specified threshold (more than
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10 occurrences and 2% of cases). It is likely that additional information could be learned by
encoding the actual frequency between concepts. In addition, it could be useful to evaluate
additional distance matrices that have worked well for hierarchical problems in other domains,
such as pg-gram and Edit distance.31

There are significant opportunities to expand on and apply these techniques to biomedical
domains in order to examine and consider phenotypic context when performing associations.
We are especially interested in the ability to contextualize a phenotype for association studies
by considering the way ICD code relationships change given comorbidities. For example, start
by measuring the way Poincaré embeddings change given a comorbidity (e.g. type 2 diabetes
given metabolic disorder). If there are significant changes, it may be helpful to design asso-
ciation studies to separate endpoints, for example diabetes with no prior metabolic disorders
and diabetes with prior metabolic disorders. In this case, the disease etiology may be distinct,
and therefore we would expect the potential for different genetic drivers.
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Electronic phenotyping is the task of ascertaining whether an individual has a medical
condition of interest by analyzing their medical record and is foundational in clinical in-
formatics. Increasingly, electronic phenotyping is performed via supervised learning. We
investigate the effectiveness of multitask learning for phenotyping using electronic health
records (EHR) data. Multitask learning aims to improve model performance on a target
task by jointly learning additional auxiliary tasks and has been used in disparate areas of
machine learning. However, its utility when applied to EHR data has not been established,
and prior work suggests that its benefits are inconsistent. We present experiments that
elucidate when multitask learning with neural nets improves performance for phenotyping
using EHR data relative to neural nets trained for a single phenotype and to well-tuned
baselines. We find that multitask neural nets consistently outperform single-task neural nets
for rare phenotypes but underperform for relatively more common phenotypes. The effect
size increases as more auxiliary tasks are added. Moreover, multitask learning reduces the
sensitivity of neural nets to hyperparameter settings for rare phenotypes. Last, we quantify
phenotype complexity and find that neural nets trained with or without multitask learning
do not improve on simple baselines unless the phenotypes are sufficiently complex.

Keywords: Electronic Health Records; Electronic phenotyping algorithms; Deep learning;
Multi-task learning.

1. Introduction

The goal of electronic phenotyping is to identify patients with (or without) a specific disease
or medical condition using their electronic medical records. Identifying sets of such patients
(i.e. a patient cohort) is the first step in a wide range of applications such as comparative
effectiveness studies,1,2 clinical decision support,3,4 and translational research.5 Increasingly,
such phenotyping is done via supervised machine learning methods.6–8

Multitask learning (MTL) is a widely used technique in machine learning that seeks to im-
prove performance on a target task by jointly modeling the target task and additional auxiliary
tasks .9 MTL has been used to good effect in a wide variety of domains including computer vi-
sion,10 natural language processing,11,12 speech recognition,13 and even drug development.14,15

However, its effectiveness using EHR data is less well established, with prior work providing
contradictory evidence regarding its utility.16,17

In this work, we investigate the effectiveness of MTL for phenotyping using EHR. Our pre-

c© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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Fig. 1. The architecture of a multitask neural net for electronic phenotyping is shown on the right:
the target task (shown in yellow) and the auxiliary tasks (shown in blue) share hidden layers and
have distinct output layers; for comparison, we show the corresponding single-task neural net on the
left with a single output layer for the target phenotype.

liminary studies recapitulated the inconsistent benefits found in prior work.16,17 We thus aimed
to elucidate the properties of the phenotypes for which MTL helps versus harms performance.

In this paper, we present a systematic exploration of the factors that determine whether
or not MTL improves the performance of neural nets for phenotyping with EHR data. Our
experiments suggest the following conclusions:

• MTL helps performance for low prevalence (i.e. rare) phenotypes, but harms perfor-
mance for relatively high prevalence phenotypes. Consistent with some prior work, there
is a dose-response relationship with the number of auxiliary tasks, with the magnitude
of the benefit or harm generally increasing as auxiliary tasks are added.

• MTL reduces the sensitivity of neural nets to hyperparameter settings. This is of prac-
tical importance when one has a limited computational budget for model development.

• Neural nets trained with or without MTL do not improve on simple baselines unless
phenotypes are sufficiently complex. However, learning more complex models can be
problematic with complex but low prevalence phenotypes. We explore this phenomenon
by quantifying phenotype complexity using information theoretic metrics.

2. Background

2.1. Multitask nets

Multitask Learning MTL seeks to improve performance on a given target task by jointly
learning additional auxiliary tasks. For instance, if the target task is whether or not a patient
has type 2 diabetes, one might jointly learn auxiliary tasks such as whether or not the patient
has other diseases such as congestive heart failure or emphysema. MTL is most frequently
embodied as a neural net in which the earliest layers of the network are shared among the
target and auxiliary tasks, with separate outputs for each task (see Figure 1). MTL was
originally proposed to improve performance on risk stratification of pneumonia patients by
leveraging information in lab values as auxiliary tasks.9 It has since been used extensively
for health care problems such as predicting illness severity18 and mortality,17 and disease risk
and progression.19–23 However, the reported benefits of MTL are inconsistent across problems.
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Fig. 2. Rule-based definitions for Type 2 Diabetes Mellitus from PheKB.34

For example, Che et. al showed that MTL improved performance on identifying physiological
markers in clinical time series data,16 while Nori et. al concluded that MTL failed to improve
performance on predicting mortality in an acute care setting.17 Our aim in this study is to
clarify when one might expect MTL to help performance on problems using EHR data. We
focus specifically on the foundational problem of phenotyping, which we discuss next.

Electronic Phenotyping In this study, phenotyping is simply identifying whether or not a
patient has a given disease or disorder. The gold standard for phenotyping remains manual
chart review by trained clinicians, which is time-consuming and expensive.24–26

This has spurred work on electronic phenotyping, which aims to solve the same problem
using automated means and EHR data as input. The earliest electronic phenotyping algorithms
were rule-based decision criteria created by domain experts.24–28 Figure 2 shows an example
of a rule-based algorithm for type 2 diabetes mellitus. In this approach, identifying patients
with the phenotype can be automated once the algorithm is specified, but the latter process
is still time consuming and expensive.

More recent work has focused on using statistical learning6,29–33 to automate the process
of specifying the algorithm itself using the methods of machine learning (i.e. models such as
logistic regression, random forests, and neural nets). MTL is a particular method for doing
this better. Our goal in this work is not to maximize performance for some phenotype but
rather to gain insight into when MTL helps versus harms in this approach to phenotyping.

3. Methods

3.1. Dataset Construction and Design

Dataset Our data comprises de-identified patient data spanning 2010 through 2016 for
1,221,401 patients from the Stanford Translational Research Integrated Database Environ-
ment (STRIDE) database.35 Each patient’s data includes timestamped diagnosis (ICD-9),
procedure (CPT), drug (RxNorm) codes, along with demographic information (age, gender,
race, and ethnicity). We use a simple multi-hot feature representation whereby each ICD-9,
CPT, and RxNorm code is mapped to a binary indicator variable for whether the code occurs
in the patient’s medical history. We similarly encode gender, race, ethnicity, and each integer
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value of age. This process results in a sparse representation of 29,102 features.

Target Task Phenotypes Phenotyping with statistical classifiers is typically framed as a
binary classification task, which requires data labeled with whether or not the patient has
the phenotype. For this study, we derive the phenotypes using rule-based definitions from
PheKB,36 a compendium of phenotype definitions developed to support genome-wide associ-
ation studies. We focus on 4 phenotypes, chosen to span a range of prevalences. They are:
type 2 diabetes mellitus (T2DM), atrial fibrillation (AF), abdominal aneurysm (AA), and an-
gioedema (AE). The respective prevalences of these phenotypes in our data are 2.95%a, 2.89%,
0.12%, and 0.08%. We use these rule-based definitions to derive the phenotypes because they
are easy to implement, scalable and transparent – later we describe how we take advantage of
the rule-based definitions to gain insight into the effectiveness of MTL relative to baselines.

Auxiliary Tasks Our auxiliary tasks are to classify phecodes, manually curated groupings
of ICD-9 codes originally used to facilitate phenome-wide association studies.37 We randomly
select phecodes with prevalence between 0.08% and 2.95%, i.e. the lowest and the highest
target phenotype prevalences, as auxiliary tasks. We conduct binary classification on each
phecode and experiment with 5, 10, and 20 randomly selected phecodes as auxiliary tasks.

3.2. Experimental Design

We aim to investigate whether and under what circumstances MTL improves performance
upon baselines. Recent work suggests that we need to be careful in order to draw robust con-
clusions on the relative merits of machine learning, especially neural net based methods.38–41

First, one typically randomly partitions data into training, validation and test sets. We fit
models to the training set, select or tune models using the validation set, and estimate perfor-
mance on new data using the test set. All three steps use finite samples and are thus subject
to noise due to sampling. This is especially true when data exhibit extreme class imbalance, as
is the case with our phenotypes. Second, the performance of even simple feed-forward neural
nets is known to be sensitive to hyperparameters such as the number of hidden layers and their
sizes. Finally, fitting neural nets is inherently stochastic due to random initialization of model
parameters and training by some variation of stochastic gradient descent. This, combined with
the highly non-convex nature of neural nets, implies that different training runs of a neural net
with fixed hyperparameters and dataset splits can still result in widely varying performance.42

We thus designed our experiments to mitigate noise due to these factors. First, for each
phenotype, we perform ten random splits of the data into training (80%), validation (10%),
and test sets (10%). We use stratified sampling to fix the prevalence of the targets to the overall
sample prevalence in each of the training, validation and test sets. Second, for each of these
splits, we perform a grid search over these hyperparameters for the MTNN and STNN models:
we vary the number of hidden layers (1 or 2), their size (128, 256, 512, 1024, and 2048), and the
initial learning rate for the algorithm (1e-4 and 5e-5). Moreover, we performed experiments

aThe prevalence is low compared to the population prevalence of approximately 9% because the
rule-based definitions from PheKB are tuned for high precision at the cost of lower recall.
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varying the number of auxiliary tasks (in the form of 5, 10, and 20 nested, randomly selected
phecodes) for MTNNs by conducting the above grid search for each scenario. For each split,
we also fit an L1 regularized logistic regression model, tuned on the validation set. We use
the area under the Precision-Recall curve (AUPRC) as our evaluation metric since it can be
more informative than the area under the receiver operator characteristic curve (AUROC) in
problems with extreme class imbalance.43

Phenotype Complexity Our experiments suggested that the complexity of the phenotype
is important in whether MTNNs and STNNs outperform well-tuned logistic regression. We
quantified the phenotype complexity with regard to a subset of the features upon which the
classifiers are builtb. If we had access to an oracle that told us which features of the patient
representation are important in determining a patient’s phenotype, we could characterize the
complexity of the phenotype with regard to the observed combinations of these features in the
positive cases. We could also compare the distributions of the positive and negative cases to ex-
amine how difficult it is to discriminate positive and negative cases given the relevant features.

Our phenotypes are derived from the rule-based definitions, which we use as such an oracle:
for each phenotype, we extract the features involved in its rule-based definitions (the oracle
features) and count occurrences of each distinct combination of these features observed in
the positive and negative cases. Each unique combination is represented as a binary string
with each digit indicating the presence or absence of an oracle feature. Since some of the
phenotype definitions involve very many combinations, we hash the combinations into a lower-
dimensional space, i.e. a fixed number buckets. Specifically, we use a hash function to map
the combinations (the variable-length binary strings) to a fixed number of hash codes (the
buckets). We obtain the counts in each bucket for the positive and negative cases and analyze
the resulting histograms using two information theoretic metrics.

Let xi be the vector of oracle features for bucket i. We summarize the phenotype complexity
of positive cases by treating the histogram as a discrete probability distribution and calculate
its information entropy,44 defined as:

H(X) = Ex∼P [log(x)] =

n∑
i=1

p(xi) log(xi),

where n is the number of buckets. This metric summarizes the diversity of positive cases with
respect to the oracle features and is higher for more complex phenotypes.

We compare the distributions of the positive and negative cases using the Kullback-Leibler
(KL) divergence.45 For discrete probability distributions P+ and P−, the KL divergence from
P− to P+ is defined as:

DKL(P+ ‖ P−) =

n∑
i=1

P+(xi)
P−(xi)

P+(xi)
,

where n is the number of bucketsc. P+(xi) and P−(xi) are the normalized frequencies of bucket

bThere is no direct way to quantify the complexity of the rule-based definitions shown in Figure 2.
cKL divergence does not admit zero probabilities so we use Laplace smoothing on the distributions
to deal with combinations that do not have mutual support.
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i for cases and controls respectively. KL divergence measures the dissimilarity between the
case and control distributions and is lower for the phenotypes that are harder to discriminate.d

Neural Net Details All neural nets used ReLU activations46 for the hidden layers and
Xavier initialization47 and were trained using Adam48 with standard parameters (β1 = 0.9

and β2 = 0.99) for 6 epochse. We controlled overfitting with batch normalization and early
stopping on the validation set.

4. Experiments and Results

In this section, we present results that provide insight into the following questions:

• When does MTL improve performance relative to single-task models for phenotyping?
• How do the effects of MTL change with the number of phecodes as auxiliary tasks?
• How do the neural net methods compare with strong baseline methods, and what are

the characteristics of the tasks for which they provide some benefit?

4.1. When Does Multitask Learning Improve Performance?

We investigate the performance of MTNNs over a range of hyperparameter settings and over
multiple random splits of the data. MTNN performance is compared to the performance
of STNNs over the same hyperparameter settings and data splits. Figure 3 shows the op-
timal MTNN and STNN performance achieved on each split for the four phenotypes. We
find that MTNNs consistently outperform STNNs for the low prevalence phenotypes, i.e. an-
gioedema and abdominal aneurysm. In contrast, MTL harms performance for the relatively
high-prevalence phenotypes, i.e. T2DM and atrial fibrillation. The left plot in Figure 4 shows
the pairwise differences between MTNN and STNN optimal performance across the splits.

Moreover, the performance of STNNs is very sensitive to hyperparameter settings for the
low prevalence phenotypes, as illustrated by the large spread in AUPRC values (see Figure
3). In contrast, MTNNs are more robust to hyperparameter settings for these phenotypes. In
practice, tuning neural nets is time-consuming and finding an ideal model demands extensive
computation. MTL may increase our chance of finding a reasonable model, which is of practical
value when one has a limited computational budget on model space exploration.

4.2. Relationship Between Performance and Number of Tasks

We investigate how MTL is influenced by the number of auxiliary tasks as defined in the
form of phecodes. We trained MTNNs with nested sets of 5, 10, and 20 randomly selected
phecodes (i.e. the 5-phecode set is a subset of the 10-phecode set, and so on), and reported the
performance with the optimal hyperparameter setting for each split. The right plot in Figure
4 shows pairwise differences in AUPRC values between MTNNs and STNNs. For the low
prevalence phenotypes, more phecodes increases performance gains. Similarly, more phecodes

dPlease refer to https://arxiv.org/abs/1808.03331 for a more detailed description of our method.
eWe found 6 epochs was sufficient for all models to converge.
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Fig. 3. MTNN and STNN performance for Angioedema, Abdominal Aneurysm, Atrial Fibrillation,
and Type 2 Diabetes Mellitus with various hyperparameter settings across the ten splits; the best case
MTNN and STNN performance is emphasized by the solid dots: the blue and red dots correspond
to MTNNs and STNNs respectively.

Fig. 4. The left plot shows the pairwise differences in AUPRC values of the optimal MTNNs and
STNNs for Angioedema, Abdominal Aneurysm, Atrial Fibrillation, and Type 2 Diabetes Mellitus
across the ten splits. The right plot shows the pairwise differences in AUPRC values of the optimal
STNNs and MTNNs with different number of phecodes as auxillary tasks.

for high prevalence phenotypes leads to more severe negative effects, though the scale of the
negative effects is smaller than the positive effects for low prevalence phenotypesf .

fThis dose-response relationship with the number of auxiliary tasks recapitulates the findings of
Ramsundar et al,14 but we find the relationship holds for both the benefit and harm of MTL.
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Fig. 5. MTNN, STNN, and LR optimal performance for Angioedema, Abdominal Aneurysm, Atrial
Fibrillation, and Type 2 Diabetes Mellitus across splits: the blue squares, the red triangles, and the
green dots correspond to MTNN, STNN, and LR respectively.

4.3. Comparison with Logistic Regression Baseline

In discussing the merits of MTL, it is important to also compare the performance against
simpler baseline methods in addition to single-task neural nets. We compare the performance
of the neural nets with L1 regularized logistic regression (LR), a consistently strong baseline for
EHR data49,50 (see Figure 5). LR is consistently outperformed by the neural nets for abdominal
aneurysm and type 2 diabetes mellitus, which are low and high prevalence respectively. For
angioedema, a low prevalence phenotype, performance relative to LR is inconsistent across the
splits, although MTNNs consistently beat STNNs. And for atrial fibrillation, a high prevalence
phenotype, MTNNs and STNNs provide little or no benefit over LR. Prevalence alone is
insufficient to account for the relative performance between both MTNN and STNN and LR.

4.4. Interaction between Phenotype Prevalence and Complexity

Our comparison of MTNNs and STNNs versus LR suggests that phenotype prevalence alone
cannot explain when neural nets outperform simpler linear models. We hypothesized that phe-
notype complexity also plays a role since neural nets with or without MTL can automatically
model non-linearities and interactions, while LR must have non-linearities and interactions
explicitly encoded in features. We leveraged the rule-based phenotype definitions to explore
this hypothesis and found evidence of an interaction between phenotype prevalence and com-
plexity.

Phenotype Complexity For each phenotype, we generated histograms of the observed com-
binations of the oracle features for the positive and negative cases (see Figure 6) and calculated
the information entropy of the positive cases and the KL divergence between the positive and
negative cases (see Table 1) as described in Methods 3.2.

We find that atrial fibrillation, a high-prevalence phenotype, has low entropy and high KL
divergence. With respect to the oracle features, all the positive cases are similar to each other,
while the positive and negative cases are very dissimilar to each other. A relatively simple
model should be able to capture this, explaining the observation that LR achieves comparable
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Fig. 6. Distributions of the combinations of the oracle features involved in the rule-based definitions
for Angioedema, Abdominal Aneurysm, Atrial Fibrillation, and Type 2 Diabetes Mellitus. The yellow
and blue bars correspond to the positive and negative cases respectively. The x-axes represent the
buckets of unique combinations of the oracle features: in our study, we use 32 buckets. Note that the
choice of 32 buckets was arbitrary and not tuned in any way.

Table 1. Phenotype Complexity

Phenotype Prevalence Entropy KL Divergence

Angioedema 0.08 % 3.233 0.930
Abdominal Aneurysm 0.12% 1.396 2.414
Atrial Fibrillation 2.89% 0.709 5.383
Type 2 Diabetes Mellitus 2.95 % 3.012 3.806

performance to MTNNs and STNNs for this phenotype.
Abdominal aneurysm, a low prevalence phenotype, and T2DM, a high prevalence pheno-

type, have higher information entropy and lower KL divergence values than atrial fibrillation.
Thus, the positive cases are more diverse and discrimination is more difficult than atrial fib-
rillation with respect to each phenotype’s oracle features. For these phenotypes, both MTNNs
and STNNs outperform LR – we benefit from more expressive models. However, whether
MTNNs beat STNNs depends on prevalence.

Finally, angioedema has the highest entropy and lowest KL divergence – it is both the most
complex and hardest to discriminate of the four phenotypes. Complex phenotypes should
benefit from more expressive models. However, we observe that while MTNNs consistently
outperform STNNs, their performance relative to LR is inconsistent across splits. One possible
explanation for this behavior is that relative performance is sensitive to the assignment of
patients to training, validation and test sets: with such diverse cases and common support
with respect to the oracle features, it is much more likely for the test set to contain patients
unlike any seen in the training set.

5. Limitations

We have set out to investigate MTL and its effectiveness for electronic phenotyping. However,
our work has important limitations. First, we randomly select phecodes for auxiliary tasks,
but it has been argued that auxiliary tasks should be directly related to the target task.51 It
is possible that better auxiliary tasks would improve the benefit of MTL. Specifically, more
related phecodes might mitigate or eliminate the performance degradation observed for the
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high-prevalence phenotypes or inconsistent relative performance between MTNN and LR for
angioedema. However, the notion of task relatedness is underspecified so it is problematic to
compute in order to select auxiliary tasks. Indeed, in preliminary work we explored various
formulations of relatedness to select auxiliary tasks but found that none performed better than
random selection. One could ask domain experts to manually construct or pick auxiliary tasks
for specific phenotypes, but this is beyond the scope of this work. Moreover, it has also been
shown that the task relatedness is unnecessary for MTL to provide benefits.52 However, we
acknowledge that it is an interesting line of inquiry for future work to further explore how to
improve multitask learning for electronic phenotyping. Second, to address the unavailability
of large-scale ground truth phenotypes, we use rule-based definitions because they are trans-
parent and available, but we recognize that the phenomenon we observe may be artifacts of
the rule-based definitions. We also acknowledge the possibility that the observed phenomenon
might not generalize to other phenotypes; we focused on four phenotypes to conduct an in-
depth examination, sacrificing breadth. Finally, the rule-based phenotype definitions contain
predicates encoding temporal relationships, e.g., a drug code followed by a diagnosis code.
Our simple multi-hot feature representation does not encode temporal information. As a re-
sult, there is an upper bound on the performance of any statistical classifier using this feature
representation.

6. Conclusion

We have investigated the effectiveness of multitask learning on electronic phenotyping with
EHR data, aiming to elucidate the properties of situations for which MTL improves or harms
performance. We trained multitask neural networks to classify a target phenotype jointly with
auxiliary tasks drawn from phecodes. We found that MTL provided consistent performance
improvements over single-task neural networks on extremely rare phenotypes. However, for
relatively higher prevalence phenotypes, MTL actually reduced performance. In both cases,
the effect scaled with the number of auxiliary tasks as defined in the form of phecodes. More-
over, we found that MTL improved the robustness of neural networks to hyperparameter
settings for the extremely rare phenotypes, which is of practical value in situations when one
has a limited computational budget for model exploration. Finally, we analyzed phenotype
complexity to shed light on the relative performance of both MTNN and STNN versus well-
tuned L1 regularized logistic regression baselines and found evidence of an interaction between
phenotype prevalence and complexity. We showed that simple linear models are sufficient for
non-complex phenotyping tasks. More expressive models can substantially improve perfor-
mance for more complex phenotypes, but only if the data support learning them well, which
may be problematic for rare phenotypes.
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Electronic Health Records (EHR) contain extensive information on various health outcomes and 
risk factors, and therefore have been broadly used in healthcare research. Integrating EHR data 
from multiple clinical sites can accelerate knowledge discovery and risk prediction by providing a 
larger sample size in a more general population which potentially reduces clinical bias and 
improves estimation and prediction accuracy. To overcome the barrier of patient-level data sharing, 
distributed algorithms are developed to conduct statistical analyses across multiple sites through 
sharing only aggregated information. The current distributed algorithm often requires iterative 
information evaluation and transferring across sites, which can potentially lead to a high 
communication cost in practical settings. In this study, we propose a privacy-preserving and 
communication-efficient distributed algorithm for logistic regression without requiring iterative 
communications across sites. Our simulation study showed our algorithm reached comparative 
accuracy comparing to the oracle estimator where data are pooled together.  We applied our 
algorithm to an EHR data from the University of Pennsylvania health system to evaluate the risks 
of fetal loss due to various medication exposures. 

Keywords: birth outcomes; distributed computing; meta-analysis; multi-site analysis; pregnancy; 
prenatal; surrogate likelihood. 

 
 
1.  Introduction 

1.1.  Integrate evidence from multiple clinical sites 

Electronic Health Records (EHR) contain information collected routinely as a part of clinical care. 
These data include diagnoses, medications, procedures, imaging and clinical notes. Since 2009, 
the use of EHR has grown tremendously across the nation. This allows for meaningful use of data 
recorded there [1, 2]. Institutional data integration is a major trend in EHR-based research [3, 4]. 
Integrating data from different institutions or clinical sites allows us to obtain more meaningful 
sample size and potentially accelerates knowledge discoveries in a more general population. In 
                                                             
* This work is supported in part by the University of Pennsylvania, and National Institutes of Health grants AI116794, 
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1R01AI130460, and the Commonwealth Universal Research Enhancement Program grant from the Pennsylvania 
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particular, for studying relatively rare events or conditions, such as complications from invasive 
procedures, adverse events associated with new medications, association of disease with a rare 
gene variant, and many others, integrating EHR data from different clinical sites is critical for 
obtaining more accurate, generalizable and reproducible results [5]. Moreover, because of the 
healthcare process biases endemic in EHR, it is necessary to validate findings across multiple 
sites. This allows for assessment of clinical practice bias (e.g., one drug is prescribed more 
frequently at a particular hospital), race/ethnic disparities in populations that results in differences 
in the exposure and/or the outcome at a given site and other types of biases that may be due to the 
specific research database housed at a given institution [6]. 

To address these issues, the Observational Health Data Sciences and Informatics (OHDSI) 
consortium was formed (https://ohdsi.org/) for the primary purpose of developing open source 
tools that would be shareable across multiple sites. They also developed a Common Data Model 
[7] to enable each site to map their local data to a common shareable framework. This allows for a 
single script to be run across multiple sites without alteration. This simultaneously minimizes the 
probability of a database translation error (when a script is translated from one database structure 
to another to extract the same type of result) while speeding up the time to results.  

Many studies have been conducted that have successfully utilized the OHDSI consortium, 
including a treatment pathways study [8], a birth season – disease risk study [9, 10] and several 
pharmacovigilance studies [11]. Using multiple sites allows researchers to study geographic 
variation [8, 10], which can be caused by regional changes in pollution and other exposures [10]. 

1.2.  Distributed Computing 

One barrier of institutional data sharing is regularity and government challenge on privacy 
protection [12]. In general, patient-level information with regards to important outcomes such as 
presence/absence of a medical condition or important confounders such as comorbidities, 
race/ethnicity, and age are not possible to share across institutions. As a consequence, current 
multi-site studies that rely on consortia, such as the OHDSI consortium [8, 10] or the eMERGE 
network (Electronic Medical Records and Genomics), can only utilize summary statistics that are 
shared across institutions. This necessitates the use of meta-analysis methods to aggregate signals 
from across the network [10].  

As of 2018, the OHDSI consortium runs each script locally at a given institution and returns 
results, typically summary statistics (p-values, effect estimates) to the primary investigator for a 
given protocol. The Shared Health Research Information Network (SHRINE) has constructed a 
federated query network whereby analyses are run through the network and results are returned to 
the investigator [13]. If patient-level information were shareable in a privacy-preserving manner, it 
would enable more sophisticated patient-level statistical modeling and analyses [14]. 

Distributed Computing is a strategy where a computational goal is achieved by distributively 
computing its components from multiple sites. With data from multiple clinical sites, statistical 
analyses can be performed distributively without sharing patient-level information. For example, 
motivated by the pSCANNER project (patient-centered Scalable National Network for 
Effectiveness Research), a distributed algorithm for conducting logistic regression, termed as 
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GLORE (Grid Binary LOgistic Regression), was developed and deployed to pSCANNER 
consortium [12, 15]. Another example was the WebDISCO (a web service for distributed Cox 
model learning) method for fitting the Cox proportional hazard model [16] on EHR data from 
multiple clinical sites without sharing individual patient-level data [17]. These methods proved the 
utility and plausibility of a distributed privacy-preserving computing approach for obtaining 
results from multiple sites while still adjusting for patient-level covariates [15]. 

Despite their usefulness and promise, as acknowledged by the investigators, the 
aforementioned methods [12, 17] require iteratively transferring information across sites, which is 
time-consuming and labor-intensive in practice. Such practical limitation could be one of the 
barriers to adapt distributed algorithms in research consortia. This limitation motivated researchers 
to develop non-iterative distributed algorithms [18, 19]. A recently published paper by Jordan et 
al. proposed an innovative one-shot distributive computing framework, where the main idea is to 
construct a surrogate likelihood function through the use of patient-level data from a local site and 
aggregated information from other sites [20]. This idea was also proposed in distributed analysis 
for high-dimensional regression with sparsity [21]. In this study, we exercise the surrogate 
likelihood idea in logistic regression and develop a One-shot Distributed Algorithm to perform 
Logistic regressions (termed as ODAL). A major advantage of the proposed method, inherited 
from the merits of the surrogate likelihood [20], is that it only requires synthesizing summary 
statistics from multiple clinical sites once. Compared to algorithms that require iterative 
communication across sites, it is more practical to be deployed in research consortia. 

 
2.  Material and Method 

In this section, we first present our motivating problem, then introduce our proposed method, and 
describe the design of simulation studies for evaluating the performance of our method.  

2.1.  Clinical Cohort and Motivating Problem 

We extract females treated at one of the hospitals and/or clinics that comprise the University of 

Pennsylvania health system (abbreviated as UPenn). UPenn clinics are located in the entire 
Philadelphia Metropolitan area, which includes Delaware and Southern New Jersey.  A pregnancy 
is defined as ‘normal’ if the woman was coded with any of the Z34 ICD-10 codes or a V22 ICD-9 
code. A pregnancy is labeled as ending in fetal loss if any ICD-9 code is used within 630 through 

Table 1.  Demographics of Pregnancies Treated at UPenn Health System 

Demographics Normal Pregnancy (N=30,810)  Fetal Loss (M=4,763)   P-value 
Race    
  White * 13911 (45.2%) 2291 (48.1%)  
  African American 12918 (41.9%) 1871 (39.3%)  
  Other 1916 (6.2%) 274 (5.8%)  
  Asian 2065 (6.7%) 327 (6.9%)  
Age 29.40 32.15 <0.001 
Weight (pounds) 126.26 115.43 <0.001 
Body Mass Index 19.06 16.61 <0.001 

* For race, we only used a binary variable for white versus non-white 
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639 or O00-O08 in the ICD-10 system. A similar fetal loss definition was used previously [22]. 
We only include patients who were prescribed or listed as taking at least 1 of the top 100 
prescribed medications within 1 year prior to the first diagnosis of either a fetal loss or a normal 
pregnancy. The demographics of our cohorts are given in Table 1. P-values for differences 
between the fetal loss cohort and the normal pregnancy cohort are determined using a t-test. The 
variable race is dichotomized as white versus non-white in our models. The weight and BMI 
variables are averages across an individual’s entire medical record. The statistics reported in Table 
1 are excluding those with 0 weight or 0 BMI (i.e., indicating that no entries are available for those 
parameters). However, because the average weight and BMI is computed across the individual’s 
entire record the value is smaller for those with longer records containing null entries. 

Our proof-of-concept study involves predicting pregnancy outcome: fetal loss versus normal 
pregnancy. We include 4 relevant demographic covariates: age, race, Body Mass Index (BMI), 
and weight. We include our ‘exposure’ term of interest – namely the medication exposure. We ran 
our algorithm for each of the top 100 medications (ranked by drug prevalence) prescribed within 1 
year prior to the pregnancy outcome while adjusting for the 4 demographic confounders. For 
purposes of this study, we randomly assign each pregnancy id to one of ten clinic IDs to ensure 
that an equal proportion of data is assigned to each of the ten clinics (approximately 3,557 
pregnancies per clinic). 

2.2.  Algorithm 

In this subsection, we introduce the distributed algorithm ODAL. First, we introduce the needed 
notations. We denote 𝑌 to be a binary outcome and 𝑧 to be a (𝑝 − 1)-dimensional vector, which 
contains the exposure of interest and potential confounders to be adjusted in a regression model. 
Let 𝑥 = 1, 𝑧 . Suppose we have N observations from K different sites. Without loss of generality, 
we assume that each site contains n observations, noting that the algorithm also applies to sites 
with unequal sample sizes. Let (𝑥,-, 𝑌,-) denotes the i-th observation in the j-th site. Under the 
assumption of a logistic regression model, the log likelihood function for the combined data can 
be written as 

𝐿 𝛽 = 0
1

[𝑌,-𝑥,-3 𝛽4
,50 − 𝑙𝑜𝑔{(1 + 𝑒𝑥𝑝(𝑥,-3 𝛽)}],>

-50   
where 𝛽 is a 𝑝-diemsional vector including the regression intercept and coefficients. Since the 
individual patient-level information is not allowed to be transferred across sites, we cannot obtain 
L β  directly. To tackle this challenge, we apply Taylor expansion on the log likelihood function 
(1) around an initial value  β, and obtain 

𝐿 𝛽 = 	𝐿 𝛽 + 𝛻𝐿 𝛽 𝛽 − 𝛽 + 0
-!
𝛻-𝐿 𝛽 	 𝛽 − 𝛽 ⊗-.∞

-5E                  

Suppose we have full access to the data stored in a local site (without loss of generality, assume it 
is the site 1). The log-likelihood at the local site can be written as  

𝐿0 𝛽 = 0
4

[𝑌,0𝑥,03 𝛽4
,50 − 𝑙𝑜𝑔{(1 + 𝑒𝑥𝑝(𝑥,03 𝛽)}].																																							 (2) 

Similarly, we can expand the local log likelihood function 𝐿0 𝛽  around an initial value  𝛽, 

𝐿0 𝛽 = 	𝐿0 𝛽 + 𝛻𝐿0 𝛽 𝛽 − 𝛽 + 0
-!
𝛻-𝐿0 𝛽 	 𝛽 − 𝛽 ⊗-.∞

-5E   
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Using the idea from Jordan et al. [20], higher order terms of the local likelihood 𝐿0 𝛽  in (2) can 
be used to approximate the higher order terms of the combined likelihood 𝐿 𝛽  in (1), resulting in 
the following surrogate likelihood function after dropping some constant terms,                                            

																														𝐿 𝛽 =	𝐿1 𝛽 + 1
𝐾 𝛻𝐿𝑘 𝛽𝐾

𝑘=1 − 𝛻𝐿1 𝛽 𝛽,	                                            (3) 

where 𝛻𝐿H 𝛽 = 	 0
4

[𝑌,H − 𝑒𝑥𝑝 𝑥,H3 𝛽 /{1 −4
,50 𝑒𝑥𝑝 𝑥,H3 𝛽 }]𝑥,H .  

 
Figure 1. Schematic illustration of ODAL. Using data from the local site (i.e., site 1), the local estimator  𝛽  is 
calculated and transferred to other sites. The intermediate term 𝛻𝐿- 𝛽  is then evaluated at each site j (j=2, …, K) and 
transferred back to the local site. Combined with 𝛻𝐿0 𝛽  and 𝐿0 𝛽 , we construct the surrogate function 𝐿 𝛽  in the 
local site and obtain the ODAL estimator 𝛽 by maximizing 𝐿 𝛽 . 
 
There are several notable features of the above surrogate likelihood. First, the terms 𝐿0 𝛽  and 
𝛻𝐿0 𝛽  can be calculated using data from the local site. Secondly, the term 𝛻𝐿H 𝛽  can be 
computed from site 𝑘 and transferred to the local site. Note that each 𝛻𝐿H 𝛽  is with dimension 𝑝 
and contains only aggregated information. Therefore, the information transferring maintains low 
communication cost and is privacy preserving. The ODAL estimator is then obtained locally by 
minimizing the surrogate likelihood function in equation (3), i.e. 

𝛽 = argmax
O
𝐿 𝛽 . 

Regarding the initial value 𝛽, a nature choice of  𝛽 is the maximum likelihood estimator of the 
local likelihood 𝐿0 𝛽 . A detailed algorithm is outlined below. 
  

Algorithm: ODAL 

1. Initial value:  obtain 𝛽 = argmax
β

𝐿0(𝛽) using data in the local site (i.e., site 1), where 𝐿0(𝛽) is the log 

likelihood of logistic regression defined in equation (2) 
2. Initial communication: transfer 𝛽 to the other sites (i.e., sites 2, 3, …, K) 
3. For j  = 2 to K, 
4.      do      compute 𝛻𝐿- 𝛽 , where 𝐿-(𝛽) is defined similarly as in equation (2) 
5.                 transfer 𝛻𝐿- 𝛽  to the local site 
6.      end 
7. Compute the surrogate likelihood 𝐿 𝛽  defined in equation (3) 
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8. Obtain 𝛽 = argmax
β

𝐿 𝛽  

9. return  𝛽 
 

2.3.  Simulation Design 

To evaluate the empirical performance of the ODAL method, we consider a setting where a binary 
outcome is associated with two continuous risk factors and two binary risk factors. We generate 
the two continuous variables from a standard normal distribution 𝑁 0, 1  and a uniform 
distribution 𝑈 0, 1  respectively. The two binary variables are generated from Bernoulli 
distributions with probability 0.1 and 0.5 respectively. Slightly different from the previous 
notation, we let 𝑥  denote the vector of all the risk factors. The outcome 𝑌  is generated from 
Bernoulli distribution, with the conditional probability satisfying the logistic regression model, 

𝑙𝑜𝑔𝑖𝑡 𝑃𝑟 𝑌 = 1|𝑥 = 𝛼 + 𝑥3𝛽, 
where 	𝑙𝑜𝑔𝑖𝑡 𝑝 = 𝑙𝑜𝑔	{𝑝/(1 − 𝑝)} , 𝛽  is the vector of coefficients and 𝛼  is the regression 
intercept.  

To mimic a distributed research network, we generate a total number of 𝑁  subjects and 
randomly divide them into 𝐾 sub-datasets. The local dataset is set to be the first sub-dataset and 
the number of subjects of the local dataset is 𝑛. We design the simulation study to investigate the 
relative accuracy of the ODAL compared to the following two methods:  

(i) the pooled estimator: the individual patient-level data pooled from all clinical sites are 
used, which can serve as a gold standard for the best possible accuracy; i.e., the 
estimate that maximizes the log likelihood in equation (1);  

(ii) (ii) the local estimator: only individual patient-level data from the local site are used; 
i.e., the estimate that maximizes the log likelihood in equation (2).  

We use mean square error (MSE) to summarize the performance of the three estimators and 
consider the following four scenarios: 
A. We randomly generate data for 𝑁 patients, and evenly divide them into 10 sites. We increase 

𝑁 from 1000 to 10000. This reflects a setting where a network, such as PEDSnet (the National 
Pediatric Learning Health System), contains a fixed number of pediatric hospitals, but the 
number of patients increases over time and is updated quarterly [23].   

B. We randomly generate data from 𝐾 sites each has 1000 patients, and increase 𝐾 from 2 to 100. 
This is a setting where a consortium involves a growing number of clinical sites, and the 
number of patients per site is relatively stable. For example, the Hospital Compare dataset 
(https://www.medicare.gov/hospitalcompare/search.html) contains results from Meaningful 
Use measures (e.g., 30-day readmissions) for increasing number of hospitals reporting those 
measures, however the average hospital size remained relatively constant. 

C. We randomly generate data for 10000 patients, and evenly divide them into 𝐾  sites. We 
increase 𝐾 from 2 to 100. This setting is included to investigate the relative performance of the 
ODAL for a small versus large number of clinical sites, while holding the total number of 
patients fixed. Depending on how the data are stored in each hospital, the investigators may 
choose to perform a distributive analysis on the hospital-level or on the clinic-level. 
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D. We randomly generate data for 10000 patients divide them into 10 sites. The local site has 
sample size 𝑛, and other 9 sites evenly split the rest of data. We increase n from 100 to 9100. 
This setting is to investigate the performance of the ODAL when the relative size of the local 
site, compared to the total number of patients, increases from a small percentage to a large 
proportion. For example, OHDSI contains many sites of varying sizes from 0.5 million 
patients to hundreds of millions of patients. Depending on where an investigator is located, the 
‘local’ dataset will vary with regards to the proportion of the dataset as a whole.  

 
Figure 2. Mean square errors (MSE) of ODAL, the pooled and the local estimators under settings A, B, C and D. In 
setting A (upper left panel), we evenly divide 𝑁 subjects in to 10 sub-datasets, and increase 𝑁 from 1000 to 10000. In 
setting B (upper right panel), each site contains 1000 subjects and the number of sites 𝐾 is then increased from 2 to 
100. In setting C (lower left panel), we generate 10000 subjects, and evenly divide them into 𝐾 sub-datasets, where 𝐾 
increases from 2 to 100. In setting D (lower right panel), we generate 10000 subjects, and divide them into 10 sub-
datasets, where the local dataset has 𝑛 subjects and the other 9 sub-datasets has the equal number of subjects. We 
increase n from 100 to 9900. 
 
3.  Results 

3.1.  Simulation Results 

Figure 2 presents the mean square errors of the ODAL, the pooled and the local estimators under 
four different scenarios. Overall, it shows that in all considered scenarios, the ODAL provides 
estimates with comparable accuracy as the best possible pooled estimates. In Setting A, where 
number of sites is fixed and each site has relatively the same number of subjects, ODAL can reach 
almost the same accuracy as the pooled estimator when total sample size is relatively large. When 
total sample size is limited, ODAL can still provide much more accurate estimation than the local 
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estimator (MSE of the local estimator is 15 times higher than MSE of ODAL when 𝑁 = 1000). 
This suggests that by borrowing simple gradient information 𝛻𝐿H(𝛽) from other sites, ODAL 
gained substantial statistical efficiency compared to the estimate using the data at the local site 
alone. Setting B shows that by borrowing information from more sites, the accuracy of estimation 
increases. In addition, the ODAL and the pooled estimators provide estimates with negligible 
difference in accuracy.  

Setting C shows that by dividing a fixed number of subjects into increasing number of sites, as 
expected, the performance of the pooled estimator stays the same. ODAL performs as good as the 
pooled estimator when the number of sites is relatively small. With increasing number of sites, 
ODAL has slightly increased amount of error, but is much more accurate compared to the local 
estimator (MSE of the local estimator is 13 times of the MSE of the ODAL estimate when 𝐾 = 
100).  The results from Setting C suggest that ODAL can guarantee reasonable accuracy even 
when the number of sites are moderately large. Such investigation also provides quantitative 
guidance on choosing between performing the distributed analysis at the clinic level (relatively 
large number of sites) or the hospital level (relatively small number of sites). Setting D considers 
the influence of number of subjects contained in the local sites on the accuracy of each methods. 
As expected, the local estimator performs worse with smaller number of subjects in the local site. 
The change of local sample size does not influence the performance of the pooled estimator since 
the total sample size is fixed.  Compared to the pooled estimator, the ODAL performs almost the 
same where the ratio of MSE decreases from 1.22 to 1.00 with the increase of local sample size.  

 
Figure 3: Odds ratio estimates from the ODAL method (red triangles) and the pooled data (blue circles) for 100 
medications and their associations with fetal loss. The 100 medications from left to right are sorted by their prevalence 
in the population.       
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The distributed algorithm GLORE, which leads to exactly the same estimate as the pooled 
estimator, requires cross-site iterations until a convergence is reached. In our simulation, the 
number of iterations to obtain the pooled estimates ranges from 6 to 10 using the glm() function in 
R 3.4.1. In the case with more covariates involved, it may require larger number of iterations to 
achieve convergence, which creates a substantial burden in communication across clinical sites. 

3.2.  Fetal Loss Prediction via ODAL 

We apply ODAL to the EHR data described in Section 2.1 to evaluate the risks of fetal loss due to 
various medication exposures. We include the top 100 medications prescribed within 1 year prior 
to a normal pregnancy or fetal loss outcome. We randomly assign each of our pregnancies to 1 of 
10 clinics to test the performance of ODAL. We include one medication at a time adjusting for 
maternal age, race/ethnicity (collapsed to a binary variable of White versus non-White), weight 
and BMI. Figure 3 compares the estimates from ODAL to the pooled estimator. The average 
relative difference in the odds ratios between ODAL and the pooled estimator is 0.0046 across all 
100 medications. This indicates that the result from ODAL is very close to the result that would be 
achieved if all individual-level data are pooled together for the analysis.  

 
Figure 4: Odds ratio estimates from ODAL and the pooled estimator for the top 10 medications positively associated 
(left panel) and negatively associated (right panel) with fetal loss. On the left panel, the ten medications are 
misoprostol, acetaminophen codeine, doxycycline hyclate, oxycodone acetaminophen, ibuprofen, levonorgestrel, 
medroxyprogesterone acetate, etonogestrel ethinyl estradiol, hydrochlorothiazide and norelgestromin eth estradiol. On 
the right panel, the ten acronyms are referring to prenatal vitamins (without vit. A) with DHA, iron, folic acid and 
docusate sodium; Prenatal vitamins with Iron fumarate, Folic Acid; Prenatal vitamin with Folic Acid and DHA; DHA; 
Prenatal vitamins with Iron, Sulfate, and Folic Acid; Prenatal vitamin (without vit. A) with DHA, Folic Acid, Extra 
Iron and Docusate sodium; Prenatal vitamins; Prenatal multi-vitamin with Folic Acid and minimum Iron; Prenatal 
vitamins with Iron, Docusate sodium, and Folic Acid; Metoclopramide hcl. The letter on each medication shows the 
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FDA assigned pregnancy category, where A, B and C means of no or unknown risk, D and X means of risk. N means 
the medication is not assigned a category. Detailed interpretations can be found at 
https://chemm.nlm.nih.gov/pregnancycategories.htm.  
 

Figure 4 presents the top 10 medications that are positively associated (left panel) and bottom 
10 medications that are negatively associated (right panel) with fetal loss. To compare our findings 
with existing knowledge in the literature, we use information on the pregnancy safety of the drug 
using the Food and Drug Administration (FDA)’s A-X category system. This information is 
readily obtainable from drugs.com, a freely available online resource, for drugs and their various 
therapeutic uses and effects (https://www.drugs.com/). Each drug’s FDA category is shown above 
in Figure 4. Drugs  in category A are drugs where no fetal risk has been observed in controlled 
human studies, category B drugs are drugs with no evidence of fetal risk in animal models but 
well-controlled human studies are lacking, category C drugs are drugs where fetal risk has been 
shown in animal models but the effects are unknown in humans while category D and X are drugs 
with known evidence of some fetal risk in humans and animals [24]. Of the top 10 drugs 
associated with fetal loss Figure 4, six are either category D or X with known evidence of fetal 
risk in the literature. Three drugs are category C pain relievers, two are drug combos of Tylenol 
(acetaminophen) with an opioid (codeine or oxycodone) while ibuprofen is an over-the-counter 
pain reliever. The only category A or B drug in the top 10 is hydrochlorothiazide (a diuretic that 
treats hypertension), a category B drug. However, hydrochlorothiazide is considered a category D 
drug, and contra-indicated in pregnancy, is used to treat pregnancy-related hypertension. 
Therefore, there is likely a dosage that is fetal toxic. In the ten medications that are negatively 
associated with fetal loss, we identify 8 types of prenatal vitamins with folic acid, 
docosahexaenoic acid (DHA) and metoclopramide hcl. These findings are consistent with the 
literature on the importance of prenatal vitamins to prevent early term miscarriages and fetal loss. 
For example, it has been suggested by many studies that folic acid has positive impacts on 
preventing early pregnancy loss [25]. In summary, the ODAL method leads to estimates that are 
highly consistent with the pooled estimates, and the identified associations are also consistent with 
our current understanding of these medications. 
 
4.  Discussion 

The integration of EHR data from multiple healthcare databases increases statistical sample size 
and heterogeneity of exposure, as well as reduces clinical bias and improves the power of 
statistical analyses. The rise of large healthcare networks, such as ODHSI, pSCANNER, SHRINE 
and PEDSnet provide platforms for data integration and evidence synthesis [23]. To avoid sharing 
individual-level information, distributed algorithms have been developed which can conduct 
population-level analyses in a privacy-preserving manner. In this paper, we propose a novel 
privacy-preserving and communication-efficient distributed algorithm to study binary outcomes 
with a set of risk factors using logistic regression. As demonstrated by our simulation study and 
the application to fetal loss data analysis, our algorithm provides a close approximation to the 
pooled estimator where all patient-level information is pooled together. 

The communication efficiency of our algorithm comes from two aspects. First, in contrast to 
the existing iterative algorithms such as GLORE and WebDISCO, our algorithm does not require 
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iterative communication across sites. This is crucial especially in the healthcare field where data 
and information exchange often require large amount of administrative work and technical 
support.  On the other hand, the intermediate result that need to be transferred in the ODAL 
method is only the first gradient of the likelihood function evaluated at an initial value, which is a 
vector with dimension equal to the number of parameters 𝑝. In contrast, for algorithms such as 
GLORE [12], in each iteration, the value of the second gradient of the likelihood function need to 
be transferred, which is a 𝑝×𝑝 matrix. When studying a large amount of risk factors, for example 
large number of potential confounders or genetic variations, the dimension of the matrices can be 
big which might cause high communication cost for transferring the data. 

On the other hand, ODAL requires access of individual patient-level data for one clinical site, 
in order to construct the surrogate likelihood function. In situations where individual patient-level 
data are inaccessible in any site, GLORE is preferred. 

The OHDSI consortium consists of many partner institutions where patient-level data sharing 
is not permissible as this often conflicts with regional legislation. In this instance an individual 
researcher may have patient-level data available at their given site, but then would deploy their 
algorithms at other sites without having access to the patient-level data. For these situations 
ODAL is ideal because aggregated information from other sites is only borrowed once without 
having access to the patient-level data in those countries and regions where that is impermissible.  

Deploying ODAL within OHDSI and other large consortia would enable us to further validate 
our findings with regards to medications taken within 1-year prior to normal pregnancy or fetal 
loss diagnoses. Validation of these results and also larger scale assessment of medications that 
potentially increase the risk of fetal loss is still much needed. Algorithms have been developed to 
assess the fetal effect of category C medications [22], but these can often be limited by 
confounding and other local institution-specific biases. Use of ODAL across a large international 
consortium such as OHDSI would propel adequate assessment of each drug’s fetal toxicity even 
for those where the effects remain unknown (i.e., category C medications).  

In the future, we are planning to extend our method to other types of outcomes, such as 
continuous, categorical, and time-to-event data. Furthermore, we are developing open-source 
software packages for directly implementing ODAL on distributed networks. We believe that our 
algorithm can be a good complement to the existing distributed algorithms. 
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The accurate detection of premature ventricular contractions (PVCs) in patients is an im-
portant task in cardiac care for some patients. In some cases, the usefulness to physicians in
detecting PVCs stems from their long-term correlations with dangerous heart conditions. In
other cases their potential as a precursor to serious cardiac events may make their detection
a useful early warning mechanism. In many of these applications, the long-term nature of
the monitoring required and the infrequency of PVCs make manual observation for PVCs
impractical. Existing methods of automated PVC detection suffer from drawbacks such as
the need to use difficult to extract morphological features, domain-specific features, or large
numbers of estimated parameters. In particular, systems using large numbers of trained
parameters have the potential to require large amounts of training data and computation
and may have issues generalizing due to their potential to overfit. To address some of these
drawbacks, we developed a novel PVC detection algorithm based around a convolutional
autoencoder to address these weaknesses and validated our method using the MIT-BIH
arrhythmia database.

Keywords: Electrocardiogram; Premature Ventricular Contraction (PVC) Detection; Au-
toencoder.

1. Introduction

Electrocardiograms (ECGs) are a useful and noninvasive diagnostic and monitoring tool in
cardiac care.1 One significant application of ECGs in cardiology is their use in the monitoring
and treatment of arrhythmias. Premature Ventricular Contractions (PVCs) are a common
arrhythmic beat type that occurs commonly in many patients, including individuals with
good cardiac health.2 However, when they occur in large numbers or with high frequency in
patients with other risk factors, PVCs can be associated with serious cardiac problems and
may precede heart attacks or sudden cardiac death in rare cases.2 As a result, the automated
detection of PVCs in ECG records would allow information about their long-term frequency to
be tracked over time, providing a new means to track the trends in a patient’s cardiac health
as well as potentially providing an early warning of events requiring swift medical attention.

There are several main categories of approaches to feature extraction for the automated
detection of PVCs: 1) morphological and timing features extracted from the ECG signal3–5

c© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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and 2) time-frequency features such as wavelet transforms of the ECG signal.6,7 In addition
to these two main approaches to PVC detection, there are methods utilizing other approaches
to the connected problems of feature extraction and beat classification,8 Markov models,
independent component analysis,9 and autoencoders.10

Geddes and Warner3 used R-R interarrival time, QRS complex duration, and signal slope
during several sections of the QRS complex as features in their detection system. They made
classification decisions based on a manually constructed decision tree. This allowed for compu-
tationally simple evaluation of a QRS complex but sacrificed adaptibility and required heuristic
tuning and domain specific knowledge of the PVC detection problem to adjust the classifier.
Trahanias et al.4 used a number of structural descriptors to create a syntactic description
of the QRS complex. After this syntactic description was created, they used a normalized
distance metric to form classes of QRS complexes, which were found to correspond to some
clinically significant classes of heartbeats. However, this method did not lead to a direct and
useful classification of the QRS complex. Zadeh et al.5 used a total of 10 morphological features
and 3 timing features extracted from the signal of a detected QRS complex. They compared
several kinds of classifiers including MLP neural networks, RBF neural networks, probabilistic
neural networks, and support vector machines. In addition to detecting PVCs, they used their
classification system to identify non-PVC arrhythmias.

In all of these approaches, significant domain knowledge was used to determine feature sets
and detection accuracy was dependent on the classification of different parts of the QRS com-
plex for segmentation and measurement. It is desirable to avoid these issues by using a more
general and robust method of feature extraction. Ham and Han6 used two estimated linear
prediction coefficients in combination with the mean squared value of the signal as features
for classification. They used a fuzzy ARTMAP neural network to perform the classification.
Lim7 used a discrete wavelet transform with the Haar wavelet to generate a feature vector
and used a fuzzy neural network for classification. While these approaches still require manual
feature selection, the specific features extracted are less domain specific and do not require
segmentation of the QRS complex to calculate.

One approach to avoid the challenges associated with engineering a problem-specific fea-
ture set is to use feature learning approaches such as independent component analysis or
autoencoders to extract a feature set that is able to describe much of the information content
of a signal in a low-dimensional latent space.11 Yu and Chou9 used independent component
analysis to identify and extract a set of features, which were combined with QRS complex
timing information to create the full feature set passed to their neural network classifier. Yang
et al.10 used a sparse autoencoder (SAE) to generate a feature vector for classification. This
resulted in a large number of estimated network weights, which increased the computation
and data required to train the network and increased the potential for overfitting.

The primary aims of this study are to develop a system for the detection of PVCs in ECG
data that does not rely on manually selected features and has fewer parameters to be estimated
than existing SAE methods. These improvements will reduce the possibility of overfitting and
improve the generalization of the detection system. For this purpose, we used an autoencoder
architecture based on convolutional layers to extract and select features for use in classifying
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beats. Our architecture is differentiated from existing convolutional autoencoders (CAEs)12

by its multi-stage encoding process, which allows it to encode information about the frequency
content of a signal at different points in time.

2. Methods

2.1. Data Set and Implementation

We used ECG records from the MIT-BIH arrhythmia database annotated with beat locations
and types.13 This database consists of 48 30-minute 2 channel ECG records sampled at 360 Hz.
Only channel 1 of the ECG was used for PVC detection because in the MIT-BIH arrhythmia
database this signal is a modified limb lead II, which has clearer signals for non-ectopic beats
than the modified lead V1 available on channel 2. As much of the information content of
a QRS complex is centered on the R peak, the ECG signals obtained from the database
were segmented based on the annotated R peaks, with 89 samples before and 160 samples
after each annotated R peak extracted for feature calculation. In application outside the
MIT-BIH database, this means we assume the QRS complexes are reliably detected before
being passed to our detection system. We then removed the mean from each segmented QRS
complex to reduce the impact of baseline drift, variations in instrumentation, and differences
across patients. The PVC detection system was implemented in Python using the Keras,14

TensorFlow,15 and scikit-learn16 libraries.

2.2. Proposed PVC Detection Method

A convolutional autoencoder (CAE)12 was used to extract and select features for classification
automatically and in an unsupervised manner from ECG data annotated with beat locations.
This reduced the need for domain-specific knowledge as compared to manual feature selection.
Compared to a SAE, a CAE reduces the number of weights that need to be trained, increases
the robustness of the features extracted when the window alignment of the beats being pro-
cessed is variable, and takes advantage of the structure of the ECG signal in its architecture.
We used a Random Forest Classifier to perform the final PVC detection due to its resistance
to overfitting and its performance with the indistinct groupings of PVC and non-PVC beats.
Our system architectures for training the CAE and Random Forest Classifier are shown in
Figure 1, while our classification architecture is shown in Figure 2. Examples of normal beats
and PVCs are given in Figure 3

2.2.1. Feature Extraction

An autoencoder is a neural network that encodes its input to a latent space representation
attempts to decode this representation to recover the inputs.17 In a CAE, the layers responsible
for encoding and decoding the latent space are convolutional, using shared weights to kernels
to extract features from their input. After the network has been trained, the encoding layers
alone can be used to reduce the dimensionality of the input data for further processing.

In the proposed PVC detection method, two convolutional layers with linear activations
were used to encode the input to the CAE. The first of these layers generated n kernels of
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Fig. 1. CAE and Random Forest Training Architecture

Fig. 2. Classification Architecture

Fig. 3. Comparison of Normal Beat and PVC

order m to extract different features from the input. A stride length of k was used in this
layer to downsample the input, reducing its dimensionality. The second convolutional layer
generated a single kernel to compute a linear combination of the outputs of the previous
layers kernels at each point. This second layer serves as a feature selection stage. As a result,
each feature in the latent space representation of the input corresponds to a combination of
all features extracted in the first layer from a continuous subset of the input. This provides
information on the frequency components of the ECG signal most important for creating an
accurate reconstruction of the original signal as well as some degree of temporal localization
within the signal. This allows the encoded representation to contain distinct information about
various stages in the progression of the QRS complex without the need to explicitly define
and detect these stage, simplifying the PVC detection process in comparison to methods using
morphological features of the QRS complex.
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We used transposed convolutional layers to decode the latent space representation gen-
erated by the encoder. These layers have the same connectivity and dimensionality as the
encoding layers but are reversed. This results in an output matching the dimensionality of
the input to the CAE and allows us to train the network to replicate its inputs. In operation,
only the encoding side of the network was used to generate the features used in classification.
The resulting network architecture is shown in Figure 4.

Fig. 4. Convolutional Autoencoder Architecture

For this application, the length of signal extracted around each beat even was 250 samples,
with 89 samples before the annotation and 160 samples after the annotation. These values were
selected because they were found to provide generally acceptable classification performance
and allowed for a more direct comparison with the PVC detection system described by Yang
et al.10 An n value of 25 provided a sufficient number of base features for the following layer to
perform feature selection on. An m value of 20 provided sufficiently complex filters to extract
a wide range of characteristics from the signal. A k value of 10 allowed the final feature vector
to be of dimension 25. This was found to provide sufficient segmentation of the input signal in
time while also being of low enough dimensionality to allow for adequate classifier performance.
The CAE was trained using an ADAM optimizer as described by Kingma and Ba18 with a
learning rate of 0.01 and a mean squared error loss function: MSE = 1

n

∑n
i=1(Yi − Ŷi)

2, where
Y is the input to the autoencoder and Ŷ is the output of the autoencoder.
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2.2.2. Classification

We used a Random Forest Classifier as described by Breiman.19 The random forest used
in this detection system consisted of 10 decision trees with Gini impurity as their splitting
criterion. Gini impurity is the probability that a randomly selected element in a set would
be mislabeled if labeled at random.19 For J classes with probability of selection p, the Gini
impurity of a set is given by IG = 1−

∑J
i=1 p

2
i . The features used to split each node of the tree

were randomly determined. The classifier also used bagging to avoid overfitting, using a set
of training examples of the same size as the full dataset sampled without replacement as the
training dataset for each random tree. The Random Forest Classifier was chosen due to its
low number of parameters, its resistance to overfitting, and its ability to handle fuzzy group
boundaries in comparison to support vector methods, neural networks, and other common
classifiers.

3. Results

We evaluated our method with 3 tests. First, we tested its performance when provided with
ample training data including samples from each record. Next, we added a randomized error
to the R peak location used in segmentation to simulate inaccurate QRS detection. Finally,
we provided our system with training data that included no beats from the records used
for testing to evaluate its ability to generalize to new patients. Each of these tests was also
performed using a SAE to provide context to the performance of the CAE. In addition to
the testing we performed, we examined the number of estimated weights and the number of
training epochs necessary for convergence in both the CAE and SAE architectures.

3.1. Full Database Evaluation

We evaluated the classification system using the MIT-BIH arrhythmia database. Half of the
beats from each record were selected as training data and the remainder were used as testing
data. This resulted in a training set consisting of 54,695 beats with 3,495 PVCs and a testing
set consisting of 54,675 beats with 3,633 PVCs. The results of this testing are shown in
Table 8 with information for each record. A SAE similar to one described by Yang et al.10

was constructed, with the sparsity imposed by L1 regularization instead of the Kullback-
Leibler divergence derived regularization described, to compare the feature extraction provided
by the CAE to that provided by an existing alternative architecture. A comparison of the
performance of these two architectures is provided in table Table 1 and Table 2. This evaluation
demonstrates that the CAE provides similar performance to the SAE when ample training
data is available, with a difference in overall accuracy of 0.2%. However, the PVC sensitivity
of the CAE is 4.88% higher than that of the SAE, meaning that fewer PVCs are missed by
the CAE. This is desirable given the relative rarity of PVCs, although the importance of
sensitivity and specificity will need to be evaluated for individual applications.

3.2. Timing Disturbance Evaluation

As QRS detection is necessary to the identification and segmentation of potential PVCs for
processing by a PVC detection system, this property makes resistance to small shifts in the
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Table 1. MIT-BIH Full Database Comparative Evaluation

Architecture Correct PVC Sensitivity PVC Specificity

CAE 98.43 85.64 98.90
SAE 98.23 80.76 99.07

Table 2. Full Database CAE and SAE Confusion Matrices

CAE SAE
True Normal True PVC True Normal True PVC

Detected Normal 50483 299 50565 489
Detected PVC 559 3334 477 3144

precise placement of the annotation within the beat desirable. We evaluated this robustness
by applying a random shift of up to 36 samples to each beat, corresponding to a detection
error of up to 100 milliseconds. The results of this testing on the CAE are shown in Table 9
with information for each record, while a comparison of the performance of the CAE and SAE
architectures under these conditions is presented in Table 3 and Table 4. This shows that the
CAE suffers a 0.83% reduction in PVC sensitivity as a result of this shifting, while the SAE
suffers a 4.26% reduction in PVC sensitivity. This results in a total sensitivity improvement
for the CAE of 8.43% relative to the SAE under these conditions.

Table 3. MIT-BIH Full Database Disturbed

Architecture Correct PVC Sensitivity PVC Specificity

CAE 97.60 84.93 98.42
SAE 97.17 76.50 97.66

Table 4. Full Database CAE and SAE Disturbed Confusion Matrices

CAE SAE
True Normal True PVC True Normal True PVC

Detected Normal 50542 810 50708 1217
Detected PVC 501 2823 335 2416

3.3. Cross-Patient Training Evaluation

In an applied setting, it may not always be practical to obtain annotated training data from
a patient to train any monitoring system. As a result, system performance when trained only
using data obtained from other individuals is potentially important to the practical utility
of any PVC detection method. We evaluated this performance metric by training both PVC
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detection systems using all beats in two ECG records and testing on all beats in four ECG
records. All such combinations of records 116, 208, 210, 221, 228, and 233 in the MIT-BIH
database were used to evaluate model generalization. We chose this subset of the MIT-BIH
database because testing all combinations of records in the entire dataset is impractical and
because it was selected as representative of the database by Ham and Han.6 The averages of
these results are given in Table 5, while Table 6 provides confusion matrices of the aggregated
results. These show that the CAE provides 1.01% higher overall accuracy and 4.71% higher
PVC sensitivity than the SAE. This meets our expectation that a reduced number of trained
weights in the autoencoder would improve performance with reduced amounts of training data
as well as improve the ability of the detection system to generalize to new data.

Table 5. MIT-BIH Restricted Training Cross-Validation

Architecture Correct PVC Sensitivity PVC Specificity

CAE 87.80 86.56 88.09
SAE 86.79 81.85 87.91

Table 6. Cross-Validation CAE and SAE Confusion Matrices

CAE SAE
True Normal True PVC True Normal True PVC

Detected Normal 111721 3874 111499 5234
Detected PVC 15109 24956 15331 23596

3.4. Estimated Parameters and Convergence

Our convolutional autoencoder architecture used 83.43% fewer network weights due to the
weight sharing inherent in convolutional networks. For the 54695 example training set used
in 3.1 and 3.2, this resulted in a decrease in the number of training epochs necessary for
convergence from 5 to 1.

Table 7. Network Weights

Architecture Estimated Weights

CAE 1702
SAE 10270
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Table 8. MIT-BIH Full Database CAE Performance

Record Beats Normal PVC Correct Sensitivity Specificity

100 1135 1134 1 100.000 100.000 100.000
101 931 931 0 100.000 — 100.000
102 1092 1090 2 100.000 100.000 100.000
103 1040 1040 0 99.904 — 99.904
104 1113 1112 1 100.000 100.000 100.000
105 1285 1272 13 95.642 46.154 96.148
106 1012 673 339 96.542 89.676 100.000
107 1067 1020 47 99.438 87.234 100.000
108 880 873 7 99.432 28.571 100.000
109 1264 1242 22 81.487 77.273 81.562
111 1061 1061 0 99.811 — 99.811
112 1268 1268 0 100.000 — 100.000
113 896 896 0 100.000 — 100.000
114 938 936 2 100.000 100.000 100.000
115 975 975 0 100.000 — 100.000
116 1204 1158 46 99.917 97.826 100.000
117 766 766 0 100.000 — 100.000
118 1138 1130 8 99.385 25.000 99.912
119 992 747 245 100.000 100.000 100.000
121 930 929 1 99.785 0.000 99.892
122 1236 1236 0 100.000 — 100.000
123 758 756 2 100.000 100.000 100.000
124 808 789 19 98.886 52.632 100.000
200 1299 817 482 97.614 93.568 100.000
201 980 860 120 99.388 95.833 99.884
202 1066 1064 2 99.812 50.000 99.906
203 1489 1283 206 97.851 90.777 98.987
205 1326 1280 46 99.623 89.130 100.000
207 929 925 4 87.836 100.000 87.784
208 1476 1024 452 97.900 98.894 97.461
209 1501 1501 0 100.000 — 100.000
210 1323 1212 111 97.279 68.468 99.917
212 1372 1372 0 100.000 — 100.000
213 1624 1517 107 98.153 93.458 98.484
214 1129 1006 123 97.874 81.301 99.901
215 1680 1598 82 98.452 68.293 100.000
217 1103 1037 66 99.547 95.455 99.807
219 1076 1044 32 99.257 75.000 100.000
220 1022 1022 0 100.000 — 100.000
221 1212 1051 161 99.917 99.379 100.000
222 1240 1240 0 100.000 — 100.000
223 1301 985 316 96.772 88.291 99.492
228 1025 877 148 98.829 91.892 100.000
230 1127 1126 1 99.379 100.000 99.378
231 784 784 0 100.000 — 100.000
232 889 889 0 100.000 — 100.000
233 1538 1122 416 98.635 96.154 99.554
234 1375 1372 3 99.709 0.000 99.927
Total 54675 51042 3633 98.548 91.412 99.056
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Table 9. MIT-BIH Full Database CAE Disturbed Performance

Record Beats Normal PVC Correct Sensitivity Specificity

100 1135 1134 1 99.912 0.000 100.000
101 931 931 0 100.000 — 100.000
102 1092 1090 2 99.817 50.000 99.908
103 1040 1040 0 100.000 — 100.000
104 1113 1112 1 100.000 100.000 100.000
105 1285 1272 13 93.541 23.077 94.261
106 1012 673 339 89.526 68.732 100.000
107 1067 1020 47 99.157 80.851 100.000
108 880 873 7 99.091 28.571 99.656
109 1264 1242 22 78.006 45.455 78.583
111 1061 1061 0 100.000 — 100.000
112 1268 1268 0 100.000 — 100.000
113 896 896 0 100.000 — 100.000
114 938 936 2 100.000 100.000 100.000
115 975 975 0 100.000 — 100.000
116 1204 1158 46 99.917 97.826 100.000
117 766 766 0 100.000 — 100.000
118 1138 1130 8 99.297 25.000 99.823
119 992 747 245 99.899 99.592 100.000
121 930 929 1 99.785 0.000 99.892
122 1236 1236 0 100.000 — 100.000
123 758 756 2 100.000 100.000 100.000
124 808 789 19 98.020 15.789 100.000
200 1299 817 482 95.766 88.589 100.000
201 980 860 120 97.449 79.167 100.000
202 1066 1064 2 99.906 50.000 100.000
203 1489 1283 206 95.433 76.214 98.519
205 1327 1281 46 99.171 76.087 100.000
207 929 925 4 95.048 100.000 95.027
208 1476 1024 452 96.206 95.354 96.582
209 1501 1501 0 100.000 — 100.000
210 1323 1212 111 93.878 28.829 99.835
212 1372 1372 0 99.927 — 99.927
213 1624 1517 107 97.845 85.047 98.748
214 1129 1006 123 93.711 47.154 99.404
215 1680 1598 82 96.845 35.366 100.000
217 1103 1037 66 98.368 84.848 99.229
219 1076 1044 32 98.792 84.375 99.234
220 1022 1022 0 100.000 — 100.000
221 1212 1051 161 99.752 98.137 100.000
222 1240 1240 0 99.919 — 99.919
223 1301 985 316 87.855 50.949 99.695
228 1025 877 148 97.268 81.081 100.000
230 1127 1126 1 99.734 100.000 99.734
231 784 784 0 100.000 — 100.000
232 889 889 0 100.000 — 100.000
233 1538 1122 416 95.904 85.817 99.643
234 1375 1372 3 99.782 33.333 99.927
Total 54676 51043 3633 97.608 77.814 99.017
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4. Discussion

We developed a system for the detection of PVCs in ECG data annotated with beat locations
using a CAE. This provided comparable performance to a SAE architecture for the task
with reduced training time due to its reduced number of parameters. The CAE provided
improvements in the resilience of the PVC detection system to beat detection timing variance
and improved detection performance when trained using ECG records from different patients.

Some limitations of this approach to PVC detection include the computational complexity
of representation learning methods as compared to manual feature engineering and the lack
of direct and unambiguous physical or medical significance for the features extracted by the
system. There is also no guarantee that homologous features will be generated by training on
different ECG data, which precludes the possibility of retraining the convolutional autoencoder
without also retraining the final classifier.

The relatively low number of parameters in our model make it well suited to implementa-
tion on the limited hardware available in an applied setting while not relying on potentially
unreliable QRS segmentation or features that are difficult to measure or compute in real
time. In addition to its advantage in computational expense, the improvement provided by
our autoencoder architecture in cross-patient generalization is of significant importance in
the application of a PVC detection system to real patients, where it may be impractical or
impossible to obtain a sufficient amount of expert-annotated training data.

Based on the performance of this system, we envision the extension of our CAE architecture
to facilitate the detection of other arrhythmias in ECG data. Another potential avenue for
future work with this autoencoder architecture is to take advantage of its small number of
trained parameters to allow the model to be retrained on the spot based on a subset of available
annotated ECG records most similar to a sample of the ECG data from the current patient.
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The proliferation of healthcare data has brought the opportunities of applying data-driven
approaches, such as machine learning methods, to assist diagnosis. Recently, many deep
learning methods have been shown with impressive successes in predicting disease sta-
tus with raw input data. However, the “black-box” nature of deep learning and the high-
reliability requirement of biomedical applications have created new challenges regarding the
existence of confounding factors. In this paper, with a brief argument that inappropriate
handling of confounding factors will lead to models’ sub-optimal performance in real-world
applications, we present an efficient method that can remove the influences of confounding
factors such as age or gender to improve the across-cohort prediction accuracy of neural
networks. One distinct advantage of our method is that it only requires minimal changes of
the baseline model’s architecture so that it can be plugged into most of the existing neu-
ral networks. We conduct experiments across CT-scan, MRA, and EEG brain wave with
convolutional neural networks and LSTM to verify the efficiency of our method.

Keywords: neural networks, healthcare, confounding factor correction

1. Introduction

The increasing amount of data has led healthcare to a new era where the diagnosis can be made
directly from raw data such as CT-scan or MRI with data-driven approaches. Machine learning
methods, especially deep learning methods, have achieved significant successes in biomedical
and healthcare applications, such as classifying lung nodule,1 breast lesions,2 or brain lesions3

from CT-scans, segmentation of brain regions with MRI,4,5 or emotion classification with EEG
data.6,7

However, different from how deep learning has revolutionized many other applications, the
“black-box” nature of deep learning and the high-reliability requirement of healthcare indus-
try have created new challenges.8 One of these challenges is about removing the false signals
extracted by deep learning methods due to the existence of confounding factors. Acknowledg-
ing the recognition mistakes made by neural networks9–11 and empirical evidence that deep
neural networks can learn signals from confounding factors,12 it is likely that a well-trained
deep learning model will exhibit limited predictive performance on external data sets despite
its high predictive power on lab collected data sets. The hazard of inappropriate control of

c© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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Fig. 1: An illustration of the empirical contribution of this paper. From left to right, 1)
lung adenocarcinoma prediction from CT-scan with CNN, where contrast material is the
confounding factor, 2) heart right ventricle segmentation from CT-scan with U-net, where
subject identification is the confounding factor, 3) students’ confusion status prediction from
EEG signals with Bidirectional LSTM, where the students’ demographic information is the
confounding factor, 4) brain tumor prediction from CT-scan/MRA with CNN, where gender
associated information is the confounding factor.

confounding factors in healthcare-related science has been discussed extensively,13–15 but these
discussions are mainly in the scope of causal analyses or association studies.

In addition to a very recent result showing that confounding factors can adversely affect
the predictive performance of neural network models,16 we offer a straightforward example
as another motivation: a neural network predictive model for Hodgkin lymphoma diagnosis
is trained on a data set collected from young volunteers with high predictive performance,
but when the model is applied to the entire society, it may report more false positives than
expected. One of the reason could be that the gender ratio reverses toward adolescence in
Hodgkin lymphoma,17 and a model trained over data collected from young volunteers is very
likely to learn a different gender bias than what is expected in a data collected different
age groups. In fact, even if the gender ratio does not change along the aging process, it is
still inappropriate for a model to predict based on features related to gender because these
features are not directly associated with disease status. As another example, skin cancer18 and
colorectal cancer19 are also observed with gender bias, and it is already observed that there is a
higher false negative rate in colorectal cancer diagnosis for women19 with traditional methods.
Confounding factors do not just exist in the forms of gender. Also, it is observed that other
factors, such as age,20 or demographic information,21 will affect the model’s performance if not
handled appropriately. Considering that the generalization theory of neural networks is still
an open research topic and people are unsure of how neural networks predict, it is particularly
important to design methods to handle the influence of these confounding factors explicitly.

In this paper, inspired by previous de-confounding techniques applied to deep learning
models,12 we propose a Confounder Filtering (CF) method. A distinct advantage of our method
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is that CF directly builds upon the original confounded neural network with a minimal change
that replaces the original top layer with a layer that predicts the confounding factors. Further,
we apply our methods to a broad spectrum of related tasks, such as:

• improved lung adenocarcinoma prediction with convolutional neural networks (CNN)
by removing contrast material as confounding factors.

• improved heart right ventricle segmentation with U-net by removing subject identifi-
cations as confounding factors.

• improved students’ confusion status prediction with Bidirectional LSTM by removing
students’ demographic information as confounding factors.

• improved brain tumor prediction with CNN by removing gender associated information
as confounding factors.

We have observed consistent improvements in predictive performance by removing the con-
founding factors. These four empirical contributions have been conveniently summarized in
Figure 1, which illustrates the experiments we perform in this paper, including the predictive
task, the model we use, the data, and the confounding factors.

The remainder of this paper is organized as follows. In Section 2, we first briefly discuss
the related work of this paper, mainly in the methodological perspective. In Section 3, we
formally introduce our method, namely Confounder Filtering. Then in Section 4, we apply
our method to a wide spectrum of experiments to show the effectiveness of our method and
report relevant analysis. Finally, we conclude this paper with discussion of limitations and
future directions in Section 5.

2. Related Work

The recent boom of deep learning techniques has allowed a large number of neural network
methods developed for healthcare applications rapidly. Readers can refer to comprehensive
reviews on how the deep learning can be applied to healthcare and biomedical areas.8,22–24

In this section, we will mainly discuss the related work of our paper in the methodological
perspective.

To the best of our knowledge, there are not many deep learning works that control the
effects of confounding factors explicitly. Wang et al presented a two-phase algorithm named
Select-Additive Learning.12 In the first phase, the model uses information of confounding
factors to select which components of the representation learned by neural networks are as-
sociated with confounding factors, and then in the addition phase, the algorithm forces the
neural networks to discard these components by adding noises. Zhong et al also discussed how
confounding factors affect the predictive performance of neural networks. They presented an
augment training framework that requires little additional computational costs.25 The idea is
to add another neural classifier that predicts confounding factors while predicting original la-
bels, and gradient descent optimizes both of these classifiers. The general additional structure
is very similar to the Confounding Filtering method that we are going to present, but our
method trains the network in differently so that we can differentiate the weights associated
with confounding factors and filter them out explicitly.
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In a broader view, correcting confounding factors is related to reducing the representations
learned by neural networks through some components of the raw data that are not related to
the predictive task. In this perspective, there is a significant amount of neural network methods
that can be considered as related work, covering the fields such as domain adaptation,26

transfer learning,27,28 and domain generalization.29 Readers can refer to the survey papers
cited and the references therein if interested. Within the scope of this paper, we do not
discuss with these methods for two reasons: 1) these methods are not designed for correcting
confounding factors explicitly, therefore they may or may not be applicable in this specific
situation, 2) even if our CF method behave similar to, or slightly shy of the performance of
these methods, there is still a distinct advantage: CF is simple enough to be plugged into any
neural networks with almost no changes of the architecture.

3. Confounder Filtering (CF) Method

In this section, we will formally introduce the Confounder Filtering (CF) method. CF method’s
goal is to reduce the effects of confounders, therefore improves the generalizability of deep
neural networks. We first offer an intuitive overview of the main idea of CF, then we formalize
our method, which is followed by a discussion of the availability of the implementation.

3.1. Overview

CF method is aimed to remove the effects of confounding factors by removing the weights that
are associated with them. Therefore, the core step is to identify such weights. We first train a
model, namely G, conventionally for the predictive task. Then we replace the top model layer
with another classifier that predicts the labels of confounding factors, and we continue to train
the model. During this training phase, we keep track of the updates of weights. Finally, we
filter out all the weights that are frequently updated during this training phase out of G by
replacing these weights with zeros, leading to a new confounder-free model. This process is
illustrated in Fig. 2.

3.2. Method

We continue to formalize our method. For the convenience of discussion, we split a deep neural
network architecture into two components: representation learner component and classification
component, denoted by g(·; θ) and f(·;φ) respectively, where θ and φ stand for the correspond-
ing parameters. Therefore, the complete neural network classifier is denoted as f(g(·; θ);φ).
Given data < y,X >, the classical training process of the neural network is achieved via
solving the following equation:

θ̂, φ̂ = argmin
θ,φ

c(y, f(g(X; θ);φ)) (1)

where c(·, ·) stands for the cost function, with famous examples such as mean-squared-error
loss or cross-entropy loss.

Ideally, to effectively remove the effects of confounding factors, a method needs the labels
of the confounding factors. In other words, we need data in the form of < X, y, s >, where s
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Fig. 2: This figure shows the overview of the CF method. From left to right: 1) Train the
neural network conventionally. 2) Train the neural network to predict confounding factors
(e.g. gender information) and inspect the changes of weights each iteration to locate the ones
with largest changes. 3) Remove the located weights, then the model is ready for confounder-
free prediction.

stands for the label of the confounding factors (e.g. age, gender, physical factors of medical
devices etc.). This is also required by similar previous work.12,25 However, our method does
not require full correspondence between X, y, and s. For example, later in our experiment, we
will show that with two independently collected data sets < X1, y1 > and < X2, s2 >(i.e. we
only have correspondence between X1 and y1, and between X2 and s2, but not between y1 and
s2), we are able to correct the confounding factors between X1 and y1 with help of X2 and s2.
For simplicity, we still present our method with < X, y, s >.

After we train the neural network following the conventional manner as showed in Equa-
tion 1 with < X, y > and get θ̂ and φ̂, we continue to identify the weights associating with
confounding factors through tuning the classification component via < X, s >. Formally, we
solve the following problem:

φ̃ = argmin
φ

c(s, f(g(X; θ̂);φ))

During the optimization, our method inspects how the gradient of the cost function with
respect to < X, s > updates the previous trained weights (i.e. φ̂) with < X, y >. For the ith

value of φ (denoted as φi), we calculate the frequency of updating it during the entire training
process (denoted as πi). Formally, we have:

πi =
1

n

n∑
t=1

|∆φi,t|

where n is the number of total steps, t stands for the index of step.
Further, we construct a masking matrix/tensor M of the same shape as φ, and Mi is

constructed according to πi. For example, common choices could be either through a Bernoulli
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sampling

Mi = Ber(πi)

or a straightforward thresholding procedure:

Mi =

{
0, πi > τ

1, otherwise

In the following experiment, we choose to use the thresholding procedure with τ , whose
value lies between top 20% and top 25% of πi’s values.

Finally, we have φ̂′ = φ̂⊗M , where ⊗ stands for element-wise product, and the final trained
neural network after confounding factor associated weights filtered out is as following:

f(g(X; θ̂); φ̂′)

which is ready for confounder-free prediction.

3.3. Availability

The implementation of our method in TensorFlow is available onlinea with a simple example
that trains a CNN for Cifar10 dataset, onto which we add some image patterns as confounding
factors. Users can follow the online instruction to apply CF to their own customized neural
networks.

4. Experiments

In this section, we will verify the performance of our CF method on four different tasks by
adding CF towards the current baseline models. For each task, we will first introduce the data
set, and then introduce the methods we compare and the results. After discussions of these
four tasks, we will introduce some analyses of the model behaviors to further validate the
performance of our method.

4.1. lung adenocarcinoma prediction

4.1.1. Data

We construct a data set to test the model performance in classifying adenocarcinomas and
healthy lungs from CT-scans. Our experimental data set is a composition of three data sets:

• Data Set 1: The CT-images from healthy people are collected from ELCAP Public
Lung Image Databaseb. The CT scans have obtained in a single breath hold with a
1.25 mm slice thickness that consists of 1310 DICOM images from 25 persons.

• Data Set 2: The CT-scans of diseased lungs are collected from 69 different patients
by Grove et al .30 These scans are diagnostic contrast-enhanced CT scans, being done
at diagnosis and prior to surgery and slice thickness at variable from 3 to 6 mm.

ahttps://github.com/HaohanWang/CF
bhttp://www.via.cornell.edu/lungdb.html
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• Data Set 3: Since these two data sets are collected differently, and one of them is
a collection of contrast-enhanced CT scans. The contrast material will likely serve as
the confounding factor in prediction. To correct the confounding factor. We noticed a
processed versionc of Data Set 2, which consists of explicit labels of contrast infor-
mation. The data set contains 475 series from 69 different patients selected 50% with
contrast and 50% without contrast.

Fig. 3: Prediction accuracy of CNN in
comparison with CF-CNN

Therefore, we use the 1290 healthy images
from 20 persons in Data Set 1 and 1214 dis-
eased lung images from 61 patients in Data Set
2 as the training set, and the rest from these two
data sets as the testing set. We use the images
from Data Set 3 with corresponding contrast
labels to correct confounding factors.

4.1.2. Results

We experiment with the most popular architec-
tures of CNNs, including AlexNet,31 CifarNet,32

LeNet,33 VGG16,34 and VGG19.34 We first suf-
ficiently train these baseline models with ap-
propriate learning rate until the training accu-
racy converges, and then use our CF method
to correct the confounding factors. We test the
prediction accuracy of both vanilla CNNs and
CF-improved CNNs. Fig. 3 shows the results. We can see that CF can consistently improve
the predictive results over a variety of different CNNs.

4.2. Segmentation on right ventricle(RV) of Heart

4.2.1. Data

The data set35 contains 243 physician-segmented CT images (216×256 pixels) from 16 patients.
Data augmentation techniques, such as random rotations, translations, zooms, shears and
elastic deformations (locally stretch and compress the image), are used to increase the number
of samples. More information regarding the data set, including how the training/testing data
sets are split, can be found onlined.

4.2.2. Results

The main baseline in this experiment is U-net, which is a convolutional network architecture for
fast and precise segmentation of images. Previous experiments show that U-net can behave well

chttps://www.kaggle.com/kmader/siim-medical-images/home
dhttps://blog.insightdatascience.com/heart-disease-diagnosis-with-deep-learning-c2d92c27e730
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even with a small dataset.36 We first test U-net following previous setting35 and interestingly,
we achieve a higher accuracy that what was reported. Vanilla U-net achieves an accuracy of
0.9477. Then, we use CF method to remove the subject identities as confounding factors and
improve the accuracy from 0.9477 to 0.9565.

4.3. Students’ confusion status prediction

4.3.1. Data

The data set37 contains EEG brainwave data from 10 college students while they watch MOOC
video clipse. The EEG data is collected rom MindSet equipment wore by college students
when watch ten video clips, five out of which are confusing ones. The students’ identities are
considered as confounding factors in this experiment.

Table 1: Comparison with average accu-
racy for 5-fold cross validation38

Methods Accuracy(%)

SVM 67.2
KNN 51.9
CNN 64.0
DBN 52.7

RNN-LSTM 69.0
BiLSTM 73.3

CF-BiLSTM 75.0

Following previous work,38 we normalize the
training data in a feature-wise fashion (i.e.,
each feature representation is normalized to
have a mean of 0 and standard deviation of 1
across each batch of samples). The batch size is
set to 20.

4.3.2. Results

We use the state-of-the-art method applied to
this data set,38 namely a Bidirectional LSTM,
as the baseline method to compare with. The
model is configured as following: the LSTM
layer has 50 units, with tanh as activation func-
tion. The output is connected to a fully con-
nected layer with a sigmoid activation. We com-
pare five-fold-cross-validated results from CF-improved Bidirectional LSTM with results re-
ported previously.38 The results are shown in Table 1. As we can see, CF method helps improve
the predictive performance once plugged in.

4.4. Brain tumor prediction

4.4.1. Data

We construct another data set for the last experiment of this paper. We test our method in
predicting brain tumors with MRA scans of healthy brainf and CT-scans with tumor brain.39

The healthy data set consists of images of the brain from 100 healthy subjects, in which 20
patients were scanned per decade and each group are equally divided by sex. The tumor data
set is collected with 120 patients. The gender information is regarded as confounding factors
in this experiment.

ehttps://www.kaggle.com/wanghaohan/confused-eeg/home
fhttp://insight-journal.org/midas/community/view/21
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4.4.2. Results

Fig. 4: Prediction accuracy of CNN in
comparison with CF-CNN

Similar to the lung adenocarcinoma prediction
experiment, we compare with the set of popular
CNNs. The results are shown in Fig. 4. As we
can see that, CF helps improve the prediction
performance in most cases, except that in the
VGG19 cases, when the model’s performance
deteriorates after CF is plugged in.

4.5. Analyses
of the method behaviors

To further understand the process of CF in
identifying the weights that are associated with
the confounding factors. We inspect how the
weights are updated during the training pro-
cess and visualize which part of the input data
is related to confounding factors.

Fig. 5(a) visualizes the weights during each
epoch. The figure splits into two panels, and the left panel is for lung adenocarcinoma predic-
tion experiment, and the right panel is for brain tumor prediction experiment. The figure only
shows eight weights of the top layer (in a 4 × 2 rectangle), and visualizes how the weights in
the layer change as the training epoch increases. This figure visualizes 96 epochs for lung ade-
nocarcinoma prediction and brain tumor prediction each. The blue dots visualize the weights
when the model is trained during the first phase, and the green dots visualize the weights
when the model is trained in the second phase for prediction confounding factors. The darker
each dot is, the more frequent it gets updated in that epoch. As we can see, for the same 4× 2

layer, the frequencies of the weights get updated are different between the training during
the first phase and training during the second phase. This differences of updating frequencies
verify the primary assumption of our method, that the weights associated with the task and
the weights associated with the confounding factors are different. Therefore, we can remove
the effects of confounding factors by removing the weights associated with them.

Further, we try to investigate which parts of the input data are corresponding to the
confounding factors. With the help of Deep Feature Selection40 method, we select the pixels
of the image that are associated with the confounding factors. Fig 5 visualizes these pixels
with yellow dots. From left to right, these four images are examples for healthy lung, diseased
lung, healthy brain, tumorous brain respectively. Interestingly, we do not see clear patterns
on the images that are related to the confounding factors. This observation further verify the
importance of our CF method because these results indicate that it is barely possible to first
exclude the information from raw images by conventional methods since these yellow dots do
not form into any clear pattern.
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Fig. 5: (a) Display of trained weights and (b) the visualization of confounding factors.

5. Conclusion

In this paper, we proposed a straightforward method, named Confounder Filtering, which aims
to reduce the effects of confounders and improve the generalizability of deep neural networks,
to achieve a confounding-factor-free predictive model for healthcare applications. One distinct
advantage of our method is that we only require minimal changes to the existing network
model to adopt our method. There are still limitations of our method: despite our method
only requires a minimal changes of the network architecture, it needs a repeated training
process (the second phase training with confounding factors). Another limitation is that our
method still requires the switching of the top classification layer from a label predictor to
a confounder predictor, which may lose the one-to-one correspondence of weights at the top
layer. In the future, in the methodological perspective, we look forward to further improving
the training process of our method. On the practical side, as we have released our code,
we hope to help the community to increase the performance of other predictive models for
healthcare application by removing the confounding factors.
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bidirectional LSTM 
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Protein domain boundary prediction is usually an early step to understand protein function and

structure. Most of the current computational domain boundary prediction methods suffer from low

accuracy and limitation in handling multi-domain types, or even cannot be applied on certain targets

such as proteins with discontinuous domain. We developed an ab-initio protein domain predictor

using a stacked bidirectional LSTM model in deep learning. Our model is trained by a large amount

of protein sequences without using feature engineering such as sequence profiles. Hence, the

predictions using our method is much faster than others, and the trained model can be applied to

any type of target proteins without constraint. We evaluated DeepDom by a 10-fold cross validation

and also by applying it on targets in different categories from CASP 8 and CASP 9. The comparison

with other methods has shown that DeepDom outperforms most of the current ab-initio methods

and even achieves better results than the top-level template-based method in certain cases. The code

of DeepDom and the test data we used in CASP 8, 9 can be accessed through GitHub at

https://github.com/yuexujiang/DeepDom.

Keywords: protein domain; domain boundary prediction; deep learning; LSTM.

 

1. Introduction 

Protein domains are conserved parts on protein sequences and structures that can evolve, function, 

and exist independently of the rest of the protein chain. While some proteins have only one 

domain, many proteins contain more than one domain. Molecular evolution uses domains as 

building blocks and these may be recombined in different arrangements to create proteins with 

different functions[1]. Thus, accurate identification of protein domains is crucial to understanding 

protein function and evolutionary mechanisms. Currently, the most reliable characterization of 

protein domain is through experimental methods. However, due to the large amount of data being 

generated by high-throughput technologies nowadays, it is impossible to manually identify 

domains for these proteins, not to mention that the experimental methods are time consuming and 

costly. Thus, computational domain prediction methods are in highly demand. 

A variety of computational methods for protein domain prediction have been developed, and 

they can be roughly categorized as either template-based methods or ab-initio methods. The 

principle of most template-based methods is to find homologous sequences that have known 

domain information by sequence alignments and then map the domain information from these 

sequences to the query protein sequence. The methods belonging to this category are Pfam[2], 

CHOP[3], FIEFDOM[4], and ThreaDom[5]. A variation of template-based methods is to use 3D 

structural models to assist protein domain prediction, e.g. SnapDRAGON[6] and RosettaDom[7]. 

These methods first construct a tertiary structure model of the target using structural templates. 
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Domains are then assigned by domain parser tools from the constructed 3D model. The template-

based methods can have a high prediction accuracy when close templates are found; however, their 

prediction performance may drop dramatically if there is no highly similar sequence in domain 

databases. 

Ab-initio methods are more widely used than template-based methods, since these template-

free methods can be applied to any protein. They are mainly statistical and machine learning 

algorithms that train models using the known protein domain boundary information stored in 

databases such as CATH[8] and SCOP[9]. Some of the representative methods in this category are 

PPRODO[10], DOMPro[11], PRODOM[12], DomCut[13], ADDA[14], DomNet[15], DROP[16], 

DOBO[17], and EVEREST[18]. Compared with the template-based approaches, the prediction 

accuracy of the ab-initio methods is low. This is mainly because these methods suffer from the 

weak domain boundary information in sequence, even after a deliberate but tedious process of 

feature extraction. 

Deep learning is currently the most attractive area in machine learning. Among the various 

architectures of deep learning, Long Short Term Memory (LSTM)[19]  has been successfully 

applied to problems such as speech recognition, language modeling, translation, image 

captioning[20-22]. Essential to these successes is its chain-like structure that can capture the 

sequential information, and its repeating module designed to avoid the vanishing gradient problem 

that the original Recurrent Neural Network (RNN) suffers[23]. Here, we consider protein 

sequences as strings of information just like language. Thus, in this paper we propose a new ab-

initio protein domain boundary prediction method using LSTM. We assume that the signal pattern 

from a domain boundary region is different from the signals generated from other regions. So, we 

made each LSTM layer in our deep learning architecture bidirectional to capture the sequential 

information not just from the N-terminal side of the domain boundary region but also from the C-

terminal side. Then we stack multiple such layers together to fit a high-order non-linear function 

in order to predict the complex domain boundary signal pattern. Instead of paying much effort in 

feature engineering on a small dataset, which is what traditional machine learning methods do, we 

train our LSTM model on a big dataset to learn data representations automatically. To the best of 

our knowledge, this is the first deep learning method applied on the protein domain boundary 

prediction problem. 

2. METHODS 

2.1 Data Set Preparation 

We collected 456,128 proteins with domain boundary annotations in the CATH database (version 

4.2). All the sequences of corresponding proteins were downloaded from the Uniprot database[24]. 

Then we used CD-HIT[25] to cluster similar proteins into clusters that meet our pre-defined 

similarity threshold (40%). The representative sequence in each cluster was extracted to form a 

non-redundant dataset in which every pair of proteins has sequence identity less than 40%[26]. 

This threshold instead of a lower number makes sure enough data were remained for deep learning. 

We further excluded proteins with sequence length less than 40 residues, since it needs at least 40 

residues for a domain boundary signal to be significant according to Ref. [17]. The final dataset 
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contains 57,887 proteins. We used 10-fold cross validation to evaluate our model. In each fold, 

90% proteins were used to train a model, the remaining 10% proteins were used for testing.  

2.2 Input Encoding 

Before using our data to train the model, we need to understand the distribution of the data. Figure 

1 shows some statistics of our data, which let us believe that encoding the entire sequence for each 

protein was probably not a good idea. The first reason is that it introduces bias. When there is only 

one domain on a protein, the boundaries of the only domain are always near the protein’s two 

termini. As shown in Figure 1(A), proteins with one domain represent the majority of the data, and 

this would make our model over-memorize this pattern and favor the prediction as one domain, 

which results in poor performance for multi-domain cases. The second reason is as illustrated in 

Figure 1(B), that proteins with different number of domains have different length distributions. 

When encoding the entire protein sequence using a dynamic length, we cannot train the model in 

batch, which is much faster to handle big data set. So, we decided to use a sliding window strategy 

independent of the protein length to encode an input sequence into equal-length fragments. And 

we use symbol “-” for padding when the last fragment is shorter than window size. After 

experiments, we determined the best combination of window size and stride is 200 residues and 

80 residues.   

Next, we need to encode each residue in every fragment. According to the work of 

Venkatarajan and Braun[27], a comprehensive list of 237 physical-chemical properties for each 

amino acid was compiled from the public databases. Their study showed that the number of 

properties could be reduced while retaining approximately the same distribution of amino acids in 

the feature space. Particularly, the correlation coefficient between the original and regenerated 

distances is more than 99% when using the first five eigenvectors. Thus, we used five numerical 

descriptors to represent each amino acid for computational efficiency while maintaining almost all 

the information at the same time. We also added the sixth encoding dimension as the padding 

indicator. For all the 20 types of amino acids, their sixth code is zero. The symbol “-”, as the sixth 

 

Figure 1. (A) The distribution of proteins with different numbers of domains. (B) The 

distribution of protein sequence lengths in different categories. 
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code with value 1, indicates a padding residue, and its first five codes are all zeros. Thus, for each 

input fragment, its coding dimension is 200 by 6. 

For model training, we also need to encode the label for each residue. We derive the protein 

domain boundary annotation from the CATH database, and follow the convention that considers 

a residue as positive if it is within ±20 residues of the true boundary. Thus, the coding dimension 

for output labels is 200 by 3. The three values represent the probability of a residue being a positive 

(within the true boundary), negative (outside the true boundary), and padding residue, respectively. 

2.3 Model Architecture 

Our deep learning architecture is shown in Figure 2. The bidirectional design in each middle layer 

captures the information from residues before and after a protein domain boundary. We stacked 

four such layers to capture the high order non-linear features that can detect complex boundary 

patterns or weak signals. Each neuron in the hidden layers is an LSTM unit.   

The key to LSTM is the cell state C that runs through the entire chain. An LSTM unit has the 

ability to remove or add information to the cell state by a regulation structure called gate. Firstly, 

an LSTM unit uses its “forget gate” to decide what information to discard from the cell state. It 

takes the output ℎ𝑡−1 from the previous unit and the current input 𝑥𝑡 as the input of a sigmoid 

function to produce a number between 0 and 1 for each number in the cell state. A 1 means 

completely keeping the value while a 0 means completely removing it. The formulas for the forget 

gate is shown as Eq. (1). 

 

Figure 2. The stacked bidirectional LSTM model. Green boxes represents the input layer. Red boxes 

represents the output layer. Each box represents a residue. Blue dots form the bi-directional hidden 

layers. Signals from left to right are represented by solid arcs, while dashed arcs represent signals 

from the reverse direction. Each dot represents an LSTM unit. A magnified LSTM unit is shown. Its 

different gates are highlighted with different colors. At the end of the model, a Softmax layer is 

added to scale the output value with a sum of 1 so that they can be interpreted as probabilities. 
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𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                   (1) 

where 𝑊𝑓 and 𝑏𝑓 are the weight matrix and bias for the forget gate layer. Next, a tanh layer creates 

a new candidate input vector. It will be performed a pointwise product with a sigmoid layer called 

the “input gate” to decide which values to add to the cell state. The formula for candidate input 

creation and the input gate are shown as Eq. (2) and Eq. (3), respectively. 

�̃�𝑡 = tanh(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)                                              (2) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                                   (3) 

where 𝑊𝐶 and 𝑊𝑖 are weight matrix for the tanh layer and the input gate layer, respectively. 𝑏𝐶 

and 𝑏𝑖 are bias for the tanh layer and the input gate layer, respectively. Then the LSTM unit can 

update the old cell state 𝐶𝑡−1 into the new cell state 𝐶𝑡 by Eq. (4). 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡                                                            (4) 

Finally, the cell state goes through a tanh layer to scale the values between -1 and 1. The scaled 

cell state will be filtered by a sigmoid layer called “output gate” to decide which values to output. 

The formulas for output gate definition and the current output are shown as Eq. (5) and Eq. (6), 

respectively. 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡]+ 𝑏𝑜)                                                  (5) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)                                                        (6) 

The ability of avoiding vanishing gradient is mainly owing to the design of forget gate in 

LSTM. Thus, if a protein domain boundary prediction depends on some signals from remote 

residues, our model can be trained to set those forget gates’ values as 1 on informative positions 

and let the far, weak but informative signal propagate far without significant loss.  

2.4 Evaluation criteria 

We used prediction precision, recall and Matthew’s correlation coefficient (MCC) to evaluate our 

method and compare with others’. The definitions of precision, recall, MCC are listed in Eq. (7), 

Eq. (8) and Eq. (9), respectively: 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                        (7) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                           (8) 

𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝐹𝑃+𝑇𝑁)(𝑇𝑁+𝐹𝑁)
                                       (9) 

where TP, FP, TN, FN are true positive, false positive, true negative and false negative prediction, 

respectively. When a residue has a predicted probability of being within a domain boundary region 

higher than a cutoff, we checked its surrounding ±20 residues to see if there is a recorded domain 

boundary in the CATH database for the protein. If yes, then we have a true positive, otherwise it 

is a false positive. On the contrary, when there is a residue our model predicted it being outside of 

domain boundary regions, we checked its surrounding ±20 residues to see if there is a recorded 
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domain boundary in the CATH database for the protein. If yes, then we have a false negative; 

otherwise it is a true negative.   

3. RESULTS AND DISCUSSION 

3.1 Parameter configuration experiments on test data 

We have done a series of experiments with different window sizes and stride values to determine 

the best combination of these two parameters. The prediction performance of each experiment 

design is listed in Table 1. And we presented the results separately based on the number of domains 

that a protein has. Each value is the result after the 10-fold cross validation. Note that in 

Table 1. Prediction performance in different experiment designs 

Window size 80 100 200 

Stride 20 40 80 20 40 80 20 40 80 

Experiment ID 1 2 3 4 5 6 7 8 9 

Precision_d1 0.572 0.625 0.626 0.609 0.622 0.588 0.465 0.547 0.618 

Recall_d1 0.493 0.498 0.447 0.486 0.513 0.529 0.602 0.582 0.584 

MCC_d1 0.442 0.478 0.450 0.462 0.485 0.472 0.415 0.471 0.520 

Precision_d2 0.608 0.655 0.650 0.652 0.653 0.623 0.496 0.576 0.654 

Recall_d2 0.361 0.338 0.291 0.346 0.366 0.365 0.473 0.443 0.426 

MCC_d2 0.361 0.374 0.341 0.377 0.391 0.372 0.341 0.386 0.426 

Precision_d3+ 0.639 0.670 0.661 0.675 0.668 0.629 0.543 0.598 0.669 

Recall_d3+ 0.357 0.297 0.245 0.315 0.330 0.310 0.453 0.418 0.381 

MCC_d3+ 0.360 0.340 0.301 0.354 0.360 0.326 0.343 0.367 0.391 

Precision_ALL 0.601 0.644 0.641 0.637 0.643 0.607 0.496 0.570 0.641 

Recall_ALL 0.409 0.382 0.332 0.386 0.407 0.406 0.513 0.486 0.468 

MCC_ALL 0.392 0.402 0.369 0.401 0.416 0.394 0.370 0.412 0.450 

 

 

Figure 3. Illustration of the prediction precision, recall 

and MCC as a function of the decision threshold when the 

window size=200 and stride=80. The results are based on 

a 10-fold cross validation.  
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Experiment 3, we considered the situation that there is no overlap between windows. Under each 

experiment design (one column) in Table 1, we only presented the result that had the highest MCC-

ALL at a certain threshold. We also conducted experiments using sliding window of 300 residues. 

However, the improvement for MCC-ALL is not significant (around 0.01) compared with cases 

when window size is 200 residues. So, we believe 200 is enough. As shown in Table 1, the highest 

MCC-ALL, also the overall best prediction performance is achieved when the sliding window size 

equals to 200 residues and the stride value equals to 80 residues. Figure 3 illustrates a plot of the 

precision, recall and MCC as functions of the decision threshold when using the optimum window 

size and stride value. The threshold at which the highest MCC-ALL reached is 0.42, and hence we 

used this value as the default threshold.  

3.2 Comparison with Other Domain Boundary Predictors   

To perform a fair comparison with other methods on a benchmark dataset, we tested our method 

on the proteins in the Critical Assessment of Techniques for Protein Structure Prediction (CASP). 

The definitions of domain boundaries on target proteins are provided by the CASP protein domain 

prediction contest sessions. Based on the categories those target proteins belong to, we conducted 

several experiments accordingly. In each experiment, the proteins that have a 40% or higher 

identity with any target protein were excluded from our training dataset.  

3.2.1 Free modeling targets from CASP 9 

Free modeling (FM) targets are proteins without any homologous templates. These targets are 

often regarded as “hard cases”, since their predictions usually had poor performance. We selected 

all the 22 FM targets in CASP 9 and applied different methods to predict their domain boundaries. 

By comparing the results in the two categories in Table 2, we found most template-based methods 

suffered a significant decrease in both precision and recall for FM targets. ThreaDom is currently 

the top 1 templated-based method using multiple threading alignments to extract protein domain 

boundary information. For FM targets, ThreaDom identifies multiple alignments or super-

secondary structure segments from weakly homologous templates, then a domain conservation 

score profile extracts consensus information between the domain structure and alignment gaps. 

This way, ThreaDom maintained a good precision for FM targets. Our ab-initio method DeepDom 

achieved the overall best prediction results for FM targets, with the same precision as ThreaDom 

but higher recall. All the results by different methods are listed in Table 2, where some of them 

were generated from the tools provided and others were collected from Ref. [5] and Ref. [17], 

since they used the same data. 

3.2.2 Multi-domain targets from CASP 9 

We also selected all the 14 multi-domain targets from CASP 9 with the constraint that every 

domain on one protein must be continuous, since most other methods can only handle multi-

domain targets of this kind. For this category, template-based methods generally have better 

results. ThreaDom achieved the overall best prediction performance. But DeepDom is still the best 

among ab-initio methods and also competitive with the template-based methods, as shown in Table 

2.  
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3.2.3 Discontinuous domain target from CASP 8 

Some protein domains consist of several separated segments. The prediction of such discontinuous 

domain is still an unsolved problem. Most mentioned methods above have been explicitly designed 

to handle domains without discontinuous segments, despite the fact that discontinuous domain is 

important in protein structural determination and function annotations. 

Table 2. Comparison results from different methods on two 

category targets in CASP 9 contest 

Category Predictor CASP9 protein boundary prediction 

Precision Recall 

 

 

 

FM 

DeepDom 0.882 0.468 

ThreaDom 0.882 0.455 

Pfam 0.323 0.485 

FIEFDom 0.231 0.182 

DomPro 0.500 0.182 

PPRODO 0.333 0.485 

DROP 0.429 0.182 

 

 

 

Multi-Domain 

DeepDom 0.689 0.441 

ThreaDom 0.764 0.534 

Pfam 0.500 0.548 

FIEFDom 0.340 0.233 

DomPro 0.500 0.140 

PPRODO 0.500 0.520 

DROP 0.679 0.260 

DoBo 0.490 0.700 

 

 

Figure 4. An illustration of discontinuous domain boundary 

prediction using target T0418 from CASP 8. The domain assignment 

is (1-16|83-216) (17-82), where the first domain has two segments. 

The defined domain boundaries are presented by vertical dash lines. 

The threshold of our model is 0.42. 
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To evaluate the ability of DeepDom in predicting discontinuous domain, we selected all the 18 

targets that contain at least one discontinuous domain from CASP 8. The overall discontinuous 

domain boundary prediction precision is 81.2%, the recall is 34.8%, and with MCC of 0.38. 

However, currently we have not found a method to predict whether multiple segments belong to 

the same domain. Figure 4 gives an illustration of one discontinuous domain protein prediction.  

4. CONCLUSION 

In this paper, we designed a novel computational method called “DeepDom” for protein domain 

boundary prediction using deep learning. Our model does not need elaborated feature engineering. 

Instead, it extracts information from a large amount of raw sequence data. The comparison showed 

that DeepDom achieved better results than other ab-initio methods and is competitive with 

template-based methods. As an ab-initio method, DeepDom has the advantage to outperform the 

most successful template-based method when dealing with free modeling targets. Importantly, it 

can run much faster than other methods, all of which use sequence profiles that are time consuming 

to generate. 

There is room for improvement of DeepDom. Ideally, a protein sequence should be encoded 

“globally”, since breaking into fragments excludes the potential long distance dependency. By 

doing several experiments with varying window sizes and strides, an interesting discovery is that 

protein domain boundary prediction seems to depend on the signals from remote residues. 

However, this still requires further experiments to prove and develop a new method to use the 

information. The other limitation is that the prediction performance for template-available targets 

is lower than the best template-based method. We will develop a hybrid method that can take 

advantages of existing methods from both approaches (ab-initio and template-based). We also plan 

to make the hybrid method available as a web server. Most of the existing domain prediction web 

servers only allow users to submit one protein sequence a time. Since DeepDom avoids the time-

consuming sequence profile generation process, the users can predict for a list of proteins in a short 

time. 
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Res2s2aM: Deep residual network-based model for identifying functional
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Noncoding single nucleotide polymorphisms (SNPs) and their target genes are important
components of the heritability of diseases and other polygenic traits. Identifying these SNPs
and target genes could potentially reveal new molecular mechanisms and advance precision
medicine. For polygenic traits, genome-wide association studies (GWAS) are preferred tools
for identifying trait-associated regions. However, identifying causal noncoding SNPs within
such regions is a difficult problem in computational biology. The DNA sequence context of
a noncoding SNP is well-established as an important source of information that is benefi-
cial for discriminating functional from nonfunctional noncoding SNPs. We describe the use
of a deep residual network (ResNet)-based model—entitled Res2s2aM—that fuses flanking
DNA sequence information with additional SNP annotation information to discriminate
functional from nonfunctional noncoding SNPs. On a ground-truth set of disease-associated
SNPs compiled from the Genome-wide Repository of Associations between SNPs and Phe-
notypes (GRASP) database, Res2s2aM improves the prediction accuracy of functional SNPs
significantly in comparison to models based only on sequence information as well as a leading
tool for post-GWAS noncoding SNP prioritization (RegulomeDB).

Keywords: Deep Residual Network; Noncoding DNA; Sequence Analysis; GWAS.

1. Introduction

Prioritizing functional trait-associated noncoding SNPs in the human genome remains a criti-
cal and challenging problem. From thousands of genome-wide association studies, over 21,751
trait-associated SNPs have been reported.1 However, noncoding SNPs can also have significant
effects on trait variation including risks of certain diseases such as coronary artery disease or
certain cancers.2 Causal noncoding SNPs are thought affecting trait variation through gene
regulatory mechanisms. Nevertheless, identifying such causal variants within trait-associated
regions that have been implicated by GWAS is a difficult computational problem3 because
the noncoding DNA sequence and epigenomic determinants of regulatory sites are incom-
pletely studied. While some genomic annotations are known to be informative for predicting
whether or not a noncoding SNP is functional,4 many sequence determinants of functional
noncoding DNA are unknown and must be learned from training data. DNA sequence infor-
mation up to a kilobase from a noncoding SNP can be informative as to whether or not that
SNP is functional;5 however, at that distance scale, the DNA sequence context of a SNP is

c© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed under the terms of the

Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.
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high-dimensional, posing significant challenges for traditional computational methods.
In recent years, significant advancements have been made in machine learning methods

for handling high-dimensional datasets with complex interactions among features. Deep learn-
ing approaches are particularly powerful in this context because they enable the utilization
of large-scale, high-dimensional, unstructured data as a substrate for predictive models. In
machine-learning methods for image recognition, deep convolutional neural networks (CNNs)
have emerged as a fundamental building block for deep learning approaches, due to the CNN’s
ability to learn composite data representations and the contours of objects from pixel-level
data.6 Recently, deep residual networks (ResNet)7,8 have been proposed which have the ad-
vantage of smoothing the information propagation and more representing power with deeper
network models. A key advantage of deep neural network models with differentiable activation
functions is that the backpropagation algorithm for computing the loss function gradient can
be used, which is compatible with computation on a graphical processing unit (GPU).

Deep learning methods have been used in computational biology in various contexts9 in-
cluding biomedical imaging, data-driven diagnostics, and pharmacogenomics. In the area of
noncoding genome analysis, deep learning-based computational approaches have been used for
both functional SNP prioritization and identification of regulatory sequence patterns, among
which two approaches are notable: Basset10 is a deep neural network model for predicting
chromatin accessibility for cell-specific mutations using DNA sequences; and DeepSEA5 is a
convolutional neural network based framework trained on chromatin-profiling data that di-
rectly learns regulatory patterns de novo from SNP-flanking sequences. In the context of post-
GWAS analysis to identify causal noncoding SNPs, the key computational problem relevant to
this work can be defined as: given a DNA sequence acquired around a specific trait-associated
noncoding SNP, and given a set of training (functional) SNPs, produce a score representing
the confidence that the trait-associated SNP is functional.

In this work, we collated a set of training noncoding SNPs (divided into “functional” and
“non-functional” classes) curated from GWAS studies, and obtained flanking genomic DNA se-
quences for the SNPs. We implemented 5 different neural network architectures for predicting
the SNP class labels based on their flanking DNA sequences and (optionally) additional SNP
annotation features from a database of noncoding SNP annotations (HaploReg): two CNN
models based on DeepSEA,5 a CNN model based on DeFine11 (with two sets of optimization
algorithms and loss functions), a new sequence-based deep residual network approach (which
we call Res2s2a) that we propose, and a hybrid network (which we call Res2s2aM) fusing
Res2s2a with HaploReg-derived SNP annotation features. We trained the neural network mod-
els using a stochastic gradient optimization method (Adam)12 and evaluated their performance
for discriminating functional from non-functional noncoding SNPs in hold-out examples. We
found that the deep residual network models (Res2s2a and Res2s2aM) outperformed the CNN-
based models, and that the hybrid model (Res2s2aM) outperformed the sequence-only model
(Res2s2a). This work is the first application of deep residual networks for noncoding SNP
prioritization of which we are aware, and it suggests that ResNet models can significantly
advance the state-of-the-art for computational methods for post-GWAS SNP prioritization.
All of the code for this work (including the new methods Res2s2a and Res2s2aM) is available
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on the open-source software repository GitHub (https://github.com/zheng-liu/res2s2am).

2. Background theory

CNNs. In previous convolutional neural network based methods involving DNA sequences,
the models take one-hot-encoded DNA sequence as input and predict class-specific scores as
output. Through filtering kernels with variable weights, convolutional layers exploit spatial lo-
cality to develop discriminating signals at successively coarse-grained scales. The same filtering
kernel (i.e., with identical weights) is applied at each neuron position in the layer. Pooling
layers effect downsampling to reduce dimensionality issue and make abstracted representation
binned in certain sections. Nonlinear activation layers (e.g., ReLU) aim to add nonlinearity in
the model for larger and more flexible projecting space from sequences to labels. The convo-
lutional layers are organized in a general form shown in Figure 1. By successive convolution

…

ReLU
Pooling

ReLU
Pooling

ReLU
Pooling prediction

… ✔
A C A G T A … T

1 1 1 … 1
1 …

1 …
1 …

A
C
G
T

Fig. 1. General CNN models architecture. One-hot-encoded sequence data (left) shown as a 4×L
matrix; ReLU denotes a network unit based on the rectifier function, (f(x) = max(0, x)); the ⊗
symbol denotes convolution; the pooling layer selects the stronger signals from previous layer; the
final rightmost arrow represents a prediction layer (e.g., softmax or logistic function).

operations, the network starts to learn the locality of data and produces advanced features
in intermediate layer filters.10 More layers bring larger parameter spaces and equivalently
more representing power towards the input signals. Unexpectedly, as indicated by He et al.,7

a degradation problem happens when deeper networks are built: the prediction performance
becomes saturated with increasing number of of hidden layers.

Residual nets. Deep residual network (ResNet)7,8 is an approach to address the saturating
problem in the meanwhile tapping the potential of deeper nets. The ResNet approach is based
on a feed-forward neural network with shortcut connections (based on the identity function
I(x) = x) between non-adjacent layers. At the end of a module (made up of two or more
layers), the mapped identical signal I(x) = x is added into the output of stacked module
layers. In the pipeline of ResNet, the model is established with multiple modules of hidden
layers as shown in Figure 2.

Instead of fitting the original input signal x into each layer module, ResNet fits the residual
signal H(x) − x based on the assumption that the residual signal is more likely to overcome
the local optimums in gradient-based optimization processes. In the training procedure, if
the optimal fitting to H(x) is the identity function H(x) = x, the stacked module layers
are trying to fit an always-zero constant signal which is much easier than fitting an identity
mapping using the nonlinear layers in the module. More importantly, as a common problem,
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deeper nets tend to cause more vanishing gradient problem that small gradients multiplication
following chain rule leads to loss of information at the end. ResNet with an identity function
as a shortcut always possesses a 1.0 gradient component which largely stables the gradient
calculation in backpropagation. Formally, the module output is defined in Equation (1):

H(x) = f(x) + x

= W2 ×ReLU(W1 · x+ b1) + b2 + x, (1)

where W1, W2, b1, and b2 are coefficients.

weight layer, W1, b1

weight layer, W2, b2

+

ReLU

ReLU

x

f(x)

f(x) + x

ReLU

I(x)=x

Fig. 2. A building block of
Residual Network

ResNet mounts shortcuts of identity functions besides the
stacked layer modules to make the weight matrix easier to
fit the signal primarily when the intended signal is x itself.
Even though adding extra coefficients to identity functions
Ii(x) = x as Ii(x) = λx seems to provide more flexibility to
shortcuts, it is nontrivial to notice that those coefficients in-
troduce more optimization difficulties.8 Veit et al. explain the
ResNet effectiveness in an ensemble view that ResNet is a
collection of independent paths differing in length, and only
short paths are trained.13 Thus, compared to other CNN mod-
els, a ResNet architecture with identity skipping function is
adapted to GWAS SNP prioritization problem in this work.

3. Dataset for training and testing

To verify the model effectiveness, we assembled a dataset of
trait-associated noncoding DNA sequences together with con-
trol cases (noncoding SNPs in the same genomic loci as positive SNPs but for which there is
no trait association). In this section we describe the procedures used to build the dataset.

3.1. Source databases

In this work we used four source databases to obtain the information required to build a
feature matrix on a set of example SNPs. From the GRASP database14 we obtained a dataset
of 2.48 M SNPs (identified by dbSNP RefSNP IDs or “rsIDs”15). GRASP was selected because
it is comprised of significant SNPs from a large number (1390) of GWAS studies with diverse
traits. We used the UCSC Genome Center knownGene database16 for chromosomal coordinate
information of SNPs in the GRCh37/hg19 genome assembly. We used the UCSC Genome
Browser knownGene table of gene annotations to obtain chromosomal coordinates of genes,
transcripts, and exons (in the same genome assembly). We used the web tool HaploReg17

for mapping between GRASP SNPs and neighboring SNPs that are in linkage disequilibrium
with the GRASP SNPs (“proxy SNPs”) and for obtaining functional annotations for SNPs
including consensus functional SNP scores that were assigned by the RegulomeDB project.18

We used the UCSC Genome Browser to obtain flanking genomic sequence (1 kbp window size)
for each SNP in our dataset.
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3.2. Dataset generation

Positive dataset generation. We annotated each SNP based on its location relative to
known gene annotations using all Ensembl transcripts,19 assigning the SNP to an annotation
category out of “pcexon (protein-coding exon)”, “intron”, “3′UTR”, “5′UTR”, “nonpcexon
(non-protein-coding exon)”, “intergenic”. Following a specific strand direction, If a SNP over-
lapped a protein-coding exon in any transcript, it was annotated as coding. If a SNP was
not marked as coding by the previous step but was found to overlap a UTR in any tran-
script, it was annotated with the corresponding UTR (3′ or 5′). If a SNP was not annotated
as coding or UTR by the previous steps, but if that SNP was located in an intron for any
transcript, it was annotated as intronic. If a SNP in a transcript did not overlap with any
coding exon, it is assigned to “nonpcexon” category. Otherwise, the SNP was annotated as
intergenic. Next, we filtered to obtain a positive-example set of SNPs following criteria: (1)
SNPs residing in protein-coding exons were excluded. (2) Any SNP within 1 Mbp of a trait-
associated (P < 5× 10−8 in at least one record in GRASP) protein-coding SNP was excluded.
(3) Remaining noncoding SNPs meeting the significance criteria (P < 5× 10−8 in at least one
GWAS) that had the lowest P value within 1 Mbp were retained as positive examples. (4)
The rest noncoding SNPs with minimum P -value in the neighborhood of noncoding SNPs
are specified as positive cases. This procedure yielded a set of 128,944 positive examples of
noncoding SNPs.

Control case generation. Using HaploReg,17 we obtained SNPs that are in linkage
disequilibrium (within 250 kbp and with correlation coefficient r2 ≥ 0.8) with SNPs from
the positive set. Each positive SNP was expanded to SNPs from four population groups
(“AFR”, “AMR”, “ASN”, “EUR”) in the 1,000 Genome (1KG) Project20 and then combined.
In the set of resulting proxy SNPs, any SNPs that were listed in the GRASP database or
protein-coding were excluded, resulting in a set of 1,412,452 noncoding control SNPs that
were treated as negative examples. Additionally, we obtained annotation features about the
SNP set using HaploReg, including allele frequencies, conservation scores et al. Table 1 details
the biological features that we used in the Res2s2aM model. We obtained RegulomeDB scores
from RegulomeDB webservice directly used as a categorical feature in the Res2s2aM model
and also as a standalone predictor. We mapped the 15 RegulomeDB score categories (“1a”,
“1b”, “1c”, ... “5”, “6”, “7”) to [1.0, 2.0, ..., 15.0] for this purpose, assigning the value 16.0 to
missing RegulomeDB scores (note: a lower RegulomeDB score corresponds to greater evidence
for a noncoding SNP to be functional18). This procedure yielded 1,541,396 SNPs in total with
a class ratio of about 1:10.9 (positive SNPs : control SNPs).

SNP annotation feature evaluation. In order to quantify the discriminating power
of individual SNP annotation features (from HaploReg) on our set of 1.5 million SNPs, we
computed empirical log-likelihood ratios (positive:control) of each of the SNP annotation
features (Fig. 3). This analysis showed that, consistent with the fact that it is comprised of
multiple types of independent evidence for functional noncoding SNPs, RegulomeDB (Fig. 3e)
is the strongest predictor among the SNP annotation features. Further, the analysis shows an
strong association between the reference allele frequency and the likelihood ratio, in each of
the 1KG population groups.
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Table 1. The SNP annotation features used in the hybrid Res2s2aM model

feature name feature type feature description

AFR continuous RefAllele Freq in the African population (492 samples)
AMR continuous RefAllele Freq in the Ad Mixed American population (362 samples)
ASN continuous RefAllele Freq in the Asian population (572 samples)
EUR continuous RefAllele Freq in the European population group (758 samples)
reg score int categorical RegulomeDB score encoded from 1.0 to 16.0
GERP cons categorical GERP phylogenetic sequence conservation score21

SiPhy cons categorical SiPhy selective constraint score22

Fig. 3. Estimated log likelihood ratio (LLR) of features. “Direction” means the location of the SNP
relative to the nearest gene (0 = within; 3 = downstream, 5 = upstream).

4. Methods

4.1. ResNet architecture in our model

Our model (Fig. 4) uses a 1 kbp sequence along each strand which is one-hot-encoded as a
4× 1000 sparse matrix. The matrix is treated as a 4-channel input signal with each row as a
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single channel input. After both encoded strands are input into the model, a convolution step
based on 16 convolutional kernels (each of size 7×7) is performed on them with a stride of 2 bp.
The output of the previous layer is batch normalized,23 ReLU activated, and a max pooling
layer is applied to reduce dimension. Next, 4 groups of residual blocks are built with various
output channels, layers, and filter strides. Each residual block consists of 3 batch-normalized
convolutional layers with ReLU activation and the residual skipping shortcut connections. An
average pooling layer with kernel size to 4 bp is applied to the output of the residual block.
The output of average pooling layers from both strands are expanded into 1-D vectors and
combined into one single vector as the final output for both strands.

4.2. Tandem inputs of forward- and reverse-strand sequences

Genomic DNA is double-stranded, and thus, to make a consistent prediction with the same
SNP sequences along both strand directions, we incorporate input DNA sequences along both
“+” and “-” strands (the latter being reverse-complemented) into our CNN- and ResNet-
based models. As it is demonstrated that reverse-complement parameter sharing contributes
to deep learning in genomics,24 the reverse-complement sequence segments are encoded in
our model (along with the forward-strand sequence) as input signals. In the training process,
each residual building block shares weights between both forward and reverse-complement
sequences.

4.3. Biallelic high-level network structure

A key potential issue with using neural networks to score genomic sequence flanking a SNP
is the need to account for the two alleles of the central SNP. Convolutional operations are
the critical components in convolutional neural network based models including ResNet. Most
existing models are trained merely on reference allele sequence flanking a specific variant
position. In this paper, we aim at the contrast between the reference allele and the alternative
allele and highlight the effect of the central SNPs. The architecture of the sequence learning
module in the Res2s2aM model is illustrated in Figure 4.

4.4. Incorporating HaploReg SNP annotation features

In previous studies, SNP annotation features have proved essential for identifying functional
noncoding SNPs.25 We trained the Res2s2aM model to learn feature embeddings jointly with
the encoded sequence. This method is inspired by natural language processing models where
words are mapped to a fixed dimension of vectors. We used a fully connected layer of 100
nodes as the embedding layer to represent both continuous and categorical features (Fig. 4,
dotted rectangle). The overall data fusion algorithm for Res2s2aM is defined in Algorithm 1.

4.5. Training of models

For parameter fitting in all models except “DeFine0,” we used Adam,12 a stochastic algo-
rithm for parameter optimization, with cross-entropy as the loss function. [For the “DeFine0”
model, following Wang et al.,11 we used stochastic gradient descent as optimization algorithm

Pacific Symposium on Biocomputing 2019 

82



fc, ref - alt

-

prediction

ref allele
ref reverse

complementary

7 x 7 conv, 16, /2

pool, 3, /2

Residual block 4
Residual block 4

Residual block 4

avg pool, 4

Residual block 4
Residual block 4

Residual block 4

avg pool, 4

7 x 7 conv, 16, /2

pool, 3, /2

Shared
weight

concatenated fc, ref

Residual block 2

Residual block 2

Residual block 2
Residual block 2

Residual block 2

Residual block 2

Residual block 2
Residual block 2

Residual block 2

Residual block 2

Residual block 2

Residual block 2

Residual block 1

Residual block 1

Residual block 1

Residual block 1
Residual block 1

Residual block 1

Residual block 3
Residual block 3
Residual block 3
Residual block 3

Residual block 3
Residual block 3
Residual block 3
Residual block 3

alt allele
alt reverse

complementary

7 x 7 conv, 16, /2

pool, 3, /2

Residual block 4'
Residual block 4'

Residual block 4'

avg pool', 4

Residual block 4'
Residual block 4'

Residual block 4'

avg pool', 4

7 x 7 conv, 16, /2

pool, 3, /2

Shared
weight

concatenated fc’, alt

Residual block 2'
Residual block 2'
Residual block 2'
Residual block 2'
Residual block 2'

Residual block 2'

Residual block 2'

Residual block 2'

Residual block 2'
Residual block 2'
Residual block 2'

Residual block 2'

Residual block 1'

Residual block 1'
Residual block 1'

Residual block 1'
Residual block 1'

Residual block 1'

Residual block 3'
Residual block 3'
Residual block 3'
Residual block 3'

Residual block 3'
Residual block 3'
Residual block 3'
Residual block 3'

concatenated fc’

biological features: ft1, ft2…ftn

fc, bio-features embedding

A C A G T A … T

1 1 1 … 1
1 …

1 …
1 …

A
C
G
T

A … T A C T G T

1 … 1
… 1
… 1
… 1 1 1

A
C
G
T

A … T G C T G T

1 …
… 1
… 1 1
… 1 1 1

A
C
G
T

A C A G C A … T

1 1 1 …
1 1 …

1 …
… 1

A
C
G
T

Fig. 4. Architecture of model Res2s2aM. In the Res2s2a model, the portion of the network shown
in the dotted rectangle (which is based on SNP annotation data from HaploReg) is not included.

and mean squared error with L2 regularization as loss function.] Model parameters were ini-
tialized before training. All parameters in convolutional layers were initialized by sampling
N (0,

√
2.0/c), where c equals the total number of output dimensions [DeFine0 and DeFine

initialized conv layers to N (0, 1)]. All the batched norm layers were initialize their weights to
1.0 and biases to 0. We trained 40 epochs for each model and saved the model parameters
at the epoch with lowest validation-set loss. Also, we used an early stop mechanism during
training: training was terminated if the validation loss continuously increased for ten epochs.
As seen in Figure 6, the training loss of ResNet-based models (on the validation set) reached
a minimum in 10–15 epochs. Other models’ architectures are shown in Figure 5.
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Algorithm 1 Res2s2aM

1: procedure seqAugment(x) . Expansion of ref seq
2: x1 = x . Ref seq: + strand
3: x

′

1 = x̄1
−1 . Ref seq: - strand, reverse complement

4: x2 = alt(x1) . Alt seq: + strand
5: x

′

2 = x̄2
−1 . Alt seq: - strand, reverse complement

6: procedure seqLearn(x1, x
′

1, x2, x
′

2)
7: Initialize Conv layers convi and BatchNorm layers bni, i ∈ {1, 2}
8: x1, x

′

1, x2, x
′

2 = conv1(x1), conv1(x
′

1), conv2(x2), conv2(x
′

2) . Filters sharing
9: x1, x

′

1, x2, x
′

2 = bn1(x1), bn1(x
′

1), bn2(x2), bn2(x
′

2)
10: x1, x

′

1, x2, x
′

2 = maxpool1(x1), maxpool1(x
′

1), maxpool2(x2), maxpool2(x
′

2)
11: x1, x

′

1, x2, x
′

2 = relu1(x1), relu1(x
′

1), relu2(x2), relu2(x
′

2)
12: for i = 1 : nr do . Residual blocks
13: x1, x

′

1, x2, x
′

2 = ResBlocki
1(x1), ResBlocki

1(x
′

1), ResBlocki
2(x2), ResBlocki

2(x
′

2)

14: x1, x
′

1, x2, x
′

2 = avgpool1(x1), avgpool1(x
′

1), avgpool2(x2), avgpool2(x
′

2)
15: xref , xalt = [x1, x

′

1]1d, [x2, x
′

2]1d . Flatten and combine to 1-D vector
16: x∆ = xref - xalt . Train on difference of Ref and Alt seqs

17: procedure metaEmbed(xmeta)
18: xmeta = fcmeta(xmeta) . Metadata embedding
19: X = [x∆, xmeta]1d
20: X = fc(X)

return X

5. Results

We trained and evaluated six models: Res2s2aM, Res2s2a, DeFine0 (the DeFine network
model with the original optimization algorithm and objective function), DeFine (with Adam
optimization and cross-entropy loss), CNN 1s, and CNN 2s on 5 random data spliting assign-
ments. Additionally we compared the accuracy of the supervised models to an unsupervised
approach in which SNPs were ranked by their scores from the RegulomeDB tool. We found that
Res2s2aM significantly improves (Table. 2) over Res2s2a on testing-set area under the receiver
operating characteristic (AUROC) curve (from 0.74 to 0.76). By area under the precision-
versus-recall curve (AUPRC), Res2s2aM (0.21) also had higher performance than Res2s2a
(0.18). In addition to having superior accuracy, Res2s2a and Res2s2aM trained significantly
faster than the CNN-based models. Our model also has over 75% prediction accuracy to CVD,
gastrointestinal and blood-related diseases. Validation-set losses during training Res2s2a and
Res2s2aM terminate earlier than other models due to early stop mechanism (Fig. 6).

6. Conclusions and discussion

By introducing residual skipping connection and ResNet into functional noncoding SNP priori-
tization and multi-modal fusion of biological features with DNA sequence, Res2s2aM improves
the performance of noncoding functional SNP prioritization. Res2s2aM makes full use of both
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Fig. 6. Performance comparison of seven models: ResM = Res2s2aM , Res = Res2s2a, DF = DeFine,
DF0 = DeFine0, CNN2s = CNN 2s, CNN1s = CNN 1s, and RDB = RegulomeDB. Lines, boxes,
and marks denote median, interquartile range, and outliers, respectively.

unstructured sequence data and more biological features (continuous and categorical), leading
to an end-to-end deep neural network architecture. The experimental performance suggests
that (1) use of residual shortcut connections could potentially benefit the more general se-
quence based deep learning and (2) embedding biological features in an end-to-end fashion
could be helpful for utilizing more information sources while training deep models. By im-
proving prediction accuracy of the ground-truth SNPs using merely flanking sequences and
accessible biological features, prediction scores can be obtained for SNPs in a loci, which pri-
oritize functional noncoding SNPs following genotype-to-phenotype studies. However, from
what we observed, the Res2s2aM model has some disadvantages including: high memory re-
quirements, limitations in semi-supervised setting. We will adapt the ResNet-based model to
semi-supervised setting in our future work.

Table 2. Validation-set performance (95% confidence interval and p-value vs. Res2s2aM)

method name AUROC (95% CI) AUROC (p-value) AUPRC (95% CI) AUPRC (p-value)

Res2s2aM (0.7579, 0.7627) - (0.2082, 0.2142) -
Res2s2a (0.7432, 0.7491) 9.8× 10−5 (0.1809, 0.1848) 3.2× 10−6

cnn 2s (0.7201, 0.7278) 9.2× 10−6 (0.1616, 0.1685) 4.3× 10−6

cnn 1s (0.7240, 0.7269) 2.3× 10−6 (0.1654, 0.1677) 3.3× 10−6

DeFine (0.7162, 0.7200) 1.1× 10−6 (0.1608, 0.1638) 8.0× 10−7

RegulomeDB (0.5692, 0.5726) 6.7× 10−10 (0.1220, 0.1253) 1.1× 10−8
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Recent advances in next-generation sequencing technologies have facilitated the use of
deoxyribonucleic acid (DNA) as a novel covert channels in steganography. There are vari-
ous methods that exist in other domains to detect hidden messages in conventional covert
channels. However, they have not been applied to DNA steganography. The current most
common detection approaches, namely frequency analysis-based methods, often overlook
important signals when directly applied to DNA steganography because those methods de-
pend on the distribution of the number of sequence characters. To address this limitation,
we propose a general sequence learning-based DNA steganalysis framework. The proposed
approach learns the intrinsic distribution of coding and non-coding sequences and detects
hidden messages by exploiting distribution variations after hiding these messages. Using
deep recurrent neural networks (RNNs), our framework identifies the distribution varia-
tions by using the classification score to predict whether a sequence is to be a coding or
non-coding sequence. We compare our proposed method to various existing methods and
biological sequence analysis methods implemented on top of our framework. According to
our experimental results, our approach delivers a robust detection performance compared
to other tools.

Keywords: Deep recurrent neural network, DNA steganography, DNA steganalysis, DNA
watermarking

1. Introduction

Steganography serves to conceal the existence and content of messages in media using vari-
ous techniques, including changing the pixels in an image1. Generally, steganography is used
to achieve two main goals. On the one hand, it is used as digital watermarking to protect
intellectual property. On the other hand, it is used as a covert approach to communicating
without the possibility of detection by unintended observers. In contrast, steganalysis is the
study of detecting hidden messages. Steganalysis also has two main goals, which are detection
and decryption of hidden messages1,2.

Among the various media employed to hide information, deoxyribonucleic acid (DNA) is
appealing owing to its chemical stability and, thus is a suitable candidates as a carrier of

c© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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concealed information. As a storage medium, DNA has the capacity to store large amounts
of data that exceed the capacity of current storage media3. For instance, a gram of DNA
contains approximately 1021 DNA bases (108 terabytes), which indicates that only a few grams
of DNA can store all information available4. In addition, with the advent of next-generation
sequencing, individual genotyping has become affordable5, and DNA in turn has become an
appealing covert channels.

To hide information in a DNA sequence, steganography methods require that a reference
target sequence and a message to be hidden6. A näıve example of a substitution-based method
for watermarking that exploits the preservation of amino acids is shown in Fig. 1 (see the
caption for details). The hiding space of this method is restricted to exon regions using a
complementary pair that does not interfere with protein translation. However, most DNA
steganography methods are designed without considering the hiding spaces, and they change
a sequence into a binary format utilizing well-known encryption techniques.

In this regard, Clelland et al.7, first proposed DNA steganography that utilized the mi-
crodot technique. Yachie et al.8, demonstrated that living organisms can be used as data
storage media by inserting artificial DNA into artificial genomes and using a substitution ci-
pher coding scheme. This technique is reproducible and successfully inserts four watermarks
into the cell of a living organism9. Several other encoding schemes have been proposed 10,11.
The DNA-Crypt coding scheme 12 translates a message into 5-bit sequences, and the ASCII
coding scheme13 translates words into their ASCII representation, converts them from deci-
mals to binary, and then replaces 00 with adenine (A), 01 with cytosine (C), 10 with guanine
(G), and 11 with thymine (T).

With the recent advancements with respect to steganography methods, various steganalysis
studies have been conducted using traditional storage media. Detection techniques that are
based on statistical analysis, neural networks, and genetic algorithms14 have been developed
for common covert objects such as digital images, video, and audio. For example, Bennett1

exploits letter frequency, word frequency, grammar style, semantic continuity, and logical
methodologies. However, these conventional steganalysis methods have not been applied to
DNA steganography.

In this paper, we show that conventional steganalysis methods are not directly applica-
ble to DNA steganography. Currently, the most commonly employed detection schemes, i.e.,
a statistical hypothesis testing methods, are limited with respect to the number of input
queries in order to estimate distribution to perform statistical test15. To overcome the limi-
tations of these existing methods, we propose a DNA steganalysis method based on learning
the internal structure of unmodified genome sequences (i.e., intron and exon modeling16,17)
using deep recurrent neural networks (RNNs). The RNN-based classifier is used to identify
modified genome sequences. In addition, we enhance our proposed model using unsupervised
pre-training of a sequence-to-sequence autoencoder in order to overcome the restriction of
the robustness of detection performance. Finally, we compare our proposed method to var-
ious machine learning-based classifiers and biological sequence analysis methods that were
implemented on top of our framework.
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Fig. 1. DNA hiding scheme using synony-
mous codons. A watermark is a scheme used
to deter unauthorized dissemination by mark-
ing hidden symbols or texts. For the conserva-
tion of amino acids, DNA watermarking can
be changed to one of the synonymous codons.

Fig. 2. Learned representation of DNA se-
quences. The learned representations for each
coding and non-coding region projected into
a two-dimensional (2-D) space using t-SNE.18

The representation is based on sequence-to-
sequence learning using an autoencoder and
stacked RNNs.

2. Background

We use the standard terminology of information hiding19 to provide a brief explanation of
the related background. For example, two hypothetical parties, (i.e., a sender and a receiver)
wish to exchange genetically modified organisms (GMOs) protected by patents. A third party
detects watermark sequence from the GMOs for unauthorized use. Both the sender and receiver
use the random oracle20 model, which posits existing steganography schemes, to embed their
watermark message, and the third party uses our proposed model to detect the watermarked
signal. A random oracle model posits the randomly chosen function H, which can be evaluated
only by querying the oracle that returns H(m) given input m.

2.1. Notations

The notations used in this paper are as follows: D = {D1, · · · , Dn} is a set of DNA sequences
of n species; D̂ = {D̂1, · · · , D̂n} is a set of DNA sequences of n species and the hidden messages
are embedded for some species D̂i; m ∈ {A,C,G,T}` is the input sequence where ` is the length
of the input sequence; m̂ ∈ {A,C,G,T}` is the encrypted value of m where ` is the length of
the encrypted sequence; E is an encryption function, which takes input m and returns the
encrypted sequence E(m)→ m̂; MDi

is a trained model that takes target species Di as training
input; y is an averaged output score y; ŷ is a probability output given by the trained model
MDi

(m̂) → ŷ given input m̂, where m̂ ∈ D̂i; A is a probabilistic polynomial-time adversary.
The adversary21 is an attacker that queries messages to the oracle model; ε is the standard
deviation value of score y.

2.2. Hiding Messages

The hiding positions of a DNA sequence segment are limited compared to those of the covert
channel because the sequences are carried over after the translation and transcription processes
in the exon region. For example, assume that ACGGTTCCAATGC is a reference sequence, and
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01001100 is the message to be hidden. The reference sequence is then translated according
to any coding schemes. In this example, we apply the DNA-crypt coding scheme12, which
converts the DNA sequence to binary replacing A with 00, C with 01, G with 10, and T with 11.
The reference sequence is then translated to 00011010111101010000111001 and divided into
key bits that are defined by the sender and receiver. Assume that the length of the key is 3,
the reference sequence can be expressed as 000, 110, 101, 111, 010, 100, 001, 110, 01, and the
message is concealed at the first position. The DNA sequence with the concealed messages
are then represented as 0000, 1110, 0101, 0111, 1010, 1100, 0001, 0110, 01. Finally, the sender
transmits the transformed DNA sequence of AATGCCCTGGTAACCG. The recipient can extract
the hidden message using the pre-defined key.

2.3. Determination of Message-Hiding Regions

Genomic sequence regions (i.e., exons and introns) are utilized depending on whether the task
is data storage or transport. Intron regions are suitable for transportation since they are not
transcribed and are removed by splicing22,23 during transcription. This property of introns
provides large sequence space for concealing data, creating potential covert channels. In con-
trast, data storage (watermarking) requires data to be resistant to degradation or truncation.
Exons are a suitable candidate for storage because underlying DNA sequence is conserved af-
ter the translation and transcription processes24. These two components of internal structure
components in eukaryote genes are involved in DNA steganography as the payload (water-
marking) or carrier (covert channels). Fig. 2 shows the learned representations of introns and
exons which are calculated by softmax function. The softmax function reduces the outputs of
intron and exons to range between 0 and 1. The 2D projection position of introns and exons
will change if hidden messages are embedded without considering shared patterns between the
genetic components (e.g., complementary pair rules). Thus, the construction of a classification
model to enable a clear separation axis of these shared patterns is an important factor in the
detection of hidden messages.

3. Methods

Our proposed method uses RNNs25 to detect hidden messages in DNA. Fig. 3 shows our
proposed steganalysis pipeline. The pipeline comprises of training and detection phases. In
the model training phase, the model learns the distribution of unmodified genome sequences
that distinguishes between introns and exons (see Section 3.2 for the model architecture). In
the detection phase, we obtain a prediction score exhibiting the distribution of introns and
exons. By exploiting the obtained prediction score, we formulate a detection principle. The
details of the detection principle are described in Section 3.1.

3.1. Proposed DNA Steganalysis Principle

The security of the random oracle is based on an experiment E involving an adversary A,
as well as A’s indistinguishability of the encryption. Assume that we have the random oracle
that acts like a current steganography scheme S with only a negligible success probability.
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Fig. 3. Flowchart of proposed DNA steganalysis pipeline.

The experiment E can be defined for any encryption scheme S over message space D and for
adversary A. We describe the proposed method to detect hidden messages using the random
oracle. For the E, the random oracle chooses a random steganography scheme S. Scheme S

modifies or extends the process of mapping a sequence with length n input to a sequence with
length ` with a random sequence as the output. The process of mapping sequences can be
considered as a table that indicates for each possible input m the corresponding output value
m̂. With chosen scheme S, A chooses a pair of sequences m0,m1 ∈ Di. The random oracle
which posits the scheme S selects a bit b ∈ {0, 1} and sends encrypted message S(mb)→m̂ to
the adversary. The adversary outputs a bit b′. Finally, the output of the E is defined as 1 if
b′ = b, and 0 otherwise. A succeeds in the E in the case of distinguishing mb. Our methodology
using E is described as follows:

(i) We construct MDi
(Fig. 3-A) that runs on a random oracle where selected species

Di ∈D. Note that a model M can be based on any classification model, but the key to
select a model is to reduce the standard deviation. Our proposed model M is described
in Section 3.2.

(ii) A computes y (Fig. 3-B4) using MDi
(m) given m ∈ Di.

(iii) A computes the standard deviation ε of y (Fig. 3-B).
(iv) A computes ŷ (Fig. 3-C3) using MDi

(m̂) given m̂ ∈ D̂i.
(v) m̂ is successfully detected (Fig. 3-C4) if

|y − ŷ| > ε. (1)

This gives two independent scores y and ŷ from MDi
. The score y will have the same range of

the unmodified genome sequences whereas the score ŷ will have a different range of modified
genome sequences. If the score difference between y and ŷ is larger than the standard deviation
of the unmodified genome sequence distribution, it may be that the sequence has been forcibly
changed. Fig. 4 shows the histogram of the final score of y and ŷ returned from softmax of
the neural network. If the message is hidden, we can see that the final score from softmax of
the neural network differs over the range y± ε. From Eq. (1) below, we show that detection is
possible using information theoretical proof based on entropy H (Ref.26).
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Fig. 4. Final score of intron/exon sequence obtained from the softmax of the neural network (best
viewed in color). (a) kernel density differences between two stego-free intron sequences (b) kernel
density differences between stego-free and 1% perturbed steged intron sequences. (c) kernel density
differences between stego-free and 5% perturbed steged intron sequences.

Lemma 1. A DNA steganography scheme is not secure if H(D) 6= H(D̂|D).

Proof. The mutual joint entropy H(D, D̂) = H(D) +H(D̂|D) is the union of both entropies
for distribution D and D̂. According to Gallager at el27, the mutual information of I(D; D̂) is
given as I(D; D̂) = H(D)−H(D|D̂). It is symmetric in D and D̂ such that I(D; D̂) = I(D̂;D),
and always non-negative. The conditional entropy between two distribution is 0 if and only if
the distributions are equal. Thus, the mutual information must be zero to define secure DNA
steganography schemes:

I(C; (D, D̂)) = H(C)−H(C|(D, D̂)) = 0. (2)

where C is message hiding space and it follows that:

H(C) = H(C|(D, D̂)). (3)

Eq. (2) indicates that the amount of entropy H(C) must not be decreased based on the
knowledge of D and D̂. It follows that the secure steganography scheme is obtained if and
only if:

∀i ∈ N,mi ∈D, m̂i ∈ D̂ : mi = m̂i. (4)

Note that for mi = m̂i it is not possible to distinguish between the original sequence and
the stego sequence. Considering that the representations of m̂ are limited to {A,C,G,T}, it is
nearly impossible to satisfy the condition because current steganography schemes are all based
on the assumption of addition or substitution. Because C is independent of D, the amount of
information will increase over distribution D if hidden messages are inserted over distribution
D̂. We can conclude that the schemes are not secure under condition H(C) > H(C|(D, D̂)).

3.2. Proposed Steganalysis RNN Model

The proposed model is based on sequence-to-sequence learning using an autoencoder and
stacked RNNs28, where the model training consists of two main steps: 1) unsupervised pre-
training of sequence-to-sequence autoencoder for modeling an overcomplete case, and 2) super-
vised fine-tuning of stacked RNNs for modeling patterns between canonical and non-canonical

Pacific Symposium on Biocomputing 2019 

93



Fig. 5. Overview of proposed RNN methodology.

splice sites (see Fig. 5). In the proposed model, we use a set of DNA sequences labeled as in-
trons and exons. These sequences are converted into a binary vector by orthogonal encoding29.
It employs nc-bit one-hot encoding. For nc = 4, {A,C,T,G} is encoded by

〈[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]〉. (5)

For example, the sequence ATTT is encoded into a 4 × 4 dimensional binary vector
〈[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 1]〉. The encoded sequence is a tuple of a four-dimensional
(4D) dense vector, and is connected to the first layer of an autoencoder, which is used for
the unsupervised pre-training of sequence-to-sequence learning. An autoencoder is an artifi-
cial neural network (ANN) that is used to learn meaningful encoding for a set of data in a
case involving unsupervised learning. An autoencoder consists of two components, namely an
encoder and decoder.

The encoder RNN encodes x to the representation of sequence features h, and the decoder
RNN decodes h to the reconstructed x̂; thus minimizing the reconstruction errors of L(x, x̂) =

‖x − x̂‖2, where x is one-hot encoded input. Through unsupervised learning of the encoder-
decoder model30, we obtain representations of inherent features h, which are directly connected
to the second activation layer. The second layer is RNNs layer used to construct the model. The
model in turn is used to determine patterns between canonical and non-canonical splice signals.
We then obtain the tuple of fine-tunned h =< h1, · · · ,hd >, where h is the representation of
sequence features learned by features, which is a representation of introns and exons in hidden
layers, and d is the dimension of a vector.

The features h learned from the autoencoder are connected to the second stacked RNN
layer, which consists of our proposed architecture for outputting a classification score for the
given sequence Di ∈ D. For the fully connected output layer, we use the sigmoid function as
the activation. The activation score is given by Pr(y = i|h) = 1/(1+exp(−wT

i h))∑1
k=0 1/(1+exp(−wT

k h))
, where y is

the label that indicates whether the given region contains introns (y = 1) or exons (y = 0).
For our training model, we use a recently proposed optimizer of multi-class logarithmic loss
function Adam31. The objective function L(w) that must be minimized is defined as follows:

L(w) = − 1

N

N∑
n=1

(yilog(pi) + (1− yi)log(1− pi)) (6)

where N is the mini-batch size. A model MDi
has a possible score of pi for one species, where

pi is the score of given non perturbed sequences.
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Fig. 6. Comparison of learning algorithms with random hiding algorithms (best viewed in color).
(a) differences in accuracy for intron region (b) differences in accuracy for exon region (c) difference
in accuracy for both region. [The performances of four supervised learning algorithms when detecting
hidden messages are shown for six variable lengths of nucleotides (nts).]

4. Results

4.1. Dataset

We simulated our approach using the Ensembl human genome dataset and human UCSC-
hg38 dataset32, which include sequences from 24 human chromosomes (22 autosomes and 2
sex chromosomes). The Ensembl human genome dataset has a two-class classification (coding,
and non-coding) and the UCSC-hg38 dataset has a three-class classification (donor, acceptor,
and non-site).

4.2. Input Representation

The machine learning approach typically employs a numerical representation of the input
for downstream processing. Orthogonal encoding, such as one-hot coding29, is widely used
to convert DNA sequences into a numerical format. It employs nc-bit one-hot encoding. For
nc = 4, {A,C,T,G} is encoded as described in Eq. (5). According to Lee et al.17, the vanilla
one-hot encoding scheme tends to limit generalization because of the sparsity of its encoding
(75% of the elements are zero). Thus, our approach encodes nucleotides into a 4D dense vector
that follows the direct architecture of a normal neural network layer33, which is trained by the
gradient decent method.
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Fig. 7. Comparison of learning algorithms in terms of robustness (best viewed in color). Mean
and variance of accuracy are measured for the fixed DNA sequence length of 6000 for 500 cases by
changing one percent of the hidden message. The shaded line represents the standard deviation of
the inference accuracy.

4.3. Model Training

The proposed RNN-based approach uses unsupervised training for the autoencoder and su-
pervised training for the fine-tuning. The first layer of unsupervised training uses 4 input
units, 60 hidden RNNs units with 50 epochs and 4 output units that are connected to the
second layer. The second layer of supervised training uses 4 input units that are connected to
stacked LSTM layers with full version including forget gates and peephole connections. The 4
input layers are used for 60 hidden units with 100 epochs, and the 4 output units are a fully
connected output layer containing K units for K-class prediction.

In our experiment, we used K = 2 to classify sequences (coding or non-coding). For the
fully connected output layer, we used the softmax function to classify sequences and the
sigmoid function to classify sites for the activation. For our training model, we used a recently
proposed optimizer of multi-class logarithmic loss function Adam31. The objective function
L(w) that has to be minimized is as described in Eq (6). We used a batch size of 100 and
followed the batch normalization34. We initialized weights according to a uniform distribution
as directed by Glorot and Bengio35. The training time was approximately 46 hours and the
running time was less than 1 second (Ubuntu 14.04 on 3.5GHz i7-5930K and 12GB Titan X).

4.4. Evaluation Procedure

For evaluation of performance, we used the score obtained from the softmax of the neural
network. We exploited the state-of-the-art algorithm2 to embed hidden messages for the mes-
sage hiding. We randomly selected DNA sequences from the validation set using the Ensembl
human genome dataset. We obtained the score of the stego-free sequence from the validation
set. In the next step, we embedded hidden messages to a selected DNA sequence from the vali-
dation set, and we obtained the score. Using the score distribution of the stego-free and steged
sequences, we evaluated the different scores for the range y ± ε. The output from softmax of
the neural network is expected to have a similar score distribution as the unmodified genome
sequences. However, the score distribution changes if messages are embedded. As shown in
Fig. 4(b) and Fig. 4(c), modified sequences are distinguishable using our RNNs model.
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Table 1. Detection performance of sequence alignment and denoising tools.

Both Region (%) Intron Region (%) Exon Region (%)
RNN (proposed) 99.93 99.96 99.94
BLAST36 84.00 85.00 85.00
Coral37 0.00 0.00 0.00
Lighter38 0.00 0.00 0.00

4.5. Performance Comparison

We evaluated the performance of our proposed method based on four supervised learning
algorithms (RNNs, SVM, random forests, and adaptive boosting) to detect hidden messages.
For the performance metric, we used the differences in accuracy.a Using the prediction per-
formance data, we evaluated learning algorithms with respect to the following three regions;
introns dedicated, exons dedicated, and both regions together.

For each algorithm, we generated simulated data for different lengths of DNA sequences
(6000, 12000, 18000, 24000, 30000, and 60000) using the UCSC-hg38 dataset32. We also ran-
domly selected 1000 cases for the fixed DNA sequence length for the modification rate 1 to
10%. Using selected DNA sequences, we obtained the average prediction accuracy of different
numbers of samples against non-perturbed DNA sequences for 1000 randomly selected cases.
In the next step, we obtain the prediction accuracy for the modified data generated according
to the hiding algorithms. Using the averaged prediction accuracy for both the perturbed and
non-perturbed cases, we evaluated the differences between the prediction accuracy rates for
varying different numbers of samples. We carried out five-fold cross-validation to obtain the
mean/variance of the differences in accuracy.

Fig. 6 shows an experiment for each algorithm using six variable DNA sequence lengths.
Each algorithm was compared to three different regions based on the six variable DNA se-
quence lengths. The experiments were conducted by changing from one to then percent of
the hidden message. SVM showed good detection performance in the exon region, but showed
inferior performance in the intron as well as both regions category. In the case of adaptive
boosting, the detection performance was similar in both regions and in intron only categorie,
but performed poorly in exon regions. In the case of the random forest, the cases with the
exon and both regions showed good performance except for some modification rates. In the
intron regions, the detection performance was similar to that of other learning algorithms.
Notably, our proposed methodology based on RNNs outperformed all of the existing hidden
messages detection algorithms for all genomic regions evaluated.

In addition, we examined our proposed methodology based on denoising methods using
Coral37 and Lighter38. The UCSC-hg38 dataset was used to preserve local base structures
and perturbed data samples were used as random noise. As shown in Table 1, the results
showed that both Coral and Lighter missed detection for all modification rates in all regions.
In addition, the sequence alignment method performed poorly. The results suggest that there
is a 15 to 16% chance that hidden messages may not be detected in all three regions.

aAccuracy = (TP + TN)/(TP + TN + FP + FN), where TP , FP , FN , and TN represent the
numbers of true positives, false positives, false negatives, and true negatives, respectively.
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To validate the learning algorithms with respect to robustness, we tested them with a
fixed DNA sequence length of 6000 with 500 cases for each modification rate to measure the
mean and variance of the test accuracy. Fig. 7 shows how the performance measures (mean
and variance of accuracy differences) change for modification rates ranging from 1 to 10 in
the intron, exon, and both regions categories. The plotted entries represents the the averaged
mean over the 500 cases, and shade lines show the average of the variances over the 500 cases.
The results indicate that hidden messages may not be detected if the prediction difference is
less than the variance. The overall analysis with respect to the robustness showed that the
learning algorithms of SVM, random forests and adaptive boosting performed poorly.

5. Discussion

The development of next-generation sequencing has reduced the price of personal genomics39,
and the discovery of the CRIPSPR-Cas9 gene has provided unprecedented control over
genomes of many species40. While the technology is yet to be applied to simulations involving
artificial DNA, human DNA sequences may become an area in which we can apply DNA
watermarking. Our experiments using the real UCSC-hg38 human genome implicitly consider
that unknown relevant sequences are also detectable because of the characteristics of simi-
lar patterns in non-canonical splice sites. The number of donors with GT pairs and acceptors
with AG pairs were found to be 86.32% and 84.63%, respectively16. Existing steganography
techniques modify several nucleotides. Considering few single nucleotide modifications, we can
transform DNA steganography to the variant calling problem. In this regard, we believe that
our methodology can be extended to the field of variant calling.

Although there are many advantages to using machine learning techniques to detect hidden
messages41–43, the following improvements are required: parameter tuning is dependent on the
steganalyst, e.g., the training epochs, learning rate, and size of the training set; the failure
to detect hidden messages cannot be corrected by the steganalyst. However, we expect that
the future development of such techniques will resolve the limitations. According to Alvarez
and Salzmann44, the numbers of layers and neurons of deep networks can be determined using
an additional class of methods, sparsity regularization, to the objective function. The sizes of
vectors of grouped parameters of each neuron in each layer incur penalties if the loss converges.
The affected neurons are removed if the neurons are assigned a value of zero.
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Phylogeography research involving virus spread and tree reconstruction relies on accurate
geographic locations of infected hosts. Insufficient level of geographic information in nu-
cleotide sequence repositories such as GenBank motivates the use of natural language pro-
cessing methods for extracting geographic location names (toponyms) in the scientific article
associated with the sequence, and disambiguating the locations to their co-ordinates. In this
paper, we present an extensive study of multiple recurrent neural network architectures for
the task of extracting geographic locations and their effective contribution to the disam-
biguation task using population heuristics. The methods presented in this paper achieve a
strict detection F1 score of 0.94, disambiguation accuracy of 91% and an overall resolution
F1 score of 0.88 that are significantly higher than previously developed methods, improving
our capability to find the location of infected hosts and enrich metadata information.

Keywords: Named Entity Recognition; Toponym Detection; Toponym Disambiguation; To-
ponym Resolution; Natural Language Processing; Deep Learning;

1. Introduction

Nucleotide sequence repositories like GenBank contain millions of records from various or-
ganisms collected around the world that enables researchers to perform phylogenetic tree and
spread reconstruction. However, a vast majority of the records (65-80%)1,2 contain geographic
information that is deemed to be at an insufficient level of granularity; information that is
often present in the associated published article. This motivates the use of natural language
processing (NLP) methods to find the geographic location (or toponym) of infected hosts
in the full text. In NLP, this task of detecting toponyms from unstructured text, and then
disambiguating the locations to their co-ordinates is formally known as toponym resolution.

Toponym resolution in scientific articles can be used to obtain precise geospatial metadata
of infected hosts which is highly beneficial in building transmission models in phylogeography
that could enable public health agencies to target high-risk areas. Improvement in geospatial
metadata also enriches other scientific studies that utilize GenBank data, such as those in
population genetics, environmental health, and epidemiology in general, as geographic location

c© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.

Pacific Symposium on Biocomputing 2019 

100



is often used in addition to or as a proxy of other demographic data. Toponym Resolution
is typically accomplished in two stages (1) toponym detection (geotagging), a named entity
recognition (NER) task in NLP and (2) toponym disambiguation (geocoding).

For instance, given the sentence “Our study mainly focused on pediatric cases with differ-
ent outcomes from the most populated city in Argentina and one of the hospitals in Buenos
Aires where patients are most often referred.”, the detection stage deals with extracting the
locations “Argentina” and “Buenos Aires”.3 The disambiguation stage deals with assigning
the most likely, unique, identifiers from gazetteer resources like Geonamesa to each location
detected e.g. “3865483:Argentina” from 145 candidate entries containing the same name and
“3435910:Buenos Aires” from 943 candidate entries with variations of the same name. Both
tasks bring forth interesting NLP challenges with applications in a wide number of areas.

In this work, we present a system for toponym detection and disambiguation that improves
substantially over previously published systems for this task, including our own.4–6 Since
detection is the first step in the process, its impact on the overall performance of the combined
task is multiplied, as locations not detected can never be disambiguated. We use recurrent
neural network (RNN) architectures that use word embeddings, character embeddings and case
features as input for performing the detection task. In addition to these, we also experiment
with the use of conditional random fields (CRF) on the output layer as they have known to
improve performance. We perform ablation studies/leave-one-out analysis with repetitive runs
with different seed values for drawing strong conclusions about the use of deep recurrent neural
networks, their architectural variations and common features. We evaluate the impact of the
results from the detection task on the upstream disambiguation task, performed using the
commonly assumed population heuristic7 whereby the location with the greatest population
is chosen as the correct match.

The rest of the document is structured as follows. In Section 2, we summarize research
efforts in the area of toponym detection and disambiguation and list the contributions of this
paper in light of previous work. We distinguish the RNN architectures used for evaluation
along with the population heuristic used for measurement in Section 3. Finally, we present
and discuss the results of the toponym detection and disambiguation experiments in Sections
4 and discuss limitations and scope for improvements in Section 5.

2. Related Work

Toponym detection and toponym disambiguation have been widely researched by the NLP
community, with numerous publications on both detection and disambiguation tasks.8–10 To-
ponym detection is commonly tackled as a NER challenge where toponyms are recognized
among other named entities like organization names and people’s names. Previous studies11

have identified the performance of the NER as an important source of errors in enhancing
geospatial metadata in GenBank, motivating the development of tools for performing detec-
tion and resolution of named entities such as infected hosts and geographical locations.12,13

The annotated dataset used in this work4,11 includes both span and normalized Geonames ID

ahttp://www.geonames.org/ Accessed:Sept 30 2018
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annotations. Since the performance of the overall resolution task is deeply influenced by the
NER, some of the previous works using this dataset have looked specifically at improving the
NER’s performance. Our previous research on toponym detection have used rule-based meth-
ods,4 traditional machine learning sequence taggers using conditional random fields (CRF)5

and deep learning methods using feed forward neural networks.6 NER performance since the
introduction of the dataset has increased from an F1-score of 0.70 to 0.91 closing in on the
human-level annotation agreement of 0.97. In the previous baseline for toponym resolution4

a rule based extraction system was used to detect toponyms. In subsequent work, traditional
machine learning algorithms such as conditional random fields (CRFs)5 and feedforward neu-
ral nets6 were introduced for improving the NER’s performance. There exist some studies
involving RNN experiments that explore the use of RNN architectures for sequence tagging
tasks in the generic domain.14,15 While these tasks measure the performance on specific tasks,
the effect of optimal performances haven’t been measured in upstream tasks.

On the other hand, toponym disambiguation has been commonly tackled as an information
retrieval challenge by creating an inverted index of Geonames entries.4,16 Given a toponym,
candidate locations are first retrieved based on words used in the toponym and subsequently
heuristics are used to pick the most appropriate location. Popular techniques use metrics such
as entity co-occurrences, similarity measures, distance metrics, context features and topic
modeling.7,16–20 This approach is largely adopted due the large number of Geonames entries
(about 12 million) to choose from. We also find that the most common baseline used for
measuring the disambiguation performance is the population heuristic where the place with the
most population is chosen as the correct match. Most research articles that focus specifically
on the disambiguation problem use Stanford-NER or the Apache-NER tool20–22 for detection
which has been trained on datasets like CoNLL-2003, ACE-2005 and MUC. Some studies
assume gold standard labels and proceed with the task of disambiguation which makes it
difficult to assess the strength of the overall system. It is also important to note that a
majority of efforts have been focused on texts from a general domain like Wikipedia or news
articles.20–22 Only a handful of publications deal with the problem in other domains like
biomedical scientific articles4,23 which contain a different and broader vocabulary. Similar to
the previous disambiguation method developed for this dataset,4 we build an inverted index
using Geonames entries but use term expansion techniques to improve the performance and
usability of the system in various contexts.

In light of previous work, the main contributions of this work can be summarized as follows:

(i) We perform a comprehensive and systematic evaluation of multiple RNN architectures
from over 400 individual runs for the task of toponym detection in scientific articles and
arrive at state-of-the-art results compared to previous methods.

(ii) We discuss the impact of significant performance improvement in toponym detection in
the upstream task of toponym resolution.

3. Methods

Our approach for detection and disambiguation of geographic locations are tackled indepen-
dently, as described in the following subsections. For the purposes of training and evaluation,
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we use the publicly available human annotated corpus of 60 full-text PMC articles containing
1881 toponyms.4 Of the 60, the standard test set for the corpus includes only 12 articles con-
taining a total of 285 toponyms, a large majority of which are countries and major locations.
The annotated dataset contains both span annotations and gazetteer ID annotations linking
ISO-3166-1 codes for countries and GeonamesIDs for the remaining toponyms. For uniformity,
we converted all ISO-3166-1 codes to equivalent GeonameIDs.

3.1. Toponym Detection

The task of toponym detection typically involves identifying the spans of the toponyms in
an NER task where the sequence of actions is illustrated in Fig 1. As input features, we
use publicly available pre-trained word embeddings that were trained on Wikipedia, PubMed
abstracts and PubMed Central full text articles.24 In addition to word embeddings, we experi-
ment with orthogonal features such as (1) a case feature to explicitly distinguish all-uppercase,
all-lowercase and camel-case words encoded as one-hot vectors that are appended to the word,
and (2) fixed length character embeddings. Character embeddings have shown to improve the
performances of deep neural networks and are employed in few different ways. One of the
popular methods used involves the use of a CNN layer25 or an LSTM layer26 on vectors from
a randomly initialized character embeddings that are fine tuned during training appended to
the input word embedding layer. During initial experiments we found that implementation
of this architecture added significantly to the training time and hence we employ the use of
a simpler model where character embeddings are pre-trained using word2vec and appended
directly to the input layer along with word embeddings and case features.

The proposed RNN units and their variations can be used on their own for NER purposes.
However, bidirectional architectures are popularly employed for NER as they have the com-
bined capability of processing input sentences in both directions and making tagging decisions
collectively using an output layer as illustrated in figure 1. In this paper, we specifically look
at bi-directional recurrent architectures. It is also common to observe the use of a CRF output
layer on top of the output layer of bidirectional RNN architecture. CRF’s are known to add
consistency in making final tagging decisions using IOB or IOBES styled annotations. We
experiment between combinations of the RNN variants along with the optional features in an
ablation study to identify the impact of these additive layers on the NER’s performance as
well as its impact on the upstream resolution task.

3.1.1. Recurrent Neural Networks

RNN architectures have been widely used for auto-encoders and sequence labeling tasks such
as part-of-speech tagging, NER, chunking among others.27 RNNs are variants of feedforward
neural networks that are equipped with recurrent units to carry signals from the previous
output yt−1 for making decisions at time yt as shown in equation 1.

yt = σ (W · xt + U · yt−1 + b) (1)

Here, W and U are the weight matrices and b is the bias term that are randomly initial-
ized and updated during training. σ represents the sigmoid activation function. In practice
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Fig. 1. A schematic representation of the sequence of actions performed in the NER equipped with
bi-directional RNN layers and an output CRF layer. RNN variants discussed in this paper involve
replacing RNN units with LSTM, LSTM-Peepholes, GRU and UG-RNN units.

other activation functions such as tanh and rectified linear units (ReLU) are also used. This
characteristic recurrent feature simulates a memory function that makes it ideal for tasks in-
volving sequential predictions dependent on previous decisions. However, learning long term
dependencies that are necessary have been found to be difficult using RNN units alone.28

3.1.2. LSTM

LSTM networks29 are variants of RNN that have proven to be fairly successful at learning long
term dependencies. A candidate output g is calculated using an equation similar to equation
1 and further manipulated based on previous and current states of a cell that retains signals
simulating long-term memory. The LSTM cell’s state is controlled by forget (f), input (i) and
output (o) gates that control how much information flows from the input to the state and
from state to the output. The gates themselves depend of current input and previous outputs.

g = tanh(W g · xt + Ug · yt−1 + bg) (2)

f = σ(W f · xt + Uf · yt−1 + bf ) (3)

i = σ(W i · xt + U i · yt−1 + bi) (4)

o = σ(W o · xt + Uo · yt−1 + bo) (5)

The future state of the cell ct is calculated as a combination of (1) signals from forget gate
g and the previous state of the cell ct−1 which determines the information to forget (or retain)
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in the cell, and (2) signals from the input gate i and the candidate output g that determines
the information from the input to be stored in the cell. Eventually the output yt is calculated
using signals from the output gate o and the current state of the cell ct.

ct = f � ct−1 + i� g (6)

yt = o� tanh(ct) (7)

In the above equations, � indicates pointwise multiplication operation. While the above
equations represent LSTM in its most basic form, many variations of the architecture have been
introduced to simulate retention of long-term signals a few of which have been summarized
in the following subsections and subsequently evaluated in the results section. For reasons of
brevity, we do not include the formulas used for calculating the output yt but they can be
inferred from the works cited.

3.1.3. Other Gated RNN Architectures

We evaluate in our experiments one of the LSTM variations introduced for speech processing30

that introduced the notion of peepholes (LSTM-Peep) where the idea is that state of the cell
influences the input, forget and output gates. Here, signals for the input and forget gates i
and f depend not only on the previous output yt−1 and current input xt but also the previous
state of the cell ct−1 and the output gate o depends on the current state of the cell ct.

Gated Recurrent Unit (GRU)31 also known as coupled input and forget gate LSTM (CIFG-
LSTM)15 is a simpler variation of LSTM with only two gates: update z and reset r. Their
signals are determined based on the current input x and previous output yt−1 similar to the
gates in LSTMs. The update gate z attempts to combine the functionality of input and forget
gates of LSTMs i and f and eliminates the need for an output gate as well as an explicit
cell state. A singular update gate signal z controls the information flow to the output value.
Although it appears far more simple, GRU has gained a lot of popularity in the recent years
in a variety of NLP tasks.32,33

Update gate RNN (UG-RNN)34 is a much simpler variation of LSTM and GRU architec-
tures containing only an update gate z is also included in our experiments. The importance
of the update gate is often highlighted in RNN based architectures.15 Hence, we include this
model to perform a gate based ablation study to understand their contributions to the overall
resolution task.

3.1.4. Hyperparameter search and optimization

The performance of deep neural networks relies greatly on optimization of its hyperparame-
ters and the performance of the models have been found to be sensitive to changes in seed
values used for initializing the weight matrices.27 We first performed a grid search over the
previously recommended optimal range of hyperparameter space for NER tasks27 and to arrive
at potential candidates of optimal configurations. We then performed up to 5 repetitions of
experiments at the optimal setting for the model at different seed values to obtain the median
performance scores. All models were developed using the TensorFlow framework and trained
on NVIDIA Titan Xp GPUs equipped with an Intel Xeon CPU (E5-2687W v4).
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3.2. Toponym Disambiguation

For toponym disambiguation, we use the Geonames gazetteer data to build an inverted index
using Apache Luceneb and search for the toponym terms extracted in the toponym detection
step in the index.

3.2.1. Building Geonames Index

Individual Geonames entries in the index are documents with common fields such as Geon-
ameID, LocationName, Latitude, Longitude, LocationClass, LocationCode, Population, Conti-
nent and AncestorNames. Here, LocationName contains the common name of the place. For
countries, we expand this field by using official names, ISO and ISO3 abbreviations (e.g. United
States of America, US and USA, respectively, for United States). For ADM1 (Administrative
Level 1) entries that have available abbreviations (e.g. AZ for Arizona, and CA for Califor-
nia), we add such alternate names to the LocationName field. In addition to the above fields
we add the County, State and Country fields depending on the type of geoname entry. Fields
such as LocationName, County, State, Country and AncestorNames are chosen to be reverse
indexed such that partial matches of names offers the possibility of being matched with the
right disambiguated toponym on a search.

3.2.2. Searching Geonames Index

Most cities and locations commonly have their parent locations listed as comma separated val-
ues (e.g. Philadelphia, PA, USA). In such cases, the index provides the capability to perform
compound searches (e.g. LocationName:“Philadelphia” AND AncestorNames:“PA, USA”).
We find that this method offers the best scalable framework for toponym disambiguation
among approximately 12 million entries. Efficient search capabilities aside, the solution in-
ternally provides documents to be sorted by a particular field. In this case, we choose the
Population field as the default sorting heuristic such that search results are sorted by highest
population first. An additional motivation for the implementation of this solution is the flexi-
bility of using external information to narrow down search results. For example, when Country
information is available in the GenBank record, we can use queries like LocationName:“Paris”
AND Country:“France” to narrow down the location of infected hosts.

4. Results and Discussion

For the NER task, we use the standard metric scores of precision, recall, and F1-scores for
toponym entities across two modes of evaluation:(1) Strict where the predicted spans of the
toponym have to match exactly with the gold standard spans to be counted as a true positive
and (2) Overlapping where predicted spans are true positives as long as one of its tokens overlap
with gold standard annotations. For toponym disambiguation, we compare the predicted and
gold standard GeonameIDs to measure precision, recall and f1-scores as long as the spans
overlap. We compare our scores with the previous systems that were trained and tested on the

bhttp://lucene.apache.org/ Accessed:Sept 30 2018
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same dataset. To evaluate the performance of the overall resolution task, it is important to
examine the performance of the individual systems to assess the cause of errors and identifying
regions for improvement.

4.1. Toponym Disambiguation

Our toponym disambiguation system is unsupervised, giving us the capability to test its per-
formance on the entire dataset assuming gold standard toponym terms to be available. Under
this assumption, the accuracy of the disambiguation system was found to be 91.6% and 90.5%
on training and test set respectively. Analyzing the errors, we found that comparing ids di-
rectly is a very strict mode of evaluation for the purposes of phylogeography as Geonames
contains duplicate entries for many locations that belong to two or more classes of locations
such as administrative division (ADM) and populated area or city (PPLA, PPLC) but refer
to the same geographical location. For instance, when we look at the test set alone, which had
27 errors from a total of 285 locations, 19 appeared to be roughly the same location. These
included locations like Auckland, Lagos, St. Louis, Cleveland, Shantou, Nanchang, Shanghai,
and Beijing which were assigned the ID of the administrative unit by the system, while the
annotated locations were assigned the ID of the populated area or city or vice versa. Given
these reasons, we find that the performance of the resolution step exceeds the reported scores
by 5% to arrive at an approximate accuracy of 95-96%. However, for the purposes of compar-
ison with previous systems we report the overall resolution performance in Table 1 without
making such approximations. We did however observe 8 errors where the system assigned
GeonamesIDs were drastically different from their original locations due to the population
heuristic. For example, a toponym of Madison was incorrectly assigned the ID of Madison
County, Alabama which had a higher population than the gold standard annotation Madison,
Dane County, Wisconsin(WI).

4.2. Toponym Resolution

Analyzing the errors across the architectures, we find that 80-90% of the erroneous instances
to be repeating across the RNN architectures making it challenging to use ensemble methods
for reducing errors. These included false negative toponyms such as Plateau, Borno, Ga,
Gurjev, Sokoto etc. which appear in tables and structured contexts making it difficult to
recognize them. However, as discussed in our previous work,6 we plan to handle table structures
differently by employing alternative methods of conversions from pdf to text. Almost all false
positives appeared to be geographic locations, however in the text they were found to be
referring to other named entities like virus strains and isolates rather than toponyms.

We found that the LSTM-Peep based architecture appeared to have marginally better
performance scores on the NER task and hence the overall resolution task. Feature ablation
analysis shown in Figure 2 indicate that inclusion of the character embedding feature con-
tributed to increase in the overall performance of RNN models. However, inclusion of case
feature in combination with the character embeddings appeared to be redundant. Inclusion of
the CRF output layer seemed to have a positive impact on most models while additive layers
seemed to have more effect on GRU, LSTM and LSTM-Peep architectures.
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Table 1. Median Precision(P), Recall(R) and F1 scores for NER and Resolution. Bold-styled
scores indicate highest performance. All recurrent neural network units were used in a bidirec-
tional setup with inputs containing pre-trained word embeddings, character embeddings and
case features, and an output layer with an additional CRF layer.

Method NER-Strict NER-Overlapping Resolution
P R F1 P R F1 P R F1

Rule-based4 0.58 0.876 0.698 0.599 0.904 0.72 0.547 0.897 0.697
CRF-All5 0.85 0.76 0.80 0.86 0.77 0.81 - - -
FFNN + DS6 0.90 0.93 0.91 - - - - - -

RNN 0.910 0.891 0.901 0.931 0.912 0.922 0.896 0.817 0.855
UG-RNN 0.948 0.902 0.924 0.959 0.912 0.935 0.903 0.824 0.862
GRU 0.952 0.919 0.935 0.967 0.930 0.948 0.888 0.835 0.860
LSTM 0.932 0.926 0.929 0.954 0.947 0.950 0.892 0.842 0.866
LSTM-Peep 0.934 0.944 0.939 0.951 0.961 0.956 0.907 0.863 0.884

Fig. 2. (Left) Ablation/leave-one-out analysis showing the contribution of individual features to the
NER performance across the RNN models. (Right) Impact of additive layers on the performance of
the NER across the RNN models. Here, RNN layers refer to respective variants of RNN architectures.
Y-axis shows strict F1 scores.

5. Limitations and Future Work

In this work, we find that utilizing state-of-the-art NER architectures help us obtain perfor-
mances that are inching close to human performance. However, we do find that the articles
in the test set may perhaps be relatively easier than the average article for the detection
task when we compare it to randomly selected validation/development set performances. As
discussed in our previous work,6 distance supervision datasets can contain toponym spans in
close proximity to each other generating noisy training examples. This makes it challenging to
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use distance supervision techniques to increase the size of training data for training sequence
tagging models based on RNN architectures. Hence, to address this issue, we are in the process
of expanding the annotation dataset from 60 articles to 150 articles for a more comprehensive
training and evaluation of the system.

Irrespective of the ease of detection in the test set, there appear to be false negative
toponyms (discussed in the previous section) that could possibly be the location of infected
hosts(LOIH). While there are chances that toponyms that are LOIH appear repeatedly in the
scientific article in varying contexts thus increasing the chances of them being detected, in
our following work we wish to evaluate the impact of these false negatives on the overall task
of identifying the LOIH. To reduce false positives where locations could infact refer to other
named entities like virus strains and isolates than toponyms themselves, we intend to explore
approaches from metonymy resolution35 for filtering out such false positives.

6. Conclusion

Phylogeography research relies on accurate geographical metadata information from nucleotide
repositories like GenBank. In records that contain insufficient metadata information, there is
a motivation to extract the geographical location from the associated articles to determine the
location of the infected hosts. In this work we present and evaluate methods built on recurrent
neural networks that extract geographical locations from scientific articles with a substantial
increase in performance from an F1 score of 0.88 which improves significantly over the previous
toponym resolution system F1 of 0.69. Our implementations of the toponym detection and to-
ponym disambiguationc systems along with the updated version of the annotations containing
GeonameIDsd are available online.
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The increasing amount of scientific literature in biological and biomedical science research
has created a challenge in continuous and reliable curation of the latest knowledge discov-
ered, and automatic biomedical text-mining has been one of the answers to this challenge.
In this paper, we aim to further improve the reliability of biomedical text-mining by train-
ing the system to directly simulate the human behaviors such as querying the PubMed,
selecting articles from queried results, and reading selected articles for knowledge. We take
advantage of the efficiency of biomedical text-mining, the flexibility of deep reinforcement
learning, and the massive amount of knowledge collected in UMLS into an integrative arti-
ficial intelligent reader that can automatically identify the authentic articles and effectively
acquire the knowledge conveyed in the articles. We construct a system, whose current pri-
mary task is to build the genetic association database between genes and complex traits
of human. Our contributions in this paper are three-fold: 1) We propose to improve the
reliability of text-mining by building a system that can directly simulate the behavior of a
researcher, and we develop corresponding methods, such as Bi-directional LSTM for text
mining and Deep Q-Network for organizing behaviors. 2) We demonstrate the effectiveness
of our system with an example in constructing a genetic association database. 3) We release
our implementation as a generic framework for researchers in the community to conveniently
construct other databases.

Keywords: Biomedical text-mining, Deep Reinforcement Learning, Genetic Association

c© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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1. Introduction

Understanding the biological and biomedical science is one of the most fundamental goals
of research and an essential step towards the realization of “precision medicine” in this era.
Scientists all over the world are collaboratively contributing to this final goal, leading to an
accompanying growth of the scientific literature. For example, PubMeda has seen exponential
growth regarding the number of publications in recent years1 and has collected over 27 million
abstracts.2 These massive amount of articles consequently bring in the challenge of integrating
the information conveyed effectively and accurately.

Biomedical information extraction has been the answer to this challenge for a long time.3,4

However, due to the demand of high reliability in biomedical research, following a typical
general-purpose information extraction protocol and examining every article in the corpus
nondiscriminatorily may lead to falsely constructed knowledge because of the non-negligible
number of scientific literature with the issues of reproducibility.5–7

To fulfill the need of reliability in text mining and knowledge-base construction, instead
of requiring the system to scan the entire corpus uniformly, we propose to train the system to
directly simulate the behavior of a scientist with a sequence of actions including 1) querying the
web, 2) evaluating the article, 3) studying the article for knowledge if necessary, 4) rejecting the
knowledge if necessary, and 5) storing the knowledge. The 2nd and 4th steps play the essential
roles in maintaining the reliability in constructed databases in our proposed system. Boosted
by the power of deep reinforcement learning in organizing these actions, the ability of deep Bi-
directional long short-term memory (LSTM) in text mining, and massive amount of knowledge
encoded in Unified Medical Language System (UMLS),8 we are able to present our human-
like system that can imitate the behaviors of a real scientist and construct the database of
reliable and cutting-edge biomedical publications efficiently and endlessly. Therefore, we name
our system the Everlasting Iatric Reader (Eir)b. We further apply our system to construct
a genetic association database, where we can verify the performance of Eir with a manually
crafted database of 167k gene-trait associations from high quality articles.9

The contributions of this paper are three-fold:

• We propose to improve the reliability of text-mining by building a system that can
directly simulate the behavior of a researcher, and we develop corresponding meth-
ods, such as Bi-directional LSTM for text mining and Deep Q-Network for organizing
behaviors.

• We demonstrate the effectiveness of our system with an example in constructing a
genetic association database.

• We release our implementation as a generic framework for researchers in the community
to conveniently construct other databases.

athe database maintained by the National Center for Biotechnology Information (NCBI)
bWe name our system Everlasting Iatric Reader because it can endlessly construct the knowledge in
the medical area, where the high reliability is an issue, and also because the acronym (Eir) shares
the name of the goddess of medical knowledge in Norse mythology, which is related to the final goal
of this and following-up projects.
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The remainder of this paper is organized as follows. In Section 2, we will introduce the
related works in biomedical text mining. In Section 3, we will systematically introduce our
system, mainly with deep reinforcement learning module that organizes the actions, text
mining module that extracts the information, and implementation specifications. In Section 4,
we will compare the performance to validate the strategy of Eir. Finally, in Section 5, we will
draw conclusions and discuss about the future work.

2. Related Work

Text mining from biomedical literature has been studied extensively for a long time with a
variety of different applications, such as patient analysis from electronic health records,10–12

gene annotations from protein networks,13 and drug repositioning from literature.14 One can
refer to comprehensive reviews4,15,16 and the references therein for more detailed discussions.

The text mining usually leads to automatic construction of knowledge bases. In recent
years, Mallory et al.17 curated a database of gene-gene interactions. They applied the infor-
mation extraction engine DeepDive18 to around 100k full text PLOS articles for extracting
direct and indirect gene-gene interactions. Poon et al.19 introduced the Literome project, where
they extracted directed genic interactions and genotype-phenotype associations from PubMed
articles. Lossio-Ventura et al.20 introduced a pipeline to build an obesity and cancer knowledge
base. Very recently, Lossio-Ventura et al. also noticed the reliability issue of knowledge base,
so they further proposed to incorporate cross-sourcing process to improve the reliability of the
their previously developed knowledge base.21

On the other hand, the boom of deep learning techniques has allowed many more advanced
methods developed for biomedical applications.22–24 As a result, LSTM and its variants,25,26

and word embedding techniques27,28 have been studied extensively for a variety of applications.
In comparison, a difference between most of previous work and our work is that we aim

to improve the reliability of the extracted knowledge by examining the source unstructured
data (i.e. the PubMed literature in our case). To put in simpler words, while most previous
work are extending human’s intelligence of comprehending the articles, our system aims to
extend human’s intelligence of the entire research process that starts with querying the web
and selecting the interesting article. To the best of our knowledge, this paper is the first one
that simulates the entire research process in biomedical information extraction to improve
the reliability of the constructed knowledge base. However, many similar concepts29–31 have
been proposed previously. Most relevantly, Kanani et al32 utilized reinforcement learning to
reduce computational bottlenecks, minimizing the number of queries, document downloads
and extraction action, a similar strategy has been proposed independently for biomedical text
mining with the concept “focused machine reading”,33 which is inspired by Narasimhan et
al ,34 who built an information extraction system that can query the web for extra information
with reinforcement learning.

3. Method

In this section, we officially introduce the our system. We will start with the main frame-
work, and continue to introduce the deep reinforcement learning module that organize differ-
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ent actions of the system, which is followed by the discussions of proprecessing module and
biomedical text mining module. After a systematic introduction of the detailed algorithms,
this section is concluded with implementation specifications.

3.1. Model Framework

Eir’s research process is a markov decision process (MDP), where the model learns to query
the search engine for scientific articles to read for the knowledge. We represent the MDP as
a tuple < S,A, T,R >, where S = s is the space of all possible states, A = a is the set of all
actions, R(s, a) is the reward function, and T (s′|s, a) is the transition function.

Fig. 1: Overview of Eir’s possible behaviors

We present the details of these components as following:

• Actions: Action (we use a to denote action throughout this paper) is a set of Eir’s
behaviors to simulate a real researcher, including

1. Query the search engine.
2. Evaluate whether the article is reliable.
3. Read the article for detailed information.
4. Exam credibility of the information and querying again.
5. Stop.
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As shown in Figure 1, for every interesting query, Eir starts with the 1st action and
then enters the loop from the 2nd action to the 4th action until Eir is satisfied with the
finding of current research interest and ceases with the 5th action. Then Eir repeats
the entire process with another query.

• States: The state s in the MDP describes the research status of Eir, possible candidate
states include the ones that are precedent or after each aforementioned action. There
are only a countable number of actions, but we use continuous real-valued vector to
represent each state so that we could have a better modeling power to distinguish Eir’s
research status after each action. The state is constructed with a variety of information,
including the embedding vector that the Bidirectional LSTM yields, the confidence of
biomedical text mining module, the confidence of selecting an article to read, etc.

• Rewards: The reward function is chosen to maximize the intermediate paper selection
accuracy and final extraction accuracy together while minimizing the number of queries.
The accuracy component is calculated using the difference between the accuracy of the
current and the previous set of entity values.

• Transitions: Transition T (s′|s, a) is modeled as a function of how the next state s′ is
updated given the current state s and action a taken.

3.2. Deep Reinforcement Learning for Organizing Actions

As we have introduced previously, we utilized deep reinforcement learning to arrange the
sequence of actions a to perform, given a state function denoted as Q(s, a). To update Q(s, a),
we used the popular Q-learning,35 which iteratively updates Q(s, a) as following:

Qi+1(s, a) = E[r + γmax
a′

Qi(s
′, a′)|s, a]

where r = R(s, a) is the reward and γ is a discounting factor.
Because of the continuous nature of our state space S, we use a deep Q-network (DQN)36

as a function approximator Q(s, a) = Q(s, a; θ). The Q-function of DQN is approximated by
a neural network, whose parameters (i.e. θ) are updated through stochastic gradient descent.
We followed the detailed parameter learning strategies introduced previously.34

3.3. Preprocessing and Name Entity Recognition with UMLS

Before we feed in the texts into the text mining module, we notice that the literature is filled
with alternative, idiosyncratic and arbitrary names and symbols. The text mining module
will only exhibit its full power when the texts are processed into a uniform representation.
Therefore, we utilize the rich information collected by the unified medical language system
(UMLS).8 UMLS defines a unique concept for all the terms that are interchangeable. For
example, “Alzheimer’s disease”, “Alzheimer’s”, and “alzheimer” will be mapped into the same
concept. UMLS contains over one million biomedical concepts that are split into 133 broad
categories (such as “Organisms”, “Anatomical structures”, “Biologic function”). With the help
of MetaMap,37 we are able to translate the unstructured texts into a sequence of concepts,
together with the category information, an associated confidence score, and two binary values
to indicate whether the concept is in gene ontology, and in disease ontology respectively.
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3.4. Bidirectional LSTM for Relation Classification

As Eir queries PubMed with a gene-trait pair, the text mining model only needs to classify
whether the returned texts from PubMed can be seen as evidences to support that there
is association between the queried gene-trait pair. Therefore, the text mining module can be
conveniently regarded as a classification module. We use a Bidirectional LSTM38 for classifying
whether the text describes as association relationship between the gene and the trait the
system queried. We choose this Bidirectional LSTM architecture mainly because we notice
that it is empirically the best performing method among other neural architecture for our
specific task. We first treat the sequence of concepts as words in text and created a 512-
dimension vector of continuous values to represent each concept. Further, we feed in this
concept-embedding, together with an one-hot representation of the category information, and
the two binary values into the Bidirectional LSTM, which is trained through Adam.

3.5. Algorithm

Algorithm 1 describes the overall algorithm of the MDP process of Eir, where g and t stands
for gene and trait respectively, a stands for action, s stands for state, and r stands for reward.
“Agent” refers to DQN, which organizes the sequence of actions given states and reward.
Details including the methodology of updating (s, r) has been discussed in previous sections.

3.6. Implementation Specification

The Deep Reinforcement Learning component of Eir is implemented as an extension of
Narasimhan et al ,34 we also use a DQN consisting of two linear layers (20 hidden units each)
followed by rectified linear units (ReLU), along with two separate output layers.

The web query component is built with a web crawling engine Scrapyc communicating
with NCBI PubMed search engine. At this moment, we only query for the abstracts of the
articles. We only work with abstracts for three reasons: 1) this allow us to conveniently access
and scan a large amount literature, 2) we notice that a majority of articles disclose the most
important findings in the abstract with a straightforward style of writing, 3) previous work
notice that mining from full texts may lead to more false positives.39

The preprocessing module is built as a python script that runs MetaMap, which is a binary
software that allows users to conveiently annotate words and phrases of texts with manually
defined concepts in UMLS.

The sentences are truncated with max length of 300 concepts. We only consider the 30,000
most frequent concepts together with the specific defined ‘SOS’ (start of sentence), ‘EOS’
(end of sentence), ‘UNK’ (unknown) and ‘PAD’ (padding the sentences shorter than 300)
concepts. We use a 2-layer Bidirectional LSTM with hidden dimension set to 1000, and feed 512
dimension concept embedding, one dimension gene ontology, one dimension disease ontology,
and 136 dimension semantic type as the input of LSTM. The LSTM is trained jointly with
the embedding matrix using Adam with step size set to 0.00004 and batch size set to 64.

chttps://scrapy.org/
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Then We train the Eir models for 10000 steps every epoch using the Maxent classifier as
the base extractor, and evaluate on the entire test set every epoch. The final accuracy reported
are averaged over three independent runs; each runs score is averaged over 5 epochs after 45
epochs of training. The penalty per step is set to -0.001. We used a replay memory of size
500k, and a discount γ of 0.8. We set the learning rate to 2.5E5. The ε in ε-greedy exploration
is annealed from 1 to 0.1 over 500k transitions. The target-Q network is updated every 5k
steps. The whole framework was trained to optimize the reward function.

We release our implementationd for the community to use our system or build more ad-
vanced text mining module into our system for better performance.

Algorithm 1 MDP framework of Eir

for epoch = 1,M do
for g, t in query list do

Query the search engine with g and t.
Update and send state (s, r) to agent
Get action a from agent
while a is not “stop” do

if a is “select” then
Update (s, r) with selection

else if a is “reject” then
Update (s, r) with rejection

else
Translate texts into sequence of concept embeddings.
Relation classification with Bidirectional LSTM
Update (s, r) with classified relation

end if
Send state (s, r) to agent
Get action a from agent

end while
end for

end for

4. Experiments

In this section, we will verify the performance of Eir by showing that, with the same text
mining module, the Eir system can help improve the performance of extracted associations.
We will first discuss how we construct the experimental data sets then discuss the results.

4.1. Data

Within the scope of this paper, Eir focus on constructing the knowledge base for gene-trait
association relationship of human. To enable Eir to learn the associations, we utilized the high

dhttps://github.com/lebronlambert/Eir
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quality data set of 167k association relationship that is manually crafted for over ten years.9

In addition to the gold-standard information of gene-trait association relationship, another
contribution of this data set is the collection of high quality publications that report these
associations. Every entry in the database is grounded by the authentic source of scientific paper
that originally publishes the relationship. These detailed information grants us the possibility
of directly training Eir to discriminate the reliable papers out of the less favourable papers
that were not selected by GAD curators for some reasons.

Despite that Eir is designed for extracting latest information online, in order to test the
effectiveness of Eir, we need to run the core functions on a local collections of articles with
manually labelled true associations. Therefore, we query the PubMed with 54,041 queries of
gene-trait pairs through our API and download 913,939 results with 305,651 distinct medical
articles. After removing some invalid records (e.g. articles with invalid PMID), there are
roughly 133,548 records (44,592 distinct articles) appear in the GAD database, which will
serve as the reliable articles. As the construction of GAD ceased in 2014, we regard the
articles that are published before 2014 but not in the GAD database as less favorable articles.
To balance the data set for performance evaluation, we sampled 140,361 less favorable records
before 2014 for comparison. Note that, these less favorable articles are not collected randomly,
but are returned from PubMed search engine when we query with a pair of gene and trait.
Besides, we delete the articles whose titles and abstracts do not contain the queried gene and
trait explicitly to remove obviously irrelevant articles. Then, we random split the whole data
set to sample 80% records as training data, and the rest as testing data. The training set
consists of 55k records, the testing set consists of 219k records.

4.2. Evaluation

In order to show the effectiveness of the Eir system, we compare the system’s precision, recall,
and F1 score with a conventional biomedical text mining strategy that scans all the documents
nondiscriminatorily. As Eir uses the Bidirectional LSTM for text mining module, we use the
same model as baseline method for fair comparison.

4.3. Results

4.3.1. Improved Reliability

We first train our baseline Bidirectional LSTM and the results are shown in the Table 1 (first
row). The Bidirectional LSTM yields a precision of 91.25%, a recall of 96.55%, and an overall
F1 of 93.80%. These numbers indicate that the Bidirectional LSTM is capable to capture the
feature of authentic articles.

Table 1: Results of Reliability Comparison

precision recall F1

Bidirectional LSTM 91.25% 96.55% 93.80%

Eir 91.4% 97.0% 94.1%

Further we add the Deep Re-
inforcement Learning component
to train the overall Eir system.
The results of Eir are shown as
Table 1 (second row). We can see
that the precision score is 91.4%,
the recall score is 97.0%, the F1
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score is 94.1%. Compared to the baseline model, our Eir framework is better at extracting
the features of valuable articles and utilizing the information and can retrieve the authentic
articles more efficiently by employing the Deep Reinforcement Learning module.

4.3.2. Robustness in Real-world Situations

Table 2: Results of Eir in real-world situations

Full Data 20% Authentic Articles 10% Authentic Articles
Prec Recall F1 Prec Recall F1 Prec Recall F1

Bi-LSTM 91.25% 96.55% 93.80% 87.7% 95.7% 91.5% 86.9% 92.2% 89.4%
Eir 91.4% 97.0% 94.1% 87.9% 96.9% 92.2% 87.8% 96.9% 92.1%

Increment 0.16% 0.47% 0.32% 0.23% 1.25% 0.77% 1.04% 5.10% 3.02%

To better simulate the real-world situation that the researchers are in, we remove different
percentage of authentic articles both in the training data set and in the testing data set,
for the researchers get ample amount of less favorable articles. We randomly remove a certain
percentage of authentic articles to do the ablation experiments. As the percentage of authentic
articles decreases, the difficulty of our task increases. The results are shown in Table 2. We can
see the Eir system is more robust than the baseline model under these situations. Eir reports
higher precision, recall, and F1 score in all of these settings. More interestingly, we calculate
the increments Eir achieves over baseline model. We notice that, as the difficulty increases,
the increment also increases. Therefore, we believe Eir will be more helpful in the real-world
situation when a large amount of articles are less favorable articles.

4.3.3. Number of Articles Read

Finally, we examine Eir’s performance in the numbers of articles it needs to read to make a
decision. Since Eir stops once it believes it has sufficient amount of information, we anticipate
Eir will inspect less amount of articles than baseline models. To conduct this experiment, we
exclude the gene-trait query pair with only one authentic articles. In the remaining data set,
there is on average 2.54 articles for every query, and Eir reads only on average 2.46 articles.
We further repeat this experiment with a data set that excludes all the articles with less than
4 articles per query, resulting in a data set with on average 6.23 articles for every query. Eir
reads on average 6.10 articles.

5. Conclusions and Future Work

In this work, we introduced a system, namely Everlasting Iatric Reader (Eir), for biomedical
text mining. A distinct difference between our system and previous biomedical text mining
works is that our system is aimed to directly simulate the behaviors of scientists, including
searching for scientific literature, examining the reliability of the manuscript, studying the
paper for details, and continuing to search with suspicion of the learned knowledge.
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In contrast to traditional biomedical text mining tools, the distinguishable advantage Eir
has is the ability to discriminate reliable articles out of questionable articles and to shield the
problems introduced by humans. This ability is particularly important in biomedical areas
because in clinics, a falsely constructed knowledge may lead to fatal errors, while a missing
piece of true knowledge will at most delay the cure of certain disease. Also, it is necessary
to select trustworthy papers to read for information because it is known that there is a non-
negligible number of publications with the troubles of reproducibility.

There are also limitations of the current Eir. For example, the action of Eir for evaluat-
ing the literature quality is trained supervisedly. The performance of our Eir can be greatly
improved with a more cleaned data source, as now the false positives are introduced by some
manuaaly crafted data that are labeled not correctly. Therefore, we will need a manually
crafted data set first before we use Eir in some application. In this paper, we choose to con-
struct the genetic association database because of the availability of GAD.9 However, there
are still a large number of manually curated databases with information about which paper
these information comes from, such as GWAS Catalog40 for SNP-phenotype association or
UniProt41 for protein function annotation.

Looking into the future, a direct extension of our work is to broaden Eir vision to ask
investigate into more biomedical topics in addition to gene-trait association relationships. Our
immediate next-step plan is to train Eir for SNP-phenotype association with GWAS Catalog,
then we can integrate these databases into GenAMap,42 a visual machine learning tool for
GWASe, for validation purpose of GWAS results. On the method development side, we hope
to upgrade the biomedical text mining module with state-of-the-art methods to improve the
information extraction performance, so that Eir could serve the community better. As a long-
term plan, we hope Eir could help the community to build the omini-biomedical knowledge
base, therefore, we released the source code of Eir for others in the community to use.
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Estimating classification accuracy in positive-unlabeled learning:
characterization and correction strategies

Rashika Ramola, Shantanu Jain, Predrag Radivojac∗
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Accurately estimating performance accuracy of machine learning classifiers is of fundamental impor-
tance in biomedical research with potentially societal consequences upon the deployment of best-
performing tools in everyday life. Although classification has been extensively studied over the past
decades, there remain understudied problems when the training data violate the main statistical
assumptions relied upon for accurate learning and model characterization. This particularly holds
true in the open world setting where observations of a phenomenon generally guarantee its presence
but the absence of such evidence cannot be interpreted as the evidence of its absence. Learning from
such data is often referred to as positive-unlabeled learning, a form of semi-supervised learning where
all labeled data belong to one (say, positive) class. To improve the best practices in the field, we here
study the quality of estimated performance in positive-unlabeled learning in the biomedical domain.
We provide evidence that such estimates can be wildly inaccurate, depending on the fraction of pos-
itive examples in the unlabeled data and the fraction of negative examples mislabeled as positives in
the labeled data. We then present correction methods for four such measures and demonstrate that
the knowledge or accurate estimates of class priors in the unlabeled data and noise in the labeled
data are sufficient for the recovery of true classification performance. We provide theoretical support
as well as empirical evidence for the efficacy of the new performance estimation methods.

Keywords: Positive-unlabeled learning, AlphaMax, Matthews correlation, accuracy estimation.

1. Introduction

Machine learning-based prediction has become the cornerstone of modern computational bi-
ology and biomedical data science. Numerous approaches have been developed and applied in
these fields, including those related to the function of biological macromolecules,1,2 the effect of
genomic variation,3 precision medicine,4,5 or computer-aided clinical decision making.6 A sig-
nificant part of this research considers binary classification where the learning algorithms have
been extensively studied and characterized, both theoretically and empirically.7 The objective
in binary classification is to train (learn) a model (function) that can distinguish one type
of objects from another; e.g., predicting the effect of single nucleotide variants as pathogenic
or benign.3 However, these algorithms have a broader value because multi-class, multi-label
and even structured-output learning are often framed as extensions of binary classification,
sometimes in a straightforward manner.8

In addition to learning, binary classification has also been extensively studied with re-
spect to the performance evaluation of predictive models.7 Typically, the prediction algorithm
outputs a real-valued score for a given input example, after which a thresholding function
is applied to map the prediction score into one of the elements of the output space (e.g.,
pathogenic vs. benign). In some cases, one first chooses the decision threshold and then com-
putes the performance measures for the model on the binarized predictions. In others, calcu-

∗The first two authors should be regarded as Joint First Authors.

 © 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed under the terms of 
the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.
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lating the performance measures entails some form of aggregating over all decision thresholds.
The first category of evaluation metrics includes classification accuracy, or the probability
that a randomly selected, previously unseen, example from the population will be correctly
classified. Other, more specialized measures, include the true positive rate (sensitivity, recall),
true negative rate (specificity, 1 − false positive rate) or precision (positive predictive value, 1
− false discovery rate).7 These measures may also be combined to compute derived quantities
such as the balanced sample accuracy, F-measure7 or Matthews correlation coefficient.9 The
second group of metrics include two-dimensional plots such as the Receiver Operating Char-
acteristic (ROC) curve and the precision-recall curve that visualize the trade-offs between
various quantities as a function of the decision threshold. These curves can be further sum-
marized into a single quantity by computing the area under the curve. Alternatively, metrics
such as F-measure can be computed for each decision threshold to report the maximum value
over all thresholds; e.g., Fmax.10 This allows each algorithm to select its own decision threshold
and also comparisons between algorithms that binarize their outputs with those that do not.
It is worth mentioning that cost-sensitive learning and evaluation,11,12 as well as information-
theoretic approaches13,14 can also be considered in certain classification scenarios; however,
these evaluation strategies are beyond the scope of this work.

Although binary classification has been extensively studied and is well understood,7 there
remain problems related to the open world setting that require attention. Open world refers to
the framework in knowledge representation and artificial intelligence in which the observation
of a phenomenon generally establishes its presence; however, the lack of the observation cannot
be interpreted as the evidence of absence of the phenomenon. One such example is protein
function assignment,15 where an experimental assay can definitively establish, say, that a
particular protein is an enzyme. High-throughput experiments can similarly establish the
presence of the phenomenon, albeit with some error as in generating protein-protein interaction
networks using yeast two-hybrid systems.16 However, no protein has ever been experimentally
assayed for all functions and, additionally, an unsuccessful experiment does not necessarily
establish the lack of particular activity. This is because an absence of required molecular
partners, an inadequate set of experimental conditions (e.g., pH, temperature17), or a human
error can combine to result in a failed experiment.b When presented with such data, one is
de facto given a set of positive examples (e.g., enzymes) and a set of unlabeled examples
(e.g., a sample of all proteins) and the learning setting is referred to as positive-unlabeled
learning.18 Although the unlabeled set contains an unknown fraction of positive examples,
the standard practice ignores this fact and considers all unlabeled examples to be negative.
One then trains a prediction model (interestingly, this approach is optimal for a wide range
of loss functions referred to as composite loss functions19) and estimates its performance,
after which the predictor is deployed with a particular estimated quality. In other words,
machine learning models in the positive-unlabeled setting are trained/evaluated on positive
vs. unlabeled data, whereas the ideal predictor, certainly one expected by the downstream
user, would be trained/evaluated on positive vs. negative data. Following Elkan and Noto,20

bEven with exhaustive experimentation and no human error, the “negative” findings are rarely published.
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we will refer to the predictors trained on positive vs. negative data as traditional classifiers
and models trained on positive vs. unlabeled data as non-traditional classifiers. Similarly, we
will refer to the two different types of evaluation as traditional and non-traditional evaluation.

The primary objective of this work is to study non-traditional classifiers and the adverse
effects of non-traditional performance evaluation when the intent is to carry out a traditional
evaluation. We show that the traditional performance of these classifiers can be recovered with
the knowledge or an accurate estimate of class priors (i.e., the fractions of the positive and
negative examples in a representative unlabeled set) and the labeling noise (i.e., the fraction of
negative examples in the labeled data set that have been mistakenly labeled as positive). We
conduct extensive and systematic experiments to evaluate the proposed methods and draw
conclusions pertaining to the best practices of performance evaluation in the field.

2. Methods

2.1. Performance measures: definitions and estimation

In this section, we give definitions of several widely used performance measures and their
standard estimation formulas. To this end, we first describe the probabilistic framework used
in the definitions. Consider a binary classification problem of mapping an input x ∈ X to its
class label y ∈ Y = {0, 1}. Assume that x and y come from an underlying, fixed but unknown
joint distribution h(x, y) over X × Y.c Let h(x) denote its marginal density over x. It follows
that h(x) can be expressed as a two-component mixture:

h(x) = πh1(x) + (1− π)h0(x), (1)

for all x ∈ X , where h1 and h0 represent the distributions of the positive and negative examples
(inputs), respectively, and π ∈ (0, 1) is the proportion of positive examples in h, also referred
to as the class prior for the positive class.

Next, we give definitions of the three most fundamental performance measures: (1) true
positive rate (γ), the probability that a positive example is correctly classified, (2) false positive
rate (η), the probability that a negative example is incorrectly classified as positive, and (3)
precision (ρ), the probability that a positive prediction is correct. Mathematically, given a
binary classifier ŷ : X → Y, they are defined as

γ = Eh1
[ŷ(x)], η = Eh0

[ŷ(x)], ρ =
πEh1

[ŷ(x)]

Eh[ŷ(x)]
=
πγ

θ
(2)

where Eh denotes expectations w.r.t. h and θ = Eh[ŷ(x)] is the probability of a positive predic-
tion. A classifier with a high γ and ρ, but low η is desirable. However, these measures are at
odds with each other; i.e., typically, increasing a classifier’s γ leads to a smaller ρ and a larger
η. A classifier that always predicts either 0 or 1 can optimize them individually at the expense
of others. Consequently, they are often used together to gauge a classifier’s performance; for
example, in an ROC curve analysis. Moreover, other performance measures combine them
explicitly or implicitly in their formulation. Though θ itself is not widely used as a measure

cFor convenience, we use terms density and distribution interchangeably.
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Predicted
positive

Predicted
negative

Positive tp fn
Negative fp tn

(a)

γ̂ = tp
tp+fn π̂ = tp+fn

tp+fn+tn+fp

η̂ = fp
tn+fp θ̂ = tp+fp

tp+fn+tn+fp

(b)

Table 1: (a) Confusion matrix of ŷ(x) on a labeled data set. (b) Standard estimation of γ, η, π and θ.

of classifier performance, it also appears in the expression of several important measures (a
classifier for which θ > π is sometimes said to “overpredict”). A particularly useful expression
of θ in terms of γ, η and π is derived as follows.

θ = Eh[ŷ(x)] = πEh1
[ŷ(x)] + (1− π)Eh0

[ŷ(x)] = πγ + (1− π)η (3)

In this paper, we focus on four performance measures that are widely used in biomedical
research: (1) Accuracy (acc), the probability that a random example is correctly classified
(2) Balanced accuracy (bacc), the average accuracy on the positive and negative examples,
weighed equally, (3) F-measure (F ), the harmonic mean of γ and ρ,d and (4) Matthews corre-
lation coefficient (mcc), the correlation between the true and predicted class. Mathematically,
they are defined as follows:

acc = πγ + (1− π)(1− η) (4) bacc =
1 + γ − η

2
(5)

F =
1

1
2 ·

1
γ + 1

2 ·
1
ρ

=
2πγ

π + θ
(6) mcc =

Eh[y · ŷ(x)]− Eh[y] · Eh[ŷ(x)]√
Vh[y] · Vh[ŷ(x)]

(7)

where Vh in Eq. (7) denotes the variance operator w.r.t. distribution h(x). Notice that, since
y ∼ Bernoulli(π) under h, Eh[y] = π and Vh[y] = π(1−π); similarly, Vh[ŷ(x)] = θ(1− θ). Further,
using the law of iterated expectations, Eh[y · ŷ(x)] = πEh1

[ŷ(x)] = πγ. Thus,

mcc =

√
π

(1− π)

γ − θ√
θ(1− θ)

=

√
π(1− π)

θ(1− θ)
· (γ − η) (8)

Using the estimates of γ, η, π and θ from Table 1, we give the standard formulas for acc,
bacc, F and mcc estimation, in terms of the classifier’s confusion matrix entries. For example,
simple algebraic operations on Eq. (8) give

m̂cc =
π̂(1− π̂)(γ̂ · (1− η̂)− η̂ · (1− γ̂))√

θ̂π̂(1− π̂)(1− θ̂)
=

tp · tn− fp · fn√
(tp + fp)(tp + fn)(tn + fp)(tn + fn)

Similarly, the standard estimation formulas for acc, bacc and F can be easily derived as:

âcc =
tp + tn

tp + fn + tn + fp
, b̂acc =

1

2

tp

tp + fn
+

1

2

tn

tn + fp
, F̂ =

2tp

2tp + fn + fp
.

dWe only consider the F1 score in the family of F-measures.
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2.2. Positive-unlabeled setting

Let D represent a set of examples drawn from h(x); at this stage, the class of an x in D is
unknown. Consider a labeling procedure that selects some examples from D for labeling. As is
the case in many domains, the procedure tests only for the class of interest, the positive class.
The procedure is successful when it deems the example as positive with high confidence. The
successfully labeled examples are collected in a labeled set L, whereas the rejected examples
along with the examples not selected for labeling, in the first place, are collected in an unlabeled
set U. In spite of being labeled as positive, some examples in L might, in fact, be negative,
due to the errors in the labeling procedure.

The typical, positive-unlabeled assumption made about the labeler is that the examples
from D are selected independently of x, given y and further, that the same assumptions apply
to the success of labeling.20,21 The assumptions ensure that the distributions of positives and
negatives remain unchanged in L and U and only the class proportions are affected. Let f(x, y)

and g(x, y) denote the underlying joint distribution of U and L, respectively. Note that y still
denotes the true unobserved class and not class assigned by the labeler. For f(x) and g(x)

denoting the marginals over x,

f(x) = αh1(x) + (1− α)h0(x), g(x) = βh1(x) + (1− β)h0(x), (9)

for all x ∈ X , where α and β denote the proportion of positives in the unlabeled and labeled
set, respectively. By design, L has a higher concentration of positives than D; i.e., β ∈ (π, 1].
Similarly, U has a lower concentration of positives than D; i.e., α ∈ [0, π). When β = 1 we say
that the labeled data is clean. When β < 1, the labeled data contains a fraction (1 − β) of
negatives that are mislabeled. We will refer to the latter scenario as the noisy positive setting
and 1− β as the noise proportion.

The relationship between h, f and g is further constrained, since D is partitioned by L

and U. Precisely,

h(x) = cg(x) + (1− c)f(x) =
(
cβ + (1− c)α

)
h1(x) +

(
1− cβ − (1− c)α

)
h0(x), (10)

for all x ∈ X , where c = |L|
|L|+|U| . Thus,

π = cβ + (1− c)α. (11)

To distinguish h from f and g, we refer to h as the true or the target distribution. We are
primarily interested in a classifier’s performance on the true distribution, which is reflected in
our goal to obtain unbiased estimates of the performance measures w.r.t. the true distribution.

2.3. Performance measure correction

The absence of negative examples in positive-unlabeled learning is tackled by treating the
unlabeled set as a surrogate for negatives. This is referred to as the non-traditional approach.20

A non-traditional classifier trained on such data learns to discriminate the labeled-as-positive
set from the unlabeled set. Surprisingly, an optimal non-traditional classifier has been shown
to perform optimally in the traditional sense; i.e., as a discriminator between the positive and
negative examples.21 However, measuring a classifier’s performance non-traditionally does not
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reflect its performance in the traditional sense. Ref. 22 demonstrated the bias in the non-
traditionally estimated γ, η and ρ and its implications towards the ROC and precision-recall
analysis. They also provided techniques for bias correction using estimates of the class prior
and the noise proportion.22 We take a similar approach in this work and show that the standard
estimators of acc,bacc, F and mcc, when used in a non-traditional framework, are biased. Then
we give formulas to correct the bias by estimating the class prior and the noise proportion. To
formalize the notion of a non-traditional labeled set, we introduce the pseudo class ỹ, which
is 1 for every example in L and 0 for those in U. The non-traditional labeled set Lpu contains
all examples from L and U along with their pseudo class labels. The standard approach (see
Table 1) for estimating γ, η, π and θ presupposes that the examples in the labeled set are drawn
randomly from h(x, y) and more importantly, that tp, fn, tn and fp are counted w.r.t. the true
class. However, when working with Lpu, the counts are based on the pseudo class, which affects
the quality of the standard estimates.

In particular, γ̂ and η̂ give biased estimates of γ and η, respectively. Instead, they give
unbiased estimates of γpu = Eg[ŷ(x)] and ηpu = Ef [ŷ(x)]; this is because g and f correspond
to the distributions of the pseudo positives and the pseudo negatives, respectively. More-
over, π̂ represents the proportion of the pseudo positives c, instead of π; that is, π̂ = c.
However, θ̂ is still an unbiased estimator of θ, since θ only depends on the marginal dis-
tribution of x in Lpu, which is the same as h(x) as per Eq. (10). To summarize, we have

γ̂
estimates−−−−−−→ γpu 6= γ, η̂

estimates−−−−−−→ ηpu 6= η, π̂ = c 6= π, θ̂
estimates−−−−−−→ θ.

The bias in γ̂, η̂ and π̂ is also reflected in the standard estimates of acc, bacc, F and mcc.
They give unbiased estimates of the following quantities instead.

accpu = cγpu + (1− c)(1− ηpu) baccpu =
1 + γpu − ηpu

2

F pu =
2cγpu

c+ θ mccpu =

√
c(1− c)
θ(1− θ)

· (γpu − ηpu)

Next, we give the relationship between γ, η, γpu and ηpu which are then used for bias correction.

γ =
(1− α)γpu − (1− β)ηpu

β − α

η =
βηpu − αγpu

β − α

obtained by solving

γpu = Eg[ŷ(x)] = βγ + (1− β)η

ηpu = Ef [ŷ(x)] = αγ + (1− α)η

We derive the bias-corrected estimates of acc,bacc, F and mcc by correcting for γ, η and π:

âcccr = π̂crγ̂cr + (1− π̂cr)(1− η̂cr) (12) b̂acccr =
1 + γ̂cr − η̂cr

2
(13)

F̂cr =
2π̂crγ̂cr

π̂cr + θ̂
(14)

m̂cccr =

√√√√ π̂cr(1− π̂cr)

θ̂
(

1− θ̂
) (γ̂cr − η̂cr), (15)

where γ̂cr, η̂cr and π̂cr are estimated using estimates of α and β as follows:
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γ̂cr = (β̂ − α̂)−1((1− α̂)γ̂ − (1− β̂)η̂), η̂cr = (β̂ − α̂)−1(β̂η̂ − α̂γ̂), π̂cr = cβ̂ + (1− c)α̂.

Theorem 2.1 shows that unbiased bacc and mcc estimates can also be directly recovered
from baccpu and mccpu estimates, requiring only estimation of classifier-independent quan-
tities π, α and β (the class proportions in D, U and L); i.e., γ and η do not need to be
corrected as an intermediate step. Furthermore, the relationship between bacc (mcc) and
its positive-unlabeled counterpart is monotonic, which is a desirable property when con-
structing a classifier by thresholding a score function. It ensures that the threshold obtained
with the positive-unlabeled data by optimizing the non-traditional measure also maximizes
the traditional measure. The inequalities derived in the theorem demonstrate that the non-
traditionally evaluated bacc and mcc underestimate the traditional performance, provided the
non-traditional classifier performs better than random.

Theorem 2.1. The following equations hold true.

bacc =
2baccpu − 1

2(β − α)
+

1

2
, and mcc =

1

β − α

√
π(1− π)

c(1− c)
·mccpu

Moreover,

sign(mcc)(mcc−mccpu) ≥ 0, and bacc− baccpu ≥ 0, when baccpu ≥ 1/2.

Proof. The proof of the two equalities follow by observing γpu−ηpu = (β−α)(γ−η) and using
it in the expressions of baccpu and mccpu, thereby obtaining a conversion to bacc and mcc

(Eqs. (5) and (8)). Now, mcc−mccpu = mccpu
(

1
β−α

√
π(1−π)
c(1−c) − 1

)
. The mcc inequality follows

since
√

π
c(β−α) ·

√
1−π

(1−c)(β−α) ≥ 1 because π−c(β−α) = α ≥ 0 and 1−π−(1−c)(β−α) = 1−β ≥ 0.

The bacc inequality follows since β − α ≥ 0 and consequently, 2bacc − 2baccpu = 2baccpu−1
β−α −

(2baccpu − 1) ≥ 0, provided baccpu ≥ 1/2.

3. Experiments and Results

3.1. A case study

We first demonstrate the problem with non-traditional evaluation in a situation where the
positive and negative conditional distributions, h1 and h0, are univariate Gaussians with
Eh1

[x] > Eh0
[x] and Vh1

[x] = Vh0
[x]. Knowing the underlying distributions allows us to make ex-

act computations of performance measures, instead of estimating them from data. As per Sec-
tion 2, let h(x) = πh1(x)+(1−π)h0(x), f(x) = αh1(x)+(1−α)h0(x) and g(x) = βh1(x)+(1−β)h0(x)

be the true, labeled and unlabeled data distributions, respectively. Values of α, β and c will be
fixed, from which π = cβ+(1−c)α will be computed. We will consider a simple linear classifier
ŷ(x) = 1(x ≥ τ), where 1(·) is the indicator function and τ ∈ R is the decision threshold. This
thresholding function predicts a 0 for inputs below τ ; otherwise, it predicts a 1.

In the traditional setting, the true positive rate (γ) and false positive rate (η) can be
straightforwardly computed as γ = 1−cdfh1

(τ) and η = 1−cdfh0
(τ), where cdff is the cumulative

distribution function corresponding to the density f . On the other hand, when evaluated
in the non-traditional setting, these quantities can be expressed as γpu = 1 − cdfg(τ) and
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Fig. 1: Traditional vs. non-traditional performance accuracy as a function of decision threshold τ . The circles
and vertical lines in all four panels indicate the threshold values and the corresponding best performances in
both traditional and non-traditional setting. (Upper left) Classification accuracy: top traditional performance
accmax = 0.86 is reached at the threshold value τ = 0.42, whereas the top non-traditional performance accpumax =
0.90 is reached at τ = 5; (Upper right) Balanced accuracy: top traditional performance baccmax = 0.84 and
non-traditional performance baccpumax = 0.67 are both reached at τ = 0; (Lower left) F-measure: top traditional
performance Fmax = 0.77 is reached at τ = 0.19, whereas the top non-traditional performance F pu

max = 0.30 is
reached at τ = 0.50; (Lower right) Matthews Correlation Coefficient: top traditional performance mccmax =
0.66 and non-traditional performance mccpumax = 0.22 are both reached at τ = 0.29.

ηpu = 1 − cdff (τ). The probability of positive prediction θ is computed using Eq. (3). Of
course, g = h1 when β = 1 and f = h0 when α = 0, but this case corresponds to the standard
supervised learning problem and is not of interest.

Let us now be concrete and consider that h0 = N (−1, 1), h1 = N (1, 1), α = 1/4, β = 3/4 and
c = 1/10; thus, π = 3/10. In Figure 1, we plot the values of the accuracy, balanced accuracy,
F-measure and Matthews correlation coefficient in the traditional and non-traditional setting
for each value of τ ∈ (−5, 5), where acc, accpu, bacc, baccpu, F , F pu, mcc and mccpu are
calculated from γ, η, θ, h, f , g, and c, as shown in Section 2. As a reminder, c represents
the proportion of labeled examples in the training set consisting of all labeled and unlabeled
examples; however, a data set is not generated here. It is important to point out the large
differences between all traditional and non-traditional estimates, which provide evidence that
the non-traditional estimates can be far from accurate, as in this example. As proved in
Section 2, the maximum values for baccmax vs. baccpumax and mccmax vs. mccpumax are observed
at the same score thresholds τ , respectively. This is desirable as one can establish the best
decision threshold using positive-unlabeled data and secure the best predictor performance
even without the precise knowledge of what that performance is. On the other hand, accmax vs.
accpumax as well as Fmax vs. F pu

max do not occur at the same decision thresholds, which presents a
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problem for method benchmarking. The F-measure is further interesting as a simple predictor
(τ = −5) that gives positive predictions on (almost) all inputs can achieve a high-scoring F ,
which may be misinterpreted in practice as good performance. Similarly, in terms of accuracy,
an inability to “beat” a trivial classifier (the one always predicting the majority class) might
be incorrectly interpreted as inability to develop a good classifier.

3.2. Data sets

The empirical evaluation was carried out on 14 data sets from the UCI Machine Learn-
ing repository. The selected data sets span various biomedical problems, such as recognizing
splice-junction boundaries from the DNA sequence,23 predicting the physical activity of an
individual based on their smartphone24 or sensor25 data, and predicting hospital re-admissions
by using a patient’s demographics, medical diagnoses and lab test results.26 Where necessary,
the data sets were converted to binary classification problems by considering one of the classes
as positive and the other(s) as negative or by converting regression problems to classification
by introducing appropriate thresholds on the target variable. The following data sets were
used: Covertype, Activity recognition with healthy older people using a batteryless wearable
sensor (two experiments), Epileptic Seizure Recognition, Smartphone-Based Recognition of
Human Activities and Postural Transitions, Mushroom, Thyroid Disease, Anuran Calls, Wilt,
Abalone, HIV-1 protease cleavage, Splice-junction Gene Sequences, Parkinsons Telemonitor-
ing, and Physicochemical Properties of Protein Tertiary Structure.

3.3. Experimental protocols

The experiments were designed to simulate the construction of non-traditional classifiers in
the positive-unlabeled setting and assess the quality of performance estimation both in the
non-traditional and traditional mode. Labeled and unlabeled data sets, with nl and nu exam-
ples, respectively, were first created by sampling an appropriate number of positive/negative
examples as follows. After fixing the value of β from {1, 0.9, 0.8, 0.7}, β ·nl points were sampled
from the positive set and (1− β) · nl from the negative set to make the labeled data set. This
process determined the true value of α as the ratio of the remaining positive points and the
remaining negative points from the original data set. Unlabeled data set was then formed
by selecting α · nu points from the remaining positive points and (1 − α) · nu points from the
remaining negative points. The number of unlabeled examples nu was set to 10,000 in all data
sets with sufficient size. Otherwise, it was set to 5000, 2000 or 1000. The size of the labeled
data set nl was picked so as to fix the ratio of labeled vs. unlabeled data to 1:10. That is,
if nu = 1000, nl would be set to 100. This ratio mimics a typical situation in which one is
presented with larger unlabeled data compared to the labeled data. A non-linear classification
model was trained on each non-traditional data set. Its performance was evaluated in both
non-traditional and traditional setting. This experiment was repeated 50 times for different
random selections of labeled and unlabeled data sets, each of which was considered for four
different values of β.

One-hundred bagged two-layer neural networks, each with 7 hidden neurons, were used as
a non-traditional classifier in all experiments. The networks were trained using the RPROP
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algorithm27 with a validation (25% of the training set) stop or at most 5,000 epochs. Out-
of-bag performance evaluation was carried out in all experiments. At the end of each run,
we calculated four performance measures: the maximum classification accuracy (accmax), the
maximum balanced accuracy (baccmax), the maximum F-measure (Fmax) and the maximum
MCC (mccmax), in four different scenarios: (1) the non-traditional (PU) estimates, where the
labeled data was considered to be positive and unlabeled data negative; (2) the traditional
(true) performance estimates, where the actual class labels instead of the PU labels were
used; (3) the recovery setting proposed in Section 2 with actual (α, β) values; and (4) the
recovery setting proposed in Section 2 with estimated (α, β) values, referred to as (α̂, β̂).
The non-traditional estimates provide the performance that a practitioner would report by
ignoring noise and assuming that the unlabeled set was negative. The traditional performance
estimates represent the estimated true performance of these models that a practitioner would
not be aware of. The third and fourth scenario represent the traditional estimates after the
correction. They were designed to explore the effects of incorrectly estimating (α, β), instead
of knowing their true values. The AlphaMax algorithm21,28 was used to obtain (α̂, β̂).

3.4. Results

We measured the difference between non-traditional and corrected performance against the
traditional performance in each run. The traditional performance was considered to be “true”;
it could be estimated because the positive-unlabeled setting was simulated on data sets where
both positives and negatives were available. The corrected performance was presented twice:
first with known (α, β) that were used to construct positive-unlabeled data sets and, second,
with (α, β) themselves estimated from the positive-unlabeled data. The experimental results,
summarized in a single box plot over all 14 data sets and all 50 runs, are shown in Figure 2.
Non-traditionally estimated (without correction) baccmax, Fmax and mccmax significantly un-
derestimate the traditional performance, whereasd accmax significantly overestimates it. The
errors generally deteriorate with the increasing level of noise (1− β).

The corrected estimates attained much smaller error. While using the true values of α
and β provided a near perfect recovery of the traditional performance, the estimated values
generally resulted in a slightly overestimated traditional performance. We note however that
we did not perform any model selection and parameter optimization during class prior and
noise level estimation and, therefore, one could expect to observe an improved recovery after
these steps. Manual inspection of the likelihood curves outputted by AlphaMax would also be
recommended to increase confidence in the recovered performance estimates.

4. Conclusions

Estimating the performance of machine learning models is one of the critical yet understudied
research directions in the biomedical sciences. Incorrect evaluation might have severe negative
effects upon the deployment of machine learning tools and the perception of their usefulness
in the nearby future, including in genetic counseling, precision medicine, clinical decision
support, etc.3–6 This work therefore investigated the quality of performance evaluation in
binary classification when training data best fits the positive-unlabeled setting.18 However,
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Fig. 2: Error in the non-traditionally evaluated performance measures before and after correction for 14
biomedical data sets. PU represents the estimates on the Positive Unlabeled data without bias-correction. CR
and CE represent the bias-Corrected estimates with the Real and Estimated values of α and β. In each run, the
optimal decision threshold was selected first, to maximize the performance, and then the resulting performance
was compared with the true performance at that same threshold. (Upper left) Classification accuracy: Eq. (12)
was used for correction. All estimates were clipped between 0 and 1; (Upper right) Balanced accuracy: Eq. (13)
was used for correction. All estimates were clipped between 1/2 and 1; (Lower left) F-measure: Eq. (14) was used
for correction. All estimates were clipped between 0 and 1; (Lower right) Matthews Correlation Coefficient:
the formula from Theorem 2.1 was used for a direct correction from the mccpu estimate. All estimates were
clipped between −1 and 1. The x-axis is the true value of β, according to which the box plots were grouped.

the generality of our methods is provided by the equivalence between training from noisy
positive vs. unlabeled data and the so-called corrupt binary classification model, where it
is assumed that both positive and negative examples are given, but that each data set is
corrupted by a (potentially) different amount of label noise.

To characterize performance evaluation problems, we built on the previous work in machine
learning22,29 to evaluate the quality of four estimated measures: accuracy, balanced accuracy,
F-measure, and Matthews correlation coefficient. We found that the balanced accuracy and
Matthews correlation coefficient are well-behaved, meaning that they provide certain impor-
tant guarantees to the practitioner even when applied in the positive-unlabeled setting. For
example, the optimal decision threshold for maximizing the performance does not change when
the evaluation is shifted from the non-traditional to the traditional setting; furthermore, the
performance in the traditional setting is always better than non-traditionally estimated. On
the other hand, classification accuracy and F-measure provide fewer guarantees and require
sophisticated understanding when deployed in practice.

To mitigate the problems associated with any of the above-mentioned performance esti-
mation strategies, we first showed that the true (traditional) classification performance can be
recovered with the knowledge of (1) the class priors in the unlabeled data and (2) the propor-
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tion of noise in the labeled data. We then used the AlphaMax algorithm21,28 to estimate both
of these quantities in a nonparametric fashion and showed that the performance estimation
process is significantly improved. As a practical guideline, we suggest that the deployment
of machine learning models should be accompanied with both non-traditional and recovered
traditional performance estimates along with the estimated values of α and β.
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PLATYPUS: A Multiple–View Learning Predictive Framework
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Cancer is a complex collection of diseases that are to some degree unique to each patient.
Precision oncology aims to identify the best drug treatment regime using molecular data
on tumor samples. While omics-level data is becoming more widely available for tumor
specimens, the datasets upon which computational learning methods can be trained vary
in coverage from sample to sample and from data type to data type. Methods that can
‘connect the dots’ to leverage more of the information provided by these studies could offer
major advantages for maximizing predictive potential. We introduce a multi-view machine-
learning strategy called PLATYPUS that builds ‘views’ from multiple data sources that are
all used as features for predicting patient outcomes. We show that a learning strategy that
finds agreement across the views on unlabeled data increases the performance of the learning
methods over any single view. We illustrate the power of the approach by deriving signatures
for drug sensitivity in a large cancer cell line database. Code and additional information are
available from the PLATYPUS website https://sysbiowiki.soe.ucsc.edu/platypus.

Keywords: Pattern Recognition; Machine Learning; Multiple View Learning; Cancer; Drug
Sensitivity; Incompleteness; Unlabeled Data; Semi-Supervised; Co-Training; Integrative Ge-
nomics; Systems Biology; Multidimensional; Multi-Omic

1. Introduction

Predicting whether a tumor will respond to a particular treatment strategy remains a chal-
lenging and important task. However, the availability and cost of screening compound libraries
for a tumor sample remains prohibitive. At the same time, the use of genomic assays, such as
DNA and RNA sequencing, for clinical decision making are on the rise. As the costs for these
high-throughput assays drop, applying ‘genomic signatures’ from machine-learning trained on
external data in place of the more expensive direct drug assay becomes an option.

One obstacle to achieving this goal is the ability to find training sets for machine-learning
classifiers for which comprehensive clinical outcomes are available, e.g. survival or drug sensi-
tivity. Non–uniformity of large composite datasets such as The Cancer Genome Atlas (TCGA,
cancergenome.nih.gov) forces many existing approaches to ignore data unless it is available
for all samples. At the same time, many studies have samples that would be useful to analyze
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c© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.

Pacific Symposium on Biocomputing 2019 

136



beyond their original purpose, yet cannot be included because they lack outcome data.
The large number of variables compared to far fewer samples can often result in bio-

logically irrelevant solutions.12 However, issues related to the over-determined nature of the
problem sets can be minimized by using prior knowledge to inform feature selection techniques.
Incorporating this information can guide learning methods to both more generalizable and in-
terpretable solutions. For example, several approaches that include database-mined gene–gene
interaction information have shown promise for interpreting cancer genomics data and utiliz-
ing it to predict outcomes.1,10,16,18 In addition, ensembles can reduce error caused by small
sample sizes.17

We present a multiple view learning (MVL) framework called PLATYPUS (Progressive
LAbel Training bY Predicting Unlabeled Samples) that combines the advantages of the
knowledge-driven and ensemble approaches. ‘Views’ are feature extractions of particular data
platforms that encode specific prior knowledge and are each allowed to vote on the predicted
outcome, providing a more complete and diverse glimpse into the underlying biology. The
framework infers outcome labels for unlabeled samples by maximizing prediction agreement
between multiple views, thus including more of the data in the classifiers. It reduces over-
fitting caused by small sample sizes both by predicting labels for unlabeled samples and by
incorporating prior knowledge.8

A typical approach in machine learning is to train classifiers on a subset of samples con-
taining all of the data, impute missing data, or train ensembles based on data availability,
but are generally restricted to samples with the majority of the data for each sample.20 The
semi–supervised MVL approach learns missing patient outcome labels, thus allowing the use
of all available labeled and unlabeled datasets. PLATYPUS trains on one or more views and
then co-trains on the unlabeled samples. By doing this, PLATYPUS can make predictions
on any patient regardless of data availability. This increases overall classifier accuracy while
also finding solutions that generalize to the entire population– which has proven extremely
difficult in high–feature, low–sample problems.2 A comparison of PLATYPUS to other related
methods is provided in Supplemental Section S1.

2. System and methods

2.1. Data

At the time of download the Cancer Cell Line Encyclopedia (CCLE) contained genomic, phe-
notype, clinical, and other annotation data for 1,037 cancer cell lines,7 described in Section S2.
Of these, drug sensitivity data was available for 504 cell lines and 24 drugs. Drug response was
converted to a binary label in order to transform the regression problem into a classification
problem. For each compound, cell lines were divided into quartiles ranked by ActArea; The
bottom 25% were assigned to the ‘non–sensitive’ class and the top 25% to the ‘sensitive’ class.
Cell lines lying in the middle were marked with ‘intermediate’ and considered unlabeled in
this test (Fig. S2). Note that these samples are often the most difficult to classify as they rep-
resent those with a range of sensitivities that may span orders of magnitude where the growth
inhibition curve has its steepest changes as a function of drug concentration. Thus, the ability
to input a binary designation for the growth inhibition using a co-training strategy could in
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itself have advantages over approaches that identify cutoffs in the drug response curves that
are more-or-less arbitrary, without the use of a clear optimization criteria, and without the
ability to make use of genomic signatures.

(a) View Creation

(b) Learning

(c) Inference

Fig. 1. PLATYPUS framework illustrated with three views. (a) Creation of single views using
sample data and optional prior knowledge. (b) Iterative Learning: Each view maximizes prediction
accuracy on the labeled samples; unlabeled samples predicted with high confidence are added to the
known sample set; repeat until no new samples are labeled. (c) Models from the final iteration of
PLATYPUS training applied to new data.

2.2. Single views and co-training

PLATYPUS uses co–training (Fig. 1) between single views to learn labels for unlabeled sam-
ples. Single views are based on different feature sets. Genomic or clinical features can be used
directly (baseline views), or transformed using a biological prior (interpreted views). We built
four baseline views from the CCLE data: expression, CNV, mutation, Sample- and Patient-
Specific (SPS) information; and many interpreted views (Section S3). Each view can be set up
with the best suited machine learning algorithm and optimized parameters for its task, e.g. a
random forest or an elastic net (Section S5.1).

Co–training works by training a separate classifier using each view as a separate feature
set to make independent predictions, then incorporating disagreement into the loss function.
Each view trains on the labeled data then predicts labels for the common unlabeled set. High
confidence labels are passed as truth in the next iteration. Co–training methods iterate until
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either convergence, some threshold (a minimal change in label definition on the unlabeled
samples) is attained, or a maximum number of iterations is reached.

After co–training, each view can be used as a standalone classifier that incorporates learn-
ing from one or more data platforms without relying solely on that data platform. Since views
are trained in conjunction, the trained models will incorporate the perspectives of all views.
This also provides a measure of influence from all views when applying any of the classifiers
to new data, without requiring data for those views when making predictions.

2.3. Maximizing agreement across views through label assignment

The key step in the PLATYPUS approach is the inference of outcome labels for a set of
unlabeled data. Each training iteration seeks to improve the agreement of the assignments
given to the unlabeled data across all views. Views are first created by applying machine
learning methods using either the features directly, or from gene set summaries or subsetting
(Section S3). Fig. 1 shows an overview of PLATYPUS using three views. Any number of views
may be used– in this paper, up to 10 views are used per experiment.

PLATYPUS searches iteratively for a label assignment that improves the agreement on
unlabeled data (Fig. 1(b)). At each iteration t, the views are trained on labeled data and the
labels for unlabeled samples are inferred. Because the set of labels can change across iterations,
we denote the training data with sensitive labels as T+(t) and those with non–sensitive labels
as T−(t) at iteration t. T+(0) and T−(0) are the given sets of sensitive and non–sensitive
training samples before learning labels, respectively. The set of unlabeled samples is denoted
U(t), with all unlabeled samples before learning labels as U(0).

V is the set of views used in the PLATYPUS run. In iteration t, each view v ∈ V is trained
to maximize its prediction accuracy on the labeled samples T+(t) and T−(t). The accuracy of
view v at iteration t is determined using cross–validation of the training samples and is written
here as a(v, t), where a(v, 0) is the single view accuracy before learning labels. A prediction is
then made by the trained models for each unlabeled sample s. Let l(v, s, t) be the prediction of
sample s by view v in iteration t where it is 1 if predicted sensitive and 0 otherwise. The single
view votes are summarized to a sensitive ensemble vote L+(s, t) and non–sensitive ensemble
vote L−(s, t) for each sample (Eq. 1 and 2).

L+(s, t) =
∑
v∈V s

w(v, t) l(v, s, t) (1) L−(s, t) =
∑
v∈V s

w(v, t)(1−l(v, s, t)) (2)

Only views with data to predict sample s are taken into account: V s = {v ∈ V :

v has data for s}; and the different views are weighted by w(v, t) (Eq. 3). View accuracies
within [0.5, 1] are rescaled to [0, 1] and log–scaled. Views with an accuracy lower than 0.5 are
given a weight of 0 since it indicates worse than random predictions.

w(v, t) =

{
−log(1− a(v,t)−0.5

0.5 ) if a(v, t) ≥ 0.5

0 otherwise
(3)

To determine, which unlabeled samples are added to the training data for the next iteration,
we define Lmax(t), the strongest vote found between all samples in iteration t (Eq. 4), and
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Ψ(t), the set of samples reaching the strongest vote (Eq. 5).

Lmax(t) = max
s∈U(t)

{max{L+(s, t), L−(s, t)}} (4)

Ψ(t) = {s ∈ U(t) : max{L+(s, t), L−(s, t)} = Lmax(t)} (5)

In order to favor missing data for a sample over conflicting predictions, we define Lmin(t) as
mins∈Ψ(t){min{L+(s, t), L−(s, t)}}, the weakest contrary vote that is found between all samples
in Ψ(t).

All samples meeting both the strongest vote and the weakest contrary vote conditions
(Label Agreement Criteria) build the set of new training samples T (t), which are added to
T+(t) and T−(t) for the next iteration’s training data:

T (t) = {s ∈ Ψ(t) : min{L+(s, t), L−(s, t)} = Lmin(t)} (6)

T+(t+ 1) = T+(t) ∪ {s ∈ T (t) : L+(s, t) > L−(s, t)} (7)

T−(t+ 1) = T−(t) ∪ {s ∈ T (t) : L+(s, t) < L−(s, t)} (8)

To avoid adding predictions with low confidence, Lmax(t) needs to stay above a certain value,
otherwise no labels are added to the training data in iteration t. This can be adjusted by the
learning threshold λ, which represents the fraction of the maximal reachable vote, i.e. when
all views agree. By default λ is 75%.

The training process continues until a convergence criterion is met: either all labels have
been learned, no new labels have been learned in the last iteration, or a maximum number of
iterations has been reached. After termination of the learning process, the trained single–view
predictors can be used independently or as an ensemble via PLATYPUS (Fig. 1(c)).

3. Results

3.1. Preliminary experiments to optimize PLATYPUS performance

We ran 120 different PLATYPUS variants to predict drug sensitivity in the CCLE cell lines
to identify the best way to combine the views for this application. As mentioned in the Data
Section (Section S2), samples with intermediate levels of sensitivity for a particular drug were
treated as unlabeled and used by the co-training to maximize agreement across views. The
conversion of this regression problem into a classification problem in which drug sensitivities
arbitrarily are discretized into sensitive versus insensitive (top and bottom 25%), reflects the
reality of the clinical setting in which a decision must be made to either treat or not treat a
particular patient. The test measures the co-training strategy’s ability to infer sensitivities for
cell lines that are the most difficult to classify.

We first asked whether the interpretive views that use gene set information provide benefit
over using only the baseline views (Section 2.2). We then determined a weighting scheme for
the ensemble to achieve better performance. We ran PLATYPUS using the 4 baseline views
and the 3, 5, 7, and 10 best–performing single views for each of the 24 CCLE drugs at a λ = 75%

learning threshold, for a total of 120 different PLATYPUS variants (5 per drug). Fig. 2(a)
shows the highest accuracy PLATYPUS models as well as each of the single view scores. In
almost all cases PLATYPUS significantly outperforms single view models, most notably for
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Fig. 2. PLATYPUS Performance. (a) Boxplot showing performance (in AUC) sorted by PLATY-
PUS score, of all single views and the best PLATYPUS score. PLATYPUS score for each drug is
the highest from the 3,5,7, and 10 view runs. (b) AUC for PD-0325901 sensitivity predictions for
each single view, colored by view type. The 10 views to the right of the gray line are used in the
PLATYPUS ensemble. See Fig. S3 for single view AUCs for all drugs. DT = Drug Target; GS =
Gene Set.

the MEK inhibitors AZD6244 and PD-0325901, and HDAC inhibitor Panobinostat. Adding
interpreted views to PLATYPUS increased PD-0325901 AUC from 0.94 to 0.99 (Fig. 2(b)),
motivating their continued inclusion in PLATYPUS models. Furthermore, within 10 iterations,
most PLATYPUS runs added 90% or more of the unlabeled cell lines to the labeled set,
effectively doubling the number of samples on which the models trained. We look more closely
at the results from the best overall performing PLATYPUS model, PD-0325901, as well as
important features from each of its models, in Section 3.2.

We next investigated how to combine the ensemble of different views to improve the
PLATYPUS method’s accuracy. Previous studies show that combining multiple weak but
independent models will result in much higher model accuracy.17,20 Similarly, previous work
has shown that using biological priors can reduce the influence of noise present in biological
data.10,11,18 However, it is not clear how models can be combined in an ensemble to achieve
the best results. First, we tested a weighting scheme where each view contributed equally to
the final prediction, however this made the model sensitive to information–poor views (data
not shown). We then tested an AUC–weighted voting scheme, which derives view weights for
the current iteration based on the AUC obtained from the previous iteration (Eq. 3). Doing
so allows the PLATYPUS ensemble to incorporate a large number of views, without the need
for a pre-selection step, where each view has the opportunity to either become more accurate,
and contribute more to the prediction outcome, during label learning, or is effectively ignored
if it never reaches a high accuracy.

Figs. S5 and S6 show the effectiveness of label learning validation (LLV) for each of the 24
drugs in CCLE. Most of the drug models learn labels correctly, however model AUC decreases
once a model starts to learn labels incorrectly. Over many iterations this can lead to a model
where the majority of labels are learned incorrectly (e.g. Nutlin-3, Fig. S6). We found that this
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risk can be minimized by setting a high confidence threshold for label learning and by using
many information–independent views. In our experiments, LLV consistently helps identify
optimal parameters to run PLATYPUS on a given dataset.

Without missing data, PLATYPUS is equivalent to a classic ensemble classifier and often
outperforms any single view model. In order to understand the benefits of using additional
unlabeled data, we compared the ‘ensemble’ (first) iteration of PLATYPUS to the final and
the ‘best’ iterations. We define ‘best’ as the iteration with the highest AUC. Interestingly, in
almost all cases, the PLATYPUS AUC is higher than the ensemble AUC (Fig. S4). The use of
more samples by PLATYPUS helps ensure a more generalizable model. For the experiments
in this paper, we intentionally set a high number for maximum iterations to show how label
learning can degrade over time, and therefore the final iteration often scores poorly. Label
learning degradation is avoidable by using high label learning thresholds and an appropriate
number of iterations.

3.2. Predicting drug sensitivity in cell lines

Our analysis focuses on the full CCLE dataset, composed of 36 tumor types. For most drugs,
the Sample- and Patient-Specific (SPS) view has the highest starting view performance with
AUCs ranging from 0.6 to 0.8, and expression baseline views often performed similarly. The
mutation view is effective for some drugs (e.g. MEK inhibitors). Three of the four baseline
views are top performers for predicting cancer cell line sensitivity to PD-0325901 (Fig. 2(b)),
a MEK1/2 inhibitor. CNV view performance was never high enough to warrant inclusion in
PLATYPUS models except as the ‘aggregated copy number changes’ feature in the SPS view.

Interpreted views often outperform the SPS view (Fig. S3). We found several examples in
which a biological prior view outperformed the data–specific view, e.g. Metabolic Enzymes,
Drug Targets, and Chromatin Modifying Enzymes are better at predicting Lapatinib sen-
sitivity than the baseline expression predictor. The Drug Target Gene Set Hallmark view
outperforms data–specific views in Irinotecan and Panobinostat sensitivity predictions. Such
examples can be found for all compounds except for the MEK inhibitors, for which the baseline
mutations view is always the top performer.

In general, views incorporating expression data have high accuracy (Fig. S3), whereas
mutation views are comparable to a random prediction in most cases. This could be due to the
presence of many passenger mutations that have little bearing on cell fitness and drug response.
In one notable exception, AZD6244, the Drug Target Mutation view is more accurate than the
Drug Target Expression view. Generally, interpreted mutation views outperform their baseline
counterpart. For example, the Drug Target Mutation view is more accurate than the baseline
mutation view in both Irinotecan and Topotecan. Furthermore, the Drug Target Mutation
view trained on PD-0325901 increases the relative feature weights for RAS genes, suggesting
that it identifies the exclusivity of RAS/BRAF mutations described in Section S6. However
overall, mutation views have low accuracy despite mutations being key to drug sensitivity,
indicating that other representations that increase the signal-to-noise ratio of this data should
be explored in future work.

The Drug Target Gene Set views created from Molecular Signatures Database (MSigDB)
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gene set collections perform well overall, especially on Irinotecan, Topotecan, and Panobinostat
(Fig. S3). For most compounds the Drug Target Gene Set Hallmark is more accurate than the
Oncogenic and Immunologic. A possible reason is that these gene sets are from the Hallmark
collection, which are re–occurring, highly reliable gene sets built from combinations of other
gene set collections. Their similar performance could also be due to overlap in the gene sets.
We recommend that users test for and subsequently remove highly correlated views before
running label learning, and intend to incorporate this into future versions of PLATYPUS.
One approach to handling correlated views is to extend the ensemble vote step to use stacked
learning instead of the current agreement formula. By training a model on the predictions
from each view, PLATYPUS may be better able to handle correlated views by treating them
with less weight than more independent views.

In addition to the MSigDB gene set views, master regulator–based predictors via Virtual
Inference of Protein activity by Enriched Regulon analysis (VIPER)13 were tested but are not
among the top performing ones for any drug. This could be due to use of a generic regulon as
VIPER input rather than tissue–specific versions for each cell line.13

The PLATYPUS model for the drug PD-0325901 achieved the highest accuracy of all
experiments, with a near perfect AUC. We therefore chose to further investigate the results of
this drug to identify the nature by which the MVL approach finds an improved classification.
PD-0325901 was initially tested in papillary thyroid carcinoma cell lines and is known to be
especially effective in cell lines with BRAF mutations.14 Since these are frequent in the CCLE
data, the high accuracy of the single view models is expected. Fig. 3 shows changes from the
ensemble to the ‘best’ PLATYPUS PD-0325901 models. Single view AUCs mostly increase
after several iterations, and feature weights within the models also shift to varying degrees. In
the baseline mutations view, RAS gene mutations have higher Gini coefficient changes in the
PLATYPUS model than in the ensemble (Fig. 3(c)), indicating increased model importance of
those genes. Past studies of the CCLE data7 and our analysis (Section S6 and Table S3) have
found RAS and BRAF mutations in the data tend to be mutually exclusive, both of which
are linked to PD-0325901 sensitivity (Fig. S1). Thus, PLATYPUS is better able to identify
the dual importance of RAS/BRAF mutations than the single view and ensemble models.

We also chose to look at a case where PLATYPUS failed to achieve an improvement.
LBW242 is one such case. The single views for this drug all have near random scores. However,
instead of identifying an improvement through view combination as is the usual case in our
experiments (e.g. PHA-665752 and Nutlin-3), the PLATYPUS models also achieved near
random performance (Fig. 2(a)). Further investigation reveals that the performance may not
be the fault of PLATYPUS. Instead, little signal may be available in the drug sensitivity
labels for this case due to our quantization strategy (i.e. using the upper- and lower-quartiles
for the resistant and sensitive classes). The dose-response curve for LBW242 shows very few
of the CCLE cell lines may be truly sensitive. While our approach creates balanced class sizes
and ensures continuity between experiments, finding a more nuanced per–drug cutoff would
likely improve model performance. Suboptimal label cutoffs lead to a low signal–to–noise ratio
in the labels for a few of the drugs, which in general leads to low classifier performance.19 It
is also possible that the metric for drug sensitivity for some drugs is ineffective. Traditional
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methods to quantify sensitivity are dependent on population growth and thus slow–growing
cell lines may appear to be resistant to all drugs.6

These results are consistent with previous findings that have shown sensitivity to some com-
pounds is easier to predict than others.9 For example, the two MEK inhibitors (PD-0325901,
AZD6244) and Panobinostat have higher overall accuracy in the single view models (Fig. S3).
Interestingly, in the case of Panobinostat, the ‘Chromatin Modifiers’ and ‘Positional Gene
Set’ PLATYPUS views have higher single view accuracy than the baseline expression view,
which could indicate that there is an epigenetic effect from chromatin modifiers. We postulate
that a small region of the genome has been unwound, lending sensitivity to Panobinostat.
PLATYPUS captures this interaction, whereas single view models do not.

Fig. 3. Performance and feature weight changes for single views between ensemble and PLATYPUS
in predicting sensitivity to PD-0325901. (a) For each random forest view, the average Gini change for
all features between the ensemble and the best PLATYPUS iteration, plotted against the view AUC
for the ensemble (arrow tail) and PLATYPUS (arrow head). Circled view is shown in detail in (c).
(b) Same as (a), but showing the elastic net views and their average change in feature weights. (c)
Scatter plot where each point is a feature in the Baseline Mutations view. Plot shows the ensemble
feature weight versus the PLATYPUS feature weight. (d) Same as (c), but showing feature weight
changes in the Oncogenic (OncogenicAll in (b)) view.
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3.3. Key features from PLATYPUS models

Each machine-learning algorithm used by a view has its own internal feature selection. We
extracted features from these models to evaluate the most informative features. Fig. 3(a-b)
show changes in single view model performance and average feature importance within those
models, before and after PLATYPUS training. Fig. 3(c-d) show feature changes and enrich-
ment of those features within one of the views. Fig. 3(c) highlights how PLATYPUS is able
to remove feature weights of spurious correlations between cell line mutations and the true
mutation features of importance, NRAS and BRAF. While the overall feature weights in the
single view model do not have large changes from the ensemble to PLATYPUS frameworks,
there is a large shift in 2 key features which are known to be significantly associated with
sensitivity to this particular drug. PLATYPUS is able to avoid overfitting the model whereas
the ensemble is unable to draw from external information. In Fig. 3(d), the model has signif-
icantly changed both in AUC and in feature weights between the ensemble and PLATYPUS
experiments.

Fig. S8 shows a closeup of the changes within the Fig. 3(d) view between PLATYPUS and
a general ensemble. It focuses on one feature from the view, MTOR up V1 up kurtosis, which
had the biggest increase in feature weight from ensemble to PLATYPUS. At a glance, this gene
set is not associated with cancer– it describes genes that are regulated by an inhibitor used to
prevent graft rejection by blocking cell proliferation signals via mTOR. However, the gene set
kurtosis correlates with ActArea and with our binary drug sensitivity labels (Fig. S8(a-b)). A
closer look shows that this is because of gene-gene correlations within the gene set. Kurtosis
features are intended to capture large changes within the gene set. Mean and median gene
set correlation values do not capture cell line differences in the co-correlated gene clusters,
whereas kurtosis highlights extreme values. No one gene expression correlates strongly with
the kurtosis of the whole set (Fig. S8(c,e)), and so the set cannot be replaced with a single
gene expression value. Clusters within the gene set are linked to EGFR signaling (cluster IV,
genes marked E), metastasis and Basal vs Mesenchymal BRCA (cluster V, genes marked M
and B respectively), and resistance to several cancer drugs (clusters II and V, genes marked
R). Gene-gene correlations shown in Fig. S8(d) combine to form the overall kurtosis score. As
shown in Fig. S8(e), many genes related to cancer processes are the driving force in the gene
set kurtosis score. This highlights how small overall changes combine to improve PLATYPUS
accuracy over the ensemble.

Many of the highly ranked features from other models (Fig. S7 shows expression view for
PD-0325901, other data not shown) are known oncogenes, for example ETV4 was previously
found to be correlated with MEK inhibitor sensitivity.15 SPRY2, a kinase inhibitor, corre-
lates with BRAF mutation status, both of which are predictive of sensitivity to PD-0325901,
AZD6244, and PLX4720. DUSP6 has been named as a marker of FGFR inhibitor sensitivity4

and a previous study shows a weak inverse correlation between DUSP6 expression and sensi-
tivity to MEK1/2 inhibitors.3 Thus PLATYPUS recapitulates several known markers of drug
sensitivity.
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4. Conclusions

When compared to a traditional ensemble and to single view predictors, PLATYPUS often
has higher AUC (Fig. 2). The multi-view approach uses the set of unlabeled samples as links
between different views to find agreement in the different feature spaces. Since label learn-
ing validation shows that labels are learned correctly in most cases, the increase in improve
model performance may be due to doubling the number of samples that can be considered
while training. In 96% of our experiments, PLATYPUS outperforms an ensemble (Fig. S4).
Furthermore, PLATYPUS outperforms 85% of the single views and has higher AUC than all
of the single views for 17 of the 24 drugs. No one single view consistently outperforms any
of the PLATYPUS models In order to retain such high performance without PLATYPUS, a
user would need to test all single view models.

Important features from PLATYPUS views (both baseline and interpreted) have previously
been linked to drug sensitivity. The approach generally improves AUC while incorporating sig-
nificantly more data and allowing uncertainty– a necessity in medical research. By combining
extracted features from each of the MVL model views, the user is provided a clearer picture
of the key facets of sensitivity to each drug. We also investigated the generality of PLATY-
PUS by applying it to the prediction of an aggressive subtype of prostate cancer and found
it generalized to an external validation set not used during training (see Supplemental Sec-
tion S7). Overall, PLATYPUS enables the use of samples with missing data, benefits from
views without high correlation, and is a flexible form of MVL amenable to biological problems.

The PLATYPUS co-training approach has several important advantages. First, it is ideal
when samples have missing data, a common scenario in bioinformatics. Imagine a new pa-
tient entering a clinic for whom not all of the same data is available as was collected for a
large drug trial. A PLATYPUS model trained on the drug trial data is able to predict drug
response for this patient without retraining, simply by restricting to views for which there is
patient data. For example, a sample with only expression data could be provided predictions
using the expression–based views. Predicted label confidence for that sample will be much
lower since there are no scores from the missing views, ensuring that labels for samples with
complete data will be inferred in earlier iterations than those with missing data. PLATYPUS
automatically sets weights for view predictions, implicitly accounting for missing data, and
ensuring future predictions are not constrained by limited data. Second, co-training allows for
the use of different classification methods for each data type, capturing the strengths of each
data type and increasing flexibility in the framework. Third, PLATYPUS is effective when
using information–divergent views. Fourth, co–training combines predictions at a later stage
in the algorithm, so that views are trained independently. This is ideal for ensemble learning,
which has shown to be highly effective when models/views are independent, even with low
individual model accuracy.5,17

It is worth mentioning some distinct limitations of the approach as a pointer toward future
work. First, if missing data correspond to cases that are more difficult to classify, rather than
missing at random, the poorer performance of individual views may result in appreciably
lower agreement, and thus little benefit in combining views. Second, combining multiple views
introduces the need for setting additional parameters (e.g. the agreement threshold). This
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requires a user to gain familiarity with the performance of newly incorporated views in test runs
before final results can be obtained. Finally, highly correlated views can inflate the agreement
voting and down-weigh other, uncorrelated views. A future adjustment could incorporate
prediction correlation on the labeled samples for the voting of unlabeled samples.
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Natural killer (NK) cells have increasingly become a target of interest for immunotherapies1. NK              
cells express killer immunoglobulin-like receptors (KIRs), which play a vital role in immune             
response to tumors by detecting cellular abnormalities. The genomic region encoding the 16 KIR              
genes displays high polymorphic variability in human populations, making it difficult to resolve             
individual genotypes based on next generation sequencing data. As a result, the impact of              
polymorphic KIR variation on cancer phenotypes has been understudied. Currently,          
labor-intensive, experimental techniques are used to determine an individual’s KIR gene copy            
number profile. Here, we develop an algorithm to determine the germline copy number of KIR               
genes from whole exome sequencing data and apply it to a cohort of nearly 5000 cancer patients.                 
We use a k-mer based approach to capture sequences unique to specific genes, count their               
occurrences in the set of reads derived from an individual and compare the individual’s k-mer               
distribution to that of the population. Copy number results demonstrate high concordance with             
population copy number expectations. Our method reveals that the burden of inhibitory KIR             
genes is associated with survival in two tumor types, highlighting the potential importance of KIR               
variation in understanding tumor development and response to immunotherapy. 
 
Keywords: Killer immunoglobulin-like receptors, KIR, cancer, immunology, MHC, copy number 

 
1. Introduction 

Killer Immunoglobulin-like receptors (KIRs) are cell-surface receptors expressed by 
Natural Killer (NK) cells and some T cells. KIRs bind to other naturally occurring immune 
receptors, including Major Histocompatibility Complexes (MHCs), to inhibit or activate immune 
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cell activity2. MHC molecules, which are expressed on nearly all nucleated cells, can present 
pathogenic or tumorigenic peptides on the cell surface for recognition by T cells. In order to 
evade the immune system, malignant cells often down regulate expression of MHC molecules3. 
However, KIR on NK cells are able to respond with an immune attack if they can recognize that 
the expression of MHC deviates from normal 4. This dual system allows “no way out” for 
cancerous cells -- either the MHC presents the neo-peptides or the MHC is downregulated and 
NK cells attack the cell 5. However, the efficiency of this process depends greatly on the ability of 
the KIR expressed on NK cells to bind to the MHC receptors.  

The impact of these NK cell mechanisms in response to malignancies has been validated 
through the several associations found between KIR genotype and cancer phenotypes. The 
presence of certain KIR genes can predict response to immunotherapy treatment and survival 
outcomes in chronic myeloid leukemia and acute myeloid leukemia6,7. Associations have also 
been found between specific KIR genes and susceptibility to several cancers (malignant 
melanoma, leukemia, nasopharyngeal carcinoma, and cervical cancer) 5,8–1011. Furthermore, the 
strength of HLA-KIR interactions plays a functional role and can influence disease 
susceptibility12.  

However, all of these studies have been performed on cohorts of low sample size due to 
the difficulty of studying the highly variable KIR region. KIRs are encoded by a cluster of genes 
on chromosome 19q13.4. Individuals vary widely in the number of KIR genes they carry and in 
the allelic variation within those genes. The region can contain up to 16 genes but sometimes has 
as few as four gene, each one with up to 100 known allelic variants.  

The highly homologous nature of the KIR genes hampers usage of conventional, 
computational copy number technologies for short read Next Generation Sequencing (NGS) 
data. However, the interesting immune implications of the region have led to the development of 
several experimentally based techniques. One approach uses polymerase chain reaction to 
amplify the sequences and sequence specific primers to detect particular alleles 13. Another uses 
sequence specific oligonucleotides as a first pass and then sequences specific exons to identify 
allelic variation14. Sanger sequencing can also provide long enough reads to cover several genes 
at a high resolution 14,15. However, all of these techniques require KIR specific techniques in the 
data gathering stage. Only two computational alternatives exist that do not require KIR specific 
techniques in the data gathering stage. KIR*IMP imputes the KIR region from SNP genotype 
data16 and PING predicts KIR copy number from NGS data17.  However, KIR*IMP cannot be 
applied to large exome datasets and PING requires time consuming read mapping, a potentially 
biased normalization and manual curation step. 

To achieve the computational speed and accuracy required for inferring the KIR types of 
nearly six thousand cancer patients in order to study tumor phenotypes, we implemented an 
unsupervised, k-mer based algorithm that leverages large populations to determine copy number 
(Figure 1).  Using this cancer cohort, we discovered that patients in uterine and cervical cancer 
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survive longer when they have fewer inhibitory KIR genes as compared to patients that have 
more inhibitory genes. 

 
 

 
Figure 1. Schematic of copy number calling pipeline. Unique k-mers are derived from a KIR reference library. The 
exome data for thousands of individuals is searched for these unique k-mers to find distributions of frequencies in the 
population. The copy number for a specific individual can be deduced from where their frequency falls in the 
distribution. 
 
2. Materials and Methods 

2.1 Data collection 

Exome sequencing, transcriptome sequencing and clinical data from The Cancer Genome Atlas 
was downloaded from the National Cancer Institute's Genomic Data Commons on August 3rd, 
2018. All disease types were obtained. KIR alleles were downloaded from the Immuno 
Polymorphism Database on October 6th, 2016 18. Population KIR allele frequencies were 
obtained from The Allele Frequency Net Database on February 22, 201719.  
 
2.2 K-mer selection 

Figure 2. Unique k-mer counts. The number of unique k-mers found in each KIR gene across a spectrum of k. 
 
A set of k-mers were selected to represent each KIR gene -- these k-mers are referred to as 
unique k-mers. The criteria for the unique k-mers are as follows: a unique k-mer, or its reverse 
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complement, must appear in (1)  every allele of a specific KIR gene and (2) no alleles of any 
other KIR gene. Unique k-mers of lengths 10, 15, 20, 25, 30, 35 and 40 were collected based on 
the KIR reference from the Immuno Polymorphism Database (IPD) 18. The number of unique 
k-mers for each gene is shown in Figure 2.  In addition, only one length of k-mer, 30, was 
collected in 100 random genes from throughout the genome.  
 
2.3 NGS pipeline and k-mer extraction 

The genomic region encoding the KIR locus (GRCh38:chr19:54025634-55084318) and the 
regions encoding the 100 random genes were extracted from the exome sequencing bam files 
from the TCGA. The unmapped reads of the exome sequencing bam files were also pulled from 
the exome sequencing bam files. All of these genomic regions were merged together into a single 
bam file. Then, the reads were stripped into a fastq file and realigned using Bowtie220 to a 
reference that is constructed of all the KIR alleles for each KIR gene from IPD and each of the 
100 random reference genes. All reads that mapped in the reference at least once are again 
stripped and then searched for the set of unique k-mers and occurrence counts are stored for each 
k-mer. The pipeline concludes with each patient having a vector of occurrence counts for every 
unique k-mer.  
 
2.4 Data cleaning  

To identify substructure in the dataset that might indicate problematic samples, the k-mer 
frequency for each of a set of 100 random genes for all patients in TCGA are visualised with a 
t-SNE plot21. To further understand the relationship between sequencing depth and clusters of 
samples, we plotted the distribution of k-mer counts in the set of 100 random genes and also 
k-mer counts in the KIR region. To reduce noise from outliers, only the samples from the largest 
cluster of the t-SNE (Agilent Sureselect capture kit) were selected and all samples with < 40,000 
k-mer coverage in the set of 100 random genes and < 20,000 k-mer coverage in the set of KIR 
genes were excluded. After applying these filters, a total of 4,717 samples remained.  
 
2.5 Normalization of k-mer frequencies 

Since every sample will have different sequencing depth, the k-mer counts must be normalized 
before being compared between samples. Furthermore, there are several lengths of k to choose 
between. We evaluated normalization methods and lengths of k based on reduction in variance of 
k-mer counts associated with KIR3DL3 which is known to be almost universally diploid. We 
tested each length of k (15, 20, 25, 30, 35, 40) against each of the following normalization 
approaches: (1) the mean of the number of k-mers mapped to the set of 100 random genes, (2) 
the mean of the number of reads with at least one k-mer mapping to the set of 100 random genes, 
(3) the median of the number of k-mers mapped to the set of 100 random genes and  (4) the 
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median of the number of reads with at least one k-mer mapping to the set of 100 random genes. 
In the end, we used a k of 30 and normalized with option (1) for the remainder of the analysis.  
 
2.6 Copy number segregation and cutoff selection 

KIR genes have varying numbers of unique k-mers ( Figure 1). After collecting 30-mer 
occurrences for each gene and normalizing them to the mean of the number of k-mers mapped to 
the set of KIR genes, we plotted the values for all individuals across the population with a 
histogram. Kernel density plots show the distribution of unique k-mer counts for each gene 
(Figure 3).  

Figure 3. K-mer frequency distribution and copy number thresholds. The distribution of k-mer frequencies across 
patients in TCGA for anchor genes, high frequency non-anchor genes and low frequency non-anchor genes. The 
green lines denote copy number thresholds. 
 

These kernel density plots can be used to assign gene copy numbers in an unsupervised 
manner. First, the genes are divided into three categories based on the documented ploidy of the 
gene: anchor genes that are present in two copies for most individuals (KIR3DL3, KIR3DP1, 
KIR2DL2 and KIR3DL2), high frequency non-anchor genes that are present at least once in 
most individuals (KIR2DP1, KIR2DL1, KIR2DS4 and KIR2DL5) and low frequency 
non-anchor genes that are present less than once in most individuals (KIR2DS3, KIR2DS2, 
KIR2DS5 and KIR3DS1). Second, peaks and valleys are called for each kernel density plot by 
finding local minima of the second derivative. Third, we map the highest peak to the most 
common ploidy based on the documented copy number variant frequency in the population and 
determine cutoffs by selecting the valleys surrounding that peak. For anchor genes, the highest 
peak is determined to be two copy numbers. Samples beyond either edge of the peak (as 
determined by a second derivative close to 0) are assigned a copy number of 1 or 3+. Instead of 
looking for subsequent minima, we used the width of the highest peak to create a new threshold 
for samples with 0 copies to the left of the region for 1 copy. For high frequency non-anchor 
genes, three peaks are usually observed and thresholds are defined as the valleys between them. 
The left-most and shortest peak corresponds to 0 copies, the middle peak to 1 copy and the 
right-most and highest peak to 2 copies. All samples beyond the  the third peak correspond to 3+ 
copies. For low frequency non-anchor genes, typically only two peaks are observed. The 
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left-most and highest peak is assigned 0 copies and the second peak is assigned 1 copy. The 
distance between these peaks is used to denote thresholds for the samples that had 2 copies or 3+ 
copies. Each sample was assigned copy numbers at each KIR gene according to where their 
k-mer count fell in the distribution. However, patients that fell very close to the cutoff 
boundaries for a gene (the value of the boundary that splits one copy from two copies divided by 
50) were excluded for that gene. All of the genes that do not have any unique k-mers are known 
to co-segregate with other KIR genes. Thus, we inferred copy number for these genes from the 
copy number of the co-segregating gene as follows: individuals typically have as many copies of 
KIR2DS1 as they do KIR3DS1, KIR2DL2 as KIR2DS2, KIR3DL1 as KIR2DS4 and 
KIR2DL5A as the combined total of KIR2DS3 and KIR2DS5. Furthermore, individuals 
typically have an inverse number of KIR2DL3 as KIR2DS2 (e.g. 0 KIR2DL3 and 2 KIR2DS2, 1 
KIR2DL3 and 1 KIR2DS2 or 2 KIR2DL3 and 0 KIR2DS2).  
 
2.7 Validation of copy number 

KIR gene counts for TCGA patients of a specific ancestry are expected to follow the documented 
distribution of the corresponding population. To validate this assertion, KIR gene frequencies for 
a European ancestry population from IPD were compared to predicted KIR gene frequencies for 
the European ancestry patients in TCGA. The correlation between individual gene frequencies 
was determined using a Pearson correlation.  
 
2.8 Survival analysis 

For each tumor type, we divided patients into two sets: those that had the median number of 
inhibitory genes or fewer and those who had greater than the median number of inhibitory genes. 
We calculated the survival difference between the two cohorts using the Kaplan Meier and the 
log rank test as implemented by the lifelines python library. P-values were adjusted with 
Bonferroni correction. The two tumor types with different survival outcomes, cervical squamous 
cell carcinoma (CESC) and uterine carcinosarcoma (UCS), were combined because of their 
similar physical location, immune infiltration profiles and rates in order to increase statistical 
power.  
 
2.9 Additional immune analysis  

We used RNA-seq data from TCGA to obtain immune infiltration predictions with EPIC22. Then, 
we checked the relationship between inhibitor gene count with infiltration of CD8+ T cells and 
NK cells for the tumor types where significant survival differences were found. P-values were 
calculated with a Mann-whitney U test between the patient set with high and low inhibitory gene 
counts. Furthermore, we calculated MHC-I PHBR scores (which represent the ability of a patient 
to present a specific mutation to the immune system based on their specific HLA alleles)  for 
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each patient’s observed driver mutations as outlined in Marty et al.23 and compared the PHBR 
scores for CESC and UCS patients with all other patients using a Mann-whitney U test. 

3. Results and Discussions 

3.1 Establishing unique k-mers 

The key challenge for determining KIR gene copy number is the high frequency of reads 
mapping to multiple places across the homologous region. To address this challenge, we 
developed an algorithm that capitalizes on distinct k-mers to successfully determine the 
sequencing coverage of the gene from which each k-mer was derived. To construct our 
algorithm, we began by building a library of unique k-mers for all KIR genes. A unique k-mer is 
then defined as a string of length k that appears in  all alleles of a specific gene but in no alleles 
of any other gene. The IPD contains all observed alleles of each KIR gene. Using this reference, 
we searched each gene for unique k-mers and found that all KIR genes either have unique k-mers 
(Figure 2) or are co-inherited with other KIR genes that have unique k-mers 19.  

 
3.2 Varying coverage of KIR region by exome capture kit 

Next, we explored The Cancer Genome Atlas (TCGA), a large set of cancer patients 
(~10,000 individuals) with germline exome sequencing to learn the relationship between k-mer 
counts and gene copy number. We first evaluated the implication of technical covariates for our 
analysis. The majority of patients in TCGA had their exome captured with an Agilent capture kit; 
however, there were several other capture kits used for subsets of patients (Figure 4A ). We 
selected 100 random genes in the genome and chose up to 100 unique k-mers from each gene. 
For each individual, we counted all observations of each k-mer and then normalized each k-mer  

 
Figure 4. Patient exome data substructure. (A) A bar plot representing the number of patients whose exome data 
was captured with each exome capture kit. (B) A t-SNE plot representing the clustering of patients based on their 
k-mer frequency for 100 random genes in the genome. Each sample is colored by their exome capture kit. (C-D) 
Histograms showing the sequencing coverage of the patients with an Agilent capture kit versus the sequencing 
coverage of all other patients for (C) 100 random genes in the genome and (D) the KIR genes.  
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count by the total number of observed k-mers across all 100 random genes found in that 
individual, resulting in a frequency for each k-mer. Using a t-SNE clustering approach, we 
discovered that the patients clustered by exome capture kit ( Figure 4B), suggesting that capture 
kit could confound k-mer frequency analysis. Among capture kits, the Agilent kit was both the 
most frequently used kit in TCGA and the kit with the highest coverage of the KIR region. Thus 
we restricted our analysis to individuals sequenced with  this capture kit. Furthermore, we 
eliminated all patients with low coverage of the 100 random genes or of the KIR region, leaving 
us with 4,717 high quality individuals.  
 
3.3 Inference of KIR copy number  

Next, we searched the reads for each patient mapping to the KIR reference for unique k-mers. 
Since every patient will have a different sequencing depth, we had to normalize the k-mer counts 
before comparing them among individuals. Furthermore, we gathered k-mer counts for several 
lengths of k and wanted to choose the optimal value. Thus, we swept the parameter space, 
evaluating several normalization techniques and several values for k (Figure 5A ). We evaluated 
each approach by determining the variance of frequency for k-mers specific to KIR3DL3 
(Figure 5B), an anchor gene that is known to be present at two copies in nearly all individuals, 
under the assumption that lower variance across the population would mean better normalization 
for sequencing depth differences. We found the optimal normalization technique to be the 
average k-mer count of the k-mers from the 100 random genes. Though a k of 20 performed the 
best, we chose to k to be 30 because its performance was very close to optimal and it has higher 
k-mer coverage of low frequency KIR genes than a k of 20. 

Figure 5. Evaluation of optimal normalization. (A) A heatmap representing the variance of k-mer frequency of 
KIR3DL3 anchor gene across Agilent captured TCGA patients. Several lengths of k and normalization techniques 
are tested. (B) A histogram showing the k-mer frequency of KIR3DL3 anchor gene with the optimal normalization 
technique.  
 

After establishing the normalization technique, we calculated the normalized k-mer count 
over all of the unique k-mers for every KIR gene of each patient. The frequencies were 
combined across the population to construct density curves showing the proportion of individuals 
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with similar frequencies. Each KIR gene shows a smooth density curve with peaks that 
correspond to gene copy number. Anchor genes that are present in all patients have a single peak 
while the non-anchor genes that are present mostly at 0, 1 or 2 copies have three peaks (Figure 
3). From the peaks, we determine a cutoff based around the local minima of the population 
densities. To determine the copy number of a specific individual, we follow the same alignment 
and k-mer searching approach, followed by the assignment of gene copy number depending on 
the individual’s placement on the curve of each gene. We applied our algorithm to 4,717 
individuals in TCGA to assess the copy number of each KIR gene. For most genes, we observed 
good agreement to copy number calls with PING; however, on genes where the methods 
disagreed, our method predicted closer to the expected caucasian frequency (Figure S1A ). 
Furthermore, our method ran four times as fast as PING on the same hardware (Figure S1B ).  

 
3.4 Population variation of the KIR region 

As anticipated, the distributions of copy number per KIR gene across the population are 
highly variable (Figure 6A ). The anchor genes have two copies for nearly all individuals while 
non-anchor genes have a mixture of copy numbers. To validate our method computationally, we 
assessed correlation between known KIR copy number frequency against our algorithm. The 
results were very promising; there was a high correlation (R2 = .999) between ancestry-matched 
population frequencies of KIR haplotypes in TCGA and a recent study that used an experimental 
approach for typing 24 (Figure 6B). This finding also suggests little or no germline KIR-based 
cancer predisposition; however, more comparisons with non-cancer populations will be required 
to make a definitive assertion.  

 
Figure 6. TCGA KIR copy number distribution and validation. (A) A stacked bar chart showing the fraction of 
patients with each copy number across all KIR genes. (B) A dot plot showing the comparison in gene frequency 
(average gene copy number per haplotype) within the European ancestry population of TCGA and an experimentally 
typed European ancestry population.  
 
3.5 KIR inhibitory gene burden correlates with survival in cervical and uterine cancer 

KIR genes are divided into two functional categories: activating genes and inhibitory 
genes. Inhibitory genes bind to specific MHC-I ligands to inhibit the NK cell from attacking the 
MHC-I expressing cell12,25. Often in cancer, cells will down regulate their MHC-I molecules to 
avoid immune presentation of neoantigens. When this happens, there is no inhibition of the NK 
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cells by the KIR, and NK cells attack. Activating genes have remained more elusive with their 
ligands and function mainly unknown 12. They are believed to have evolved after the inhibitory 
genes and are non-essential to proper immune functioning. Since inhibitory genes are variable in 
copy number across individuals, we tested survival differences within tumor types for patients 
with high and low numbers of inhibitory gene copies. We found two tumor types, cervical 
squamous cell carcinoma (CESC) and uterine carcinosarcoma (UCS), with unadjusted p-values 
of less than 0.05 (P=0.000182 and P=0.0113, respectively). In both of these tumor types, patients 
with high numbers of inhibitory genes had lower survival rates, suggesting that NK cells were 
unable to defend against the tumor in these patients. Since these tumor types are physically 
co-localized and have similar immune infiltration profiles and survival rates ( Figure S2), we 
analyzed these cohorts together to increase sample sizes (adj P=0.00612, Figure 7A ).  

 
Figure 7. The impact of KIR copy number on tumor development phenotypes in CESC and UCS. (A) Kaplan-meier 
survival curves denoting the difference in survival between patients with more inhibitory genes than average and less 
inhibitory genes than average. (B) A boxplot showing the difference in MHC-I presentation of driver mutations 
between CESC and UCS. 
 
To investigate why we found a significant survival difference in these two tumor types as 
compared to others, we explored the ability of their MHC-I to present observed driver mutations 
for recognition by the immune system23. Patients with CESC and UCS had better presentation of 
observed driver mutations to the immune system than other tumors (P=0.0034, Figure 7B ), 
suggesting that the CESC and UCS tumors have immunosuppressive mechanisms at play. One 
possible mechanism for this immunosuppression is impaired antigen presentation, potentially via 
mutation 3 or loss of heterozygosity in the HLA region26, allowing perpetuation of the tumor 
despite high affinity of observed drivers for the MHC-I. If MHC-I presentation on the cell surface 
is altered and T cells become less relevant, we expect that individuals with higher inhibitory KIR 
gene counts would have less ability to initiate an NK based attack against the tumor. These 
observations suggest that when NK cells are called to action, patients with higher NK cell 
inhibition may be less able to attack the cancer cells, resulting in a shorter survival time.  
 

5. Conclusions 

Though natural killer cells are increasingly being considered as targets for 
immunotherapy, little is understood about the role of KIR, their main receptor family, on tumor 
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development. Here, we describe our effort to evaluate the copy number of KIR genes in a large 
cancer cohort to learn about their influence in relationship with MHC on tumor development. We 
demonstrate the value of algorithmically learning KIR copy number in a large population by 
uncovering a survival difference in CESC and USC based in the number of inhibitory genes 
carried by an individual. Due to batch effects in exome sequencing, the current method must be 
retrained on each new cohort of individuals. This limitation leaves us unable to validate many of 
our methods experimentally. Furthermore, our method does not provide allele calls and cannot 
be used to determine the copy number of small cohorts or individual patients.  However, our 
analysis highlights the importance of KIR variability to tumor development and warrants further 
study of this complex locus.  
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Background: MicroRNAs (miRNAs) are small, non-coding RNA that regulate gene expres-
sion through post-transcriptional silencing. Differential expression observed in miRNAs,
combined with advancements in deep learning (DL), have the potential to improve cancer
classification by modelling non-linear miRNA-phenotype associations. We propose a novel
miRNA-based deep cancer classifier (DCC) incorporating genomic and hierarchical tissue
annotation, capable of accurately predicting the presence of cancer in wide range of human
tissues.

Methods: miRNA expression profiles were analyzed for 1746 neoplastic and 3871 normal
samples, across 26 types of cancer involving six organ sub-structures and 68 cell types. miR-
NAs were ranked and filtered using a specificity score representing their information content
in relation to neoplasticity, incorporating 3 levels of hierarchical biological annotation. A DL
architecture composed of stacked autoencoders (AE) and a multi-layer perceptron (MLP)
was trained to predict neoplasticity using 497 abundant and informative miRNAs. Addi-
tional DCCs were trained using expression of miRNA cistrons and sequence families, and
combined as a diagnostic ensemble. Important miRNAs were identified using backpropaga-
tion, and analyzed in Cytoscape using iCTNet and BiNGO.

Results: Nested four-fold cross-validation was used to assess the performance of the DL
model. The model achieved an accuracy, AUC/ROC, sensitivity, and specificity of 94.73%,
98.6%, 95.1%, and 94.3%, respectively.

Conclusion: Deep autoencoder networks are a powerful tool for modelling complex
miRNA-phenotype associations in cancer. The proposed DCC improves classification accu-
racy by learning from the biological context of both samples and miRNAs, using anatomical
and genomic annotation. Analyzing the deep structure of DCCs with backpropagation can
also facilitate biological discovery, by performing gene ontology searches on the most highly
significant features.

Keywords: Deep learning; miRNA; Autoencoder; Cancer classification; PSB
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1. Introduction

Following rapid advances in biotechnology (RNA-Seq) and machine learning, mining of high-
resolution transcriptomic data has become a promising tool for the discovery of potential
RNA cancer biomarkers.1 However, the ability to use this high-dimensional data to predict
cancer is limited by the tendency of large models to overfit available data, known as the curse
of dimensionality.2 This problem can be mitigated by filtering variables, and reducing the
dimensionality of input, techniques that can be incorporated in machine learning algorithms.

Deep learning (DL) describes a family of machine learning algorithms designed to model
non-linear features at various levels of abstraction, by processing training data over multiple
connected layers. DL models are a type of artificial neural network (ANN) which learn by
calibrating the weights of connections between nodes by backpropagation of the error gra-
dient. Applying backpropagation to deeper networks can be ineffective due to the problem
of “vanishing gradients”, but this problem was solved in 2006 by Hinton and Salakhutdinov,
who devised a procedure for pre-training hidden layers.3 Hinton’s original formulation used
stochastic, binary networks with one hidden layer and symmetrical weights, known as Re-
stricted Boltzmann Machines (RBMs). RBMs were pre-trained such that the hidden layer of
one RBM formed the input of the next. After pre-training, the entire model (named a Deep
Belief Network, or DBN) could be fine-tuned with supervised learning. Because each layer
encodes features based on the previous layer, the higher layers contain increasingly abstract
feature sets. In addition, the non-linearity of deep learning results in highly generalizable mod-
els that are less dependent on preprocessing and normalization. Both of these characteristics -
complex internal structure, and insensitivity to input variance - makes DL models well-suited
to transcriptomic applications. DBNs have been used with microarray data to cluster breast
cancers4 and glioblastomas into prognostically relevant subtypes.5 Deep Boltzmann Machines,
a related architecture, have also been used to classify human colorectal carcinomas by sub-
type.6 In each of these studies, training data was limited to a single cancer type, permitting
subtype discrimination but limiting the scope for transfer learning between cancers. Deep
neural nets have also been used to predict cancer type based on genetic data (somatic point
mutations) albeit with poorer accuracy than RNA-based models.7

The pre-training method applied to DBNs can be generalized for layers with continuous
outputs,8 known as autoencoders, which recreate their input using a single real-valued hidden
layer and non-symmetrical weights. Autoencoders can be stacked and pre-trained in a manner
analogous to DBNs, and the resulting stacked (or deep) autoencoders (SAE/DAE) can be fine-
tuned using supervised learning. It is possible to limit overfitting by imposing a constraint on
the sparsity (number of active nodes) of autoencoders in an SAE. Recently, stacked sparse
autoencoders have shown promising results classifying cancer sub-types9,10

Most studies applying deep learning to RNA-based cancer prediction have focused on the
familiar protein-coding variety, mRNA. However, at least 15 types of non-coding RNA are
also produced (accounting for approx. 98% of nuclear output), including potentially valuable
biomarkers such as microRNAs.11 microRNA (or miRNA) are a small non-coding class of RNA
responsible for post-transcriptional repression of mRNAs. In contrast to over 22,000 mRNA
in the human genome, the high-confidence set of miRNAs is limited to just over one thousand.

Pacific Symposium on Biocomputing 2019 

161



This relatively smaller input space mitigates the effects of the curse of dimensionality in DL
models. In addition, miRNAs individually display much greater tissue- and tumour-specificity
than mRNAs, perhaps due to their role as upstream regulators of RNA activity.12

To date, most miRNA DL applications have focused on diagnostic or prognostic classifi-
cation of tumour subtypes. In one study, DBNs were used to select miRNAs to classify six
tumour types.13 Other projects have examined so-called multimodal architectures integrating
miRNA expression with other data sources. One study fed a combination of miRNA, mRNA
and gene methylation data to a DBN to cluster ovarian and breast cancer samples.14 Another
study combined the same inputs using a 3-layer stacked autoencoder to predict survival time
in liver cancer.15 Combining data from multiple sources may improve results, at the cost of
increasing complexity and the risk of overfitting. Instead, the proposed DCC is supplied with
concise data situating both samples and miRNAs in a biological context enabling comparisons
between related samples and miRNAs.

In this paper, we propose a DL model to predict the presence of cancer based on miRNA
sequencing across over 30 human tissues, from approximately 3600 patients, using an ensemble
of deep autoencoders. The proposed model leverages the biological context of both samples
and sequences. First, hierarchical anatomical annotation was used to score and filter miRNAs
based on their information content. In addition, annotation of miRNA cistrons and sequence
families were used to create variants of input data, used to train ensembles of classifiers
with superior performance than any single component. The DCC also goes beyond cancer
classification, by identifying significant miRNAs with backpropagation, and exploring with
network visualization. Finally, targets of selected miRNAs were analyzed using gene ontology,
to provide insight into the biological nature of the selected miRNAs’ association with cancer.

2. Data

Samples were sequenced between September 2008 and December 2015 at Rockefeller Univer-
sity using the Illumina HiSeq. Samples were richly annotated by expert clinicians using over
30 features, including the type of biological material, disease state and anatomical site, as
well as expression of 1187 miRNAs. Our original data included samples from body tissues,
body fluids and cultured or sorted cells, from a wide array of anatomical sites (Fig. 2). All
subsequent analyses were confined to tissue samples, due to greater average sequencing depth
and balanced subclasses. Of tissue samples, 2026 (56%) were neoplastic, and 1606 (44%) were
either normal or affected by an unrelated diseased. Site-of-origin was described at three differ-
ent levels, namely organ, organ substructure, and cell type, organized into a 3-level anatomical
hierarchy. The dataset includes samples from 26 organs, 6 organ sub-structures and 68 cell
types. Sequence families : are sets of miRNAs defined on the basis of sequence similarities
and represent miRNAs which are likely to share targets - due to the pleiotropy of miRNA
targeting, they are likely to have overlapping sets of targeted mRNAs. Precursor clusters : are
defined to include miRNAs that either share an identical mature form, or are clustered closely
in the genome, and are likely to be co-expressed due to shared promoters. Because of this
fact, they may be up- or down-regulated in concert, which may indicate involvement in shared
(patho-)physiological pathways.16
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Table 1. Organs represented by the
largest number of samples, with number of
samples from each.

Source organ Number

C, SC and other soft tissues 913
Breast 762
Thyroid gland 333
Brain 292
Skin 269
Kidney 244
Hematopoietic and RC system 173
Heart, mediastinum, and pleura 141

Fig. 2. Left: Eight organs representing the greatest number of tissue samples. Right: Sun-
burst diagram depicting tissue samples at three anatomical levels: (from the centre outwards)
organ, organ substructure and cell type. Only cell types with greater than 100 samples are
shown. C = connective, SC = subcutaneous, RC = reticuloenothelial.

2.1. Preprocessing

Outlier Removal : We used the inter-quartile range (IQR) to label and subsequently remove
outliers and batch effects .17 Upper and lower bounds were established at a certain distance
below the first quartile and above the third quartile of the data and we measured the distance
of outlier points beyond the bulk of the data. The distance is usually set at a multiple of the
IQR; 1.5×IQR was suggested in previous work and that is the value used herein.17

Batch effects were identified using median Spearman coefficient and the bounds established
by the IQR method. Batches were removed if at least half their samples were flagged by the
IQR method. Following the removal of batches, the Spearman correlations of the remaining
points were recalculated. Removal of samples with extreme Spearman values results in tighter
bounds, which may enable the detection of further outliers and batch effects. This process was
performed iteratively until batch effects could no longer be identified.

Filtering : The initial set of 1187 human miRNAs was filtered based on abundance of
expression, eliminating the lowest-expressed miRNAs. An expression threshold was set at 1.41
x 10-5, which corresponds to 14 counts in one million. Any miRNA that was not expressed
at or above this level in at least 1% of samples was removed. 397 miRNAs were filtered
out on account of low-expression. The remaining miRNAs were also filtered on the basis of
information content or cancer specificity.

The specificity of an miRNA, m, for a given tissue, t, (Gm,t) is a measure of the relative
expression level of m in t, compared to other tissues.Gm,t can be understood as the proportion
of total m expression in all samples that would occur in t, if all classes were sampled from
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Fig. 1. Flowchart illustrating the datasets used (rounded boxes) and the various transformations
and preprocessing steps (rectangular boxes) applied to it, before it is fed as input in the the deep
autoencoder model.

equally. Gm,t is a value ranging from 0 to 1, representing the specificity of miRNA m for tissue
t. If Gm,t is close to 1, this indicates that m is expressed much more in t than in other tissues.
The specificity of m is determined by the distribution of Gm,t for different tissues. If Gm,t were
the same for all values of t, then the specificity of m would be 0. Once Gm,t is determined for
all m and t, the total information content of a miRNA, sm, can be calculated using all Gm,t∗
terms of m for all tissues t∗.

sm = log2(#oftissues) +
∑
t

(Gm,t ∗ log2(Gm,t)) (1)

Therefore, the maximum possible specificity (i.e. a miRNA expressed solely in one class)
is log2(#ofclasses), and cancer specificity of miRNAs ranges from 0 to 1. miRNAs that did
not meet a minimum information content threshold (sm > 0.01) were excluded. The remaining
497 miRNAs were inputs to the DCC to predict the presence of cancer (Fig. 1).

Normalization: We used Total Counts Scaling (TCS), in which read counts are divided by
the total number of sequenced counts, known as the sequencing depth for normalization.18 TCS
was preferred to more complex methods due to its widespread use and ease of interpretation.18

3. Deep Cancer Classifier

The proposed deep cancer classifier (DCC) merges stacked autoencoders with a multilayer
feedforward network to accurately classify cancer using miRNA in a range of human tissues
(Fig. 2). Data (miRNA, cistron and sequence family expression) was presented to DCC via the
input layer. Each successive autoencoder layer is smaller than the last, the layer sizes forming a
geometric series. By training each autoencoder in the usual unsupervised manner (minimizing
mean squared error with respect to input) it is possible to represent abstract, latent features
in the data. These latent features were repeatedly transformed and compressed to 20 in the
third AE layer. Following pre-training, the weights of each AE layer were initialized with the
weights of the corresponding hidden layers, the AE layers were joined together, and a feed-
forward MLP was added. After this step the DCC undergoes supervised learning to boost
its classification performance. The model now uses the complex latent features learned in the
first stage to predict the presence of cancer. Weights throughout the entire network were fine-
tuned through backpropagation to minimize cross-entropy loss of predictions. The proposed
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multi-modal architecture of DCC allows for learning multiple layers of latent features from
miRNA expression while integrating expert clinical annotation. After developing the model
using miRNA profiles using training data, the DCC’s performance was tested on left-out
samples, and benchmarked against other popular ML methods.

3.1. Training & testing

Of the initial 2518 tissue samples, 40% were used as a development set to tune model pa-
rameters, while the other 60% were set aside to provide an unbiased measure of the model’s
performance. This selection was stratified with respect to both cancer status and organ type.
Five-fold cross-validation (CV) was performed on the development set, requiring each fifth of
the data to provide validation for a model trained on the other four fifths. Once the model’s
hyperparameters were tuned, the previously unseen test set was used to assess its performance.

An ensemble of development models was used to maximize test set performance (Fig. 2).
Each model predicts cancer status as a probability and the output probabilities were averaged
over models from different cross-validations. Model variants based on the three input sources
(miRNA, cistron and sequence family) were combined in the same way, so each test set pre-
diction was based on an ensemble of 3 × 5 = 15 classifiers. These values were finally rounded
to 0 (non-neoplastic) or 1 (neoplastic) to establish the number of true and false predictions
for each type, and by extension the model’s accuracy, sensitivity and specificity.

Fig. 2. Simplified schematic of the network topology with three input types (expression of individual
miRNAs; miRNA cistron profiles; miRNA sequence family profiles) and main phases in the model’s
operation. First the AEs undergo unsupervised pre-training, each layer recreating the hidden layer
activations of the last, following which the entire model is fine-tuned to classify cancer.
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3.2. Parameter tuning

Deep learning models are characterized by a large number of configurable parameters, includ-
ing the overall layout (topology) of the network, initial weights for connections between nodes,
and various functions determining the way the network learns (i.e. how weights are updated).
By using CV on the development set, different model configurations can be compared, allow-
ing select parameters to be optimized. Even when working exclusively on the development set,
there is a risk of overfitting the model if too many parameters are tuned to the development
set, reducing the test performance. Therefore, a small number of significant parameters were
selected for optimization. Namely, the size the latent features produced by the deep autoen-
coders, the number of stacked AE layers, the optimizer function to training the autoencoder,
and an analogous optimizer for training the classifier.

The size of the smallest AE layer, also called the encoding size, determines the level of
compression the input must undergo, and the amount of information available to the classifier.
The size of the other AE layers were chosen to form a geometric series, the size of each layer
decreasing by a constant factor between the input and final compressed form. The number
of AE layers affects the amount of information learned in a different way. Each layer tends
to represent different latent features in the data, so deeper networks can capture a greater
number of more complex features. The downsides to increased network depth include the risk
of overfitting, as well as potentially long training times.19 Optimizers are algorithms which
control the way weights are updated during training, and may control parameters such as (ini-
tial) learning rate, momentum and others. It is typically easier and more effective to use these
thoroughly tested configurations, instead of varying these parameters independently. Because
the performance of any single run is affected by random occurrences (e.g. the splitting of sam-
ples, random initialization of weights), the CV optimization procedure was repeated 30 times
for each value of each parameter. Based on the distribution of scores for each configuration,
the Kruskal-Wallis (K-W) test was applied to detect significant differences between groups.
If a difference was detected, pairs of samples were compared using the Mann-Whitney U test
to determine which samples were involved. As the K-W and Mann-Whitney U tests are non-
parametric, no assumptions were made about the normality of the underlying distribution.

3.3. Feature importance

The importance of individual miRNAs (or cistrons, etc.) for cancer classification can be esti-
mated using backpropagation, the same algorithm used to train models in supervised learning.
However, rather than the gradient of error, we calculated the gradient of activation across in-
put nodes.20 Signed activation gradients can be computed for every edge between nodes. By
taking the sum of the absolute values of activation gradients for all edges connected to a given
node, the “contribution” of input features to the activation of higher nodes was determined.
A distinct activation is produced in response to each batch of samples presented as input. To
calculate the average activation gradient across input features, five DCC variants were trained
using 5-fold cross validation. Then, the test set was presented to each variant in 16-sample
batches, and the input activation gradients were recorded for each batch. Finally, the gradients
were averaged across batches and CV variants, producing a single score for each input feature
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(e.g. miRNA) representing its relative importance for classifying cancer.
The miRNAs with the greatest putative cancer association were validated using a net-

work analysis tool called the Integrated Complex Traits Network (iCTNet2).21 iCTNet2 links
numerous biological databases (miRNA, gene, protein, disease, etc.) allowing visualization of
indirect associations. Having made a list of miRNAs known to regulate cancer-related genes,
one may expect a degree of overlap between this set of cancer-related miRNAs and those re-
turned by the backpropagation method described above. Comparing the number of miRNAs
found in both sets to the number expected by chance alone will provide an estimate of level
of “cancer enrichment” in the miRNA set produced by the analysis of feature contribution.

Targets of selected miRNAs can also be investigated using gene ontology (GO). BiNGO is
a cytoscape app that illustrates gene oncologies as hierarchical networks, with nodes (repre-
senting processes) coloured to illustrate their level of enrichment.22 Enrichment is calculated as
over-representation relative to entire GO annotation. This is measured by a p-value, adjusted
using the Benjamini & Hochberg correction.

4. Results and Discussion

4.1. Model selection

Classification accuracy of the DCC was strongly associated with minimum AE size at the
lower end of the tested range. Increasing the encoded size from 5 to 20 caused a clear benefit,
although further increases had a null or negative effect (Fig. 3). While compressing miRNA
profiles to just five features was clearly sub-optimal, it was still sufficient to classify samples
with 93.7% accuracy. A similar trend was observed in relation to layer number. Validation
accuracy was greatest when using three stacked autoencoders. Additional AE layers seemed to
increase training times, without any significant performance increases. The choice of model op-
timizers had a strong effect on performance for supervised learning, but pre-training appeared
to be relatively insensitive to optimizer choice (at least between the 5 tested configurations).
Adagrad exhibited marginally superior performance for pre-training, while Adam was the most
effective algorithm for supervised classification via backpropagation (Accuracy = 0.948).

Table 3. Summary of key parameters, with optimal values

Parameter Optimal value (Range) Accuracy range

Encoding size 20 (5-60) 0.937 - 0.948
AE layers 3 (1-5) 0.933 - 0.949
AE Optimizer Adagrad (*) 0.948 - 0.949
MLP Optimizer Adam (*) 0.844 - 0.948

* Tested optimizers: SGD, RMSprop, Adagrad, Adadelta, Adam

4.2. Classifier performance

The most common and intuitive way of assessing the performance of a classifier is its accuracy,
given by the number of true predictions over the total number of predictions. The true pre-
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Fig. 3. Left: Test set AUC/ROC, accuracy, sensitivity and specificity in relation to the size of the
latent feature representation produced by the stacked autoencoder (with 3 layers). Right: Test set
performance (min. encoding size 20), with various numbers of stacked autoencoder layers.

dictions are the sum of the true positive (TP) and true negative (TN) predictions. Accuracy
is a suitable metric for problems with similarly-sized target classes, but for highly imbalanced
datasets, the success rate for positive and negative samples can be measured using sensitivity
or specificity, respectively. Out of 1511 samples, the DCC was able to correctly classify 1421
of them (94.8%). The model had slightly better sensitivity (0.95) than specificity (0.94). The
Receiver Operating Characteristic (ROC) illustrates the trade-off between Type I and Type
II errors. The Area Under the Curve (AUC) was 0.985.

4.3. Comparison with other methods

Fig. 4. Left: Receiver Operating Characteristic (ROC) graph showing performance at different
thresholds, compared to random forests (RF) and support vector machines (SVM). Right: DCC
performance compared with RF and SVM. Error bars show std. dev. for 30 trials, with 5xCV.

The model’s performance on test set of 1510 samples was compared to the that of two
well-known machine learning methods, support vector machines (SVM) and random forests
(RF). The proposed DL model significantly surpassed the performance of a SVM with a linear
kernal, and C=1. The example ROC on the following page shows that DCC outperforms SVM
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and RF at every error threshold, with an average Area Under the Curve (AUC) of 0.9854.

4.4. Feature importance

Backpropagating the activation of the output node to the input nodes enables an estimation
of the contribution each feature makes to the model’s output. The top 20 miRNAs by output
contribution are shown below (Fig. 5). The distribution of activation gradients across miRNAs
was highly skewed; while the maximum gradient (for miR-21) was 22.9, only 26 of the 1187
features had an average activation gradient greater than 1. It would appear most of the
information required to classify samples is concentrated in a small number of sequences.

iCTNet was used to link miRNAs, genes(/proteins) and human cancers, outputing a list of
61 miRNAs linked to cancer-associated genes (Fig. 5). iCTNet uses a different miRNA refer-
ence library (miRCat); after converting miRNAs to a common form and collapsing duplicates,
the iCTNet network was reduced to 46 miRNAs, of which 44 were present in our reduced set
of 582 miRNAs. Of the top 20 miRNAs by average output activation gradient, 8 were found
in the list of cancer-linked miRNAs. Since 7.6% of the miRNAs in the larger list are present
in the cancer-associated network, the expected number of matches (based on the binomial
distribution) is just 1.5. Therefore, the backpropagation method returned a set of miRNAs
with a cancer enrichment of 8/1.5 = 5.3.

Fig. 5. Left: Network graph showing links between cancers (blue), genes/proteins (green) and miR-
NAs (red). Of the 44 cancer-linked miRNAs shown, 8 ranked in the top 20 by output activation
gradient (bright red, outlined). Right: Gene ontology graph for genes targeted by selected miRNAs.
Node color represents p-value of category over-representation. Five most over-represented categories
highlighted in blue.

Sixteen miRNAs from the ICTNet graph are among the top 50 miRNAs by activation
gradient. Gene ontology analysis was performed on 49 genes linked to these miRNAs (Fig. 5).
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The graph displays a hierarchical GO network, containing at least two major clusters of related
enriched biological processes. The bottom-right cluster stems from “Regulation of cellular
process” and “Regulation of biological process”, and contains “Positive regulation of cellular
process” and “Regulation of cell proliferation”. The other 3 of the top 5 most highly-enriched
GO categories (Table 4) are found in the uppermost cluster, descended from “Developmental
process”, and “Multicellular organismal development”.

Table 4. Most over-represented gene ontology categories
linked to selected miRNAs

Gene ontology category Adj. p-value # of genes

Positive regul’n of cellular process 4.42E-5 22/49
Regulation of cell proliferation 3.60E-5 15/49
Epithelium development 4.42E-5 10/49
Tissue morphogenesis 1.84E-5 10/49
Morphogenesis of an epithelium 1.84E-5 9/49

5. Conclusion

The proposed deep cancer classifier is capable of diagnosing cancer in a wide range of human
samples with almost 95% accuracy, which represents an improvement on conventional machine
learning algorithms random forests and support vector machines. The model’s performance is
enhanced by exploiting two forms of contextual information, namely anatomical annotation
of samples, and sequence annotation linking miRNAs to cistrons and sequence families. Once
trained, the deep structure of the DCC can be interrogated for insights into the links between
miRNAs and cancer. In particular, this enables the identification of miRNAs that may play
serve as biomarkers or mediate the effects of cancers across diverse tissue types. The absolute
activation gradient reveals a highly skewed distribution of feature importance, led by miR-21,
a ubiquitous miRNA known to be disregulated in cancer.23 This highly skewed feature impor-
tance distribution suggests the possibility of creating diagnostic arrays using small numbers of
miRNAs. Gene ontology analysis of cancer-linked miRNAs identified multiple highly-enriched
processes, some of which bare an obvious relationship to cancer (e.g. regulation of cellular
proliferation) while others may indicate possible directions for future research.
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The rapid acceleration of microbial genome sequencing increases opportunities to understand 

bacterial gene function. Unfortunately, only a small proportion of genes have been studied. Recently, 

TnSeq has been proposed as a cost-effective, highly reliable approach to predict gene functions as a 

response to changes in a cell’s fitness before-after genomic changes. However, major questions 

remain about how to best determine whether an observed quantitative change in fitness represents a 

meaningful change. To address the limitation, we develop a Gaussian mixture model framework for 

classifying gene function from TnSeq experiments. In order to implement the mixture model, we 

present the Expectation-Maximization algorithm and a hierarchical Bayesian model sampled using 

Stan’s Hamiltonian Monte-Carlo sampler. We compare these implementations against the frequentist 

method used in current TnSeq literature. From simulations and real data produced by E.coli TnSeq 

experiments, we show that the Bayesian implementation of the Gaussian mixture framework 

provides the most consistent classification results. 

Keywords: Bayesian; bacteria; genetics. 
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1. Introduction 

1.1.  TnSeq Motivation and Background 

Understanding of bacterial gene function has not kept pace with the rapid acceleration of microbial 

genome sequencing. Only a small proportion of genes have had their functions experimentally 

examined and function estimates for unexamined genes have proven inaccurate.1 Transposon 

mutagenesis with next generation Sequencing (TnSeq) is a recent method that alleviates this 

shortcoming in the study of gene function by allowing the simultaneous examination of a wide array 

of microbial genes. 

In TnSeq, a transposon inserts itself into bacterial genes, creating mutants and potentially 

disrupting bacterial functions. In a library of mutants, DNA is isolated from a section of the bacterial 

pool as a control group. The remaining section can then be subjected to a test condition. Bacteria 

whose disrupted genes are essential for growth should decrease in frequency after exposure to the 

condition. PCR amplifies the DNA sequences bordering the insertions, which are then sequenced 

and map back to the genome. The change in a gene's fitness can be quantified by comparing the 

abundance of mutants before and after the test condition. Based on this change, we can then examine 

the effect of the disrupted genes in specific test conditions.2 The test conditions under which the 

mutants suffer fitness penalties are then used to infer gene function. 

1.2.  Motivation and New Methods 

The data produced by TnSeq poses classic statistical challenges. First, TnSeq allows researchers to 

produce fitness measurements for thousands of poorly understood genes across hundreds of 

experimental conditions.3 This increase in scale from traditional experimental methods complicates 

attempts to create a universal decision rule for identifying a gene insertion’s fitness condition. The 

inflated number of experiments also increases the frequency of outliers and edge cases. Furthermore, 

the magnitude of fitness change varies between gene insertions and experimental noise can be 

unpredictable. Current practice implements a frequentist statistical significance framework that does 

not incorporate assumptions inherent in TnSeq and ignores inter-gene information for classification. 

These shortcomings lead to overly conservative predictions due to overestimates of variance given 

the unique nature of TnSeq data. The frequentist framework also requires tuning to control the false-

positive rate.1 Finally, the current frequentist framework does not produce an easily interpretable 

uncertainty estimate for its classifications. 

In this paper, we propose modeling the fitness measurements for gene insertions as two-

component Gaussian mixture models. We use simulations to show that this framework increases 

sensitivity to fitness changes while controlling the false discovery rate at acceptable levels. We also 

provide two distinct methods for fitting these mixture models. The Expectation-Maximization 

algorithm is a widely accepted method for fitting such models. We also propose a hierarchical 

Bayesian approach in which we model the parameters of our Gaussian mixture as random variables 

with prior distributions. This strategy allows us to incorporate inter-gene information and prior 

knowledge of the TnSeq method as soft constraints on our estimates. We will ultimately compare 

the performance of these methods against the current frequentist framework. 
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2.  Methods 

2.1.  TnSeq Experimental Data 

We present a model of transposon sequencing in which only one strain of each gene insertion is 

counted. A control count is first obtained for each gene insertion by examining its growth under a 

condition known to have no effect on bacterial survival. Given n insertions, and m experimental 

conditions, TnSeq then produces an n x m matrix where each row represents an insertion, and each 

column contains fitness counts for an experimental condition. Thus if we denote this matrix 𝑪, the 

matrix element 𝐶𝑖,𝑗 represents the fitness counts for gene insertion i under experimental condition j. 

The final fitness measurement for each insertion under each experimental condition is calculated 

via the equation: 

 𝑓 = log(𝑛1 + 1) − log(𝑛0 + 1)1 (1) 

where 𝑛1 is the cell is count under the experimental condition and 𝑛0 is the cell count under the 

control condition. The total variance of the gene’s fitness value is calculated via: 

 𝑉 = 

1

1+𝑛1
+

1

1+𝑛0

ln(2)2
 (2) 

This variance assumes Poisson noise and is later used for calculating a t-like statistic for the 

frequentist method.3 

2.2.  Mixture framework 

We apply our novel Gaussian mixture framework to the n x m matrix representing the fitness 

measurements of each insertion. We denote this matrix 𝐸. The matrix element 𝐸𝑖,𝑗 represents the 

fitness measurement of the ith insertion under the jth experimental condition. We wish to identify 

each 𝐸𝑖,𝑗 as the result of a neutral or deleterious experimental condition. Fitness measurements under 

deleterious experiments indicate that the mutant’s disrupted gene is relevant to some function. Note 

that whether an experiment is neutral or deleterious depends on the mutant. To evaluate the 

likelihood of our label estimate, we propose modeling each row of 𝐸 as a two-component Gaussian 

mixture. We would like the first mixture component to capture experiments in which fitness is 

unaffected such that𝐸𝑖,𝑗|𝑢𝑛𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑~N(𝜇𝑖,0, 𝜎𝑖). The second component captures experiments 

in which fitness is affected such that𝐸𝑖,𝑗|𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑~N(𝜇𝑖,1, 𝜎𝑖). Due to the nature of TnSeq data, 

we expect 𝜇𝑖,0 to be close to 0 and 𝜇𝑖,1 to be negative. This second component mixture exists because 

groups of experiments deliberately test similar bacterial functions and therefore produce similar 

fitness changes. This aspect of TnSeq also allows us to assume variances for the mixtures. We 

therefore define the likelihood of row i of the matrix as: 

 𝐸𝑗 ~𝜃𝜙(𝜇𝑖,0, 𝜎𝑖) + (1 − 𝜃)𝜙(𝜇𝑖,1, 𝜎𝑖) (3) 

where ϕ is the pdf of a normal distribution, and θ is the proportion of experiments in which the 

mutant is unaffected. 
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This framework can generate a probability that any fitness measurement is the product of a 

deleterious experiment. This probability that fitness measurement 𝐸𝑖,𝑗 is produced by a deleterious 

experiment is defined as: 

  (4) 

This value is simply the density of the fitness-affected mixture divided by the total density. We 

classify the 𝐸𝑖,𝑗 as the result of a deleterious experiment if 𝑎𝑖,𝑗 is greater than .5. 

2.3.  Classification methods 

2.3.1.  Novel method – EM 

An accepted statistical method for estimating unobserved labels under a Gaussian mixture likelihood 

is the Expectation-Maximization (EM) algorithm.4 The EM algorithm iteratively fits a Gaussian 

mixture model by constructing a monotonically increasing sequence of lower bounds for the log 

likelihood function. We allow the mixture that is closest to zero represent the experiments that do 

not affect mutant fitness. The selection of a two-component mixture model as opposed to classifying 

all experiments as neutral is based upon the commonly used Bayesian Information Criterion (BIC).4 

We fit a two-component mixture model if it has the lower BIC compared to a simple Gaussian 

model. Otherwise we assume the insertion’s fitness values are all produced from neutral 

experiments. We make this assumption as it is biologically improbable that all or even most 

experiments will harm fitness. We implement the algorithm through the R package Mclust.5 

2.3.2.  Current method – t-statistic 

The current method in TnSeq literature leverages the estimated variance of fitness measurements to 

calculate the statistical significance of fitness changes.1,3 It calculates a t-like statistic: 

 𝑡 = 
𝑓

√.1+𝑉
 (5) 

where .1 is a small regularizing constant, and 𝑉 is the variance estimate for the insertion’s fitness 

measurements as described in section 2.1. An experiment is considered deleterious if |𝑡| >
4and|𝑓| >  .5. This statistic is assumed to have a standard normal distribution3.  

The frequentist approach does not provide an easily interpretable probability for label estimates. 

For the sake of comparison, we define 𝑎𝑖,𝑗 for the t-statistic classifier as: 

 𝑎𝑖,𝑗 = 1 − 𝜙(t) (6) 

where 𝜙(t) represents a standard normal cdf. This expression is simply one minus the probability 

that we obtain a statistic as extreme as 𝑡 under the assumption of no fitness change. This 𝑎𝑖,𝑗 can be 

interpreted as the confidence of the classification. 
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2.3.3. Bayesian hierarchical model 

We finally adopt a Bayesian hierarchical modeling framework for fitting a Gaussian mixture model. 

The hierarchical approach assumes that model estimates for individual insertions are conditional on 

some unobserved parameters shared across all insertions. We denote these parameters as hyper-

parameters. The hyper-parameters have their own hyper-prior distributions which are estimated 

from all insertions in the data set. This strategy of conditioning estimates for individual genes on 

these sample-wide hyper-priors achieves a pseudo pooling effect. The hyper-prior distributions 

leverage across-gene information to weaken the influence of outliers and increase sensitivity to 

small mixture probabilities.6 

We fit our hierarchical Bayesian model in the R interface to the probabilistic programming 

language, Stan.7 Stan allows fast, out-of-the-box fitting of Bayesian models without the computation 

of the conditional parameter distributions or tuning variables.8 We later provide strategies for 

partitioning our data set in order to speed computations and allow parallelization. 

We use the following priors in our Bayesian model. We give  prior distribution 𝑁(0, 𝛿). The 

location of the prior is fixed at 0 to reflect the experiments’ null effect on fitness. The scale of the 

prior is modeled by hyper-parameter δ with a 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎(20,1) prior. The parameters of the 

prior and hyper-prior reflect our strong belief that neutral experimental conditions should 

consistently produce fitness measurements close to zero plus or minus some error common to the 

mutants in the sample. The hierarchical structure on 𝛿 estimates this error from the mutants in 

sample. We default to the Inverse Gamma distribution for its conjugacy properties. 

We constrain to be negative by the assumptions of transposon sequencing3. We give 𝜇𝑖,1 
prior distribution𝑁(−3, 𝜆). The mean of the prior is fixed at a negative real to prevent degenerate 

label switching with the first mixture. We choose –3 because it represents a moderate change in 

fitness.3 The choice of –3 specifically as compared to any other reasonably small negative real is 

unimportant due to the choice of the uninformative scale prior 𝜆, which has a prior distribution that 

is uniform across all positive real numbers. The uninformative prior allows 𝜆to become arbitrarily 

large as the data demands.6 The data dominates the value of 𝜆 in this the model and reflects our lack 

of prior information of the true distribution of the fitness measurements. We model 𝜆as a 

hierarchical parameter to prevent outliers from overly affecting 𝜇𝑖,1 estimates and to increase 

sensitivity to departures from zero. Although 𝜆′𝑠prior is not a proper distribution, the joint 

distribution of 𝜇𝑖,1 and 𝜆 is proportional to an inverse gamma distribution, which ensures that the 

integral of the posterior distribution is finite.6 

We give 𝜃𝑖 a beta prior with symmetric uniform hyper-priors for its flexibility over the [0,1] 
interval as well as by the methods of Disselkoen 2016.10 The hierarchical structure on theta resists 

outliers and prevents overfitting on single mutants. 

We give 𝜎𝑖 a 𝐶𝑎𝑢𝑐ℎ𝑦(0,5) prior. The prior is weakly informative by allowing for large values 

in the heavy tails of the distribution. This reflects our weak confidence that most variances should 

be reasonably small with a few exceptions. We select the Cauchy distribution by recommendation 

of Gelman 2006.6 
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2.3.4.  Data partitioning for the Bayesian model 

Markov Chain Monte Carlo sampling methods are computationally intensive for large data sets and 

sensitive to the true parameter diversity of the data. Therefore, we propose fitting the Bayesian 

model separately on partitions of the data that maximize within-partition similarity. Partitioning the 

data speeds sampling and makes the computations easily parallelizable. To maximize the similarity 

of genes within the partitions, we use the k-means clustering algorithm on the normalized log-fitness 

vectors of the genes. This clustering is equivalent to clustering the gene insertions by angular 

distance or correlation of their fitness measurement vectors.11 For computational considerations in 

our simulation scenarios, we currently set the number of clusters such that there are on average 20 

genes per partition. 

2.4.  Simulation 

To evaluate the performance of our classifier, we simulate sets of insertions and fitness 

measurements under a fixed number of experiments. We simulate different scenarios where we vary 

the proportion of insertions that affect fitness under any experimental conditions. In this study we 

simulate cases where 0%, 25%, 50%, 75%, and 100% of insertions affect fitness. Simulating these 

distinct scenarios is important because the hierarchical Bayesian model estimates parameters of 

individual insertions from a parameter distribution estimated over the entire data set. For each 

scenario, we simulate 100 separate sets of 100 gene insertions to test the performance of the three 

methods. We note that the Bayesian model is fit separately on each of these sets of 100. 

We adopt the following algorithm for simulating bacterial counts and fitness measurements. 

First, across all gene insertions in a set we define a probability δ that a gene insertion affects fitness 

under any experimental conditions. We then proceed through the following steps to draw the mutant 

counts. 

For each gene insertion i: 

• Draw parameter τ from gamma distribution𝑔𝑎𝑚𝑚𝑎(�̂�, �̂�), in which �̂� and 𝛽̂are the gamma 

parameter maximum likelihood estimates from the experimental control counts of E.coli mutants 

provided by Price 2018.1 This distribution is not significantly different from the empirical 

control count distribution by the Kolmogorov-Smirnov test (p > .3). 

• Draw the simulated control count from𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝜏). Denote𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝜏) as the neutral 

distribution. 

• Choose a fitness factor, 𝐹 from𝑢𝑛𝑖𝑓𝑜𝑟𝑚(.15, .95). We denote 𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝜏 ∗ 𝐹) as the affected 

distribution.  

• With probability𝛿, draw θ from𝑢𝑛𝑖𝑓𝑜𝑟𝑚(.3, .95). Else set 𝜃to be 1. θ is the probability that 

an experiment does not affect mutant fitness. 

• For every experiment, draw a count from the control distribution with probability θ. Otherwise 

draw a count from the deleterious distribution. 

 

Pre-fixed simulation distribution parameters were chosen to account for all reasonable biological 

possibilities. Uniform distributions were chosen by the maximum entropy principle to reflect our 

uncertainty surrounding the true distribution of real data sets.12 The fitness measurements and t-
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statistics for each experiment can be calculated for each gene insertion using the control count and 

Eq. (5) and (6). 

2.5.  Real data 

We apply our methods to Escherichia coli BW25113 TnSeq data provided by Price 2018.1 They 

examine the fitness of E.coli mutants produced by 3789 distinct gene insertions. They subjected 

mutants to 162 experimental conditions. We apply the EM and Bayesian classifiers to the provided 

3789 x 162 matrix of fitness measurements. We use the t-statistic classification results provided by 

Price 2018. 

3.  Results 

We evaluate the following performance metrics for each of the classification methods. We use the 

mean of the posterior distribution draws of the Gaussian mixture parameters to define the Bayesian 

model.6 We use the following metrics to evaluate the performance of the classifiers. 

3.1.  Metrics 

Define the true label for fitness measurement 𝐸𝑖,𝑗 as 𝑙𝑖,𝑗,taking value 0 if 𝐸𝑖,𝑗 is the result of a neutral 

experiment and value 1 if 𝐸𝑖,𝑗 is the result of a deleterious experiment. Let the predicted label for 

𝐸𝑖,𝑗 be 𝑙𝑖,𝑗̂ . Similarly 𝑙𝑖,𝑗̂  is 0 if the classifier labels the fitness measurement as a neutral result and 

1 if the classifier labels the measurements as a deleterious result. 

3.1.1.  Classification rate 

The classification rate is the raw percentage of experiments that the model classifies correctly. 

Therefore the Classification Rate for the ith insertion would be: 

  (7) 

where 𝐼{𝑙𝑖,𝑗=𝑙𝑖,�̂�}is an indicator function that takes value one if 𝑙𝑖,𝑗 =  𝑙𝑖,�̂� and zero otherwise. 

3.1.2.  False positive rate 

The false positive rate is the Type I error. It is the percentage of neutral experiments that the model 

incorrectly classifies as deleterious. In ideal scenarios, this value should be low. The False Positive 

Rate for the ith mutant is therefore: 

  (8) 

where 𝐼{𝑙𝑖,𝑗̂ =1^𝑙𝑖,𝑗=0}
 is an indicator function that takes value one if 𝑙𝑖,𝑗̂ = 1 and 𝑙𝑖,𝑗 = 0. 
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3.1.3.  Positive classification rate 

The positive classification rate is the percentage of deleterious experiments that the model correctly 

classifies as deleterious. In ideal scenarios, this value should be high. The positive classification rate 

for the ith insertion is therefore: 

  (9) 

where 𝐼{𝑙𝑖,𝑗̂ =1^𝑙𝑖,𝑗=1}
 is an indicator function that takes value one if 𝑙𝑖,�̂� = 1 and 𝑙𝑖,𝑗 = 1. 

Otherwise the function takes value 0. 

3.1.4.  Cross entropy 

We measure the accuracy of our probabilistic estimates using cross-entropy. The cross entropy for 

the classification of the ith insertion is defined as: 

  (10) 

Cross entropy is a common loss function for evaluating classifiers that produce probability 

estimates ranging from 0 to 1.4 The greater the difference between the true and model classifications, 

the higher the cross entropy will be. For example, if the true label is 1 and 𝑎𝑖,𝑗 is 0, then the classifier 

performs badly and the cross entropy will be high. However, a better probability estimate of .49 will 

correspond to a lower cross entropy value. 

3.2.  Simulation Results 

We simulate the scenarios in which 0%, 25%, 50%, 75%, and 100% of gene insertions are affected 

by experimental conditions. For each scenario, we simulate one hundred sets of one hundred 

insertions. On each set, we separately fit the Bayesian model on a single Markov chain with 1000 

warm-up iterations and 1000 sampling iterations. We take the posterior means of the Gaussian 

mixture parameters to define our Bayesian classification model. 

The simulation results demonstrate that the three methods provide identical classifications for 

64% of the 50,000 simulated genes. These classifications produced models with over a 98% 

classification rate. This is expected as the simulated fitness values for many gene insertions are 

either obviously unimodal or clearly clustered into two groups. In an additional 10% of cases, all 

the classifiers achieved at least a 90% classification rate. Thus, the entire simulation population does 

not tell us much about the relative performance of the classifiers on difficult classification problems. 

We proceed to examine only the 26% of the cases where the t-statistic, EM algorithm, and 

Bayesian classifier do not provide identical classifications and at least one of the classifiers fails to 

achieve an 90% classification rate. We call this the difficult subset. 

We see in Figure 1 and Table 1, Column 3 that the t-statistic performs relatively well when the 

proportion of affected mutants is small (0%, 25%). For higher proportions, we see that the t-
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statistic's performance deteriorates in the second and third classification quantiles relative to the 

other methods. On the other hand, the EM algorithm performs well when the proportion of affected 

mutants is large (75%, 100%). The EM algorithm suffers in performance for the first and second 

and third quantiles, especially for lower proportion (0%, 25%, 50%). Only the Bayesian model 

demonstrates consistent behavior across proportions and quantiles, outperforming both the other 

methods except when the proportion of affected mutants is 0%. 

     We see from the positive classification rate in Figure 1 and Column 4 in Table 1 that the t-statistic 

is by far the least sensitive to changes in fitness and therefore has the lowest positive classification 

rate. The Bayesian algorithm provides a vast improvement on the positive classification rate. But 

the EM algorithm overall provides the most sensitive classification results, especially true at lower 

proportions. The EM algorithm achieves this sensitivity by incurring higher false positive rates. The 

Bayesian algorithm does not suffer from as high false positive rates. The t-statistic expectedly 

maintains the lowest false positive rate. Therefore, we see that the Bayesian algorithm achieves 

higher and consistent classification by compromising between sensitivity of the EM algorithm and 

the conservatism of the t-statistic. 

 

 
Fig. 1. Cumulative distributions of classification, false positive and positive classification rates on the 

difficult subset of simulated gene insertions. Columns indicate the metric displayed, and rows indicate the 

proportion of mutants affected in each mutant set.  

 

Table 1. Mean Classification Rate, Positive Classification Rate, False Positive Rate and Cross Entropy for Classifiers  
2. % Affected 3. Mean CR 4. Mean PCR 5. Mean FPR 6. Mean CE 

Bayesian 0 .90 NA .08 65.13 

 25 .75 .57 .07 242.27 

 50 .72 .60 .06 279.49 

 75 .73 .61 .05 301.30 

 100 .73 .64 .05 288.97 

EM 0 .40 NA .33 305.95 

 25 .58 .65 .20 313.95 

 50 .63 .64 .14 320.05 
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 75 .66 .63 .10 334.89  
100 .68 .63 .09 334.79 

T 0 .95 NA .05 171.68 

 25 .72 .22 .03 267.99 

 50 .62 .21 .02 308.60 

 75 .59 .22 .02 339.06 

 100 .57 .21 .02 343.20 

 

From Figure 2 and Column 6 in Table 1, we see that the Bayesian and EM method produce 

smaller cross entropy losses for most classifications compared to the t-statistic. However, we also 

see that the Bayesian and EM methods have fatter tails, indicating a significant subset of cases where 

the two methods provide poor probability estimates. From Table 1 Column 6, we see that from an 

entropy standpoint, the Bayesian algorithm outperforms the EM algorithm and t-statistic on average 

in every scenario. Therefore, we can see that the Bayesian algorithm provides accurate probabilistic 

estimates more consistently. 

 

 
Fig. 2. Cumulative distribution of Cross Entropy Distributions. Cross entropy values near zero indicate 

accurate probability estimates of classification confidence. 

3.3.  Comparisons on real data 

We apply the EM and Bayesian methods to the fitness measurements from the real E.coli data (see 

section 2.5 for details). For the t-statistic, we use the classifications produced by the work of Price 

20181. The t-statistic is by far the most conservative, identifying 496 genes as important to some 

examined bacterial function. The EM algorithm identifies 1322 genes and the Bayesian method 

identifies 1786 genes. Of the 496 genes identified by the t-statistic, the EM algorithm shares 137 

identifications. The Bayesian algorithm shares 455 gene identifications with the t-statistic. In Figure 

3 we present three examples where each of the three classifiers fails to identify a gene’s function 

where the other two are successful. 

The mutant from the insertion into gene b0002 is an instance where the t-statistic does not 

identify a gene where the Bayesian model and EM algorithm do. The EM algorithm and Bayesian 
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model provide the same classifications for b0002, while we see that the t-statistic fails to identify 

any changes in fitness. This failure of the t-statistic behavior can be attributed to the clear existence 

of two separate mixture components with separate variances. The t-statistic calculates the variance 

from both mixtures and therefore underestimate significance.  

We next give an example where the EM algorithm does not identify a gene (b0008) that the t-

statistic and Bayesian model identify. In this case in Figure 3, we see that the BIC does not detect 

the presence of two mixtures and our implementation of the EM algorithm and therefore assumes 

no changes in fitness. We have considered changing the BIC threshold for two-mixture selection, 

but any changes resulted in much worse simulation results. 

Now we examine the insertion on b1198. This insertion belongs to the 16 cases where the 

Bayesian algorithm does not identify a gene that the EM algorithm and t-statistic both identify as 

important to some function. In each of these cases the EM algorithm and t-statistic identify a positive 

fitness change from a gene insertion. This is improbable, as a gene deletion should not increase 

fitness. The Bayesian model's priors explicitly prevent this classification result. 

 
Fig. 3. Classifications for mutants produced by insertions into genes b0002, b0008, and b1198. Bars 

represent counts of fitness measures under various experimental conditions.  

3.4.  Software 

R scripts for the implementation of the classification methods can be found at: 

http://www.nathantintle.com/supplemental/TnSeqRFunctions.R 

4.  Discussion 

We have presented a two-component Gaussian mixture framework for classifying experimental 

effects on mutant fitness. This framework provides an alternative to the current frequentist 

framework. We have shown how the frequentist approach produces conservative estimates due to 

its estimation of a large variance encompassing all of mutant's fitness values despite the existence 

of two smaller distributions. The mixture framework addresses this problem by estimating the 

smaller variances of two smaller components. 

Furthermore, simulations demonstrate that the Bayesian classifier generally outperforms the EM 

algorithm. By incorporating reasonable priors and exploiting a hierarchical structure, the Bayesian 
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model leverages inter-gene information to provide a compromise between the sensitivity of the EM 

algorithm and the conservatism of the t-statistic. The Bayesian model's performance is also nearly 

invariant under the proportion of mutants affected. Given high uncertainty about the genes studied, 

the Bayesian model should be the model of choice for classification. 

On the real E.coli data, we see that the Bayesian classifier is able to identify all the genes with 

negative fitness changes that the t-statistic identifies. The Bayesian classifier demonstrates 

significantly more sensitivity to fitness changes while maintaining consistency with the t-statistic. 

This behavior is distinct from the EM algorithm, which has significantly different identifications 

and seems to be insensitive to lower mixing probabilities. Still, both mixture classifiers are able to 

identify multi-functional genes at a much higher rate than the t-statistic. 

Despite the promise of the methods proposed, further work is necessary to validate our approach 

on additional datasets for which true fitness changes are known. We note that while the performance 

of the Bayesian classifier is generally better than the EM algorithm, the computational time of the 

Bayesian classifier may be prohibitive in some cases (e.g., it takes 30.8 hours with 5 cores to fit the 

E.coli 3789 x 162 fitness measurement matrix). Further work will seek to enhance the computational 

time of the Bayesian classifier, though we acknowledge that it may never be as ‘instantaneous’ as 

the EM algorithm or t-statistic approaches. 

The success of the Bayesian classifier encourages further expansion of the hierarchical model 

structure. Hyper-prior distributions can be defined to account for multiple strains per mutant or 

even genes across bacteria. Covariance priors can be added to leverage co-fitness information1 to 

make more robust classifications. Further development of the hierarchical structure will allow rich 

probabilistic models of gene function and fitness. In the meantime, we suggest use of the proposed 

Bayesian classifier to improve classification accuracy of changes in mutant fitness. 
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SNPs2ChIP: Latent Factors of ChIP-seq to infer functions of non-coding SNPs
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Genetic variations of the human genome are linked to many disease phenotypes. While
whole-genome sequencing and genome-wide association studies (GWAS) have uncovered a
number of genotype-phenotype associations, their functional interpretation remains chal-
lenging given most single nucleotide polymorphisms (SNPs) fall into the non-coding region
of the genome. Advances in chromatin immunoprecipitation sequencing (ChIP-seq) have
made large-scale repositories of epigenetic data available, allowing investigation of coordi-
nated mechanisms of epigenetic markers and transcriptional regulation and their influence
on biological functions. To address this, we propose SNPs2ChIP, a method to infer bio-
logical functions of non-coding variants through unsupervised statistical learning methods
applied to publicly-available epigenetic datasets. We systematically characterized latent fac-
tors by applying singular value decomposition to 652 ChIP-seq tracks of lymphoblastoid cell
lines, and annotated the biological function of each latent factor using the genomic region
enrichment analysis tool. Using these annotated latent factors as reference, we developed
SNPs2ChIP, a pipeline that takes genomic region(s) as an input, identifies the relevant latent
factors with quantitative scores, and returns them along with their inferred functions. As
a case study, we focused on systemic lupus erythematosus and demonstrated our method’s
ability to infer relevant biological functions. We systematically applied SNPs2ChIP on pub-
licly available datasets, including known GWAS associations from the GWAS catalogue and
ChIP-seq peaks from a previously published study. Our approach to leverage latent patterns
across genome-wide epigenetic datasets to infer the biological functions will advance under-
standing of the genetics of human diseases by accelerating the interpretation of non-coding
genomes.

Keywords: non-coding genome; functional interpretation; epigenome; latent factor discovery;
biomedical ontology; enrichment analysis; large-scale inference; data integration

1. Introduction

Genome-wide association studies (GWAS) have successfully identified many associations be-
tween genetic variants and human diseases.1,2 However, functional interpretation of these as-
sociations remains challenging as most GWAS hits fall into non-coding regions of the genome.3

Advancements in high-throughput genome-wide molecular profiling methods, such as ChIP-
seq, enable molecular characterization of gene regulatory landscapes, such as histone modifica-
tion and transcription factor (TF) binding profiles.4 Leveraging growing biomedical ontologies,
such as the gene ontology (GO), human phenotype ontology (HPO), and Mouse Genome Infor-

c© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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matics (MGI) phenotype ontology, tools based on statistical enrichment analysis on genomic
regions, such as the genomic region enrichment analysis tool (GREAT), have been used to
investigate the function of the non-coding genome.5–9 Further, collaborative research efforts,
such as ENCODE, the Roadmap Epigenomics project, and Genotype-Tissue Expression pro-
gram (GTEx), have also systematically generated data-rich molecular catalogues.10–12 These
large-scale epigenomic profiles, as well as other publicly available datasets on the NCBI se-
quence read archive, are integrated into epigenetic data resources, such as ChIP-Atlas and
ReMap, which provides an emerging opportunity for data mining and meta-analysis.13,14

Advancements in epigenetic analysis suggest that latent patterns in epigenomic regula-
tory profiles can be discovered and characterized for downstream analyses. For example, one
TF can bind to numerous genomic loci with specific sequence features and multiple TFs
can work together by forming dimers, executing coordinated transcriptional regulatory pro-
grams.15 Moreover, it is known that many TFs have multiple functions through precise co-
ordination in different contexts, that there are known interactions between histone modifica-
tions and TF occupancy, and that histone modifications and TF occupancy influence gene
expression.10–12,15 With these phenomena in mind, there has been works in harnessing these
patterns for functional interpretation of non-coding genomes. ChromHMM and Segway, unsu-
pervised statistical learning methods, successfully summarizes patterns of epigenetic profiles
as interpretable annotations,16,17 while eQTL studies examines non-coding variants in light of
molecular phenotype, such as expression levels of neighboring genes.12 While these approaches
show some success in utilizing neighboring epigenomic signals to explore molecular interpre-
tation of non-coding genomes, they are limited in leveraging genome-wide patterns of both
histone modification and TF occupancy across different functional contexts. In principle, one
can extend these analyses by leveraging all experimentally collected epigenomic profiles and
characterizing latent patterns for functional interpretation of non-coding genomic regions on
a genome-wide scale.

Here we present SNPs2ChIP, a novel method to infer function of non-coding variants by (1)
characterizing latent patterns in epigenomic regulatory profiles using an unsupervised latent
factor discovery algorithm applied to 652 ChIP-seq tracks in the ChIP-Atlas dataset, (2) infer-
ring the biological functions of the identified latent factors using GREAT enrichment analysis,
and (3) development of a pipeline that takes genomic loci as input and infers functionality of
the loci by identifying relevant latent factors using a quantitative score. Our computational
approach contributes to dissecting the genetic architecture of human diseases by accelerating
functional interpretation of non-coding variants.

2. Results

2.1. SNPs2ChIP analysis framework overview

We developed a method, SNPs2ChIP, to infer functions of non-coding loci that consists of two
computational steps: (A) construction of reference ChIP-maps and (B) using the reference
ChIP-maps to infer biological functions for user queries. To briefly summarize the first part of
our method, we collected chromatin-profiling data from ChIP-Atlas, one of the largest publicly-
available databases of ChIP-seq signals with manually curated metadata,13 and featurized the
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Fig. 1. SNPs2ChIP method overview. (A) Construction of SNPs2ChIP reference dataset. ChIP-seq
peaks of 652 assays are aggregated into a feature matrix, ChIP-map, followed by batch normalization
with surrogate variable analysis (SVA). Latent factors are characterized with singular value decompo-
sition (SVD) and their biological functions are inferred with the genomic region enrichment analysis
tool (GREAT). (B) SNPs2ChIP pipeline. Using the pre-computed reference, SNPs2ChIP identifies
the most relevant latent factors and returns them with their annotated biological functions.

ChIP-seq peaks across TFs and histone marks into a matrix, called a “ChIP-map.” To balance
the trade-off in specificity of the functional prediction and the genomic coverage of the ChIP-
map, we prepared two matrices for high-specificity and high-coverage analysis, by varying the
stringency of the featurization methods. After featurization, we applied batch normalization
with surrogate variable analysis (SVA) and singular value decomposition (SVD) in each map,
resulting latent factors preserving a linear structure optimal for interpretation..18 This was
followed by applying GREAT to find the biological functions enriched in each latent factor
(Fig. 1A).9 With latent factors and enriched functions as pre-computed reference, we developed
a pipeline that takes a loci as input and returns a list of relevant latent factors as well as their
enriched function. A query can be one or multiple genomic loci: GWAS SNPs, ChIP-seq peaks,
or genomic coordinates of interest (Fig. 1B).

2.2. Batch normalization of heterogeneous epigenetic features

We focused on 652 lymphoblastoid cell line experiments, the most numerous cell line in the
ChIP-Atlas database, and downloaded all non-empty ChIP-seq peak files. We divided the
entire genome into genomic bins of 1 kbp in size and placed ChIP-seq peaks, represented by
the strength of the peak, into the bins. This was done across 652 tracks, which created a
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Fig. 2. Batch normalization of ChIP-map with SVA.

ChIP-map matrix. After removing genomic bins that did not contain any peaks, we found
379,541 (covering 12.1 % of genome) genomic bins and 662,024 (21.1 %) genomic bins for the
high-specificity dataset and high-coverage dataset, respectively (Methods).

To normalize batch effects in each ChIP-map, we applied the SVA algorithm, a normal-
ization method useful when technical covariates are not known or have missing entries.18 Out
of 39 significant surrogate variables (SVs) identified from SVA, we found that three SVs were
significantly associated (p-value < 1.0 × 10−30, linear regression) with antibody - a biological
effect necessary to protect. The first SV captured variation attributed mainly to H3K4me1 and
H3K4me3; the second SV captured variation for H3K27ac and H3K4me3; and the third SV
captured variation for CTCF, H3K4me3 and SA1. Note that the variation from one sub-group
of a given covariate can be split across multiple SVs, as is the case with H3K4me3.

We assessed the effect of the removing these SVs when regressing out SVs from ChIP-
map and compared with results of keeping all SVs in the regression. We implemented the
regression using a QR decomposition, enabling an efficient, high-dimensional multivariate
multiple regression. When removing SVs significantly associated with antibody, clear clusters
were preserved in the corrected data reflective of antibody, but not for technical effects such as
ancestry (Fig. 2A-B). Conversely, when we including all SVs in the regression, no clusters were
observed for antibody, indicating an over-correction of data, i.e. removal of biological signal
of interest (Fig. 2C). Therefore, using a combination of SVA, linear regression and clustering,
we were able to preserve biologically important variation while removing unwanted technical
variation.

2.3. Latent factor discovery and their biological characterization

To find interpretable latent factors in an unbiased manner, we applied an unsupervised statis-
tical learning algorithm, SVD, to the batch normalized ChIP-map. Using the high-specificity
dataset, we found that the first three latent factors explain 8.2 %, 6.0 %, and 4.6 % of the
variance, respectively, and that the top 50 and 100 factors comprehensively explain 59 % and
72.5 % of the variance, respectively. For the high-coverage dataset, we found the first three
latent factors explain 14.0 %, 10.7 %, and 5.7 % of the variance, respectively, and that the top
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50 and 100 factors comprehensively explain 72.6 % and 82.6 % of the variance, respectively.
To characterize the biological functions of each latent factor, we identified the top 5,000

genomic bins ranked using the genomic bin contribution score derived from decomposed matri-
ces by SVD (Methods - Eq. (1)). We applied GREAT enrichment analysis for the top genomic
bins in each latent factor and identified enriched functional terms using three ontologies: GO,
HPO, and MGI phenotype ontology.5–9

2.4. SNPs2ChIP identifies relevant functions of the non-coding genome

To illustrate the utility of SNPs2ChIP to infer the function of non-coding genome, we applied
the pipeline to known GWAS SNPs and ChIP-seq peaks from previously published datasets.
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Fig. 3. Genome-wide coverage of the two reference datasets of SNPs2ChIP. For each phenotype in
the GWAS catalog, we queried SNPs2ChIP and summarized what percentage of the SNPs can be
mapped to the latent factors for the (A) high specificity dataset and (B) high coverage dataset.

2.4.1. Genome-wide SNPs coverage of the reference datasets

Given that our reference datasets do not contain empty genomic bins, thus excluding parts
of the genome, we first evaluated the coverage of our reference dataset by applying the
SNPs2ChIP pipeline to all previously reported SNPs from the GWAS catalogue.1 We ap-
plied the pipeline for each disease/trait and summarized the number and percentage of SNPs
covered by our reference datasets. Out of the 51,892 known non-intergenic GWAS SNPs we
tested, we found our high-specificity and high-coverage datasets covers 9,241 (17.8 %) and
14,636 (28.2 %) of SNPs (Fig. 3).

2.4.2. Non-coding GWAS SNPs of systemic lupus erythematosus

To illustrate the utility of our approach to infer biological functions associated with non-
coding GWAS SNPs of diseases, we performed a case-study on systemic lupus erythematosus
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Fig. 4. SNPs2ChIP identifies the relevant biological functions given GWAS hits for systemic lupus
erythematosus. GREAT binomial FDR and binomial fold for HPO ontology are shown.

(SLE). SLE is an autoimmune disorder with a prevalence of 0.1 % and a poorly characterized
genetic and epigenetic basis.19 Out of 425 GWAS SNPs associated with SLE, 110 and 158
SNPs are covered in the high-specificity and high-coverage reference dataset, respectively.
Applying the pipeline to the SNPs covered by high-specificity dataset, the top latent factor
identified explained 10.7 % of the variance in the epigenetic landscape and was enriched for
multiple biological concepts associated with SLE. Using HPO as the reference ontology, we
found human phenotypes, such as “Abnormality of cells of the lymphoid lineage” (HP:0012140,
binomial FDR = 2.7×10−4), “Lymphopenia” (HP:0001888, FDR = 2.8×10−4), and “Hemolytic
anemia” (HP:0001878, FDR = 2.9×10−4), which are all known phenotypes for SLE (Fig. 4).20,21

2.4.3. ChIP-seq peaks for vitamin D receptors

To further test the applicability of SNPs2ChIP, we applied the pipeline to ChIP-seq peaks
assosciated with vitamin D receptors (VDR) as an example. Vitamin D is known to participate
in transcriptional regulation through VDRs and regulates calcium homeostatic functions.22 Its
deficiency has been implied in multiple phenotypes, including increased risk of fracture, muscle
weakness, and skeletal mineralization defect.23

Using the ChIP-seq peaks highlighted in a previously published study,24 we applied
SNPs2ChIP and identified relevant phenotypes, such as “Parietal foramina” (HP:0002697,
FDR = 1.3× 10−4) and “Flat forehead” (HP:0004425, FDR = 2.3× 10−3).
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Fig. 5. Robustness analysis in the latent factor identification. By using all SNPs associated with
SLE, we found the top 5 relevant latent factors (Methods, Eq. (4)). Iterating through each SNP, we
plot the cumulative frequency of identifying each of the top 5 latent factors within the rank specified
for (A) all latent factors and (B) top 10 ranks. The dashed black line indicates the cumulative
frequency under the random null model.

2.5. Robustness Analysis in the latent factor identification

In the SNPs2ChIP pipeline, the identification of the relevant latent factor given a user query
is a critical step. To assess the robustness, we applied the pipeline on all of the SLE associated
SNPs with the high-specificity dataset and found the top 5 latent factors enriched across
the group (Methods, Eq. (4)). We then applied our pipeline on each SNP independently and
identified the relevant latent factors for each single SNP (Methods, Eq. (2)). We recorded the
number of SNPs that successfully mapped to each of the top 5 latent factors within the top
n ranks and reported the results as a cumulative distribution (Fig. 5).

3. Discussion

In this study, we propose a new method, SNPs2ChIP, to infer the function of genomic loci in the
non-coding genome by leveraging latent patterns in publicly available ChIP-seq data tracks.
Using latent factors characterized by SVD and annotating them with biomedical ontologies,
we developed a pipeline that allows us to take genomic regions as input and return relevant
latent factors with their enriched biological functions. We applied our method to GWAS SNPs
and found that SNPs2ChIP can identify relevant biological functions associated with disease,
demonstrating the utility of the genome-wide epigenomic latent factors in interpretation of
non-coding SNPs. In addition, we demonstrated the applicability of our method for vitamin
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D receptor ChIP-seq peaks, illustrating the utility of our approach for a diverse set of queries.
Further, as shown in our robustness analysis, SNPs2ChIP has an ability to identify relevant

latent factors and functions even from a single SNP. This is a major advantage of SNPs2ChIP:
it requires a minimal amount of input, one genomic coordinate, to infer biological function as
it leverages latent patterns in the epigenome from across the whole genome.

As we rely on existing ChIP-seq data and we focused on lymphoblastoid cell lines, our
reference dataset has limited coverage of the genome, which is 12.1 % and 21.1 % for our
high-specificity and high-coverage datasets, respectively. While they still provide a GWAS set
coverage of 17.8 % and 28.2 %, a further expansion of the reference dataset may expand the
applicability of the methods.

The resources made available with this study, including the SNPs2ChIP pipeline as well
the processed datasets, can provide a starting point to infer the biological functions of non-
coding genomes. Combined with the expansion of large-scale epigenomic datasets,13,14 our
results highlight the utility of latent factor analysis in interpreting the non-coding genome.

4. Methods

4.1. Featurization of the heterogeneous epigenetic assays

From the ChIP-Atlas database, we downloaded all available ChIP-seq peak files with FDR
corrected q-value threshold of 1.0× 10−5 for lymphoblastoid cell lines.13 Out of the 682 BED
files we obtained from the database, we found that 652 were non-empty and used these for
our analysis. To featurize the data, we defined genomic bins of size 1kbp across all autosomes
and saved them as a custom, genomic bin BED file. For the high-specificity dataset, we kept
the top 25,000 statistically significant peaks for each of the 652 BED files, to minimize the
confounders due to experimental design, and intersected each of them with the genomic bin
BED file using BEDTools.25 For the high-coverage dataset, we used all of the peaks in the
BED files and intersected these with the genomic bin BED file. For each pair of genomic bin
and ChIP-seq assay from the BED intersection, we aggregated the negative log q-values into
a matrix and removed the genomic bins with no peaks. We generated two ChIP-maps, our
feature matrices, for both the high-specificity and high-coverage datasets.

4.2. Batch normalization by surrogate variable analysis

We applied the SVA algorithm to the centered, scaled, and log-transformed input ChIP-
map to eliminate technical effects which may obscure biological variation.18 SVA identifies,
in an unsupervised manner, batches of variation across rows and columns of the input data
matrix that appear at a frequency greater than expected by chance; each of these batches is
represented as a single surrogate variable. We observed that the metadata for the samples had
a high rate of missingness; therefore, we devised a novel two-step approach for the removal of
technical effects and the protection of biological effects of interest. In the first step, we found
statistically significant associations between SVs and known covariates for the set of samples
with non-missing metadata using linear regression, where highly significant p-values indicate
strong correlations between SV and covariates. As a result, we assigned labels to SVs based on
the likely biological or technical variation captured by each SV. In the second step, we removed
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the SVs associated with biological effects of interest, and regressed out the remainder from
the input data matrix. We investigated the quality of SVs and the preservation of biological
signal through manual inspection of principal component analysis plots.

4.3. Latent factor discovery with singular value decomposition (SVD)

We applied SVD for our SVA normalized matrix. The normalized matrix, which we denote as
W , is of size N ×M , where N and M denote the number of ChIP-seq tracks and genomic bins,
respectively. We obtained the matrix decomposition, W = UDV T , where U = (ui,k)i,k is an
orthonormal matrix of size N ×K whose columns are left (ChIP-seq track) singular vectors,
D is a diagonal matrix of size K ×K whose elements are singular values, and V = (vj,k)j,k is
an orthonormal matrix of size M ×K whose columns are right (genomic bin) singular vectors.
While singular values in D represent the magnitude of the latent factors, singular vectors in
U and V summarize the strength of association between latent factors and ChIP-seq tracks,
and latent factors and genomic bins, respectively.

4.3.1. Quantification of strength of associations between latent factor and genomic bins

To quantify the strength of associations between latent factor and genomic bins, we define
several quantitative scores built on the linear structures of latent factors.26,27 We first define
the factor score matrix for genomic bins as G = V D. Mathematically, the factor score
matrix is equivalent to the matrix consisting of principal component vectors.26 Each element of
this matrix, which we call the genomic bin factor score and denote as gj,k, is the projection
of the j-th column vector in the input matrix W of length N , which represents the epigenetic
landscape of j-th genomic bin across samples, to the k-th latent factor (principal component).26

To quantify the relative importance of a genomic bin for a given latent factor, we define
the genomic bin contribution score for k-th latent factor by squaring the genomic bin
factor scores for k-th factor and normalizing it across latent factors, i.e.

cntrbink (j) = (vj,k)2 (1)

The sum of genomic bin contribution scores across genomic bins is guaranteed to be one, i.e.∑
j cntrbink (j) = 1, because V is an orthonormal matrix. One can interpret the score as the

percent-importance of a genomic bin for the factor.26,27

Similarly, to quantify the relative importance of a latent factor for a given genomic bin,
we define the genomic bin squared cosine score for j-th genomic bin as follows:

cos2
bin
j (k) =

(gj,k)2∑
k′(gj,k′)2

(2)

The sum of genomic bin squared cosine scores across latent factors is guaranteed to be one,
i.e.

∑
k cos2j

bin
(k) = 1, because of the demoninator in Eq. (2). One can interpret the score as

the relative importance of latent factors for a particular genomic bin.

4.3.2. Quantification of strength of associations between latent factor and samples

We also define the same set of scores to quantify the strength of associations between latent
factors and samples. We first define the factor score matrix for samples as S = UD =
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(si,k)i,k. To quantify the relative importance of samples to latent factors and latent factors to
samples, we define the sample contribution score and the sample squared cosine scores
as follows:

cntrsample
k (i) = (ui,k)2 ; cos2

sample
i (k) =

(si,k)2∑
k′(si,k′)2

(3)

With these scoring systems we can effectively quantify the associations among latent factors,
genomic bins, and samples.

4.4. GREAT analysis for biological characterization of latent factor

To characterize the functions of latent factors, we applied GREAT version 3.0.0 to each latent
factor.9 Using ontology-based gene annotations as a reference, GREAT takes a set of genomic
regions as an input and reports enriched ontology terms. In our analysis, we focused on
gene ontology (GO), human phenotype ontology (HPO), and Mouse Genome Informatics
(MGI) phenotype ontology.5–8 For each latent factor, we created the query files for GREAT
by selecting the top 5,000 genomic bins ranked by genomic bin contribution score (Eq. (1))
and applied GREAT for these queries using default parameters.9,27 Given our interest to
characterize the putative functions of non-coding genomes, we focused on the GREAT binomial
test and collected summary statistics, such as binomial p-value, binomial FDR, and binomial
fold change. We sorted the functional terms outputted by GREAT using binomial FDR and
identified the ontology terms that most characterize the function of each latent factor.

4.5. Application of the SNPs2ChIP pipeline for GWAS hits and ChIP-seq
peaks

The SNPs2ChIP pipeline consists of three steps: (1) identification of the genomic bins given
a user query, (2) identification of the relevant latent factors for the genomic bins, and (3)
reporting the results of GREAT enrichment for the relevant latent factors.

4.5.1. Identification of the genomic bin for a given user’s query

SNPs2ChIP takes genomic coordinates as an input. For GWAS SNPs and ChIP-seq peaks,
one first needs to obtain their genomic coordinates. These coordinates are then mapped to
the corresponding genomic bins, if they contain a ChIP-seq peak.

4.5.2. Identification of the relevant latent factor for the genomic bins

We identify the relevant latent factors for a given genomic bin by genomic bin squared co-
sine score (Eq. (2)). We can identify the relevant latent factors for multiple genomic bins,
which typically corresponds to multiple inputs, by taking a weighted average of genomic bin
squared cosine scores. Let’s denote J = {j1, . . . , jm} be the set of genomic bins of interest and
{w1, . . . , wm} be the corresponding weights. We defined the weighted average of genomic bin
squared cosine score as follows:

cos2
bin
J (k) =

∑
j∈J wj · cos2binj (k)∑

j∈J wj
(4)
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We set the default value of weights to be uniform, i.e. {w1, . . . , wm} = {1/m, . . . , 1/m} but the
user can specify a set of weights based on external knowledge, such as statistical significance
and effect size estimates from GWAS. Once we identify the relevant latent factors, we report
the results of GREAT enrichment analysis to the users.

4.5.3. Systematic application of SNPs2ChIP for known GWAS hits

We downloaded the GWAS Catalog v1.0 from the European Bioinformatics Institute, contain-
ing 82,735 curated SNPs.1 The catalog was subsequently filtered to exclude SNPs that were
classified as intergenic to focus on SNPs associated with transcriptional cis-regulation, result-
ing 51,892 SNPs. Individual SNPs were processed by the SNPs2ChIP pipeline to determine
their enriched phenotype. To validate the robustness of the method, SNPs were grouped by
disease and run to determine their combined, enriched phenotype. As the pipeline is designed
for high-throughput data analysis, querying thousands of SNPs was done in mere seconds.
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The Sequence Read Archive (SRA) contains over one million publicly available sequencing runs from              
various studies using a variety of sequencing library strategies. These data inherently contain information              
about underlying genomic sequence variants which we exploit to extract allelic read counts on an               
unprecedented scale. We reprocessed over 250,000 human sequencing runs (>1000 TB data worth of raw               
sequence data) into a single unified dataset of allelic read counts for nearly 300,000 variants of biomedical                 
relevance curated by NCBI dbSNP, where germline variants were detected in a median of 912 sequencing                
runs, and somatic variants were detected in a median of 4,876 sequencing runs, suggesting that this dataset                 
facilitates identification of sequencing runs that harbor variants of interest. Allelic read counts obtained using               
a targeted alignment were very similar to read counts obtained from whole-genome alignment. Analyzing              
allelic read count data for matched DNA and RNA samples from tumors, we find that RNA-seq can also                  
recover variants identified by Whole Exome Sequencing (WXS), suggesting that reprocessed allelic read             
counts can support variant detection across different library strategies in SRA. This study provides a rich                
database of known human variants across SRA samples that can support future meta-analyses of human               
sequence variation. 

Keywords: Big data, omic analysis, FAIR, variant, single cell 

1. Introduction

The reduction of sequencing cost in recent years1 has allowed researchers to progress from              
sequencing and analyzing a single reference human genome to studying the individual genomes of              
thousands of subjects2. The large number of sequencing studies being conducted, together with             
journal publication requirements for authors to deposit raw sequencing runs in a centralized and              
open access sequencing archive like Sequence Read Archive (SRA)3 have made it possible to              
perform large scale data analysis on the millions of publically-available sequencing runs.  

The SRA contains raw sequencing runs from a variety of projects from large scale              
consortium studies including Epigenome Roadmap4, ENCODE5, The 1000 Genomes Project2, to           
small studies being conducted by various independent laboratories. However, the publicly available            
raw sequencing data are large in size which translates into high storage and computational              
requirements that hinder access for the broader research community. These requirements can be             
somewhat mitigated by using preprocessed data such as gene expression matrices, ChIP-seq peak             
files, or summarized variant information, as such files are much smaller in size. For example, the                
1000 Genomes project, The Cancer Genome Atlas (TCGA)6 and Genotype-Tissue Expression           
project (GTEx)7 all offer summarized variant information extracted from the raw sequences in             
Variant Call Format (VCF) files, containing allelic read counts for both reference and alternative              
alleles and base quality information which could be used for variant calling.  

There have been many efforts to reprocess raw sequencing reads to a more tractable form.               
However, many of the SRA data reprocessing efforts8,9 have focused on quantifying gene expression              
using public RNA-seq data deposited in the SRA. Sequencing data also capture information about              
sequence variants, raising the possibility of studying patterns of genetic variation using the SRA.              

†: corresponding author 
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The possibility of extracting variants from RNA-seq was demonstrated on a small scale in a 2015                
study10 where the authors extracted variants using the GATK RNA-seq variant calling pipeline on              
5,499 RNA-seq runs in the SRA.  

Variant calling typically requires multiple user-specified parameters such as a minimum           
cut-off for total or read-specific coverage, and usually attempts to model sequencing error explicitly.              
The primary information used in variant detection is the allelic fraction, the proportion of              
sequencing reads that support the variant position. Read mapping is highly concordant between             
alignment tools like bowtie11, bwa12, novoalign13, supporting the idea, at least for DNA and RNA               
sequencing experiments, estimates of allelic fraction should be fairly consistent regardless of the             
specific alignment tool. Using a conservative set of known genetic variants that are unlikely to be                
the result of sequencing errors, simple filters on coverage or allelic fraction should be sufficient to                
control error rates at acceptable levels. This would make it possible to collect and analyze known                
variants across the SRA without applying more complex variant callers.  

To explore this possibility, we constructed an allelic read count extraction pipeline to             
systematically reprocess all available sequencing runs from the SRA. We first applied standard             
quality filtering to the unaligned reads (see Methods) and then aligned the reads to a subset of the                  
human reference genome that covers 390,000 selected somatic and germline variants curated by the              
NCBI dbSNP14 using bowtie211. To show that this targeted reference does not introduce unwanted              
biases into the alignment step, we validated our pipeline performance against alignments performed             
using whole reference genomes. We next used the TCGA sample-matched Whole Exome            
Sequencing (WXS) and RNA-seq cohort to confirm that allelic read counts derived from RNA-seq              
accurately recover variants detected by WXS. We then applied this pipeline to systematically extract              
variants from over 250,000 sequencing runs in the SRA. Finally, we demonstrated that this allelic               
read count resource can be used to investigate variants in RNA sequencing studies, even at the                
single cell level.  

2. Results

2.1.  Building a fast allelic fraction extraction pipeline for the SRA 

As of the end of 2017 the SRA included data from           
10,642 human sequencing studies consisting of      
697,366 publicly available sequencing runs,     
encompassing various library strategies such as      
RNA-seq, WXS, whole genome sequencing (WGS),      
and ChIP-seq (Methods) and this number continues to        
increase at a rapid pace (Fig. 1). All of the human           
sequences deposited in the database were derived from        
samples carrying germline and somatic variants from       
the corresponding biospecimen regardless of the      
original study designs. This presents the opportunity to        

perform meta-analysis of human genetic variation across studies in the SRA. 
However, the complete SRA spans over 1,835 trillion bases, introducing both computational            

and storage resource requirements that would hinder most researchers from conducting a            
meta-analysis across many sequencing studies. Therefore, to enable efficient secondary analysis for            
researchers with limited access to high performance computing (HPC) infrastructure, we sought to             
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process this vast amount of data      
into a form that can fit on a        
1 TB hard disk. To accomplish     
this, we developed an efficient     
data processing pipeline (Fig.    
2).  
 
We first created a targeted     
alignment reference that   
focuses on regions that harbor     
known variants (n=393,242)   
curated by NCBI dbSNP14.    
These consist predominantly of    
variants with PubMed   
references or that have been     

referenced in selected variant databases     
(OMIM, LSDB, TPA, or in NCBI curated as        
diagnostic related). The variants consist     
mostly of missense mutations with     
synonymous and truncating mutations    
accounting for about 15% of the database.       
Most are germline variants, although the      
dataset includes a small set of curated somatic        
mutations15. The characteristics of the variants      
are summarized in Table 1.  

 
We created the reference alignment     

index by masking the reference to exclude       
DNA sequences outside of a region spanning       
the 1000 base pairs upstream and 1000 base        
pairs downstream of each variant. This      
filtering method had been first adopted by       
Deng et al. to optimize sequencing data       
processing turnaround times 16.  

 

2.2.  Large scale allelic read count extraction of human sequence data 

We retained only sequencing runs from the top five library strategies (RNA-seq, WGS, WXS,              
AMPLICON, ChIP-seq), and sequencing runs with more than 150 million bases sequenced            
(equivalent to at least three million reads if the samples have 50 bp per read), corresponding to a                  
total of 304,939 sequencing runs. Of these, 253,005 were successfully processed (Fig. 3) without              
error with 300 cpu-cores in 30 days. Library strategies were divided between paired-end (64.8%)              
and single-end (35.2%) sequencing. The difference between the number of pair-end sequencing and             
single-end sequencing reflects the differing needs of various experimental designs (Supplementary           
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Table 1). For example, paired-end sequencing greatly improves the identification of splice isoforms             
in RNA-seq and structural variants in exome-seq, whereas it         
provides fewer benefits for other library types that would         
justify the increased cost relative to single-end sequencing.  

One utility that emerges from reprocessing the       
sequencing data is for imputing experimental annotations.       
For example, the SRA metadata is not standardized to         
contain important experimental variables like read length or        
adaptor sequences, however this information can be easily        
determined from the raw sequences. A median read length         
of 95 bp was observed. Most runs (206,360 = 81.56%) had           
adaptors automatically detected and removed. Sequence and       
mapping statistics are detailed in the Supplementary Table        
1. Over these sequencing runs, a median of 2.98% of base           
pairs were identified as adaptors and were removed. A median base quality Phred score of 36 was                 
observed, suggesting a high overall quality of the sequenced bases in the SRA.  

Overall, a median of 296.3 million bases and 10,044,529 read fragments per sample were              
observed. A median of 5.83% of the reads were aligned to the targeted variant regions (Methods).                
Adding read length, adaptor contents, number of reads and percentage aligned to the metadata              
allows the user to better understand the quality of the sequencing runs and filter them accordingly.  

2.3.  Pipeline performance for targeted variant detection 

To assess the accuracy of allelic      
read counts extracted from this     
targeted reference we compared    
counts obtained through our pipeline     
to those extracted from samples     
pre-aligned to the complete hg38     
genome index and downloaded    
directly from the TCGA. We also      
took advantage of matched    
DNA/RNA sequencing in TCGA to     
evaluate the extent to which allelic      
read counts extracted from RNA-seq     
reflect the variants detected from     
WXS (See section 2.5). We used      
524 whole exome tumor sequences     
from the TCGA Low Grade Glioma      
(LGG) dataset to assess the     
performance of our pipeline, as this      
dataset included the well-known    

variant (IDH1 R132H) which could serve as a positive control.  
The reads from each tumor were aligned to the targeted SNP index and the allelic read                

counts were compared to the pre-generated alignments available from the TCGA. The resulting             
variant-locus-by-nucleotide read count matrix contains the read count for each of the four             
 

Pacific Symposium on Biocomputing 2019 

199



 
nucleotides across the 393,242 targeted variants at 387,950 genomic sites. We then flattened the              
nucleic base read count matrix into a single allelic read count vector. For each sample, we compared                 
allelic read counts for all variants obtained using alignment to a targeted reference against allelic               
read counts obtained from the existing TCGA alignments to a complete reference. Read counts were               
highly correlated. Figure 4A shows an example from a single TCGA tumor (UUID:             
2b0048e0-a062-40d2-a1e1-4bb763ea0ead), in which a median of 98.2% variants differed less than           
one log2 fold change in allelic read count from the existing alignment (95% confidence interval:               
0.0088 - 0.0554). We found similar correlation across all 524 samples, with a median Pearson               
correlation (R) of 0.98 for the allelic read counts (95% CI: 0.928 - 0.992; Fig. 4B).  

2.4.  Effects of PCR duplicates on estimating allelic fraction 

We next evaluated the necessity of removing putative PCR duplicate reads after alignment based on               
the extent to which such duplicates bias the estimate of allelic fraction in TCGA. Although most                
sequence alignment pipelines include a step for removing duplicate reads that result from PCR              
amplification, recent studies have cast doubt on the benefit of doing so for variant analysis17,18. Also,                
naively removing the duplicated reads could result in overcorrection in high coverage sequencing19.  

We therefore  
investigated the effect   
of sequence duplicate   
removal for all 300k    
targeted variants across   
the 524 samples. We    
compared the allelic   
read counts extracted   
with and without   
duplicate removal for   
each tumor WXS   
alignment, and  
observed a median   
correlation of 0.983   
(95% CI: 0.983-0.990),   
suggesting duplicate  
removal had limited   
impact on allelic read    
counts. However, we   

did observe a substantial bias in allelic read count estimates when duplicates are included among               
sites with very high sequence read coverage. Figure 5A shows an example using UUID:              
0e2c395e-ddda-4833-b1ee-31a9bd08a845. In this sample, deduplicated allelic read counts recover         
88.9% of the original allelic read counts among all the variants with ≤100 reads support, while the                 
deduplicated allelic only recover 33.7% of the original allelic read count among all the variants with                
>100 reads, a 2.63 fold reduction in read count extracted from in the high coverage region (Fig. 5A,                  
slope of grey bar and red bar respectively). Nonetheless, across all 524 samples we observed a                
difference in allelic fraction < 0.05 for over 90% of the variants when duplicates were excluded,                
except in extreme cases with over 10,000 mapped reads (median 0.4% of the variants) (Fig. 5B).                
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Thus with high quality sequencing data, filtering duplicates should result in only minor             
improvement to the data.  

2.5.  Evaluating variant extraction from RNA-seq using matched DNA/RNA samples 

The SRA includes over 100k RNA-seq runs and these data contain information about the variant               
status of the transcribed DNA. To determine the extent to which variants can be extracted from                
RNA-seq by our pipeline, we first compared allelic fractions between matched exome sequencing on              
the one hand and RNA sequencing data in TCGA on the other. TCGA contains samples which have                 
been subjected to both WXS and RNA-seq, which makes it a natural resource for comparing the                
performance of variant calls derived from RNA-seq data using the WXS-derived variants. We             
evaluated the possibility of using allelic read counts from RNA-seq to detect both germline and               
somatic variants.  

To evaluate the reliability of allelic read counts for identifying germline variants in RNA               
sequence reads, we first compared read fractions for germline variants that were homozygous in the               
corresponding TCGA WXS sample. After collecting all sites that had at least 10 reads and were                
homozygous for the variant allele in the WXS read data, we evaluated the read counts at those same                  
sites in the RNA-seq data. A median of 5827 sites had at least 10 reads to support the variant in both                     
WXS and RNA-seq for each sample. Across all samples, a median of 97% (95% CI: 95.5% - 97.9%)                  
of sites that were homozygous in the DNA were also found to be homozygous in the matched                 
RNA-seq data.  

Next, we explored the utility of allelic read counts for identifying somatic mutations from              
RNA sequencing data. First, as a positive control, we evaluated the hotspot IDH1 somatic mutation               
on chromosome 2:208248388 with 395G>A in the template strand, which is most prevalent somatic              
variant in TCGA LGG on WXS as called by Varscan 20 (n=371, 70.80% of patients). This variant                 
had been previously identified as enriched in LGG tumors and its status is a major molecular                
prognostic factor in glioma as noted by the World Health Organization (WHO)21. Using the 524               
LGG tumors, we estimated allelic composition using read counts in the matched RNA-seq and WXS               
independently with our pipeline. The IDH1 mutation status in WXS exhibits a bimodal distribution              
(Fig. 6A). We selected 10 reads as the cutoff for defining a positive WXS variant. The reference                 
allele was detected in the WXS in all tumors, and 351 patients also had the alternative allele. Over                  
these patients the RNA-seq achieved an area under the precision recall curve (AUPRC) of 0.98 in                
detecting IDH1 variants observed in the WXS data ( Fig. 6B).  

We next evaluated   
the top 100 most    
frequently 
observed somatic  
variants reported  
by TCGA in the    
LGG samples that   
also coincided  
with the targeted   
variants, since  
recurrent 
mutations are  
more likely to be    
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drivers and present the most attractive therapeutic targets22. We used the Precision Recall Curve              
(PRC) framework to determine the extent to which allelic read counts supported expression of the               
mutant allele. RNA-seq generally recapitulated WXS variants (Fig. 6C), with 70% of the variants              
having an AUPRC > 0.8, suggesting that majority of the variants called by exome sequencing are                
expressed in the tumor. However, we do observe 6% of the variants with an AUPRC less than 0.1                  
when their presence was predicted from RNA-seq allelic fraction. Importantly, these later variants             
were found in fewer than 10 WXS samples, such that the most recurrent somatic mutations are also                 
more frequently consistently expressed. Thus while absence of a somatic variant cannot be             
definitively determined from RNA-seq (mutations can be present but not expressed), the most             
recurrent variants appear to be frequently expressed, suggesting that many somatic mutations of             
interest will be detectable in RNA-seq data from cancer studies deposited in the SRA. 

2.6.  Variant landscape of the SRA 

After validating the general reliability of our allelic fraction estimates, we analyzed 300K variants              
across the SRA. Properties of the variants are listed in Table 1. Of 300K variants, 170,292 were                 
referenced by PubMed and 138,559 were curated by NCBI as clinically-relevant variants. Out of              
156,757 variants with annotated functional effects, the majority were missense mutations           
(n=91,827). Also, 37,704 variants were annotated as somatic mutations, derived from cancer            

studies. Overall, the data included a median of        
three variants per gene across 21,889 genes.       
We collected read counts for reference and       
alternative alleles at these 300K positions for       
253,005 human sequencing samples in the      
SRA. We used default minimum threshold of       
two reads23 as the cut-off for Varscan20. The        
distribution of the number of variants are       
shown in Figure 7. Known germline variants       
were detected in a median of 912 sequencing        
runs, known somatic variants were detected in       

a median of 4,876 sequencing runs, and known reference alleles were detected in a median of                
33,232 sequencing runs. 337 somatic variants, 3,068 germline variants and 23,044 reference alleles             
were covered by at least two reads in more than half of the sequencing runs, suggesting that SRA                  
data can be repurposed for studying many variants. To facilitate the analysis of variants, we               
collected allelic read count in each SRA sample into a table (see Data Availability). This read count                 
file allows researchers to rapidly identify which sequencing runs in the SRA have read support for a                 
particular variant.  

2.7.  Extracting unannotated single cell variants in cancer in SRA 

Genotype annotations are often missing or incomplete in the SRA, and this limits the reusability               
of the SRA data. Here, we show that, using the reprocessed data, we were able to recover an                  
important oncogenic mutation BRAF V600E in a single cell RNA-seq study of a patient with               
myeloid leukemia at diagnosis and as well as at three and six months after diagnosis 24.  

Traditional variant calling relies on high sequencing depths to provide the statistical power             
to make confident calls. However, since each cell carries only two copies of each chromosome, the                
low recovery of single cell sequencing makes variant calling from DNA resequencing difficult.             
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Since RNA also contains information about underlying variants and may exist at hundreds of copies               
per cell 25, calling variants from single-cell RNA-seq data may circumvent the limitations of DNA              

resequencing for variants   
in transcribed regions. 
 
We were able to detect an      
important oncogenic  
mutation, BRAF V600E,   
in single cells using our     
unified allelic read counts.    
The overall read depth for     
the region was 45.9 reads     
and 17 sites within the 20      
bp windows around BRAF    
V600E had read support    

for the reference allele. Alternative alleles at the BRAF V600 hotspot were detected in more than                
95% cells (Fig. 8A). Also, the alternative allele (T) had a median base quality Phred score of 38                  
(Fig. 8B) and a median of 22.0 reads to support it (Fig. 8C). Interestingly, we observed a reduction                  
in the reference allele read count over the course of treatment (Fig. 8D) with a corresponding higher                 
fraction of reads supporting the alternate allele, suggesting that the clone with BRAF mutations              
became more prevalent among the surviving cancer cells, concording with the observation in the              
study that relapse occurred after treatment.  

3.  DISCUSSION 

Most published studies on non-protected raw sequencing data are expected to be deposited in the               
NCBI SRA as a result of journal requirements, and this vast amount of raw sequencing data                
represents a an opportunity to power large-scale meta-analyses for the interaction of sequence             
variants with experimental conditions. However, these petabytes worth of sequencing data introduce            
a computational challenge for analyzing such variants. One solution is to develop a map of relevant                
sequence variants in the SRA using allelic count profiles.  

To create allelic read count profiles from the SRA, we constructed a bioinformatics pipeline              
with short processing turnaround time by mapping the raw sequencing reads to a targeted reference               
specific to key somatic and germline variant(s) curated by the NCBI dbSNP. We validated the               
accuracy of the pipeline by comparing read counts obtained with targeted alignment to counts              
obtained using complete alignment pipelines, and evaluated genotype consistency across multiple           
sequencing datasets derived from the same sample. These results confirm that the targeted alignment              
pipeline generates allelic read counts that are highly correlated to those from whole genome              
alignments.  

Variant calling has traditionally been performed from DNA sequences, but WXS and WGS             
library strategies comprise only 40% of the total human SRA data. Thus we also sought to infer the                  
presence of variants from RNA-seq allelic read counts. While RNA may be less reliable for               
inferring the presence or absence of variants due to gene and allele-specific expression, 61.8% of the                
RNA-seq samples have more than a million reads mapped onto the targeted variant regions. We also                
found that highly recurrent somatic mutations detected in WXS of low grade gliomas were also               
frequently expressed in matched RNA-seq data. Thus, it would also be interesting to utilize the               
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germline allelic read counts extracted from the SRA RNAseq dataset to conduct a large-scale              
systematic EQTL study. We may also use the somatic allelic read counts in single cell cancer                
studies to help decipher the interactions between clonal mutations and clonal expressions in tumor              
heterogeneity.  

To the best of our knowledge, this is the first attempt to massively reprocess the human                
samples in the SRA for the purpose of extracting allelic read counts. The computational              
infrastructure required to generate variant data at scale presents a barrier to many researchers.              
Consortia that generate a large volume of sequencing data, such as GTEx, TCGA or the 1000                
Genome Project, all offer preprocessed files that enable researchers from the broader community to              
identify novel findings. Although variant calls are available for some of the datasets included in               
SRA, significant effort would be required to aggregate these disparate datasets, and most of the               
non-consortia SRA samples do not have such data available. Simply providing allelic read counts              
derived through a common bioinformatic pipeline also avoids technical variation that can result             
from different choice of computational tools and their associated parameter choices. Therefore, we             
contend that our unfiltered allelic read counts will have broad utility for post hoc analysis.  

Many applications require estimates of the magnitude of allelic fraction for inference. This             
would be particularly useful for questions related to imprinting or reconstruction of tumor subclonal              
architecture. We found that presence of duplicate reads did not significantly bias estimates of allelic               
fraction when the quality of the sequencing data is high. However for lower quality datasets or                
different library strategies, it may still be necessary to remove duplicate reads to obtain high quality                
estimates. Further analysis is merited to determine which datasets or variants are most confounded if               
duplicates are not removed. Future releases of the database will include estimates of allelic fraction               
both before and after removing PCR duplicates.  

In conclusion, by reprocessing the raw sequencing runs from the SRA, we improve the              
findability, accessibility, interoperability, reusability (FAIR)26 of of 250,000 sequencing runs. As the            
SRA continues to grow, it will be necessary to continuously update the map of variants present in                 
SRA samples. To support variant meta-analyses using the SRA, the next requirement will be              
unification of the SRA data, including biospecimen and experimental annotations. We anticipate            
that further refinement of the SRA through efforts such as this will promote reanalysis of existing                
datasets and lead to new biological discoveries. 

4.  METHODS 

4.1.  SRA Metadata download 
SRA metadata (files: NCBI_SRA_Metadata_Full_.tar.gz and SRA_Run_Members.tab) were       
downloaded from ftp.ncbi.nlm.nih.gov/sra/reports/Metadata/ on Jan 4 2018. These files contain the           
raw freetext biospecimen and experimental annotations. SRA_Run_Members.tab details the         
relationships between SRA project ID (SRP), sample ID (SRS), experiment ID (SRX) and             
sequencing run IDs (SRR). We processed only sequencing runs with accession visibility status             
“public”, with availability status “live”, and sequencing runs that contains more than 150 million              
nucleotides bases. We also only included sequencing runs generated from the following library             
strategies: RNA-Seq, WGS, WXS, ChIP-Seq, AMPLICON. Only samples with layout defined as            
either SINGLE or PAIRED were considered. We removed SRA study ERP013950 as we noticed it               
has annotation indicating a total of 85,608 WGS sequencing runs which seem to stem from               
erroneous submission, as it was only associated with nine biological samples (BioSample) IDs and              
the experimental annotation was unclear on the nature of the study.  
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4.2.  NCBI dbSNP structure 
NCBI dbSNP14 curated a set of SNPs and uses each bit in the bitfield encoding schema to indicate a                   
specific evidence support (ftp://ftp.ncbi.nlm.nih.gov/snp/specs/dbSNP_BitField_latest.pdf). Some evidence      
supports are derived from databases, for example, NCBI ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/),          
Online Mendelian Inheritance in Man (OMIM, url: https://www.omim.org/), Locus-Specific DataBases          
(LSDB, url: http://www.hgvs.org/locus-specific-mutation-databases), and Third Party Annotation (TPA, url:         
https://www.ddbj.nig.ac.jp/ddbj/tpa-e.html). ClinVar contains a curated set of published human         
variant-phenotype associations. OMIM contains the genotypes and phenotypes of all known mendelian            
disorders for over 15,000 human genes. LSDB provides gene-centric links to various databases that collect               
information about variant phenotypes. TPA is a nucleotide sequence data collection assembled from             
experimentally determined variants from DDBJ, EMBL-Bank (https://www.ebi.ac.uk/), GenBank,        
International Nucleotide Sequence Database Collaboration (INSDC) (http://www.insdc.org/), and/ or Trace          
Archive (https://trace.ncbi.nlm.nih.gov/Traces/home/) with additional feature annotations supported by        
peer-reviewed experimental or inferential methods.  
 
4.3.  Targeted reference building 
Variants were obtained from dbSNP (downloaded on 4, January on 2017 from            
ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b150_GRCh38p7/VCF/00-All.vcf.gz), 
which contained 325,174,853 sites in total, effectively one tenth of our selected human reference              
genome length (3,099,734,149 bp, version: hg38). We retained only variants with a resource link to               
any of the existing databases or with support from NCBI curation, indicated by a non zero value for                  
byte 2 of Flag 1 in the NCBI bit field encoding schema, resulting in 393,242 variants. To generate a                   
targeted reference for these variants, we defined 1000 bp downstream and 1000 bp upstream of each                
SNP as the mapping window. All the regions outside of the windows were masked with base “N”                 
using bedtools v2.26.0 in the reference FASTA file. The reference index was built using bowtie2               
v2.2.611 with the merged FASTA file, using default parameters. 
  
4.4.  Extracting variants from raw sequencing read FASTQ file  
We used SRA3 prefetch v2.8.0 to download SRR files. Next, fastq-dump v2.4.2 from SRA tool kit                
was used to extract FASTQ files from SRR into the standard output stream. Trim Galore! version                
0.4.0 (url: https://github.com/FelixKrueger/TrimGalore) was then applied to identify adapter         
sequences using the first 10,000 reads, and the identified adaptor sequence was trimmed in the               
FASTQ file using cutadapt version 1.1627, the trimmed reads were then aligned onto the targeted               
reference (we did not use Trim Galore! to trim the adaptor as it cannot be easily UNIX piped).                  
Bowtie2 was run with the “--no-unal” parameter to retain only the reads mappable to the target                
regions in order to minimize the amount of aligned reads for sorting. The alignment file was than                 
sorted using samtools v1.2. and samtools idxstats was used for calculating the number of reads that                
mapped onto each FASTA reference record. bam-readcount v0.8.0 was used for extracting the             
per-base allelic read count and per-base quality in the sorted alignment file for each of the targeted                 
genomic coordinates. The paired-end reads were processed the same way as the single-end reads              
with the exception that paired-end and interleave reads options in fastq-dump, cutadapt, and             
bowtie2, were specified to ensure proper treatment of paired-end reads. The allelic read counts              
consist of both the reference allele and alternative allele, and they are retained in the output                
regardless of the zygosity.  
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4.5.  TCGA download  
A gdc_manifest was downloaded from the gdc portal on 2017-12-27. We downloaded the TCGA              
data using gdc-client v1.3.0. We downloaded the associated metadata using the TCGA REST API              
interface https://api.gdc.cancer.gov/files/. All the alignment files preprocessed from TCGA using          
GATK pipeline were downloaded. The alignment files were mapped onto GRCh38 with all the raw               
reads, including read sequence duplicates.  
 
5.  Supplementary code and data availability  
The python scripts for the pipeline and the jupyter-notebooks for generating the figures are              
deposited on github (https://github.com/brianyiktaktsui/Skymap ) and the data is publicly available          
on synapse (https://www.synapse.org/#!Synapse:syn11415602). Supplementary table 1 is available        
on http://hannahcarterlab.org/skymapvariantpsbsupplementarytable1/.  
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further enhance the potential impact of benchmark challenges. Specifically, current approaches 
only evaluate end-to-end performance; it is nearly impossible to directly compare methodologies or 
parameters.  Furthermore, the scientific community cannot easily reuse challengers’ approaches, 
due to lack of specifics, ambiguity in tools and parameters as well as problems in sharing and 
maintenance.  Lastly, the intuition behind why particular steps are used is not captured, as the 
proposed workflows are not explicitly defined, making it cumbersome to understand the flow and 
utilization of data.  Here we introduce an approach to overcome these limitations based upon the 
WINGS semantic workflow system.  Specifically, WINGS enables researchers to submit complete 
semantic workflows as challenge submissions.  By submitting entries as workflows, it then 
becomes possible to compare not just the results and performance of a challenger, but also the 
methodology employed.  This is particularly important when dozens of challenge entries may use 
nearly identical tools, but with only subtle changes in parameters (and radical differences in 
results). WINGS uses a component driven workflow design and offers intelligent parameter and 
data selection by reasoning about data characteristics. This proves to be especially critical in 
bioinformatics workflows where using default or incorrect parameter values is prone to drastically 
altering results. Different challenge entries may be readily compared through the use of abstract 
workflows, which also facilitate reuse. WINGS is housed on a cloud based setup, which stores 
data, dependencies and workflows for easy sharing and utility.  It also has the ability to scale 
workflow executions using distributed computing through the Pegasus workflow execution system. 
We demonstrate the application of this architecture to the DREAM proteogenomic challenge.   

Keywords: Workflows; Semantic Workflows; DREAM Challenges; Proteogenomics; 
Benchmarking; Big Data 

1.  Introduction 

The volume of experimental data being generated in the field of experimental biology is growing 
at a rapid pace in both size and variety1,2. With the advent of increasingly diverse data types, many 
of which are high throughput, the bioinformatics community is introducing sophisticated 
computational approaches for data analysis3,4.   

To compare different approaches, community-wide competitive benchmark challenges have 
gained popularity as an unbiased method to better understand the variety of pipelines proposed by 
different groups.  Popular challenges include the Dialogue for Reverse Engineering Assessments 
and Methods (DREAM)5, Critical Assessment of Structure Prediction (CASP) protein structure 
prediction6 and The Association of Biomolecular Resource Facilities’ (ABRF) Proteome 
Informatics Research Group’s (iPRG) detection and prediction challenges7. These challenges give 
competitors the opportunity to test (in a blind and unbiased manner) their approach against others 
in the field, and have been instrumental in advancing diverse areas from protein structure 
prediction8 to variant calling9 to analysis of pathology data10. 

Unfortunately, evaluations in these competitions have traditionally been limited to metrics that 
evaluate solely based on scores.  Comparisons of the methods that gave rise to those results are 
often left to manual interpretation.  When the difference between a winner and an extremely poor 
performer may come down to a handful of parameters in otherwise identical workflows, the lack 
of transparency in methods is a huge missed opportunity for the bioinformatics community. In 
addition, winning methods are rarely shared with the broader community, as it is cumbersome to 
make winning methods accessible beyond the competition framework. Thus, while these 
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challenges provide a forum for bioinformatics researchers to independently evaluate the 
performance of their approaches against others, the current execution environment for challenges 
does not facilitate deep comparison and sharing of approaches.   

Consequently, there is a critical need to reconsider the infrastructure used for executing 
benchmark challenges.  Here we examine the potential benefits of conducting benchmark 
challenges within a semantic workflow environment.  Workflow environments, such as Galaxy11 
and GenePattern12, would enable a challenge to examine not just the final results, but also all the 
steps of a method.  This could include all dependencies, relevant data, and workflow components.  
By having challengers enter their submissions as workflows, which are executed on challenge data 
in the cloud, it becomes possible to more deeply perform a meta-analysis of the entries. In 
addition, submissions could be easily reused and shared by members of the broader scientific 
community.  

This work describes our effort to date using the WINGS13 semantic workflow system to 
submit entries to the DREAM proteogenomic challenge. While WINGS is an established (ready-
to-download for server) workflow system14, employing it as a submission and storing protocol for 
data analysis challenges is a novel use of this framework. In addition to the advantages typical of 
workflow systems, WINGS has additional features due to its use of semantic representations and 
reasoning about workflow steps and data. WINGS uses semantic annotations of data 
characteristics and step requirements in order to facilitate the selection of appropriate input 
parameter values based on metadata. WINGS additionally supports the creation of an abstract 
workflow component for a class of tools that perform a similar task, which greatly facilitates the 
comparison of different challenge entries.  Finally, WINGS uses the W3C PROV standard15 to 
record the complete provenance of the 
workflow execution details that led to a 
final result, including what tools and 
versions were used, how algorithm 
parameters were set, and the overall 
method. Key features of the execution 
environment of WINGS include: (a) a 
framework for recording all runtime 
dependencies of multi-step workflows, 
where each step is a self–contained 
component facilitated by employing 
Docker16 images. Docker offers a virtual 
platform for building, sharing and 
running application within self-
sufficient “containers” which allow 
encapsulation and storage of WINGS 
workflows. This includes the tools and 
data underlying each step (facilitating benchmarking), (b) a dynamic cloud based environment to 
house these workflows, complete with all runtime dependencies and data (facilitating 
reproducibility), and (c) a scalable execution environment (combination of WINGS and the 

Challengers Submissions 

WINGS Workflow system 

SOFTWARE DEPENDENCIES 
TOOLS 

WRAPPER SCRIPTS 
 

FORMATS 
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PRE-PROCESSING 
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DATA TYPES 
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USER-FRIENDLY 
INTERFACE 
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Enhancements 
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Fig. 1.  Schematic for WINGS workflows in the context of 
data modeling and analysis competitions e.g. DREAM 
challenges.  Building semantic workflows on the WINGS 
architecture enables widespread use of algorithms and 
methods, and enables storage and maintenance of data and 
workflows for use with high-throughput experiments.  
(Icons from www.flaticon.com) 
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Pegasus workflow management system17 for distributed computing to reduce computational cost) 
to run workflows multiple times with new parameters or data (facilitating reusability).  

Figure 1 shows a schematic of the use of WINGS for DREAM challenges. Integrating 
WINGS in current bioinformatics benchmarking challenges will support the reuse of the best 
performing solutions. Furthermore, it will expedite comparison between multiple different 
solutions, which potentially use similar constructs and tools, but differ in parameterizations that 
lead to significant result changes. This concludes to a better understanding of the underlying 
reasons that lead to a successful solution.  Lastly, the extensive provenance records of all 
submitted solutions will greatly facilitate widespread use and adoption.  

We discuss the WINGS design and the specifics of the workflow and environment 
construction in the sections below. Further, as proof of concept, we employ WINGS workflows to 
construct a full-scale pipeline for the NCI-CPTAC DREAM proteogenomic (protein prediction) 
challenge18 that exhibits the main features of WINGS for reusability of workflows, reproducibility 
of results, and 
benchmarking of how 
results are impacted by 
subtle workflow variations. 
Lastly, we build multiple 
variations of the protein 
prediction workflow, 
altering different steps to 
illustrate how WINGS 
facilitates comparisons of 
different implementations 
of the workflow. 

2.  Methods and Materials 

The WINGS workflow 
system can be readily 
integrated with the existing 
work cycle of a benchmark 
challenge such as the 
DREAM challenges. 
Figure 2 describes the 
typical phases of a 
benchmark challenge and 
how a system like WINGS 
could fit the process. Each 
section below defines these 
phases and how the 
integration of WINGS can 
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Pacific Symposium on Biocomputing 2019 
 

 

 

212 

facilitate benchmarking, reproducibility, and reusability.  

2.1.  Preparing and submitting workflows in WINGS for benchmark challenges 

The architecture and setup of WINGS (described in detail in the supplementary materials) 
facilitate easy usability and efficient sharing. A WINGS image, encapsulated by a Docker16 
container embedded with possible dependencies and software tools that may be needed by 
challengers to implement workflow steps, is built and made available at the onset of the challenge 
(Figure 2). New tools and software, as required by the codebase of each submission, can then be 
additionally included by the user within the WINGS framework where the submission pipeline is 
built. 

WINGS facilitates the effective 
combination of utilities, scripts and 
tools based on different languages 
together under the umbrella of one 
single workflow, while allowing the 
user to see the high level view of the 
workflow steps in terms of the 
functions included within the 
workflow. Figure 3 showcases the 
different components of a WINGS 
workflow. The main constructs 
involved are (1) Components, which 
encapsulate executable code 
described in terms of input data, 
parameters and outputs, each with 
unique datatypes and other semantic 
constraints (2) Abstract components, 
which can execute one of several 
codes with the same general functionality (e.g. an abstract component for normalization could be 
implemented by different normalization techniques, all employed on the same input, but resulting 
in different normalized data), (3) Input parameters, which may be string, integer, float, boolean or 
date values, (4) Input files, with metadata describing their type and contents, and (5) Intermediate 
and final data, which is output obtained from a component’s execution that can be used as input to 
another component for further analysis.  

Construction of a workflow in WINGS involves: (1) Creating data types and uploading raw 
input data, (2) Creating individual components for each distinct step in the workflow and 
supplying the code and scripts to generate outputs from inputs, (3) Connecting the components to 
reflect the flow of data from one to another. Additionally, the user can specify semantic metadata 
and validation rules to datasets, components, and workflows, which are used by WINGS to reason 
about the workflow and suggest data or parameters as well as to validate those provided by the 

File input to a component 

Semantic suggestion 
according to data type and 

defaults 

Input file Input parameter 

Abstract component 

Intermediate data 

Component 

Final output data 

Fig. 3.   Multiple components are connected in WINGS to design a 
workflow, as is typical of workflow systems. WINGS has unique 
features supported by semantic representations and reasoning: (a) 
automated suggestions of datasets and parameter values that are 
compatible with the current design of the workflow, (b) the 
possibility of defining abstract components that can be implemented 
by different tools. 
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user. The details of building a workflow in WINGS, using standard RNA-Seq processing as an 
example, are included in the supplementary materials. 

We used WINGS for the NCI-CPTAC DREAM proteogenomic challenge. We created a 
workflow for predicting protein levels from transcriptomics data, which includes the processing of 
transcriptomics data from raw sequencing reads to a normalized gene-expression matrix used for 
protein level prediction. 

2.2.  Benchmarking, comparison, upgrade and sharing of workflows 

Benchmarking challenges, such as the DREAM challenges, have historically evaluated the 
performance of each challenger’s submission and reported on the top performing approaches. 
With the integration of WINGS, all submitted entries would be described as WINGS workflows. 
Each step of the workflows would be encapsulated in self-contained modules. Thus, each 
submitted workflow and their steps, can be benchmarked and compared amongst one another. 
WINGS abstract components would prove especially useful for comparisons as a challenger’s 
workflow component will house the execution machinery for their specific approach while 
maintaining the same input and output as the components designed by their peers. Additionally, 
benchmarking and comparison facilitates iteratively fine-tuning a bioinformatics workflow, as it 
allows for easy comparisons of different input parameters, files and software modules. A record of 
executed workflows, with the associated meta-data as maintained in WINGS, helps identify and 
correct errors as well as optimize a workflow. 

We use the protein prediction pipeline template provided to DREAM proteogenomic challenge 
participants and construct 6 variations on the same workflow (using abstract components), 
enabling benchmarking and comparative analysis.  

Different variations of the workflow are initially compared on the basis of the same 
performance metric used to evaluate the results of the DREAM proteogenomics challenge.  This is 
a correctness score, which is the aggregated Pearson’s correlation of predicted protein levels to 
actual protein levels across samples. To further our understanding of the comparison between 
workflow variations, we compare three scales of data amongst each workflow execution: aligned 
reads, quantified transcriptomics expression, and final protein level prediction.  This allows us to 
understand the factors culminating in the resulting correctness score. Aligned reads are compared 
by read coverage areas of the resulting BAM files (comparison employs deeptools module 
“multibamsummary”19), quantified expression and predicted protein levels are compared by 
assessing sample and gene-wise Spearman correlation of transcript/protein levels. WINGS 
facilitates this step-by-step comparison by allowing intermediate outputs to act as input to 
components performing individualized comparison. Executing non-WINGS challenge entries to 
store and compare intermediate output is potentially cumbersome and prone to errors as we would 
need: (a) access to the complete pipeline of each participant, (b) detailed annotations within the 
subsequent code explaining each step of the pipeline, and (c) computational power and storage to 
execute multiple workflows and store each intermediate and final output.  

Upon completion of a challenge, the best performing solutions can easily be maintained and 
upgraded within the confines of the WINGS system. Any tools and data utilized can be swapped 
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for latest versions. Additionally, utilizing the capabilities of containers ensures that the latest 
workflow and its ecosystem (dependencies and tools) can be encapsulated and shared with the 
community. The reusability of a workflow is not hampered by missing configurations, by lack of 
expertise to setup the computational environment, or by the absence of comprehensive 
descriptions of the pipeline itself.  

3.  Results 

3.1.  WINGS workflow construction for the DREAM proteogenomic challenge 

As proof of concept for incorporating WINGS into a benchmark challenge, we built a workflow 
that performed protein level prediction from processed and normalized transcriptomics (RNA-Seq) 
data, mimicking the requirements of sub-challenge 2 of the NCI-CPTAC DREAM proteogenomic 
challenge 2018. Our workflow included the generation of a canonical transcriptomic expression 
matrix from raw reads allowing us to examine how sensitive the predictions were to changes at 
many phases of the workflow. Below we describe (Figure 4), (1) The entire workflow for protein 
level prediction from transcriptomics data and (2) The data and data types required to be uploaded 
and constructed in WINGS to facilitate workflow execution. 

3.1.1.  The protein prediction workflow 

As our workflow aims 
to gauge protein 
levels for a set of 
samples from raw and 
unprocessed 
transcriptomics 
(RNA-Seq) data, it is 
divided to three 
distinct sections. (1) 
Alignment of raw 
read output from the 
sequencer, (2) 
Quantification and 
normalization per 
sample of aligned 
reads and lastly (3) 
Prediction of protein 
levels from processed 
and normalized transcriptomics data (Figure 4).  
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Fig. 4.  The protein prediction workflow as implemented in WINGS. The black 
boxes show the workflow schematic in terms of input, intermediate and output files. 
Alignment (purple), quantification (blue) and prediction (orange) are the three main 
sections of the workflow. The green boxes represent the changes to tools and 
parameters that result in variation of this predictive pipeline, and subsequently 
different outputs. On the left is the WINGS wire diagram of the complete workflow, 
with annotations marking the three main steps. 
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3.1.2.  The data and data type categorization for a workflow 

Input, output and intermediate files that are produced by the workflow dictate data types within 
WINGS (Figure 4). For the protein prediction workflow, the input files – RNA-sequencer output 
(FASTQ format), the output files – protein level matrix (TSV format) and the intermediate files - 
aligned reads (amongst others) (BAM format) guide the different data types to be constructed by 
the user apropos to the workflow. 

The data utilized for protein prediction is The Cancer Genome Atlas/Clinical Proteomic Tumor 
Analysis Consortium (TCGA/CPTAC)-Colorectal Cancer datasets20,21, which is one of the 
foundational proteogenomics datasets published by the National Cancer Institute (NCI). The data 
consists of transcriptomics and proteomics for 89 patient samples that are processed, analyzed and 
well characterized by multiple published experiments22. The raw data is available from both 
TCGA and CPTAC, and the processed data was extracted from supplementary material of 
associated publications. The data is housed within the WINGS image, hosted on an Amazon Web 
Server (supplementary material), contained within the workflow ecosystem, along with all the 
tools and scripts needed by the pipeline. 

3.2.  Workflow variations for predicting protein levels 

We select 3 specific changes to the protein prediction workflow, spanning the three levels of input 
data processing and compared the final result. We aimed to make changes at each level of data 
dimensionality to assess the impact on the final protein prediction. The changes are made to (1) 
Alignment tools, (2) Transcript level quantification method and (3) Protein level prediction 
method as is summarized in Figure 4. 
Alignment Tools (STAR23 versus TopHat24) – We utilize the two widely adopted alignment tools 
for comparison. STAR is a fast, reliable reads aligner which requires a large amount of computing 
power but claims to address most shortcomings of other RNA-Seq aligners. TopHat is a traditional 
splice read mapper for RNA-Seq, which uses the ultra high-throughput short read aligner Bowtie 
to perform read alignment followed by identification of splice junctions.  
Transcript level quantification method (FPKM versus RPKM) –The two most popular methods to 
quantify transcripts level expression are Fragments Per Kilobase of transcript per Million mapped 
reads (FPKM) and Reads Per Kilobase of transcript, per Million mapped reads (RPKM).  Both 
normalize according to gene length, RPKM utilizes reads whereas FPKM estimates abundance 
based on fragments observed in a paired end experiment. We utilize the cufflinks suite3 (cufflinks, 
cuffmerge, cuffquant and cuffnorm) to assess the FPKM quantification and featureCounts25 with 
the EdgeR26 R package to obtain the RPKM quantification.  
Prediction method (Generic-Linear versus Gene-Specific) – The winners of the DREAM 
proteogenomic challenge employed multiple different models and one of the superior results was 
obtained by employing a Gene-Specific modeling technique for prediction27. Within our 
workflow, we aim to emulate their technique by building a unique linear model for each of the 
proteins to be predicted (Gene-Specific) and compare it against a one-fits-all linear model 
(Generic-Linear) that uses the entirety of the training data irrespective of gene and site specificity.  
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3.3.  Benchmarking and correctness of protein prediction across workflow variations 

As detailed above, a total of 6 different variations of the protein prediction workflow were 
executed using WINGS. Workflow variations included changes to the 3 distinct sections of the 
protein prediction workflow, namely alignment, quantification and prediction. Table 1 
summarizes the correctness (of prediction) score of the final result obtained from each variant of 

the workflow. We also note the approximate time (automatically recorded for each WINGS 
workflow execution) taken for each workflow completion. We observe the differences in quality 
of results based on the changes in different steps and dimensions of the prediction workflow.  
Namely, the largest change in resulting quality emanated from the different models used for 
prediction. The gene-specific model outperformed the generic linear model in all configurations. 
The alignment and quantification presented some minute changes in the final result quality but 
large differences in computational resource utilization, as the execution time was vastly different 
between STAR and TopHat usage, as well as evaluation of RPKM and FPKM. 

3.4.  Comparison of workflow variations for predicting protein level 

Since intermediate output at each level 
is readily available in the WINGS 
provenance records, we explore each of 
the workflow variations at 3 different 
scales. Namely, we compare the 
aligned reads, the transcript 
quantitation and finally the predicted 
protein levels. Figure 5 shows the 
WINGS workflow and the 
corresponding output for comparing 
aligned reads (BAM files). The 
component uses the utilities described 
in the section above to calculate the 

Table 1.  Pearson correlation based correctness score, and time taken for execution of each workflow configuration 
for protein level prediction of 89 samples and ~3000 proteins 

Alignment Quantification Predictive Model Correctness Score Time Taken 
STAR FPKM Linear 0.2161 ~29 hrs 
STAR RPKM Linear 0.2155 ~20 hrs 
STAR FPKM Gene-Specific 0.9064 ~29 hrs 
STAR RPKM Gene-Specific 0.9124 ~20 hrs 
TopHat RPKM Linear 0.2053 ~103 hrs 
TopHat RPKM Gene-Specific 0.9080 ~103 hrs 
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Fig. 5.  Correlation between TopHat and STAR aligned 
reads across 10 samples (right) from the protein prediction 
workflow in WINGS (right).  
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correlation between read coverage for aligned reads obtained from both TopHat and STAR. 
Figure 6 presents the component performing comparison of transcript quantification utilizing both 
FPKM and RPKM methodologies. The output visualizes a comprehensive comparison of both 
quantifications, by assessing the number of genes identified, gene and sample wise correlation and 
dynamic ranges of the 
gene-level expression.  
 

Lastly, Figure 7 
compares the final 
protein level prediction 
for two different models 
(Gene-Specific and 
Linear), as described in 
the section above. We 
show the component 
performing as well as 
visualizing the 
comparative analysis. 
Results include 
distribution comparison 
of predictions from both 
models and present 
correlation and dynamic ranges for both sets of predicted protein abundance. Changes to each step 
of a sequential workflow propagate downstream to alter the culminating output. The detailed 

analysis possible within the confines of 
WINGS allows us to fully understand 
the impact of each step’s process on 
the final result of the protein prediction 
workflow. Further, since all 
intermediate data is accessible for each 
execution, data analysis and 
exploration can be performed in 
parallel at each step, including quality 
metrics, sanity checks and identifying 
critical data attributes characterizing 
inner workings of the pipeline. WINGS 
components performing analysis and 
exploration could be appended to the 
main workflow where they access 
intermediate data and provide 
immediate context to the workflow 
execution. 
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Fig. 6.  Comparison between FPKM and RPKM transcript quantification obtained 
from the protein prediction workflow and the corresponding WINGS component 
utilized. Includes (Top Left) Overlap of genes identified using both the 
quantification methods, (Top Right) Gene-Wise expression correlation, (Bottom 
Left) Sample-wise expression correlation and (Bottom Right) Scatterplot of the 
entire quantification from both methods.  
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4.  Discussion and Conclusion 

Our work presents the WINGS workflow infrastructure as an easy to use, effective and efficient 
platform for storing, maintaining and executing solutions submitted to analytical and modeling 
challenges. WINGS not only allows for standardization of submissions and effective reuse of 
workflows, it also allows for intuitive comparison between workflows as well as potential for 
changes and upgrades to ensure widespread adoption and rigorous reproducibility. As a proof of 
concept, we developed a protein prediction workflow using WINGS, akin to the DREAM 
proteogenomic challenge, which uses raw RNA-sequencing data as input, processing and 
modeling it to generate prediction for protein levels. WINGS houses the input data, performs 
benchmarking with different tools, techniques and models to identify the most effective 
configuration for protein prediction. In addition, for each variation of the workflow, we are able to 
identify and isolate critical changes in data across different steps as well as explore the nuances of 
the predictive model. Our experiments show the vast capability of WINGS and its usefulness to 
future bioinformatics analysis and modeling challenges. Additionally, incorporation of the 
WINGS paradigm in the context of data modeling and analytical challenges sheds light on a 
broader question of why a solution performs better than another. Constructing workflows with 
WINGS allows for researchers to use the most innovative methods by easily reusing the best 
performing approaches available for any given research question.   
 
Supplementary material available at: https://github.com/arunima2/Supplementary_PSB_2019 
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For the 2019 Pacific Symposium on Biocomputing’s session on precision medicine, we present new 
research on computational techniques in range of areas including data curation, whole genome 
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1. Introduction

For this session we sought submissions that drive research forward in the development of 
techniques in high resolution data science to advance personalization in clinical care based on 
quantified models. The roots of using data to improve healthcare and to personalize medicine are 
ancient and run deep in medicine.  Hippocrates recommended that physicians learn to read so they 
could keep records and learn how to treat new patients by studying the case histories their 
colleagues compiled. James Lind, a naval surgeon, performed the first controlled clinical trial of a 
therapeutic intervention in 1747, with a multi-arm study of six different possible interventions for 
scurvy. William Osler (1849-1919), originator of the modern system of training physicians, said 
“The good physician treats the disease, the great physician treats the patient who has the disease.”  
However, it has only been within the last few decades that we have had the tools to change the 
approach to understanding a patient from a somewhat subjective art to a deeply quantified science.  
We have advanced rapidly in molecular profiling from expensive single genomes to increasingly 
low cost genomic, transcriptomic, and proteomic profiling of single human cells. The massive 
switch to electronic health records, including the rise of large volumes of electronic imaging data 
in such forms as CT and MRI, has created huge volumes of computationally tractable data within 
the healthcare system. With an ever increasingly connected world, biosensors and mobile health 
tracking devices are providing new streams of phenotypic data. Inspired by the very earliest efforts 
in pushing medicine toward being a system of constant improvement and innovation based on data 
and experimentation (planned and naturally occurring), data is being collected in ever larger 
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volumes. However, we increasingly need innovation in bioinformatic techniques that help 
organize this data, discern the multi-omic characterization of disease, elucidate pathophysiology at 
the level of cells and tissues, and create actionable insights for points of intervention.  The papers 
in this session span this gamut, and we hope will help drive the field from being not only precise, 
but also accurate in promoting the health and wellbeing improvements that can have widespread 
impact. 

2.  Session Papers  

2.1.  Data Curation Tools and Techniques 

Peyton Greenside and colleagues [1] have developed a tool, CrowdVariant, based on Google’s 
crowdsourcing platform to allow non-experts to annotate genomic data. They demonstrate with 
data from the Genome In A Bottle Consortium that the general public can be quickly trained to 
annotate deletions as a proof of concept.  As the authors note, the images derived from genomic 
data, such as NGS read alignment create visual patterns that non-experts can be quickly trained to 
identify and interpret, opening up plenty of opportunity for future efforts to leverage the “wisdom 
of the crowd” in the expensive task of genome annotation, and potentially other forms of 
biomedical data. 
 
Moving from the human crowd to the internal crowd of microbial flora, Wontack Han and Yuzhen 
Ye [2] have developed a repository of microbial marker genes and a set of tools to link microbial 
markers with human host phenotype, with an initial focus on diabetes, liver cirrhosis, and cancer.  
Their computational pipeline, Mi2P (Microbiome to Phenotype) is a publicly available project in 
Sourceforge.a 

 
Another project helping to manage data related to precision medicine is the work of Zhiyue Tom 
Hu and colleagues [3], where they describe a framework for addressing inconsistency in large 
pharmacogenomic data sets, where individual potential therapeutics are screened against cancer 
cell lines.  The method, Alternating Imputation and Correction Method (AICM), uses shared 
overlap of a handful of tested medications to bring divergent datasets into alignment for 
comparison across the full span of data. They show the validity of this approach with three large 
pharmacogenomic datasets. 
 

2.2.  Techniques in Probing Complex Genome-Phenome Interactions 

Autism is a complex phenotype, with a strongly heritable component little explained by known 
genetic variants.  Maya Varma and colleagues [4] have made creative use of a creative control 
group (progressive	supranuclear	palsy)	to probe the genomic dark matter of non-coding regions to 
identify a set of genetic markers associated with autism.  Despite significant work to remove 

                                                        
a https://sourceforge.net/projects/mi2p/ 
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potential batch effects, they are able to achieve very strong classification accuracy (0.96 AUC) 
based on genetic features for identifying autism cases, suggesting the features they have identified 
in non-coding regions may be causal in ways that we have yet to identify. 

 
Xinyuan Zhang and colleagues [5] tackle a different kind of complexity, as they look for 
pleiotropy in cardiovascular and neurological diseases in a dataset of 530,000 SNPs coupled with 
phenotypes extracted from EHR data for 43,870 individuals from the eMERGE network.  Genes 
certainly play different roles in different contexts, such as different tissue types, different 
environmental stimuli, and different life histories; however, pleiotropy has been hard to detect in 
prior studies, due to a mix of factors including small datasets barely powered to find even simple 
single variant-phenotype interactions and poor phenotypic characterization.  Here, leveraging a 
large dataset and the rich clinical annotations, they present a framework mixing a range of 
approaches to detect pleiotropy.   
 

2.3.  Molecular Biology of the Tissues 

The natural extension for precision medicine discovery from the genome is moving into functional 
data and specifically gene expression.  However, gene expression is very context specific, as noted 
in the work in this session. Derek Reiman and colleagues [6] look at the relationship between 
histopathology and gene expression in cancer, with a special focus on immune infiltration in the 
tumor micro-environment, of potential relevance to immune therapies in oncology.  Applying a 
neural net based approach, they show that integrating features derived from digital surgical 
pathology imaging and RNA-Seq can automatically predict infiltration of the tumor by NK cells, 
macrophages, and CD8+ T-cells.   
 
Binglan Li and colleagues [7] also focus on gene expression, and did tissue specific transcriptome 
wide association studies on clinical phenotypes in set of 4,360 individuals in an AIDS clinical 
trial, leveraging data on the context specificity of gene expression and eQTL’s from the GTEx 
(Genotype Tissue Expression Project).  This work has a poster at the conference and a paper in the 
proceedings. 
 

2.4.  Creating Actionable Insights 

Precision medicine is about moving beyond just discovery to changing clinical practice with 
precise, personalized data. This session includes two pieces of work in this direction.  The first is 
similar in direction with the previously mentioned work in that it focuses on eQTLs and gene 
expression regulatory relationships, but its focus is on therapeutic discovery and drug 
repositioning.  Francesca Vitali and colleagues [8] use a network biology and semantic similarity 
approach to look for putative shared functional relationships between diseases to propose 
opportunities for drug repurposing.   
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Rounding out our session is work positioned to directly make recommendations around care 
decisions, particularly around the problem of when to order lab tests for critically ill patients.  
Patients in the ICU can have rapidly worsening clinical status, and blood-based diagnostic testing 
can help detect early signs of dangerous conditions such as sepsis or kidney failure.  However, 
testing is not free, both in actual expense, but also patients do not have an infinite blood volume. 
Although patients in the ICU can have continuous venous access, in the general case, a blood draw 
is a form of invasive procedure, with discomfort and some risk involved.  Li-Fang Cheng and 
colleagues [9] have developed a reinforcement learning framework to train a system for an optimal 
testing policy.  This type of approach can both reduce unnecessary lab testing, but also suggests 
testing earlier than is currently done, in advance of critical events, ideally enabling early 
intervention to prevent poor outcomes.   
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Copy number variants (CNVs) are an important type of genetic variation that play a causal
role in many diseases. The ability to identify high quality CNVs is of substantial clinical
relevance. However, CNVs are notoriously di�cult to identify accurately from array-based
methods and next-generation sequencing (NGS) data, particularly for small (< 10kbp)
CNVs. Manual curation by experts widely remains the gold standard but cannot scale with
the pace of sequencing, particularly in fast-growing clinical applications. We present the
first proof-of-principle study demonstrating high throughput manual curation of putative
CNVs by non-experts. We developed a crowdsourcing framework, called CrowdVariant, that
leverages Google’s high-throughput crowdsourcing platform to create a high confidence
set of deletions for NA24385 (NIST HG002/RM 8391), an Ashkenazim reference sample
developed in partnership with the Genome In A Bottle (GIAB) Consortium. We show that
non-experts tend to agree both with each other and with experts on putative CNVs. We show
that crowdsourced non-expert classifications can be used to accurately assign copy number
status to putative CNV calls and identify 1,781 high confidence deletions in a reference
sample. Multiple lines of evidence suggest these calls are a substantial improvement over
existing CNV callsets and can also be useful in benchmarking and improving CNV calling
algorithms. Our crowdsourcing methodology takes the first step toward showing the clinical
potential for manual curation of CNVs at scale and can further guide other crowdsourcing
genomics applications.
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1. Introduction

Copy number variation is a type of structural variation that involves large-scale duplications
or deletions of parts of a chromosome. Copy number variants can have substantial e↵ects on
cell and organism phenotype and are associated with many kinds of human disease (Redon
et al., 2006) (Feuk, Carson, & Scherer, 2006) (Sudmant et al., 2015). Identifying CNVs is an
important component of clinical pipelines for assessing genetic mutations that contribute to
disease progression. Numerous algorithms have been developed to characterize these variants
from genotyping arrays and next-generation sequencing data (English et al., 2015) (Tattini,
D’Aurizio, & Magi, 2015) (Mills et al., 2011) (Kidd et al., 2008). However, these algorithms
often have poor concordance on both the location and the type of copy number variant, par-
ticularly for small-scale (< 10kbp) CNVs (Scherer et al., 2007) (Pinto et al., 2011), leading
experts to rely heavily on manual curation. One key challenge in further developing and as-
sessing these algorithms is the lack of a large set of ”gold standard” or reference copy number
variants.

Crowdsourcing has been used successfully to obtain gold standard labels in projects such as
Galaxy Zoo (Raddick et al., 2010), ClickWorkers (Ishikawa, ST and Gulick, 2012), FoldIt
(Cooper et al., 2010), and Zooniverse (Prather et al., 2013), but little investigation has been
done to understand how crowdsourcing can be best utilized to analyze genomic variation
(Haghighi et al., 2018). Basic questions include whether or not any domain expertise is truly
needed, how large the crowd should be, and how to best train and display genetic variation
to workers. We investigated the use of crowdsourcing platforms to classify copy number vari-
ants, focusing on deletions, and to address these basic questions. Google has developed the
Crowd Compute platform to facilitate large-scale crowdsourcing problems, and we developed
our framework with this platform to enable high throughput classifications. In this work we
show proof of principle in a well characterized reference genome, an essential first step before
deploying the method on more variable genomes such as from clinical samples. In a similar
vein, we focus on deletions as the most frequent and also likely easiest to classify type of
structural variation before focusing on more complex applications. CrowdVariant can be used
to develop high confidence CNV sets, to benchmark new CNV detection algorithms, and to
enable high throughput manual curation of CNVs using both experts and non-experts.

2. Results

2.1. The CrowdVariant Framework

The CrowdVariant framework uses a crowdsourcing platform to display putative copy number
variant sites to workers and aggregates classifications from a pool of workers to determine the
copy number state. Using this framework, we first ran an experiment to compare non-expert
and expert classifications on a pilot set of putative CNV sites and then expanded our classi-

c� 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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fications to curate a genome-wide set of high confidence CNVs [Figure 1].

Fig. 1. The experimental design was constructed to first evaluate a pilot set of sites with both
experts and non-experts before applying the same framework to a genome-wide set of sites using
non-experts only.

CrowdVariant displays pileup images of putative copy number variant sites using the Integra-
tive Genomics Viewer (IGV), showing all reads aligned to the site and the flanking regions
[Supplementary Figure 1] (Thorvaldsdóttir, Robinson, & Mesirov, 2013). Workers classify the
site, assess break point accuracy and report their confidence based on seeing one image at a
time.

We selected a set of 500 putative deletion sites for the pilot phase of our study. We first called
putative sites using an ensemble approach from multiple sequencing technologies (Illumina,
PacBio, Complete Genomics and BioNano) and corresponding algorithms (see Supplementary
Methods for details) (Abyzov, Urban, Snyder, & Gerstein, 2011) (Garrison & Marth, 2012)
(Mohiyuddin et al., 2015) (Hormozdiari, Hajirasouliha, McPherson, Eichler, & Sahinalp, 2011)
(Iqbal, Caccamo, Turner, Flicek, & McVean, 2012) (Mak et al., 2016) (Chaisson et al., 2014)
(Nattestad & Schatz, 2016) (Drmanac et al., 2010). We then randomly selected from all pu-
tative sites 500 pilot sites ranging from 100bp to 3000bp with varying levels of support from
existing algorithms [Supplementary Table 1].

We used aligned 10X Genomics (10X) and Illumina paired-end (Illumina) reads from the
reference Ashkenazim trio made available by the Genome In A Bottle (GIAB) Consortium
(Zook et al., 2016). For each putative copy number variant site, we generated an image for
each member of the trio (son/mother/father) using Illumina reads, one image for the son’s
diploid reads and one image for each haplotype of the son’s reads using 10X reads. Although
workers potentially saw multiple images of the same site, we did not disclose to workers the
experimental design, the sequencing technology, the individual or the site being shown in an
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e↵ort to most fairly compare experts and non-experts.

In our pilot study, 20 non-experts each classified all 6 images for the 500 pilot sites. We
launched a global recruitment for self-reported experts curators with over 110 individuals
from several dozen institutions signing up to classify variants. The participation rate was
highly variable with an average of 76 questions per expert [Supplementary Figure 2]. We
ensured that all 6 images for at least 100 sites were classified by 5 experts each.

2.2. Non-experts can curate high quality copy number variants

Both experts and non-experts agreed on a consensus classification for the majority of sites
[Supplementary Figure 3]. We visualized the responses for non-experts [Figure 2] and experts
[Figure 3] by weighting each copy number classification and clustering workers and sites to re-
veal performance di↵erences across sequencing platforms and individuals. We kept the identity
of each non-expert worker separate, but we merged the expert answers into artificial work-
ers 1 through 5 as experts did not answer enough questions individually to be meaningfully
compared. For 86% of images, at least 70% of non-expert workers agreed on the classification,
showing that non-experts can be trained to interpret copy number variants in a consistent
manner [Supplementary Table 2]. Non-experts primarily had di�culty classifying haplotype
images and systematically confused CN2s as CN1s for haplotype images only (see Fig. 8 haplo-
type heatmaps). Beyond these systematic errors, there were several non-experts that deviated
from the majority either from lack of e↵ort or understanding. Improving the documentation
by showing more than 2 examples of each copy number type could further improve non-expert
performance.

Agreement among workers was used to assign a final classification and confidence score to each
putative site. We defined the CrowdVariant score as the proportion of workers that voted in
favor of the most popular classification (CN0/CN1/CN2/None of the Above), with higher
scores reflecting more confident classifications. We incorporated worker classifications for all
images of the same site, but classified each site for each individual in the trio independently.
We counted all diploid classifications but only those haploid classifications where the pair of
haplotype images was consistent with a diploid classification [Supplementary Methods]. We
assign the most likely copy number state to each site by selecting the classification with the
largest proportion of votes.

Non-experts performed similarly to experts when comparing the rate of Mendelian violations
among the trio (classifications that would not plausible from Mendelian inheritance) for each
site [Supplementary Methods] [Table 1]. We found that 89% and 90% of all sites were classi-
fied without a Mendelian violation for experts and non-experts, respectively. The sites with
Mendelian violations had lower scores and could largely be filtered out of the high quality
set. The CrowdVariant scores discriminated Mendelian violations from genetically plausible
trio classifications with an AUC of 0.89 for non-experts and an AUC of 0.87 for experts [Sup-
plementary Methods] [Supplementary Figure 4]. For comparison, we randomized all answers
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Fig. 2. Non-expert classifications for 500 sites were color coded, weighted and clustered (see Supp.
Methods for details). Rows represent a question (i.e. an image of a putative site using a particular
sequencing technology) and columns represent workers. Clockwise from top left: 10X son, 10X son
haplotype 1 only, 10X son haplotype 2 only, Illumina mother, Illumina father, Illumina son.

Fig. 3. Expert classifications for 100 sites were color coded, weighted and clustered (see Supp.
Methods for details). Rows represent a question (i.e. an image of a site using a particular sequencing
technology) and columns represent workers. Left to right: 10X son, 10X son haplotype 1 only, 10X
son haplotype 2 only, Illumina son, Illumina father, Illumina mother.

by re-sampling the entire worker by classification matrices for experts and non-experts and
re-computed the rate of Mendelian violations [Supplementary Table 3]. The AUCs for expert
and non-expert randomized answers were 0.47 and 0.50, respectively, and both 95% confidence
intervals overlapped a random AUC of 0.5.

We curated a high confidence set of CNVs for the son (NA24385) with high probability of
correctness and no Mendelian violations [Supplementary Materials]. We initially intended to
use self-reported confidence to filter lower quality classifications, but most non-experts consis-
tently reported medium to high confidence despite minimal training [Supplementary Figure
5]. To avoid relying on self-reported confidence, we ranked all 500 sites by their CrowdVariant
score and selected all sites with a higher score than the site with the first Mendelian violation.
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Metric
Data Set

Expert Non-expert

Percent of sites without violation 89/100 (89%) 448/500 (90%)

ROC AUC 0.87 0.89

ROC AUC 95% confidence interval [0.79, 0.95] [0.86, 0.92]

Average violation probability 0.15 0.14

This violation occurred at score 0.83 and resulted in discarding approximately half of the sites
for a total of 266 high confidence sites. The high confidence set of sites contains 122 CN0, 138
CN1, 5 CN2 and 1 ”None of the above” classification. 252 out of 266 are supported by at least
two other technologies. Importantly, for all sites in the high quality set that were classified by
both experts and non-experts, there was 100% agreement (n=56 sites) between experts and
non-experts.

2.3. CrowdVariant can classify CNVs with variable support or unclear
breakpoints

CrowdVariant agrees with consensus classifications from existing algorithms, while also clas-
sifying variants that are challenging for existing algorithms. CrowdVariant scores assigned to
each site are correlated with the number of technologies underlying the original calls [Figure
4]. CrowdVariant classifications also show strong agreement with svviz (Spies, Zook, Salit, &
Sidow, 2015), a semi-automated visualization tool that determines whether each read sup-
ports the reference allele, alternate allele, or is ambiguous. We used a preliminary heuristic
method to classify copy number variants based on the read counts supporting the reference
and alternate alleles as determined by svviz for each dataset, and required agreement across
all datasets that had clear support for a genotype [Supplementary Methods]. When comparing
all high confidence classifications, agreement with svviz was 82%. CrowdVariant was able to
resolve 26 sites that were uncertain for svviz, explaining part of the discrepancy. When we
removed sites that were classified as ”None of the Above” in CrowdVariant or uncertain in
svviz, agreement was 91% between the two methods. Agreement with svviz also increased
with the number of supporting technologies [Figure 5].

The true power of incorporating many data types is clear when all 6 images of the same site are
viewed together [Figure 6]. We find in multiple cases the crowd is able to resolve copy number
state where other methods cannot, particularly when the boundary points are incorrect or
ambiguous [Figure 7, Supplementary Figure 7]. While non-experts make some mistakes, we
find that they do so in a consistent manner, such as mistaking a di�cult-to-sequence region
for a deletion, and they could likely be trained to recognize other features in the image that
would clarify these mistakes. Phased data is particularly powerful for classifying heterozygous
CNVs that are otherwise ambiguous and provides visual confirmation of the CrowdVariant
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Fig. 4. CrowdVariant scores determined by
non-expert workers stratified by the number
of supporting technologies from existing CNV
callers.

Fig. 5. Agreement (within each bin) with svviz
classifications for sites with varying support from
orthogonal technologies. We only compare sites
with CN0, CN1 or CN2 classifications from both
methods.

results in conjunction with all other images for the site.

Fig. 6. Viewing all image types together shows the power of combining familial and phasing in-
formation in di↵erent sequencing platforms. This variant (chr15:36160125-36162210) was classified
as copy number 1 in the son with CrowdVariant score 1.0 and is part of the high quality set. The
variant is visible in the mother, both diploid son images and one of the haplotype images. Clockwise
from top left: Illumina mother, 10X son, 10X son haplotype 1, 10X son haplotype 2, Illumina son,
Illumina father.
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Fig. 7. Viewing all image types together shows the power of combining familial and phasing infor-
mation in di↵erent sequencing platforms. This variant (chr19:57111292-57111809) was classified as
CN1 in the son with score 0.89 and is part of the high quality set. Svviz classified this example as
CN2 due to the imprecise breakpoints. Clockwise from top left: Illumina mother, 10X son, 10X son
haplotype 1, 10X son haplotype 2, Illumina son, Illumina father. Mother appears to share CNV with
the son, while the father is wildtype. Visualizations produced by default IGV settings.

2.4. CrowdVariant can be used to curate a genome-wide high quality set of
copy number variants

Having demonstrated that we can use non-expert workers to curate a high quality set of copy
number variants, we expanded our classifications genome-wide. We took all putative CNV
sites that were supported by GIAB callsets from at least 2 technologies and had not been
classified in the pilot set (n=2271) and recruited 20 non-expert classifications for each site for
all 6 image types. Due to the larger volume of images, not every worker classified all images
in the genome-wide set. Consistent with the pilot study, we observed strong agreement among
non-expert workers in the genome-wide set. Again, the primary inconsistencies were classifi-
cations for the haplotype images [Figure 8].

We scored each site by the proportion of workers voting for each classification and applied the
threshold determined by the first 500 sites to curate high quality genome-wide classifications.
This resulted in 1,515 new high confidence sites for the son (NA24385). The CrowdVariant
scores for these sites correlate with the number of supporting technologies [Figure 9]. Likely
due to requiring 2 supporting technologies, these sites were in even stronger agreement with
svviz with 97.2% agreement among sites given CN0/CN1/CN2 classifications with both meth-
ods [Figure 10]. The high quality genome-wide set includes calls for 93 sites that svviz found
uncertain. The additional genome-wide set includes 959 CN1, 552 CN0, 3 CN2 and 1 None of
the Above. The CrowdVariant scores for the genome-wide set of CNVs also demonstrate sim-
ilar concordance with orthogonal technologies [Figure 9] and classify Mendelian violations in
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Fig. 8. Non-expert classifications for genome-wide sites in Phase 3 were color coded, weighted and
clustered. Rows represent a question (i.e. an image of a particular site using a particular sequencing
technology) and columns represent workers. Clockwise from top left: 10X son, 10X son haplotype 1
only, 10X son haplotype 2 only, Illumina mother, Illumina father, Illumina son.

the trio with auROC 0.94 [Supplementary Figure 8]. Above the threshold for high confidence
determined from the pilot study, there was only one Mendelian violation in the genome-wide
set occurring at a score of 0.94 [Supplementary Figure 9]. Combining with the 266 high quality
sites from the pilot set, we finalized a set of 1,781 high confidence CNVs.

Fig. 9. CrowdVariant scores for all genome-
wide sites determined by non-expert workers
stratify by the number of supporting technolo-
gies from existing CNV callers.

Fig. 10. Agreement with svviz classifications for
genome-wide sites with varying support from or-
thogonal technologies. We only compare sites with
CN0, CN1 or CN2 classifications from both meth-
ods.
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3. Discussion

We show that individuals with no background in genomics can be trained to accurately clas-
sify and thereby curate copy number variants. This is possible because the classification of
CNVs based on images of aligned NGS reads is ultimately a pattern recognition problem, and
even non-experts with limited training can excel at recognizing these patterns. As soliciting
expert participation is prohibitively more di�cult than non-expert participation (evident in
the small amount of expert data we were able to collect), the ability to use non-experts en-
ables crowdsourcing on a substantially larger scale. Deployment of manual curation on the
ever growing body of clinical samples would likely require this adaptation as the volume will
quickly exceed the capacity of experts. In this study, the larger scale a↵orded by non-expert
workers allowed us to curate thousands of putative CNVs across the entire genome of a single
individual from the Genome In A Bottle reference collection.

We are able to use non-expert classifications by using confidence scores to recognize the limit
of their abilities. For many applications, such as deriving gold standard labels to improve ma-
chine learning methods, it is more critical to determine which classifications are trusted than
to classify everything correctly. As machine learning approaches are increasingly adopted to
solve genomic problems, crowdsourcing can provide an avenue to derive trusted training sets
at high throughput for low cost.

While we have shown that crowdsourcing can be used to generate high confidence labels for
CNVs, there are several limitations to our study. First, the set of CNVs we present is not a
complete set for the GIAB Ashkenazim son (NA24385), but instead a set of the highest confi-
dence sites. Further, we only know that a CNV is segregating at the site, but we do not know
its exact position or size. One broader limitation of crowdsourcing is that people can be consis-
tent but wrong, however this limitation is shared by other approaches such as ensemble-based
computational methods. In the current framework, our high confidence classifications are also
enriched for sites that are overall easier to classify. However, there are many ways to increase
confidence for more di�cult questions by scaling the number of workers, augmenting training
schemes, improving confidence metrics or considering alternative experimental designs such as
those that incorporate both experts and non-experts depending on the particular question’s
di�culty. Nevertheless, we are confident that our crowdsourced, genome-wide set of curated
CNVs will prove valuable to methods developers working to improve CNV calling algorithms.

Many possibilities exist for improving and expanding on this proof-of-concept study demon-
strating the crowdsourcing curation of genomic variants. Incorporating images from additional
technologies, such as long-read sequencing, could likely identify additional high confidence sites
and remove some errors from using only short reads. Additional work might also use input
from users about the precision of breakpoints. Other types of images could also be used, such
as dot plots from assembly-assembly alignments and svviz images with reads mapped to ref-
erence and alternate alleles. These additional methods may help non-experts classify more
di�cult types of structural variants, like complex changes, insertions, inversions, and translo-
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cations, as well as variants in di�cult, repetitive regions of the genome.

We use Google’s high throughput crowdsourcing platform, but as additional crowdsourcing
platforms become available at low cost, soliciting participation from the crowd will become
progressively easier. By using strategic experimental design, crowdsourcing can be a produc-
tive avenue to compete with and improve upon computational methods in di�cult areas of
genomics. Copy number variation, a domain where many experts still use manual inspection,
is just one of these many areas. We provide a resource of high quality copy number variant
classifications for a reference genome as a result of our study but ultimately see the potential
expand far beyond these results.

Data Access

All Supplementary Methods, Figures and Data are available at ftp://ftp-trace.ncbi.nlm
.nih.gov/giab/ftp/technical/CrowdVariant SupplementaryInfo/. We provide the scores
for each putative copy number variant site and label the high quality sites. All raw worker
answers for both non-experts and experts are available as well.
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A repository of microbial marker genes related to human health and diseases for
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The microbiome research is going through an evolutionary transition from focusing on the
characterization of reference microbiomes associated with different environments/hosts to
the translational applications, including using microbiome for disease diagnosis, improving
the efficacy of cancer treatments, and prevention of diseases (e.g., using probiotics). Micro-
bial markers have been identified from microbiome data derived from cohorts of patients
with different diseases, treatment responsiveness, etc, and often predictors based on these
markers were built for predicting host phenotype given a microbiome dataset (e.g., to pre-
dict if a person has type 2 diabetes given his or her microbiome data). Unfortunately, these
microbial markers and predictors are often not published so are not reusable by others. In
this paper, we report the curation of a repository of microbial marker genes and predictors
built from these markers for microbiome-based prediction of host phenotype, and a compu-
tational pipeline called Mi2P (from Microbiome to Phenotype) for using the repository. As
an initial effort, we focus on microbial marker genes related to two diseases, type 2 diabetes
and liver cirrhosis, and immunotherapy efficacy for two types of cancer, non-small-cell lung
cancer (NSCLC) and renal cell carcinoma (RCC). We characterized the marker genes from
metagenomic data using our recently developed subtractive assembly approach. We showed
that predictors built from these microbial marker genes can provide fast and reasonably ac-
curate prediction of host phenotype given microbiome data. As understanding and making
use of microbiome data (our second genome) is becoming vital as we move forward in this
age of precision health and precision medicine, we believe that such a repository will be
useful for enabling translational applications of microbiome data.

Keywords: microbiome; microbial marker gene; type 2 diabetes; liver cirrhosis; immunother-
apy efficacy.

1. Introduction

Recent studies of microbiomes (i.e., communities of microorganisms) have shaped a new view
of the biological world in which various microbial organisms play important roles in the health
of humans, animals, plants, and the environment.1–4 Metagenome-wide association studies5

have enabled the high-resolution discovery of associations between the microbiome and human
diseases, including type 2 diabetes,6 liver cirrhosis,7 atherosclerotic cardiovascular disease,8

colorectal cancer9 and rheumatoid arthritis.10 The announcement of the National Microbiome
Initiative (NMI) on May 13, 2016, marks a milestone in microbiome research. The NMI aims

c© 2018 Wontack Han and Yuzhen Ye. Open Access chapter published by World Scientific Publishing
Company and distributed under the terms of the Creative Commons Attribution Non-Commercial
(CC BY-NC) 4.0 License.
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to advance the understanding of microbiome behavior and enable protection and restoration
of healthy microbiome function. Development of computational tools for interpretation and
integration of meta-omics data will be key to advancing the field and ultimately achieving the
goal of the NMI.

Unlike traditional microbial genomic sequencing projects, metagenomics attempts to di-
rectly characterize the entire collection of genes within an environmental sample (i.e., the
metagenome) and analyze their biochemical activities and complex interactions.11,12 Land-
mark progress in metagenomics occurred in 200413,14 when two research groups published
results from large-scale environmental sequencing projects. Many more metagenomic projects
have been conducted or are ongoing, representing broadened applications from ecology and
environmental sciences15 to the chemical industry16 and human health.17 Metagenomics, in
principle, enables the study of any microbial organism, including the large number of mi-
croorganisms that cannot be isolated or are difficult to grow in a lab. More importantly,
microbes, by nature, live in communities where they interact with each other by exchanging
nutrients, metabolites, and signaling molecules. Metagenomics enables the characterization of
microbes in natural environments, addressing important biological questions related to mi-
crobial environments such as the diversity of microbes in different environments,18 microbial
(and microbe-host) interactions,19 and the environmental and evolutionary processes.20

Earlier metagenomics studies focused on the characterization of reference microbiomes
associated with different environments/hosts. Recent studies shift the emphasis to the trans-
lational applications, including using microbiome for disease diagnosis, improving the efficacy
of cancer treatments (including cancer chemotherapy and immunotherapy), and prevention
of diseases (e.g., using probiotics).21 Gut bacterium Eggerthella lenta was found to be able
to manipulate cardiac drug inactivation.22 Harnessing the host immune system constitutes a
promising cancer therapeutic because of its potential to specifically target tumor cells while
limiting harm to normal tissues. Recent clinical success has fueled the enthusiasm about
immunotherapy using antibodies that block immune inhibitory pathways, specifically, the
CTLA-4 and the PD-1/PD-L1 axis.22,23 The gut microbiota plays an important role in shap-
ing hosts immune responses,24 so there is no surprise that a few recent studies have shown that
intestinal microbiota (and some particular microbial species/strains) can mediate immune ac-
tivation in response to chemotherapeutic agents and immunotherapy. Sivan and colleagues25

found that commensal Bifidobacterium promotes antitumor immunity and facilitates anti
PD-L1 efficacy. They also found that oral administration of Bifidobacterium alone improved
tumor control to the same degree as anti PD-L1 therapy (checkpoint blockade), and combi-
nation treatment nearly abolished tumor outgrowth. Gut microbiota can also modulate the
actions of chemotherapeutic drugs used in cancer and other disease, reducing the toxicity of
chemotherapeutic compounds and improve their efficacy.26 A working knowledge of the micro-
biome (our second genome27) is vital as we move forward in this age of precision health and
precision medicine,28 especially in the area of cancer research, which aims at effective treat-
ments for various kinds of cancer based on the knowledge of genetics, biology of the disease
and host-microbiome interactions.29

The success of the translational applications of microbiome data relies on the character-
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ization of differential markers (species, genes, biological pathways, among others) that can
differentiate different groups of microbiome data (e.g., healthy individuals versus patients,
treatment responders versus non-responders). It is also important to understand factors in-
fluencing the gut microbiome and strategies to manipulate the microbiome to augment ther-
apeutic responses and disease prevention.30

To derive microbial markers that are associated with a specific host phenotype (e.g.,
healthy versus diseased), a key task is to compare two groups of microbiome (e.g., one group
of microbiome data derived from healthy individuals versus a group derived from patients)
to detect consistent differences (e.g., species or genes) between the groups, considering the
large inter- and intra-individual variations of the microbiome.31 The typical analysis workflow
is to assemble and annotate metagenomic datasets individually or as a whole, followed by
statistical tests to identify differentially abundant species/genes. The subtractive assembly
approaches we previously developed, subtractive assembly (SA)32 and concurrent subtractive
assembly (CoSA) approach,33 are de novo assembly approaches for comparative metagenomics
that first detect differential reads between two groups of metagenomes and then only assemble
these reads. When evaluated using simulated and real type 2 diabetes microbiome datasets,33

our subtractive assembly approaches reduce the datasets up front, which also result in better
characterization of the differential genes.

Recent studies have revealed microbial markers for disease diagnosis and other purposes,
and predictors built based on these markers have achieved promising accuracy for predictions.
The pitfall of most of these studies is that the microbial markers and predictors built from these
markers are not made available for others to use. For example, Qin et al.7 constructed a support
vector machine discriminator based on microbiome data for liver cirrhosis prediction using 15
gene markers, achieving impressive accuracy, with AUC (area under the receiver operating
characteristic curve) of 0.918 and 0.838, respectively, for training and leave-one-out cross-
validation. Although the authors listed the identities of these 15 genes in a supplementary table
(Supp Table 12 in7), they did not release the gene sequences, nor the discriminator they built.
It makes it impossible for others to use their marker genes and predictors. Using our recently
developed computational approach CoSA,33 we re-analyzed several large collections of publicly
available microbiome datasets, in an attempt to create a repository of microbial marker genes
and the predictors built from these marker genes for translational applications of microbiome
data (e.g., to predict if a cancer patient is likely to be responsive to PD-1 blockage treatment
given his/her microbiome data). We note there is no shortage of microbiome repositories;
instances include the Human Microbiome Project repository ( http://hmpdacc.org) and the
MG-RAST server (https://www.mg-rast.org). However, there is no repository of bacterial
marker genes and predictors for microbiome-based predictions to the best of our knowledge.
As a proof of concept, we focused on two diseases, type 2 diabetes and liver cirrhosis, and two
types of cancers. We first extracted microbial marker genes from these microbiome datasets,
then built predictors using these genes, and finally created a repository of the marker genes
and predictors, as well as a companion computational pipeline for using this repository.
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2. Methods

2.1. Microbiome datasets

We focus on microbial genes related with two diseases and the treatment efficacy of two types
of cancer:

(a) T2D (type 2 diabetes). We used the T2D cohort from a study,6 which contains microbiome
data from two groups of 70-year-old European women, one group of 50 with T2D and the
other a matched group of healthy controls (NGT group; 43 participants). We previously
used this cohort for testing our subtractive assembly approaches.32,33

(b) Cirrhosis (liver cirrhosis). Qin et al.7 derived metagenomic datasets from 98 Chinese pa-
tients with liver cirrhosis and 83 healthy individuals as training datasets to infer marker
genes and build a predictor, and microbiome data from additional 25 patients and 31
healthy controls as validation datasets. Similarly, we used their training datasets for char-
acterization of marker genes and training of predictors, and their validation datasets for
independent tests of the predictors for liver cirrhosis.

(c) NSCLC (non-small-cell lung cancer). It has been shown that gut bacteria can affect pa-
tient responses to cancer immunotherapy (e.g., immune checkpoint inhibitors ICIs that
target the PD-1/PD-L1 axis). Routy et al.34 found that primary resistance to ICIs can
be attributed to abnormal gut microbiome composition, and fecal microbiota transplan-
tation (FMT) from cancer patients who responded to ICIs into germ-free or antibiotic-
treated mice ameliorated the antitumor effects of PD-1 blockade, whereas FMT from
non-responding patients failed to do so. They sequenced the microbiome of the stool sam-
ples at diagnosis, and showed correlations between clinical responses to ICIs and relative
abundance of Akkermansia muciniphila. We used microbiome datasets from this study,
which includes 32 non-responders and 33 responders, aiming to infer marker genes that
can be used to distinguish responders from non-responders.

(d) RCC (renal cell carcinoma). We used datasets from the same study34 that involve 20
non-responders versus 42 responders to a different cancer type, renal cell carcinoma.

Table 1 summarizes the microbiome datasets that were re-analyzed in this paper.

Table 1: Summary of the microbiome datasets for training the predictors.

Abr. Disease Reference # of Total base pairs
samples (bps)

T2D Type 2 diabetes [6] 93 225 GB
Cirrhosis Liver cirrhosis [7] 181 817 GB
NSCLC Non-small-cell lung cancer [34] 65 153 GB
RCC Renal cell carcinoma [34] 62 147 GB
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2.2. Microbial gene characterization and quantification

For each collection of above mentioned microbiome datasets, we first applied CoSA to assem-
ble genes that are potentially differential between the groups (i.e., for the T2D collection and
the liver collection, the patient group versus group of healthy individuals, and for the NSCLC
and RCC collections, responders versus non-responders). These genes were then subject to
feature selection. Using selected marker genes, different machine learning (ML) approaches
were employed to build predictors for microbiome-based host phenotype prediction. We re-
fer the readers to our previous publications32,33 for details about our subtractive assembly
approach CoSA. Briefly, the CoSA approach uses a Wilcoxon rank-sum (WRS) test to de-
tect k-mers that are differentially abundant between two groups of microbiomes (CoSA uses
KMC235 for k-mer counting, and employs the “mannwhitneyutest” function from ALGLIB
(http://www.alglib.net) for the test). It then uses identified differential k-mers to extract
reads (by a voting strategy) that are likely from the sub-metagenome with consistent abun-
dance differences between the groups of microbiomes. Further, CoSA attempts to reduce the
redundancy of reads (from abundant common species) by excluding reads containing abun-
dant k-mers. Extracted reads are then assembled using MegaHit,36 and genes are predicted
from the assembled contigs using FragGeneScan.37 The quantification of the genes in each
microbiome is done by reads mapping of shotgun reads onto the genes using Bowtie 2.38 We
counted a gene’s abundance based on the counts of both uniquely and multiplely mapped
reads (the contribution of multiplely mapped reads to a gene was computed according to the
proportion of the read counts divided by the gene’s unique abundance7). The read counts were
then normalized per kilobase of gene per million of reads in each sample.

2.3. Inference of microbial marker genes using machine learning
approaches

Microbial genes assembled and quantified mentioned above for the different microbiome
datasets were used as candidate features for selecting microbial marker genes and for training
predictors for microbiome-based host phenotype prediction (see Figure 1(a)). For feature se-
lection, we first applied a q-value cutoff and then used two different feature selection methods
(tree-based feature selection and L1-based feature selection) to select a smaller number of mi-
crobial genes, and used them as microbial marker genes. We tried different ML algorithms for
phenotype prediction, including Support Vector Machines (SVM), Random Forests (RF), De-
cision Trees (DT), Neural Networks (NN), and K-nearest Neighbor (KN) approach, along with
different cross-validation strategies. We used the scikit-learn (http://scikit-learn.org) im-
plementation of these ML approaches in this study. We tested RF with 10, 100 and 1000 trees
and KN with 20 neighbors. For NN, we used Bernoulli Restricted Boltzmann Machine (RBM)
with 3200 binary hidden units. We used the default settings for SVM and DT.

2.4. Mi2P: from microbiome to phenotype

We created a repository of above mentioned microbial marker genes and predictors built from
the marker genes. We also developed a computational pipeline called Mi2P (which stands
for “from Microbiome to Phenotype”) for users to use this repository. As shown in Figure
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1(b), Mi2P is composed of three main steps: 1) mapping of metagenomic sequencing reads
onto the marker genes using Bowtie 2;38 2) quantification of the marker genes based on read
counts, using both uniquely and multiplely mapped reads (see 2.2); and 3) the estimated
gene abundances are used as input features to the microbiome-based phenotype predictors. A
wrapper script is included in the pipeline for the one-stop use of our pipeline, which takes a
metagenomic dataset as the input, and reports prediction as the main output. It also outputs
some intermediate results including the estimated gene abundances. Mi2P is available as open
source software for download at sourceforge (https://sourceforge.net/projects/mi2p/).

Group A
Case

Group B
Control

Extracted reads

(a) Model curation (b) Mi2P

CoSA

Bacterial genes

Marker genes

Predictors

Assembly 
Gene prediction

Feature selection

Training

Input: microbiome 
(shotgun sequences)

Marker gene abundances

Reads 
mapping

Host phenotype prediction

Prediction

Collections of 
marker genes 
(for T2D etc)

Phenotype
predictors

Fig. 1: Schematic representations of the model curation based on CoSA (a) and Mi2P (Mi-
crobiome to Phenotype) pipeline (b).

3. Results

3.1. Accuracy of microbiome-based predictors

We built predictors for predicting host phenotype based on the microbiome data. We evaluated
the accuracy of the predictors using different cross-validation strategies and ML approaches.
Furthermore, we tested two different feature selection approaches (tree-based and L1-based)
with liver cirrhosis data sets. Since we have already reported the performance of T2D predic-
tion in our previous publications,32,33 we focused on reporting the results for liver cirrhosis
and cancer treatment responsiveness prediction based on microbiome data in this paper.

Figure 2 shows the ROC plots for liver cirrhosis prediction using different ML approaches
and feature selection methods. The figure shows that RF achieved better predictions than
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SVM approach. It also shows that predictors built from genes selected using the tree-based
feature selection method performed better as compared to L1-based feature selection method.
We therefore chose the tree-based feature selection as the default approach in our pipeline.

Table 2 summarizes the accuracy of the predictors we built for liver cirrhosis. Our SVM
based predictor achieved comparable performance as the predictor reported in Qin et al..7

However, our RF based predictor achieved significantly better predictions with higher AUCs.
We speculate that the accuracy improvement is a result of the combination of more marker
genes and a different machine learning approach (RF). We note that we tested RF using
different numbers of trees, including 10, 100 and 1000. We found that RF with 100 trees and
1000 trees achieved slightly better predictions than RF with 10 trees. Balancing running time
and accuracy, we chose RF with 100 trees.

Table 2: Accuracy of microbiome-based predictors for liver cirrhosis.

methods # of marker
SVM RF (100 trees) NN KN

genes

crossa
Qin et al. 15c 0.84 c N/A N/A N/A
Our approach 46 0.92 0.92 0.88 0.71

validationb Qin et al. 15c 0.84 c N/A N/A N/A
Our approach 46 0.83 0.93 0.81 0.72

a: the “cross” columns show the leave-one-out validation result (see Figure 2 (a)
for 5 fold cross-validation results). b: validation using microbiome data unseen in
the training of the predictor. c: numbers taken from the paper.7

Table 3 summarizes the accuracy for predicting immunotherapy responders versus non-
responders based on microbiome data. Correlations between clinical responses to immunother-
apy (ICI) and the relative abundance of Akkermansia muciniphila were reported in,34 how-
ever, no predictors were built by the authors. Here, we built predictors for immunotherapy
responsiveness using the RF approach with a small collection of marker genes, which achieved
reasonably accurate predictions for NSCLC. Predictions of RCC based on microbiome data
were less accurate. We tested RF predictors with different trees, and results show that RF with
100 trees performed relatively well for both cancers, similar to prediction of liver cirrhosis.
Therefore, we chose RF predictors with 100 trees for immunotherapy resposiveness prediction
to include in our Mi2P package. We note that we also applied SVM approach to this dataset,
which however achieved much worse predictions (AUC = 0.61) than the RF predictors.

3.2. Microbial marker genes

We include the sequences of microbial marker genes (both proteins and gene sequences), along
with their annotations (by hmmscan39) in the Mi2P package. Table 4 shows a few examples
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(a) Tree-based feature selection

(b) L1-based feature selection

Fig. 2: Receiver operating characteristic (ROC) plots of the liver cirrhosis predictors using
different ML approaches. We also tested two feature selection methods: tree-based feature
selection and L1-based feature selection, and the results are shown in (a) and (b), respectively.
The ROC curves were averaged over five cross validation results.
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Table 3: Accuracy of microbiome-based prediction of responders versus non-responders to
cancer treatment using RF (with 10, 100, and 1000 trees), DT and NN approaches.

Cancer # of RF DT NN
type marker genes 10 100 1000 mean AUC mean AUC

NSCLC 116 0.86 0.91 0.89 0.72 0.81
RCC 85 0.84 0.83 0.81 0.79 0.78

identified from the liver cirrhosis cohort. These marker genes can be either more abundant in
healthy individuals (i.e., depleted in liver cirrhosis microbiomes), or more abundant in liver
cirrhosis microbiomes. We also note that a significant fraction of genes have no functional
annotations according to hmmscan search (or annotated to a domain without functional an-
notations, such as DUF3829): 0 out of 5 (0%) depleted genes, and 4 out of 41 (10%) enriched
genes in liver cirrohosis microbiomes have no functional annotations.

Table 4: Examples of microbial marker genes for liver cirrhosis prediction.

Gene id Putative function Pfam domain

Depleted in liver cirrhosis microbiome

H k99 23554 31 534− Tripartite ATP-independent periplasmic transporters DctQ
H k99 23763 1365 1613− Helix-turn-helix domain HTH 31
H k99 38620 1 453+ Acyltransferase family Acyl transf 3
H k99 59586 373 654 - Amidohydrolase Amidohydro 2
H k99 64410 1 617 - REC lobe of CRISPR-associated endonuclease Cas9 Cas9 REC

Enriched in liver cirrhosis microbiome

L k99 1592 1 390 - Polysaccharide biosynthesis C-terminal domain Polysacc synt C
L k99 7366 1 565 - Carbon starvation protein CstA CstA
L k99 13622 1 326 + Septation ring formation regulator, EzrA EzrA
L k99 52773 82 623 + Sodium:sulfate symporter transmembrane region Na sulph symp
L k99 52825 1 408 + D-isomer specific 2-hydroxyacid dehydrogenase 2-Hacid dh C

3.3. Running time of Mi2P pipeline

We provide a wrapper script in Mi2P pipeline for users to employ our repository of microbial
marker genes and predictors. We show that this pipeline gives fast prediction of host phenotype
from a query microbiome dataset (of shotgun sequences), thanks to the relatively small number

Pacific Symposium on Biocomputing 2019

244



of microbial marker genes that need to be considered. For example, on a linux computer (with
Intel(R) Xeon(R) CPU E5-2623 v3 @ 3.00GHz), running the pipeline for two test datasets,
one from the liver cirrhosis collection (ERR528314 with 3 Gbps), and the other one from the
NSCLC collection (ERR2213736 with 2 Gbps) each took less than 6 min to complete.

4. Discussion

Our current repository of microbial marker genes and predictors is rather limited, covering only
four host phenotypes. We plan to apply the same analysis to more collections of microbiome
datasets associated with human diseases and treatment efficacy. We believe there will be no
shortage of such datasets due to the soaring interests in microbiome research associated with
human health and diseases. In addition, we will seek to collect microbial marker genes using
other approaches (e.g., based on the literature search) to enrich our repository.

A challenging problem in making our repository of microbial maker genes and predictors
useful will be the generalization issue, due to both the biological complexity (e.g., stratification
of the samples that were used to build the classifiers) and technical complexity (e.g., over-
fitting of the predictors). The generalization issue is a general problem in machine learning,
and methods have been proposed to alleviate the problem. We will explore some of the exist-
ing approaches to address this challenge. In addition, we will explore approaches to provide
confidence of predictions, rather than to simply provide yes or no prediction.

Further studies of the microbial marker genes will be needed to understand why they
are important for microbiome-host interaction, contributing to the host phenotype. We also
note that a significant fraction of the identified marker genes are of unknown functions. We
will exploit different homology- and context-based approaches to predict the functions of
these genes. Boosted by the accumulation of microbial genomes and metagenomes, a few new
methods, including our own guilt-by-association approach (the community profiling approach),
have been developed for functional annotation of microbial genes.40,41 We plan to utilize these
approaches in our future research.
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The inconsistency of open pharmacogenomics datasets produced by different studies lim-
its the usage of such datasets in many tasks, such as biomarker discovery. Investigation of
multiple pharmacogenomics datasets confirmed that the pairwise sensitivity data correla-
tion between drugs, or rows, across different studies (drug-wise) is relatively low, while the
pairwise sensitivity data correlation between cell-lines, or columns, across different stud-
ies (cell-wise) is considerably strong. This common interesting observation across multiple
pharmacogenomics datasets suggests the existence of subtle consistency among the different
studies (i.e., strong cell-wise correlation). However, significant noises are also shown (i.e.,
weak drug-wise correlation) and have prevented researchers from comfortably using the data
directly. Motivated by this observation, we propose a novel framework for addressing the in-
consistency between large-scale pharmacogenomics data sets. Our method can significantly
boost the drug-wise correlation and can be easily applied to re-summarized and normalized
datasets proposed by others. We also investigate our algorithm based on many different cri-
teria to demonstrate that the corrected datasets are not only consistent, but also biologically
meaningful. Eventually, we propose to extend our main algorithm into a framework, so that
in the future when more datasets become publicly available, our framework can hopefully
offer a “ground-truth” guidance for references.

Keywords: Pharmacogenomics Datasets; Precision Medicine; Biomarker Discovery

1. Introduction

One goal of precision medicine is to select optimal therapies for individual cancer patients
based on individual molecular biomarkers identified from clinical trials.1–3 Molecular biomark-
ers for many cancer drugs are currently quite limited, and it takes many years to identify and
validate a biomarker for a single drug in clinical trials.4,5 Recent pharmacogenomics studies,
where drugs are tested against panels of molecularly characterized cancer cell lines, enabled
large-scale identification of various types of molecular biomarkers by correlating drug sen-
sitivity with molecular profiles of pre-treatment cancer cell lines.6–10 These biomarkers are
expected to predict the chance that cancer cells will respond to individual drugs.

There have been a handful of similar pharmacogenomic studies since Cancer Cell Line
Encyclopedia (CCLE)7 and Genomics of Cancer Genome Project (CGP)11 were published in
2012 by the Broad Institute and Sanger Institute, respectively. CCLE included sensitivity data

© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and 
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 
License.
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for 1046 cell lines and 24 compounds; CGP included data for almost 700 cell lines and 138
compounds. The following Broad Institute’s Cancer Therapeutics Response Portal (CTRPv2)
dataset included 860 cell lines and 481 compounds.8,12,13 The dataset from the Institute for
Molecular Medicine Finland (FIMM) included 50 cell lines and 52 compounds.14 The new
version of Genomics of Drug Sensitivity in Cancer (GDSC1000) dataset included 1001 cell
lines and 251 compounds. There have also been similar pharmacogenomics studies specific to
particular cancers including acute myeloid leukemia.15–17

Each dataset is essentially a data matrix, where each row represents one drug, each column
represent one cell line, and values are sensitivity measures derived from dose-response curves.
IC50 (concentration at which the drug inhibited 50% of the maximum cellular growth) and
AUC (area under the activity curve measuring dose response) are commonly used as sensitivity
measures. However, recent re-investigation of published pharmacogenomics data has revealed
the inconsistency of drug sensitivity data among different studies, raising the concern of us-
ing them for biomarker discovery.18,19 In the recent comparison of drug sensitivity measures
between CGP and CCLE for 15 drugs tested on the 471 shared cell lines, the vast majority
of drugs yielded poor concordance (median Spearman’s rank correlation of 0.28 and 0.35 for
IC50 and AUC, respectively).18

There have been numerous attempts to address this issue. Mpindi et al. proposed to in-
crease the consistency through harmonizing the readout and drug concentration range.20 They
re-analyzed the dose–response data using a standardized AUC response metric. They found
high concordance between FIMM and CCLE and reasoned that similar experimental proto-
cols were applied, including the same readout, similar controls. Bouhaddou et al. calculated a
common viability metric across a shared log10-dose range, and computed slope, AUC values
and found the new matrix could lead to better consistency.21 Hafner et al. proposed another
metric called GR50 to summarize drug sensitivity and demonstrated its superiority in assess-
ing the effects of drugs in dividing cells.22 Most proposed ideas focused on forming better
summarization metric and/or standardizing experiments and data processing pipeline. Unfor-
tunately, standardization methods cannot address the inconsistency issues of existing datasets.
Re-summarization methods rely heavily on the assumption that the raw data is correct. But
since datasets produced under similar experimental protocols are more consistent with each
other, there surely exists some technical noises on the raw data.20 Hence when the overlap-
ping part between datasets grows bigger and the noise sources become more complex, these
methods might not work well. Note that most of the studies have focused on the overlaps
between CCLE and other datasets, which only contain very limited number of drugs. Novel
computational methods correcting large-scale summarized data are therefore in urgent need.

Studies confirmed that drug-wise correlation is poor, but the cell-wise correlation is con-
siderably strong (for example: overlapping cell lines between CTRPv2 and GDSC1000 have
a median Spearman’s correlation of 0.553), suggesting the underlying consistency of phar-
macogenomics datasets. Inspired by this observation, we developed a novel computational
method Alternating Imputation and Correction Method (AICM). Through purely correcting
data based on their cell-wise correlation, AICM significantly improves the drug-wise correla-
tion and hence makes the datasets more credible in future work. Furthermore, since AICM
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works on summarized data, it can easily concatenate with all previous methods proposed to
improve the summarization of raw data — just run on the re-summarized data. To the best
of our knowledge, this is the first method that leverages cell-wise information into correcting
data to address such challenge. We release the code and corrected datasets to the communitya.

2. Method

2.1. Method overview

The main goal is to increase the drug-wise correlation between two datasets, denoted as
A,B ∈ Rn×p — n drugs and p cell lines — for convenience. We denote the ith row of matrix
A as A[i,:], then the goal can be formalized into the following problem:

max
f,g

n∑
i=1

Corr
(
f(A)[i,:], g(B)[i,:]

)
(1)

This is a more generalized idea than Renyi’s correlation as we define f, g not functions but
operations such that f, g : Rn×p → Rn′×p′ , where n′, p′ ∈ Z+. Operations include using a new
summarization metric to re-summarize raw data and subsampling the data.

Now, since cell-wise correlation is consistently more concordant across different studies
than drug-wise correlation, we can raise one natural question: can we rely on the cell-wise
information to correct the datasets so that the drug-wise correlation will also be improved?
We denote Aj as the jth column of A and AJ as the union of all column Aj such that j ∈ J ,
then more precisely, we want to develop some operation f, g such that

max
f,g

n∑
i=1

Corr
(
f(A|AJ , BJ)[i,:], g(B|AJ , BJ)[i,:]

)
J ⊆

p⋃
k=1

{k} (2)

s.t. ‖f(A)−A‖ ≤ εA, ‖f(B)−B‖ ≤ εB (3)

where (·|AJ , BJ), J ⊆ ⋃p
k=1{k} means either partial or all corresponding column information of

A and B is given. ‖ · ‖ in (3) denotes an arbitrary matrix norm, and εA, εB are some arbitrary
tolerance that we allow maximum departure from the original values. We have found that
there are considerably large amount of missing data in these datasets. Surprisingly, with some
simple linear regression based imputation of these missing data based solely on the cell-wise
information, we found increase in drug-wise correlation. This confirmed our hypothesis that
cell-wise information can be utilized to correct the datasets. Thus, AICM is developed to
accomplish this goal by randomly dropping the parts of one dataset’s column and re-fit based
on another dataset’s corresponding column with a simple linear regression with `∞ norm
regularization. `∞ norm is leveraged to regularize large departure from the original data as it
bounds the maximum departure of fitted values from original values. The corrected values are
subject to a hard threshold assuming that the data are not completely destroyed by noises,
so that the corrected data shall not depart too far from the original value. By repeating
such regression process interactively between two datasets, AICM hopes to reveal the true
information shared in between these datasets and hence increase the drug-wise consistency.

ahttps://github.com/tomwhoooo/aicm
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2.2. Algorithm

The main idea is as described above: we uniformly randomly drop the values from one matrix
(response matrix) and use the other matrix’s column (variable matrix) to impute dropped
values. We then threshold the imputed values into the final correction by some proportional
threshold with respect to the original values of the response matrix. We iteratively repeat this
process by swapping the role of response and variable between two matrices. Below are the
hyperparameters for the algorithm:

• max iterations (iter ∈ Z+): how many iterations the alternating imputation and cor-
rection need to be run.

• dropping rate (r ∈ (0, 1)): what percent of the data from the response matrix should
be dropped each iteration

• regularization term (λr ∈ R+): how much the original value should be taken into account
during the regression process

• hard proportional constraint (λh ∈ (0, 1)): how many percentage points percent the
imputed data can depart from the original value absolutely

And the full algorithm is described in detail as in Algorithm 1. We use a simple linear regression
with `∞ norm (Eq 4) regularization for fitting process. Besides this, one can always use other
fitting methods. For example, if one believes sparsity needs to be incorporated, one can use
more weights and an `1 norm, or if one believes there needs to be some group effects across
cell lines, one can use an `1 and `2 norm penalty. These ideas are similar to the idea of Lasso
and Elastic Net.23,24 However, it is suggested that the objective function of this fitting process
should remain convex, since solving non-convex problems would highly likely lead to a local
extrema (or even a saddle point) and thus cause disastrous variations among trials.

2.3. Remarks

Although the whole iterative procedures are not convex, the main objective function (4) is
convex and hence the solution of this function would be a global minimum with an appropriate
solver. Thus (4) can be solved efficiently and accurately by various methods such as proximal
gradient algorithm and alternating direction of multipliers (ADMM).25,26 They have well-
established convergence theorems and are available in many open-source (i.e. SCS27) and
industrial solvers.28

In the next section, we will show the results of our algorithm on real datasets, as well
as synthetic datasets to demonstrate our method significantly increases drug-wise correlation
remarkably and does not artificially increase the correlation under certain assumption. We
will also show the result is indeed biologically meaningful.

3. Results and Discussion

3.1. Synthetic datasets

The alternative correction procedure (Swap) in AICM essentially agglomerates two datasets.
It inevitably gives rise to the concern that the corrected datasets are forced to be similar
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Algorithm 1 Alternating Imputation and Correction Method (AICM)
Hyperparameter: Dropping rate r, maximum iteration iter, regularization term λr, and
hard constraint term λh.
Input: Two data matrices, of both n drugs and p cell-lines with summarized sensitivity data,
denote as A,B ∈ Rn×p. We denote jth column of two matrices as aj , bj, j ∈ {1, 2, . . . , p}
respectively. We denote the entry at ith row and jth column as Aij and Bij respectively,
{i, j} ∈ {1, 2, . . . , n} × {1, 2, . . . , p}.
Initialization: For each j ∈ {1, 2, . . . , p}, for all i ∈ {1, 2, . . . n} such that Bij is missing while
Aij is not, we denote such set as BNA

ij , we fit a linear model such that αj , βj maximizes
‖bj − αjaj + βj‖2 and then impute the missing values as BNA

ij = αjAij + βj. Then swap the
role of A and B and repeat the above process. Now we have two matrices with same missing
indices.
for k in {1, 2, . . . Iter} do

Swap: A→ B,B → A.
Drop: Randomly drop r × n × p data uniformly from A, we denote the indices of

the dropped data as D ⊆ {1, 2, . . . , n} × {1, 2, . . . , p}, and hence dropped data as a set
ADR :=

{⋃
{i,j}∈D Aij

}
. In a similar fashion, we denote dropped data of column k as

akDR :=
{⋃
{i,j}∈D,∀i s.t. j=k Aij

}
, we denote the corresponding data in kth column of B as

bkADR. We fit a set of parameters αj ∈ R, βj ∈ R for each j with the following objective
function:

min
αj ,βj

1

n
‖bj − (αja

j + βj)‖2 + λr‖ajDR − (αjb
j
ADR + βj)‖∞ (4)

Correction: Set ajDR = αjb
j
ADR + βj for each j. We denote the set of corrected value as

{AIMP} = ⋃p
j=1{a

j
DR}.

Threshold: For {i, j} ∈ D, we set {AIMP}ij to
{AIMP}ij = max (min (Aij , (1− λh)Aij) , (1 + λh)Aij) (5)

end for

regardless of the ground truth. For example, one easily questions whether AICM improves
the between-group correlation of placebo – it functions as white noise, thus is expected to be
uncorrelated between one dataset and another. In addition, the induced randomness (Drop) in
AICM might well shake one’s confidence in the stability and reliability of this method. In this
section, we utilize synthetic datasets to demonstrate that AICM are free of these hypothetical
troubles.

In the most ideal scenario, where there exist no technical or biological noises, the drug
sensitivity matrices are expected to be the same across distinct research teams. For simplicity,
we assume that the ground truth can be separated into the drug part and the cell part. Then,
the observed matrix can be modelled as

M = α1 · 1T + a · bT +W, (6)

where α is the baseline, a ∈ Rn contains the information about the n drugs, b ∈ Rp summarizes
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the structure of the cell lines. The matrix α1 · 1T + a · bT represents the ground truth of the
drug sensitivities. We simulate the ineffective drugs as uncorrelated rows by setting the top
m entries of a to 0’s while the other rows associated with non-zero values (hence correlated)
in a are regarded as effective drugs. W ∈ Rn×p is a random matrix from a matrix normal
distribution which reflects the composite of noise. In this study, we set n = 50, p = 40, m = 10.
The details of the data generation process are deferred to supplementary materialb.

We apply AICM to the synthetic datasets with 30 different combinations of hyperparame-
ters iter and λh: iter ∈ {20, 40, 80, 100, 120, 140} and λh ∈ {0.05, 0.1, 0.15, 0.2, 0.25}, and repeat the
method for 20 times for each combination. With careful selection, we take (iter, λh) = (80, 0.1)

because this combination gives acceptable reduction on correlations between first ten uncor-
related rows and strong increase of correlations between correlated rows as demonstrated (see
Figure 1). In addition, λh = 0.1 is a conservative control of the correction step. Note that the
normalized distances between the two matrices and the ground truth are reduced to 1.188 and
1.170 respectively after correction (the distances are 1.272 and 1.267 before correction). The
decrease in distance is relatively significant, given the fact that we put a hard proportional
threshold at 10% for each individual value. Therefore, AICM does help reduce the noise in the
observed matrices. Furthermore, the Spearman’s correlation median of the correlated rows is
increased to 0.390 from 0.219 with standard deviation 0.021, while the Spearman’s correlation
median of uncorrelated rows is reduced to 0.084 from 0.095 with standard deviation 0.010. It
indicates that the result is insensitive to the randomness of the dropping procedure in AICM.
In Figure 2, the actual shift of the correlation distributions is displayed. On top of incremental
correlations of correlated rows, there appear to be reduced correlations of uncorrelated rows
after using AICM. It implies that our method not only enhances the real signals, but also
exposes the fake ones. Thus, the original concern is eliminated on indiscriminately blending
signals between datasets.

Fig. 1: The percentage change (%) of the medians of the correlations on synthetic datasets
with different parameters. x-axis is iter and y-axis is λh.

bhttps://github.com/tomwhoooo/aicm/blob/master/paper_supp
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Fig. 2: Distribution of drug-wise correlations between the synthetic datasets before AICM is
applied and after. Note that the darker green bars denote overlap of uncorrelated rows and
correlated rows in this histogram.

3.2. Real datasets

We choose the three largest datasets in PharmacoGX: CTRPv2, GDSC1000, and FIMM as
case studies.8,11,13,19 Drug names are compared by first converting to InChIKey via the we-
bchem R package.29 For the GDSC1000 dataset, 60 InChIKeys are subsequently manually
retrieved from PubChem. A Python script is prepared and used to retrieve generic cell line
“Accession numbers” from Cellosaurus.30 Given that not all cell lines returned Accession num-
bers, we remove symbols, spaces, and case from the names of the remaining cell lines for
improved matching between datasets. For each of the three datasets, their respective IC50
and AUC data are obtained from PharmacoGx. Duplicate experiments are removed from
CTRPv2 and GDSC1000 by removing all instances of a certain culture medium. Finally, the
six dataframes are filtered for matching cell lines and drugs between each other, yielding 12
dataframes which contain IC50 and AUC between all 3 datasets.

With the optimal hyperparameters fetched from synthetic data, we demonstrate the shift
of Spearman’s correlation between 90 drugs overlapping between GDSC1000 and CTRPv2
after AICM is deployed in Figure 3a. The data uses AUC summarization. It is clear that after
AICM is deployed, the two datasets become more concordant with each other — this can be
observed from both individual drug scatter plot and overall distribution. We also demonstrate
two similar graphs between 30 overlapping drugs between CTRPv2 and FIMM, 29 overlapping
drugs between GDSC1000 and FIMM with AUC summarization in Figure 3b and 3c.

Note that when we calculate the correlation, the original values that are missing are
discarded from both matrices for fair comparison. Brief statistics of the original and post-
correction drug-wise Spearman’s correlation can be found in Table 1. For significance, we
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used the cutoff of one-sided test at p-value 0.05 using the significance test of Spearman’s cor-
relation proposed by Jerrold Zar.31 The values present what percentage of drugs is significant
across two datasets.

Datasets Mean Median Significant Size
Before After Before After Before After Drug Cell

CTRPv2 & GDSC1000 0.261 0.410 0.249 0.411 63.33% 90.00% 90 566
CTRPv2 & FIMM 0.485 0.624 0.468 0.585 70.00% 93.33% 30 41
GDSC1000 & FIMM 0.250 0.352 0.278 0.380 27.59% 55.17% 29 47

Table 1: Brief statistics of the original and post-correction drug-wise Spearman’s correlation

(a) GDSC vs CTRP (b) GDSC vs FIMM (c) CTRP vs FIMM

Fig. 3: The shift of Spearman’s correlation, both individually and as a distribution, of common
drugs between specified datasets before and after AICM is run.

We demonstrate the scatter plots of some individual drug’s effect on cell lines before and
after AICM correction in Figure 4, we can indeed see the scatter plots become more concor-
dant across datasets. We color the plots in a similar fashion as Safikhani et al.: we use blue
(sensitive) to denote both datasets ≥ 0.2 and red (resistant) for both ≤ 0.2; orange denotes
inconsistency.19 We pay particular interest to drugs that show significant improvement and
drugs that show little improvement. We can see that drugs such as ZSTK474. Rapamycin,
JQ1, OSI027 and PIK93 show significant improvement. Although Velaparib shows little im-
provement, it is known to be a very selective PARP inhibitor; it is not effective in any of cancer
cell lines examined in this study. Thus it would be meaningless and artificial to increase the
correlation across two datasets.

We also present the scatter plots of some drugs shared by all three datasets: CTRPv2,
GDSC1000 and FIMM. We can see that in both 5a and 5b, the two graphs on the right
consistently demonstrate more similar pattern than the two graphs on the left, which confirms
that the variation across multiple datasets is alleviated after AICM is deployed – AICM indeed
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(a) ZSTK474. (b) RAPAMYCIN. (c) JQ1.

(d) OSI027. (e) PIK93. (f) Velaparib.

Fig. 4: Individual drugs with respect to individual cell lines before and after AICM is deployed.
First five demonstrate drugs whose correlations are significantly improved and the last one
demonstrates a drug whose correlation is poorly improved.

recovers some meaningful signals.

(a) Drug Paclitaxel. (b) Drug Navitoclax.

Fig. 5: Overlapping drugs across three datasets.
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4. Conclusions and Future Work

In this work, we develop a genuine algorithm by alternatively dropping and fitting cell-wise
data and succeeds in improving the drug-wise correlation. The algorithm is flexible to incor-
porate different ideas. For example, one can replace the fitting process with other regression
methods if one had different assumptions in mind. We have shown that with appropriate hy-
perparameters chosen, AICM can improve the drug-wise correlation across different studies
and that the increase in correlation is indeed concordant and biologically meaningful.

We realize the limitation of AICM’s dependence on the overlapping of existing data, while
such data is rather rare. We did not include experiment on CCLE dataset primarily because
it has very limited drug overlap with other existing datasets. Also, AICM currently does not
purport to correct sensitivity data of new drugs. Future work will be to extend such algorithm
into a complete framework. AICM is able to scale to reasonable amount of datasets. When a
new dataset is coming in, say X, we can conduct AICM procedure between this dataset and
each existing dataset, say Y1, Y2, . . . Yn, yield n corrected datasets, X̃1, X̃2, . . . , X̃n. Afterward,
we can do an average on corrected to specify the corrected new dataset, i.e. X̃ = 1

n

∑n
i=1 X̃i.

We will maintain a database of corrected existing drugs and cells, and when more data comes
in, we will be able to incorporate it. We hope as more data comes in, the database would
asymptotically become more accurate of reflecting true relationship between drugs and cell
lines and can thus serve as a ground-truth guidance. As for new drugs, we will develop either
a generative algorithm or a clustering algorithm, i.e. getting the latent distribution where
drug is “generated” or cluster it based on existing features, and find similar existing drugs in
hope of some practical guidance. We believe our corrected datasets will facilitate biomarker
discovery.
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Autism spectrum disorder (ASD) is a heritable neurodevelopmental disorder affecting 1 in
59 children. While noncoding genetic variation has been shown to play a major role in many
complex disorders, the contribution of these regions to ASD susceptibility remains unclear.
Genetic analyses of ASD typically use unaffected family members as controls; however, we
hypothesize that this method does not effectively elevate variant signal in the noncoding
region due to family members having subclinical phenotypes arising from common genetic
mechanisms. In this study, we use a separate, unrelated outgroup of individuals with pro-
gressive supranuclear palsy (PSP), a neurodegenerative condition with no known etiological
overlap with ASD, as a control population. We use whole genome sequencing data from a
large cohort of 2182 children with ASD and 379 controls with PSP, sequenced at the same
facility with the same machines and variant calling pipeline, in order to investigate the role
of noncoding variation in the ASD phenotype. We analyze seven major types of noncoding
variants: microRNAs, human accelerated regions, hypersensitive sites, transcription fac-
tor binding sites, DNA repeat sequences, simple repeat sequences, and CpG islands. After
identifying and removing batch effects between the two groups, we trained an `1-regularized
logistic regression classifier to predict ASD status from each set of variants. The classifier
trained on simple repeat sequences performed well on a held-out test set (AUC-ROC =
0.960); this classifier was also able to differentiate ASD cases from controls when applied to
a completely independent dataset (AUC-ROC = 0.960). This suggests that variation in sim-
ple repeat regions is predictive of the ASD phenotype and may contribute to ASD risk. Our
results show the importance of the noncoding region and the utility of independent control
groups in effectively linking genetic variation to disease phenotype for complex disorders.
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1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social
impairments, communication difficulties, and restricted and repetitive patterns of behavior.
ASD usually manifests in infants and children and presents a wide range of symptoms that
vary from person to person. Currently, 1 in 59 children in the United States are affected, and
prevalence rates are expected to increase drastically over the next decade.1 ASD is known
to be highly genetic with a concordance rate between monozygotic twins of 77-99%.2,3 The
genetic architecture of the disorder is known to be complex, with an estimated 1000 genes
involved in disease susceptibility, spanning common, rare, and de novo variants.4,5

Models exploring the genetic basis of ASD typically focus on protein-coding genes; how-
ever, coding sequences account for only 1.5% of human DNA. The remaining segments of
DNA are comprised of noncoding regions, which have been shown to play an important role
in many genetic disorders. For example, recessive mutations in the PTF1A gene enhancer can
cause pancreatic agenesis,6 a common mutation in the RET enhancer increases risk for Hirsch-
prung disease,7 and mutations in topologically associating chromatin domains can cause limb
malformation.8 Furthermore, a meta-analysis of over a thousand genetic association studies
showed that most of the disease-associated single nucleotide variants identified by genome
wide association studies (GWAS) lie in the noncoding region.9

However, the contribution of noncoding variants to ASD still remains unclear. A recent
analysis of whole genome sequences of 516 children with ASD and their unaffected family
members concluded that individuals with ASD tend to have significantly more de novo muta-
tions in noncoding regions. The study evaluated two noncoding regions: untranslated regions
(UTRs) of genes and conserved transcription factor binding sites that map to sites of DNase
I hypersensitivity.10 However, a separate evaluation of the same dataset concluded that al-
though individuals with ASD possessed a small excess of de novo mutations in noncoding
regions, there were no significant results across over 50,000 regulatory classes after multiple
testing correction.11

As shown by these studies, population genetic analyses typically classify unaffected family
members as controls. However, we hypothesize that this assumption does not effectively elevate
variant signal from the genome for ASD cohorts. For example, close relatives of individuals
with ASD often exhibit autistic behaviors, such as social deficits and delayed speech.12,13

Thus, it is possible that family members possess a subclinical phenotype of ASD that may
arise from genomic features shared with their affected children. Also, the diagnostic criteria
for ASD were modified in 2013 with the release of the fifth edition of the Diagnostic and
Statistical Manual of Mental Disorders. Most parents would have been evaluated using an
earlier version of diagnostic criteria, making it possible that some would qualify for an ASD
diagnosis by modern clinical standards.

In order to address this issue and to exacerbate signal in the noncoding region, we introduce
a separate outgroup of patients with progressive supranuclear palsy (PSP), a neurodegener-
ative condition that causes difficulty with movement and thought.14 We chose this group of
control patients because there is no known etiological overlap or comorbidity between PSP and
ASD, and PSP is generally not heritable. There are some familial cases caused by a mutation
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in at least one copy of the gene MAPT on chromosome 17, but this is the only gene currently
known to be linked with PSP.15 No patients in the control group exhibit symptoms of ASD.
In this work, we use whole genome sequencing data from 2182 children with ASD and 379
PSP controls to investigate the role of noncoding variants in ASD susceptibility.

This study focuses on seven major noncoding regions: tissue specific microRNAs, hu-
man accelerated regions, hypersensitive sites, transcription factor binding sites, DNA repeat
sequences, simple repeat sequences, and CpG islands. Tissue-specific microRNAs play impor-
tant roles in the regulation of mRNA expression and the development of neurons, and recent
studies have implicated a total of 219 microRNAs in the development of ASD.16 Human accel-
erated regions, which consist of only 49 highly-conserved segments in DNA, have been shown
to regulate neural activity, with de novo copy number variations in these regions enriched in
individuals with ASD.17 Hypersensitive sites are regulatory regions that are sensitive to cleav-
age by nucleases, and de novo mutations in these regions are significantly enriched in ASD
probands.18 Transcription-factor binding sites are located in the noncoding regions of genes
and assist in the regulation of transcription; variants in binding sites in MEGF10 and TCF4
have been associated with ASD and other intellectual disabilities.19,20 DNA Repeat sequences
and simple repeat sequences are sequences of repeating base pairs, distinguished by the length
of the repeating pattern, that have been linked to neuronal differentiation and brain develop-
ment.21 Finally, CpG islands, which consist of regions with high frequencies of the cytosine
and guanine base pairs, can have higher rates of methylation in individuals with ASD.22

2. Methods

2.1. Data and Preprocessing

We analyzed 30x-coverage whole genome sequencing data from the Hartwell Foundation’s
Autism Research and Technology Initiative (iHART); iHART has amassed data from 1006
multiplex families, each with at least two ASD-affected children. We also analyzed 30x-
coverage whole genome sequencing data from 379 patients diagnosed with PSP. In order
to limit batch effects due to inconsistencies in sequencing methodologies, we sequenced both
populations at the New York Genome Center with Illumina HiSeq X instruments and utilized
the same GATK variant calling pipeline; in addition, there is no sample overlap between the
cohorts.

Chromosome coordinate lists for the seven noncoding regions were downloaded from the
UCSC Genome Browser and the Regulatory Elements Database.23,24 Quality control was per-
formed on the variant call format (VCF) files by removing all variants with high excess het-
erozygosity scores, which typically indicate sequencing artifacts or consanguinity within the
population. We then filtered the variant-call format files to extract all variants within these
regions that were present in both the PSP and ASD populations. We also removed all variants
with a large proportion (greater than 20%) of missing sites.

2.2. Accounting for Batch Effects

Batch effects present a major challenge when combining whole genome sequencing data across
cohorts, resulting in many false positive associations.25 Batch effects can result from almost
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any step in the whole genome sequencing procedure, including library preparation, sequenc-
ing machine or center, sequencing depth, and variant calling pipelines.26 Several methods
have been developed to mitigate these effects, but these procedures focus on reducing batch
effects for datasets collected and analyzed independently.27,28 In our case, care was taken to
sequence our ASD case and PSP control samples at the same center with the same platform
and to analyze them using identical variant calling pipelines. In order to detect the more
subtle batch effects that may remain, we expand on the method used by the UK10K project,
detecting batch effects using a genome-wide association test with batch (ASD and PSP) as
the phenotype.29 To do this, we performed a chi-squared test for each variant, comparing the
number of individuals with homozygous reference, heterozygous, homozygous alternate, and
missing genotypes between the two datasets. Any variants with a batch association p-value
below 0.05 after applying a Bonferroni multiple testing correction were discarded, resulting in
the removal of approximately 5% of variants. Figure 1 shows the number of variants within
each region that passed our preprocessing and batch effect filters.

Fig. 1. Number of noncoding variants of each type after applying preprocessing filters and removing
variants affected by batch effects.

2.3. Feature Representation and Logistic Regression Classifier

We designed a machine learning approach to determine if variation within noncoding regions
could be utilized to predict ASD. In order to capture variant information from both the ASD
and PSP populations, we constructed binary feature matrices for each of the seven noncoding
regions. Each matrix includes 2561 rows corresponding to the 379 PSP control patients and
2182 ASD case patients; the columns represent the variants (shown in Fig. 1) associated with
the region. We set each cell of the matrix as 1 if the individual expressed an alteration at the
variant site (either heterozygous or homozygous alternate) and as 0 if the variant matched the
reference sequence. Since several of these feature matrices included over one billion elements, all
matrices were encoded in a customized sparse representation to ensure that machine learning
would remain computationally tractable.

We created a logistic regression classifier with `1 regularization in order to encourage the
use of the smallest possible number of relevant features. 80% of the individuals in the dataset
were randomly selected for inclusion in the training set, and the remaining 20% were added to
the held-out test set; train and test sets were divided by family, so there is no familial overlap
between sets. In order to address class imbalance between the case and control populations,
we adjusted classifier weights such that they are inversely proportional to class sizes. We ran
5-fold cross validation in order to tune the level of regularization (represented by λ). Then,
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we evaluated performance on the held-out test set by measuring F1 scores, precision, recall,
and AUC-ROC.

We extracted the top-ranked variants from each of the seven noncoding regions for further
analysis by selecting the five variants from each classifier with the highest positive regression
coefficient values as well as the five variants with the lowest negative coefficient values. We also
confirmed that these variants were highly-ranked across multiple folds in our cross-validation
tests.

Fig. 2. Machine learning pipeline. Variants were called separately for cases and controls. The variant
calls were then merged and a batch-effect filter was applied. Feature matrices were created for each
of the seven noncoding regions and served as input to `1-regularized logistic regression classifiers.
Finally, the top-ranked features were extracted from each classifier.

2.4. Validation

We validated the performance of our classifier using a held-out test set composed of 20% of
the individuals from both cohorts. To demonstrate that our classifier can generalize, we also
measured performance of our trained models on a completely independent cohort consisting
of 517 ASD patients from the Simons Simplex Collection30 and 2054 control individuals from
the 1000 Genomes Project.31 These cohorts were sequenced at different depths on different
machines; however, the same GATK variant calling pipeline was utilized. We use this cohort
to show that our classifier can effectively generalize to new populations and that we have
adequately addressed batch effects in our training data.

Next, we devised a bootstrap test in order to determine if the seven groups of features used
in this analysis were relevant predictors of ASD status when compared to random variants. To
do so, we randomly sampled from the set of variants called in both the PSP and ASD cohorts.
Feature matrices were designed according to the same procedures outlined in sections 2.1 and
2.2, and classifiers were trained on the random variants using the procedure outlined in section
2.3. This process was repeated between 20 and 100 times to obtain 95% confidence intervals.
We ran separate bootstrap tests using different numbers of variants in order to account for
the wide range in sizes of our variant sets; bootstrap test sizes range from 102 to 106 variants.

We also ran several tests to ensure that our logistic regression classifier was not biased by
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population stratification. Ethnicity is responsible for much of the variation in human genomes,
so to ensure that population substructure was not confounding our results, we examined
performance separately for Europeans and non-Europeans in our test set. Autism is also sex-
biased, with males about 4 times more likely to be affected than females; in order to verify
that our results are robust to differences in the sex chromosomes, we also examined test
performance on males and females separately.

Finally, we evaluated the biological functions of top-ranked variants in order to determine
potential correlation with the ASD phenotype.

3. Results

3.1. Classifier Performance

Results from the logistic regression classifier as well as top-ranked variants are summarized
in Figure 3. The classifier was evaluated on a held-out test set and was able to differentiate
between ASD and PSP with high accuracy, with AUC-ROC values ranging from 0.600 to
0.960. The logistic regression classifier trained on variants located in simple repeat sequences
showed the best performance out of all seven variant sets.

Fig. 3. Machine learning results. We performed `1-regularized logistic regression for each noncoding
region. AUC-ROC, precision, recall, and F1 score show performance evaluated on the held-out test
set. λ values for each noncoding region, as well as the number of remaining variants with nonzero
coefficients remaining after feature selection, are listed. The 10 top-ranked variants for each classifier
are listed in GRCh37 coordinates; the presence of variants with positive coefficient scores and the
absence of variants with negative coefficient scores are likely to suggest the ASD phenotype.

3.2. Bootstrap Test

To determine whether the seven types of noncoding regions we tested are more predictive of
ASD status than random sets of variants, we performed a bootstrap test. Figure 4 shows the
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95% confidence interval for AUC-ROC performance of random variant sets of various sizes
on the held-out test set. As the number of variants used for prediction increases, the AUC
values achieved by the classifier also increase. This is expected because as we incorporate more
variants into our classifier, we become increasingly likely to by chance include ASD-associated
variants or variants in linkage-disequilibrium with autism-associated variants. Furthermore,
as the number of variants included in the classifier increases, any subtle batch effects missed
by our filtering procedure will begin to influence results.

We see that after accounting for variant set size, the microRNA, human accelerated re-
gion, and CpG island variant sets perform within the bootstrapped 95% confidence interval.
Hypersensitive sites, transcription factor binding sites, and DNA repeat sequences all perform
worse than random variant sets. These noncoding regions may not be associated with ASD,
or our batch effect correction procedure may have been too stringent and removed important
autism-associated signal. The classifier trained on simple repeat sequences is the only variant
set that significantly outperforms the random bootstrap with a Bonferonni corrected p-value
(accounting for the 7 tests performed) of 0.0287. This suggests that genetic variation within
simple repeats may be associated with ASD risk.

Fig. 4. Evaluating prediction performance of noncoding regions. The blue shaded region shows the
95% confidence interval for AUC-ROC performance of randomly selected sets of variants. As the
number of variants provided to the model increases, performance increases as well. Six of the non-
coding regions we studied performed at or below the bootstrapped models. However, the simple
repeat sequences variants significantly outperformed the bootstrap, suggesting that these noncoding
variants may be associated with ASD.

3.3. Performance on an Independent Test Set

In order to measure generalization ability, all seven classifiers were evaluated on an independent
test set consisting of ASD patients from the Simons Simplex Collection and control individuals
from the 1000 Genomes Project. AUC-ROC values ranged from 0.361 to 0.960, with most of
the models suffering from a degradation in performance. However, the model trained on simple
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repeat sequences maintained a large AUC-ROC, consistent with the hypothesis that this region
contains relevant signal for differentiating ASD and neurotypical individuals. These results are
in agreement with our bootstrap analysis.

Fig. 5. Performance on an independent test set This figure includes AUC-ROC values from valida-
tion on an independent cohort consisting of individuals from the Simon’s Simplex Collection and the
1000 Genomes Project. Only the classifier trained on simple repeat sequences is able to generalize.

3.4. Accounting for Population Substructure and Sex Differences

To show that our classifier trained on simple repeat sequences is robust to population substruc-
ture, we analyzed the population composition of our case and control groups. Figure 6 shows
our case and control populations superimposed on ethnicity profiles from the 1000 Genomes
Project. Our PSP population is predominantly of European descent, while the iHART popu-
lation is more diverse.

Fig. 6. Population compositions of PSP and ASD cohorts These plots map the PSP and ASD
populations to a principal components plot of the 1000 Genomes population in order to identify the
ethnicity of individuals in our datasets.

In order to ensure that this classifier is not biased by ethnicity, we evaluated its test perfor-
mance on individuals of European and non-European descent separately. Figure 7 shows that
it performs equally well on individuals of European or non-European ancestry, increasing our
confidence that our results are not confounded by population substructure. We also evaluated
differences in classification performance between males and females, also shown in Figure 7.
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Fig. 7. ROC curves for the classifier trained on simple repeat sequences across four splits of the
held-out test set The plots show that the classifier yields similar results on the European and non-
European population. However, classifier performance is higher across males than females.

Our classifier is better able to predict ASD affected status in males than in females. This is
interesting because ASD has a strong male bias with male children being four times more
likely to develop autism than female children.32

3.5. Biological Functions

We evaluated the biological functions of all 70 top-ranked variants in order to identify potential
correlations with the ASD phenotype. Since each variant either occurs in the intronic region
of a gene or in an intergenic region between two genes, we generated a comprehensive list of
genes associated with top-ranked variants. This resulted in a set of 98 genes, which we utilized
to evaluate biological evidence. In the tissue-specific microRNA regions, a variant at position
200,938,662 in chromosome 1 is located in the intronic region of KIF21B, a gene that regulates
synapse function and morphology of neurons; this gene is also known to play a role in learning
and memory.33 A variant at position 124,950,150 in chromosome 3 is located in ZNF148,
which has been linked with developmental delays.34 A top-ranked variant in chromosome 12
is located in the intronic region of CD4, a gene expressed in regions of the brain that is
known to be a mediator of neuronal damage.35 In noncoding regions containing DNA repeat
sequences, gene GFOD1 contains a variant at location 13,509,234 on chromosome 6 and has
been linked with Attention Deficit-Hyperactivity Disorder, a common comorbid condition of
ASD.36 Similarly, a top-ranked variant in a simple repeat sequence in chromosome 7 is located
within the intronic region of gene DGKI; this gene has been linked with dyslexia, which is also
a comorbid condition of ASD.37 In addition, a variant at chromosome 17 in a simple repeat
region is located within gene SHISA6, a regulator of synaptic transmission.38

In order to analyze the relationship between the 98 identified genes and a set of 109 genes
known to confer elevated ASD risk, we constructed a protein-protein interaction network in
STRING, as shown in Figure 8.39 Edges are derived from text-mining, experiments, databases,
co-expression, neighborhood, gene fusion, and co-occurrence. The network showed that twenty
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Fig. 8. Gene interaction network Interactions between genes previously linked with autism (in blue)
and genes associated with the noncoding variants identified in this analysis (in pink) are shown in
the figure. 20 identified genes interact closely with known ASD-risk genes. Notably, the gene CCNA1
is known to interact with 5 known ASD-linked genes.

newly-identified genes are closely connected to known ASD-linked genes.

4. Discussion

By utilizing outgroup machine learning to investigate the noncoding space, we were able
to identify single nucleotide variants potentially associated with ASD. Biological validation
of genes associated with top-ranked variants revealed a highly interconnected gene network,
suggesting that identified genes interact closely with ASD-linked genes and may contribute to
the ASD phenotype. Out of the seven regions analyzed in this work, the classifier trained on
simple repeat regions demonstrated the strongest performance. Simple repeat sequences, also
known as microsatellites, consist of repetitive sequences of one to ten base pairs; these regions
are known to be extremely susceptible to mutations.40 More than twenty neurodevelopmental
and neurodegenerative conditions, many of which are comorbid with ASD, have been linked to
unstable expansion of repeat sequences and consequent loss of protein function.41 In addition,
variation in promoter microsatellites of the gene AVPR1A has been implicated in increased
susceptibility to ASD in an Irish population.42 In this work, the classifier trained on simple
repeat sequences significantly outperformed the random bootstrap test, indicating a potential
correlation between variants in this region and the ASD phenotype; this was further supported
by a biological analysis of top-ranked variants in simple repeat regions that revealed two genes
associated with neural function.

Thus, our outgroup machine learning approach to elevate hidden signal in ASD genomes
can effectively evaluate feature representations of the noncoding space; however, this method
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has potential limitations, including batch effect correction and population stratification.
Current methods for addressing batch effects in whole genome sequencing data are meant

to capture major differences in sequencing pipelines and are therefore quite stringent; the Type
2 Diabetes Consortium uses a series of quality control filters to identify batch effects resulting
in a loss of 9.9% of called SNPs.43 Our method for batch effect correction, adapted from the
algorithm used by the UK10K Project,29 is less conservative, discarding just under 5% of
called SNPs. We believe this is appropriate since the batch effects in our dataset are much
more subtle than those encountered by large consortia. Since our samples were sequenced at
the same sequencing center with the same protocols and variant calling pipeline, we were able
to control for many of the variables that could introduce batch effects. However, differences
between populations in both cell type and the joint variant calling process could still create
batch effect biases. The ASD samples were sequenced from lymphoblastoid cell lines while the
PSP samples were sequenced from whole blood. Furthermore, while the same variant calling
pipeline was used on both samples, GATK performs joint genotyping, a procedure that uses
other samples in the cohort to resolve sequencing errors; since the two cohorts were run through
the variant calling pipeline separately, subtle batch effects could have been introduced.

Regardless of batch effects, there remains the fundamental issue of population stratification
in the merged dataset, especially since the initial cohorts were not drawn from the same
ancestral or ethnic group. In order to establish a control for stratification, we created a null
distribution by performing a bootstrap on successively larger variant sets, as reflected in Figure
4. High-performing null models likely do not reflect any neurological phenotype; rather, they
represent the effect of divergent ancestry between the ASD and PSP cohorts. Interestingly,
only the classifier trained on simple repeat sequences exceeded the null distribution for models
of its size, suggesting a potential link with ASD.

Further analysis is needed to understand the biological consequences of these results. 40%
of the top-ranked variants discovered in this analysis lie in intergenic regions; these may
be enhancers to nearby genes, and we intend to explore associations between these variants
and specific genes in a followup study. In addition, variants within simple repeat regions are
challenging to call at low depth; in our current analysis, the top ten variants in simple repeat
regions have an average read depth of 30.23 across the SSC dataset and an average read depth
of 6.21 across the 1000 Genomes control dataset. In the future, we will validate our classifier
using an independent test set sequenced at a higher depth of coverage.
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The link between cardiovascular diseases and neurological disorders has been widely observed in 
the aging population. Disease prevention and treatment rely on understanding the potential genetic 
nexus of multiple diseases in these categories. In this study, we were interested in detecting 
pleiotropy, or the phenomenon in which a genetic variant influences more than one phenotype. 
Marker-phenotype association approaches can be grouped into univariate, bivariate, and multivariate 
categories based on the number of phenotypes considered at one time. Here we applied one statistical 
method per category followed by an eQTL colocalization analysis to identify potential pleiotropic 
variants that contribute to the link between cardiovascular and neurological diseases. We performed 
our analyses on ~530,000 common SNPs coupled with 65 electronic health record (EHR)-based 
phenotypes in 43,870 unrelated European adults from the Electronic Medical Records and Genomics 
(eMERGE) network. There were 31 variants identified by all three methods that showed significant 
associations across late onset cardiac- and neurologic- diseases. We further investigated functional 
implications of gene expression on the detected “lead SNPs” via colocalization analysis, providing a 
deeper understanding of the discovered associations. In summary, we present the framework and 
landscape for detecting potential pleiotropy using univariate, bivariate, multivariate, and 
colocalization methods. Further exploration of these potentially pleiotropic genetic variants will 
work toward understanding disease causing mechanisms across cardiovascular and neurological 
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diseases and may assist in considering disease prevention as well as drug repositioning in future 
research.  

Keywords: Pleiotropy; Cardiovascular Diseases; Neurological Disorders; Univariate Analysis; 
Bivariate Analysis; Multivariate Analysis; Colocalization; eQTL. 

 
1.  Introduction 

Cognitive decline has been observed in nearly 42% of elderly individuals at five years after cardiac 
surgery1. Of late, there has been increasing clinical evidence suggesting a link between 
cardiovascular and neurological diseases. To facilitate efficient disease prevention and treatment for 
cardiovascular and neurological diseases, it is imperative to understand the underlying, often 
unexplained, disease-causing mechanisms across multiple phenotypes. Pleiotropy is a phenomenon 
that can explain the influence of a specific allele on two or more unrelated phenotypes. While there 
has been evidence of polygenic pleiotropy  (where multiple variants are causally associated with 
multiple traits) among cardiovascular2 and neurological diseases3, recent work has also 
demonstrated a genetic basis for the link between these disease groupings. In particular, there has 
been evidence of genetic overlap between cardiovascular disease and (a) multiple sclerosis4 as well 
as (b) schizophrenia5. Large-scale genomics data coupled with electronic health record (EHR) data 
can enhance our ability to uncover novel cross phenotype associations and potentially pleiotropic 
variants (cross-phenotype association could also be an artifact of linkage disequilibrium (LD) or 
disease co-morbidities rather than true pleiotropy)6. In this study, we sought to identify common 
genetic variants that contribute to the link between diseases of the circulatory and nervous system 
using 43,870 unrelated European adults and 65 disease phenotypes from the Electronic Medical 
Records and Genomics (eMERGE) network.   

Statistical approaches to detect pleiotropy across multiple phenotypes can be univariate 
(CPMA7, ASSET8, MultiMeta9, GPA10, MTAG11, etc.), bivariate, and multivariate (MTMM12, 
MultiPhen13, GEMMA14, mvLMM15, mvBIMBAM16, etc.) in addition to network-based 
approaches, among others17. Univariate methods (e.g. Phenome wide association studies or 
PheWAS) are a powerful way to characterize the effect of a genetic variant on each phenotype 
independently, and potential pleiotropy can be detected when the same SNP is found to be 
significantly associated with multiple phenotypes. This method has shown great success in 
identifying potential pleiotropy in several clinical genomics studies18-23. However, a limitation of 
univariate analysis is that it tests only one trait at a time, so it cannot be a formal test of pleiotropy. 
In contrast, bivariate analysis has been shown to have higher power over univariate analysis by 
analyzing pairs of phenotypes simultaneously24.  Furthermore, because bivariate analysis can be 
structured to test the association of a trait with a variant, while adjusting for another trait’s 
association with the variant, bivariate analyses can be constructed to formally test pleiotropy, and 
extended to multivariate traits to perform sequential tests for pleiotropic effects25,26.		In this study, 
we used a bivariate analysis approach using summary-statistics from univariate analysis to test the 
hypothesis of “joint association” of a SNP with a trait pair while accounting for correlation in z-
scores between the trait pair24. The alternative hypothesis here is that at least one of the two traits is 
significantly associated with a SNP marker. This implementation of bivariate analysis has suggested 
potential pleiotropy as well as hinted at underlying disease-causing mechanisms in many recent 
studies27,28. Finally, multivariate analysis is designed to test the joint association between genotype 
with multiple phenotypes in a single regression model. Multivariate analysis has been shown to have 
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increased power over univariate analysis in many scenarios, including when the genotype affects 
either a single phenotype or multiple correlated phenotypes29,30. We chose MultiPhen13 to perform 
multivariate analysis because of its ability to handle binary phenotypes as well as its high power, as 
demonstrated via simulations29. In this paper, we refer to MultiPhen as multivariate analysis for the 
sake of convenience. Again, here the alternative hypothesis is that at least one of many traits is 
significantly associated with the SNP marker.	

Since the “true” pleiotropic associations among cardiovascular diseases and neurological 
disorders are largely unknown, we applied three types of widely used methods to characterize the 
landscape of potential pleiotropy at genome-wide level31,32. To improve our confidence that the list 
of potential pleiotropic variants obtained across all three methods reflect a single causal variant 
instead of coincidental overlap, we performed statistical colocalization for these signals with gene 
expression datasets across all 48 available tissues from the Genotype-Tissue Expression (GTEx) 
consortium33. For instance, if a SNP colocalizes with an eQTL for traits A and B, it means that the 
same SNP associates with both: (a) gene expression and trait A, (b) gene expression and trait B. 
This can help us infer that the same SNP associates with both traits A and B and is likely pleiotropic. 
We found that many of the potentially pleiotropic signals associated with both disease groupings 
(diseases of the nervous and circulatory system) colocalized with eQTLs from the GTEx consortium 
(especially on chromosome 22) indicating that gene expression might be influencing risk of disease 
at those loci. This study is one of the first large-scale natural data applications and evaluation of 
univariate, bivariate, multivariate and colocalization methods in one comprehensive analysis. The 
overall study design is shown in Figure 1.  
 

2.  Methods 

2.1.  eMERGE network 

In this study, we used data from the 
Electronic Medical Records and 
Genomics (eMERGE) network Phase 
III. The eMERGE network is a National 
Human Genome Research Institute 
(NHGRI) organized consortium to 
explore the utility of DNA 
biorepositories coupled with Electronic 
Health Record (EHR) systems for large-
scale genomic research. The eMERGE 
network Phase III consists of 83,717 
genotyped samples across multiple 
platforms that are imputed to Haplotype 
Reference Consortium 1.1 reference in 
genome build 37 covering ~39 million 
genetic variants. There are seven eMERGE adult sites included in our study: Marshfield Clinic 
Research Foundation, Vanderbilt University Medical Center, Kaiser Permanente 
Washington/University of Washington, Mayo Clinic, Northwestern University, Geisinger, and 
Harvard University. 

Figure 1. Overview of the analysis plan 
 

Phenotype Selection

European adults only (age ≥ 25 years)

Define phenotype based on ICD-9 category

Number of cases ≥ 200

eMERGE Phase III Imputed Data

Association analyses, adjusted by age, sex, eMERGE site, 6PCs

Univariate Analysis Multivariate Analysis

Bivariate Analysis

Test for colocalization of potential pleiotropic variants with eQTLs
across 48 tissues from the GTEx consortium33

Genotype Quality Control

Sample call rate ≥ 99%; SNP call rate ≥ 99%

Minor allele frequency ≥ 0.05; Imputation 'info' score > 0.4

Drop related individuals (pi_hat ≥ 0.25) 

Remove variants in LD (r-squared > 0.5)
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2.2.  Genotypic Data and Quality Control 

eMERGE Phase III imputed genotypic data were cleaned following the “best-practice” quality 
control (QC) pipeline designed for imputed data34. We included genetic variants with genotype call 
rate ≥ 99% and sample call rate ≥ 99%. We selected common variants with minor allele frequency 
(MAF) ≥ 0.05. To account for sample relatedness, we dropped one of each related pair of individuals 
with pi_hat ≥ 0.25 (obtained from identity-by-descent estimation using PLINK35). We filtered out 
variants that had a linkage disequilibrium r2 greater than 0.5 using a 100kb sliding window. We also 
filtered out the variants with a mean of imputation score less than or equal to 0.4. We further 
removed variants which have MAF difference greater than 0.1 compared to European population 
from 1000 Genomes Project34. After genotypic QC assessment and LD pruning, we had 54,942 
unrelated individuals of European ancestry and 533,878 SNPs.  

2.3.  Phenotype Definition and Selection Criteria 

2.3.1.  Phenotype Definition 
Cardiovascular and neurological phenotypes were defined using International Classification of 
Diseases, Ninth Revision (ICD-9) billing codes. We selected 98 ICD-9 codes from “Diseases of the 
circulatory systems” and “Diseases of nervous system and sense organs” as our primary phenotypes. 
Table 1 presents the major disease groups and corresponding ICD-9 codes. Of note, association 
analyses were performed using individual ICD-9 codes to define case/control status, and we used 
broader major disease categories for the purpose of presentation. The number of clinical visits per 
ICD-9 code per individual was used to define case-control status for each ICD-9 code: a case would 
be assigned if an individual had ≥ 3 instances; a control would be assigned if an individual had zero 
instances; an NA would be assigned if an individual had one or two instances22.  
                                      
2.3.2.   Phenotype Selection Criteria 
Our cohort comprised adults of 
European ancestry (age ≥ 25 years) 
from eMERGE network Phase III. We 
only used ICD-9 codes with more 
than or equal to 200 cases so as to 
increase statistical power of 
association tests36. As a result, a total 
of 65 cardiovascular and neurological 
ICD-9 based diagnoses and 43,870 
individuals were included in our final 
round of association analyses. 
Individuals who have both 
cardiovascular and neurological 
disease were counted as cases for both. The sample size distribution of the 65 phenotypes is shown 
in Figure 2.  

Table 1. Major group and ICD-9 category of neurological disorders and 
cardiovascular diseases 

 Major Group ICD-9 
Codes 

 
 
 
Circulatory 
System 

Chronic rheumatic heart disease  
Hypertensive disease  
Ischemic heart disease  
Diseases of pulmonary circulation  
Other forms of heart disease  
Cerebrovascular disease  
Diseases of blood vessels   
Other diseases of circulatory system  

393-398 
401-405 
410-414 
415-417 
420-429 
430-438 
440-449 
451-459 

 
 
Nervous 
System 

Inflammatory diseases of the central nervous system 
Hereditary and degenerative diseases of the central 
nervous system 
Pain  
Disorders of the central nervous system  
Disorders of the peripheral nervous system  

320-327 
330-337 
 
338 
340-349 
350-359 
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2.4.  Association Methods 

2.4.1.  Univariate Analysis 
We performed univariate logistic regression using 65 ICD-9 based diagnoses with 533,878 variants. 
We adjusted logistic regression models for sex, age, eMERGE site, and the first six principal 
components. We used PLINK 1.90 
software35 to perform the first round 
of univariate analysis because of its 
high computational efficiency. The 
logistic regression models converged 
for 33 out of 65 phenotypes. The 
major reason contributing to the non-
convergence was the low sample 
sizes corresponding to some of the 
sites when we adjusted for eMERGE 
site (7 levels) as a categorical 
covariate. To address this, we used 
PLATO 2.1.037 to perform the 
second round of logistic regression 
tests on the remaining 32 phenotypes 
with the same set of covariates as before. Since PLATO implements an increased number of 
iterations compared to PLINK to find the best solution for logistic models, the software achieved 
convergence for all the remaining models. It should be noted that when both PLINK and PLATO 
converge, the results are concordant; these tools have been extensively compared previously37. 

2.4.2.  Bivariate Analysis 
Bivariate analysis involved using summary-statistics (Z scores) from univariate analyses. We 
modeled our bivariate analysis protocol (with modifications) on the one followed by Siewert et al27. 
We first estimated mean and covariance of the Z scores obtained from univariate analyses for each 
of the 2080 pairs of phenotypes using all the available LD-pruned SNPs. This was done to ensure a 
null bivariate normal distribution of Z scores for each pair of phenotypes and to satisfy the 
“independence” assumption for hypothesis testing. Subsequently, we applied a p-value threshold of 
0.005 on the univariate GWAS results and filtered out any SNPs that did not meet this threshold. 
We also filtered out SNPs with MAF = 0.5 to remove ambiguity pertaining to which allele was 
chosen as the referent allele in univariate analyses. Finally, we identified a list of common SNPs 
and estimated a p-value for each of 2,080 “pairs” of phenotypes using a chi-squared test with two 
degrees of freedom. Although we conducted a reduced number of tests, it should be noted that we 
corrected for multiple comparisons using the original “unfiltered” SNP set in order to control our 
type I error rate well.  

2.4.3.  Multivariate Analysis 
We performed multivariate analysis using MultiPhen 2.0.2 R package13. MultiPhen analyzes 
multiple phenotypes jointly by testing linear combinations of phenotypes against each SNP using 
reverse ordinal regression. We adjusted for the same set of covariates as we did for univariate tests. 
By default, MultiPhen excludes individuals with at least one NA out of 65 phenotypes. Under this 

Figure 2. Sample size distribution for 65 ICD-9 disease categories 
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scenario, the power of association tests would be limited as there would only be 7,535 individuals 
in total with extremely low case sample size per phenotype. Since we applied the “rule of three” to 
define a case, any person who had one or two instances of the occurrence of an ICD-9 code was set 
to missing (N/A). Because we did not want to drop so many individuals, we needed to fill in an 
alternative value for the N/A.  For the purposes of multivariate analyses, these missing values were 
replaced by 0.5 to retain comparable sample size with univariate and bivariate analysis (sensitivity 
analyses on top significant SNPs yielded comparable results -- see Discussion). These individuals 
are likely cases since they have the ICD code in their record one or two times. A detailed evaluation 
of this replacement strategy will be conducted in the future to determine if a more optimal imputation 
strategy exists. Finally, to increase computational efficiency of MultiPhen, we parallelized the runs 
by splitting the genome into chunks of 10Mb each.  

2.5.  Statistical Correction 

We implemented two Bonferroni correction calculation strategies to adjust for multiple testing when 
comparing the statistical performance of three types of methods. The Bonferroni threshold was 
calculated by dividing the level of significance by the number of tests. In the first strategy (“method-
specific Bonferroni”) we calculate Bonferroni threshold separately for each method. The derived 
significant thresholds for univariate, bivariate, multivariate testing were 1.44x10-9 
[0.05/65*533878], 4.50x10-11 [0.05/(2080*533878)], and 9.37x10-8[0.05/533878], respectively. We 
used an overly conservative significance threshold for bivariate analyses due to potential non-
independence of tests (even after LD pruning). In the second strategy (“family-wise Bonferroni”) 
we calculate Bonferroni threshold based on the total number of tests across all three methods. The 
derived significant threshold was 4.36x10-11 [0.05/(65*533878+2080*533878+533878)], and the 
criteria was applied across all three methods. Again, this correction is overly conservative given the 
correlation across the tests and methods but offers good control of the type I error rate. 

2.6.  Colocalization   

Finally, we performed colocalization analysis to have greater confidence in our assessment of 
pleiotropy. We first obtained a list of potentially pleiotropic variants that cleared the “family-wise 
Bonferroni” multiple comparison threshold for univariate, bivariate and multivariate methods and 
narrowed down this list to SNPs that were associated with at least one disease from both nervous 
and circulatory systems. Finally, we ensured that for any given SNP, if one of the two traits in this 
circulatory-nervous trait pair had a univariate p-value that did not meet the “family-wise Bonferroni” 
threshold, it had a univariate -log10 p-value of at least 3. We termed the final list of SNPs as our 
“lead” SNPs. To test if these signals were being influenced by gene expression as well as driven by 
the same underlying variant, we performed statistical colocalization analyses using the “coloc” R 
package38 between these signals and eQTLs (across all 48 available tissues) from the GTEx 
consortium33. We first obtained a 200KB window on either side of a “lead” SNP and looked for 
whether the lead SNP (or one in close LD with it) was an eQTL in a given tissue. If it was not an 
eQTL, that lead SNP was ignored. If it was an eQTL for a given tissue, we identified the 
corresponding “eGene” and obtained summary statistics from GTEx for all gene-variant 
associations in that 200KB window (either side). Note that we only chose the eGene that had the 
smallest p-value for a given eQTL from GTEx. Finally, for each phenotype with which the lead SNP 
is significantly associated, we performed statistical colocalization between the SNP and the 
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Figure 3. Univariate, Bivariate and Multivariate Results 

A position-by-position comparison of genetic associations for univariate, bivariate and multivariate methods using code modified from Hudson R package 
(https://github.com/anastasia-lucas/hudson). The horizontal axis represents genomic locations by chromosome and the vertical axis represents –log10(p-value). Colors represent 
major disease groups of circulatory and nervous systems. The top plot presents univariate results with p-value less than 0.01 in triangles and multivariate results that passed 
“method-specific Bonferroni” threshold in black dots. The bottom plot present bivariate analysis results in a two-colored circle, denoting the two phenotypes with which a variant 
is associated with. The red lines in both plots are the “family-wise Bonferroni” threshold.  
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corresponding eQTL in that tissue. We set a coloc threshold of PP4/(PP3+PP4) > 0.8 to identify 
pleiotropic signals that are strongly influenced by gene expression. Here PP4 refers to the posterior 
probability that a single SNP associates with the phenotype as well as the gene expression whereas 
PP3 refers to the posterior probability of having two independent SNPs associate with either. 

3.  Results 

3.1.  Landscape of Univariate, Bivariate and Multivariate Associations 

The landscape of univariate, bivariate, and multivariate 
association results is shown in Figure 3. There is an overall 
similar trend of association signals for univariate and 
bivariate analysis. We found that bivariate analysis 
identified more significant associations than univariate 
analysis when the correlation between phenotypes was low 
(less than 0.4). From the bottom half of Figure 3, we can 
see if the association signal from bivariate analyses comes 
from pairs of circulatory, nervous or circulatory-nervous 
traits. Black dots in Figure 3 represent the variants that 
passed “method-specific Bonferroni” significance from 
multivariate analysis. There are scenarios in which there is 
no significant association from univariate/bivariate 
analyses but significant results from multivariate analyses.  
Using “method-specific Bonferroni” threshold, univariate, 
bivariate, and multivariate methods detected 124, 108, and, 
107 unique statistically significant SNPs, respectively; and there are 49 overlapping SNPs across 
three methods (data not shown). The number of variants detected at the more stringent “family-
wise” threshold is given in Figure 4. 

3.2.  Variants associated with cardiovascular disease and neurological disorders 

Among the 31 “family-wise Bonferroni” SNPs across all three methods, we obtained 9 unique 
variants that are significantly associated with at least one cardiovascular disease and one 
neurological disorder from bivariate analysis that also “colocalized” with eQTLs across a host of 
tissues with a coloc PP4/(PP3+PP4) probability threshold of at least 0.8. Table 2 shows a 
comprehensive summary of these identified 9 variants. Our colocalization analyses revealed 
whether there was a shared variant underlying our potentially pleiotropic signals and whether gene 
expression may be influencing disease risk at these loci. For instance, the SNP at chromosome 1 
and position 36822024 colocalized with eQTLs in the same 35 tissues for “Muscular dystrophies 
and other myopathies”, “Pain” and “Other conditions of the brain” (neurological phenotypes) as 
well as “Heart failure”, “Essential hypertension”, “Cardiac dysrhythmias” and “Hypotension” 
(cardiovascular phenotypes) (eGenes: EVA1B, TRAPPC3). This means that rs10796883 influences 
4 different cardiovascular disease categories, 3 different neurological disease categories as well as 
gene expression for EVA1B and TRAPPC3 eGenes across 35 different tissues. Likewise, the variant 
on chromosome 22 position 22947156 colocalized with eQTLs in 4 tissues (Brain-cerebellum, testis, 
transformed fibroblasts, small intestine ileum) for 4 different neurological phenotypes as well as 9 

Figure 4. Venn diagram of the number of SNPs 
obtained at a “family-wise Bonferroni” threshold  
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other cardiovascular phenotypes (eGenes: IGLV3-21, GGTLC2). Please refer to Supplementary 
table 1 at https://ritchielab.org/files/PSB2019/Veturi/Supplementary_Data_1.txt for a complete list 
of tissues in which each of the lead SNPs colocalizes with eQTLs. 
  

Table 2. Potential pleiotropic SNPs and their associated disease groups 

SNP	 Circulatory	NeglogP(Uni-variate)	 Nervous	NeglogP(Uni-variate)	

NeglogP		
(Bi-
variate)	

NeglogP	
(Multi-
variate)	

Tissue	
count	 eGenes	

1:36822024	
rs10796883	

	

Cardiac_dysrhythmias(11.305)	

Muscular_dystrophies_and_other_myopathies(4.921)	 13.247	

11.165	

35	 EVA1B,	TRAPPC3	

Other_conditions_of_brain(3.451)	 12.030	 35	 EVA1B,	TRAPPC3	

Pain(4.151)	 12.363	 35	 EVA1B,	TRAPPC3	

Essential_hypertension(9.125)	 Muscular_dystrophies_and_other_myopathies(4.921)	 11.325	 35	 EVA1B,	TRAPPC3	

Heart_failure(10.029)	
Muscular_dystrophies_and_other_myopathies(4.921)	 11.988	 35	 EVA1B,	TRAPPC3	

Pain(4.151)	 11.452	 35	 EVA1B,	TRAPPC3	

Hypotension(8.660)	 Muscular_dystrophies_and_other_myopathies(4.921)	 10.699	 35	 EVA1B,	TRAPPC3	

6:32569056	
rs9270779	

Atherosclerosis(14.165)	
Multiple_sclerosis(6.355)	 18.112	

10.861	

8	 HLA-DRB5,	HLA-DRB9	

Parkinson's_disease(3.196)	 15.097	 11	 HLA-DRB5,	HLA-DRB9	

Occlusion_and_stenosis_of_precerebral_arter

ies(6.355)	 Multiple_sclerosis(5.913)	 10.400	 7	 HLA-DRB5,	HLA-DRB9	

Other_peripheral_vascular_disease(6.355)	 Multiple_sclerosis(7.442)	 11.787	 4	 HLA-DRB5,	HLA-DRB9	

14:106995720	
rs7160440	

	

Cardiac_dysrhythmias(11.322)	

Muscular_dystrophies_and_other_myopathies(4.394)	 12.989	

18.291	

5	 IGHV3-53,IGHV4-39,	IGHV3-49	

Other_conditions_of_brain(3.726)	 12.420	 5	 IGHV3-53,IGHV4-39,	IGHV3-49	

Pain(6.297)	 14.259	 5	 IGHV3-53,IGHV4-39,	IGHV3-49	

Essential_hypertension(7.451)	 Pain(6.297)	 10.610	 1	 IGHV3-49	

Heart_failure(9.038)	
Muscular_dystrophies_and_other_myopathies(4.394)	 10.752	 8	

IGHV3-53,IGHV4-39,	IGHV3-49,	

HOMER2P1	

Other_conditions_of_brain(3.726)	 10.469	 6	 IGHV3-53,IGHV4-39,	IGHV3-49	

Pain(6.297)	 12.465	 5	 IGHV3-53,IGHV4-39,	IGHV3-49	

Hypertensive_chronic_kidney_disease(8.116)	 Pain(6.297)	 11.623	 5	 IGHV3-53,IGHV4-39,	IGHV3-49	

Hypotension(10.278)	

Muscular_dystrophies_and_other_myopathies(4.394)	 11.832	 5	 IGHV3-53,IGHV4-39,	IGHV3-49	

Other_conditions_of_brain(3.726)	 11.252	 5	 IGHV3-53,IGHV4-39,	IGHV3-49	

Pain(6.297)	 13.004	 5	 IGHV3-53,IGHV4-39,	IGHV3-49	

Ill-

defined_descriptions_and_complications_of_

heart_disease(7.610)	 Pain(6.297)	 11.224	 1	 		

22:22876236	
rs361535	

	
Other_forms_of_chronic_ischemic_heart_dis

ease(4.985)	 Inflammatory_and_toxic_neuropathy(14.211)	 14.702	

10.424	

1	 		

22:22947156	
rs2097594	

Cardiac_dysrhythmias(10.930)	

Inflammatory_and_toxic_neuropathy(3.011)	 11.236	

28.019	

1	 	

Muscular_dystrophies_and_other_myopathies(3.773)	 12.116	 1	 	

Other_conditions_of_brain(3.328)	 11.738	 1	 	

Pain(5.622)	 13.348	 1	 	

Cardiomyopathy(12.330)	

Inflammatory_and_toxic_neuropathy(3.011)	 12.818	 2	 GGTLC2	

Muscular_dystrophies_and_other_myopathies(3.773)	 13.768	 2	 IGLV3-21,	GGTLC2	

Other_conditions_of_brain(3.328)	 13.507	 1	 GGTLC2	

Pain(5.622)	 15.503	 2	 GGTLC2	

Essential_hypertension(10.187)	

Muscular_dystrophies_and_other_myopathies(3.773)	 11.380	 2	 BCRP4	

Other_conditions_of_brain(3.328)	 10.968	 	  
Pain(5.622)	 12.386	 	  

Heart_failure(20.621)	

Inflammatory_and_toxic_neuropathy(3.011)	 19.807	 2	 GGTLC2	

Muscular_dystrophies_and_other_myopathies(3.773)	 20.963	 3	 IGLV3-21,	GGTLC2	

Other_conditions_of_brain(3.328)	 21.000	 2	 GGTLC2	

Pain(5.622)	 22.553	 2	 GGTLC2	

Hypertensive_chronic_kidney_disease(9.331)	
Muscular_dystrophies_and_other_myopathies(3.773)	 10.760	 2	 GGTLC2	

Pain(5.622)	 12.119	 2	 GGTLC2	

Hypotension(9.778)	

Muscular_dystrophies_and_other_myopathies(3.773)	 10.883	 2	 GGTLC2	

Other_conditions_of_brain(3.328)	 10.491	 2	 GGTLC2	

Pain(5.622)	 12.026	 2	 GGTLC2	

Ill-

defined_descriptions_and_complications_of_

heart_disease(10.665)	

Inflammatory_and_toxic_neuropathy(3.011)	 10.863	 2	 GGTLC2	

Muscular_dystrophies_and_other_myopathies(3.773)	 11.703	 2	 GGTLC2	

Other_conditions_of_brain(3.328)	 11.478	 2	 GGTLC2	

Pain(5.622)	 13.385	 2	 GGTLC2	

Other_diseases_of_endocardium(10.340)	

Inflammatory_and_toxic_neuropathy(10.340)	 11.032	 	  
Muscular_dystrophies_and_other_myopathies(10.340)	 11.844	 	  
Other_conditions_of_brain(10.340)	 11.617	 	  
Pain(5.622)	 13.627	 	  

Other_forms_of_chronic_ischemic_heart_dis

ease(11.873)	

Inflammatory_and_toxic_neuropathy(11.873)	 11.335	 	  
Muscular_dystrophies_and_other_myopathies(11.873)	 12.690	 	  
Other_conditions_of_brain(11.873)	 12.530	 	  
Pain(5.622)	 14.168	 		 		

22:25420792	
rs13056641	

Cardiac_dysrhythmias(9.528)	
Inflammatory_and_toxic_neuropathy(4.159)	 10.817	

40.505	

11	

KIAA1671,	SGSM1,	CRYBB2,	

CRYBB3,	IGLL3P	

Organic_sleep_disorders(4.166)	 10.687	 1	 IGLL3P	

Pain(4.590)	 11.247	 6	 KIAA1671,	IGLL3P	

Essential_hypertension(12.162)	
Inflammatory_and_toxic_neuropathy(4.159)	 12.620	 16	

KIAA1671,	SGSM1,	CRYBB2,	

CRYBB3,	IGLL3P,	BCRP3	

Organic_sleep_disorders(4.166)	 12.521	 1	 IGLL3P	

Pain(4.590)	 13.284	 7	 KIAA1671,	IGLL3P	

22:25436904	
rs1040421	

Angina_pectoris(3.067)	 Pain(13.338)	 15.015	

58.239	

7	 KIAA1671,	SGSM1,	IGLL3P	

Atherosclerosis(5.075)	 Pain(13.338)	 15.580	 8	 KIAA1671,	SGSM1,	IGLL3P	

Cardiac_dysrhythmias(11.931)	 Pain(13.338)	 20.872	 7	 KIAA1671,	SGSM1,	IGLL3P	

Cardiomyopathy(4.939)	 Pain(13.338)	 15.904	 8	 KIAA1671,	SGSM1,	IGLL3P	

Conduction_disorders(5.764)	 Pain(13.338)	 16.372	 5	 KIAA1671,	SGSM1,	IGLL3P	
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Notes: We left as missing in the table any eGene (Ensembl gene ID from GTEx) that did not have an HGNC symbol counterpart. 

4.  Discussion 

In this study, we conducted EHR-based univariate, bivariate, and multivariate analyses on 43,870 
adults of European ancestry from the eMERGE network using 65 cardiovascular and neurological 
ICD-9 disease categories. The aim of this study was to detect pleiotropic genetic variants that 
influence diseases of the circulatory and nervous systems. We also evaluated the performance of 
three types of methods for detecting pleiotropy.  

We observed 79, 108, and, 58 unique variants, respectively that were detected by univariate, 
bivariate, and multivariate methods and 31 that overlapped among the three methods using a 
“family-wise Bonferroni” significance threshold. Univariate analysis suggests direct association 
between genetic variant and phenotype; bivariate association can offer insights into whether a 
variant is associated with a pair of phenotypes, whereas multivariate analysis is powerful in 
detecting if a variant is associated with multiple phenotypes. We took the intersection of the 
significant genetic variants across the three methods as our list of potential pleiotropic variants. Our 
colocalization analyses revealed 9 SNP variants associated with at least one disease from both, 
nervous and circulatory system that cleared the “family-wise Bonferroni” threshold for multivariate 
and bivariate analyses. Since we were looking at trait pairs here, we ensured that at least one of the 
two traits had a univariate p-value that cleared the “family-wise Bonferroni” threshold while the 
other trait had a univariate -log10 p-value of at least 3. Note that we conducted sensitivity analyses 
for MultiPhen on identified potentially pleiotropic variants in Table 2 when missing values were 
imputed with 0 and 1 (i.e. treated as controls or cases) in addition to 0.5 and observed no change in 
significance. To cross-check overlap between methods, we also performed multivariate analysis 
restricted to a pair of bivariate significant traits for the 9 potentially pleiotropic variants in Table 2 
and found 100% consensus between bivariate and multivariate methods. These 9 variants showed 
strong evidence of colocalization with eQTLs across a host of tissue types (see Supplementary table 
1) from the GTEx consortium33, especially on chromosome 22. 

Our results replicated previous association signals as well as detected novel associations. SNP 
at chromosome 6 position 32569056 (rs9270779) has been directly implicated in autonomic nervous 
system and has been shown to be associated with heart rate response to exercise in females 
suggesting it could be pleiotropic for the two disease groupings of interest39. Also, the corresponding 
eGenes for this SNP, HLA-DRB5 and HLA-DRB9 from colocalization analysis have been previously 
shown to be associated with multiple sclerosis. Among the 31 total SNP hits, the one at chromosome 
19 position 45416741 (rs438811) is correlated with rs445925  (r2=0.341), which has been shown to 
be clinically relevant to cardiovascular phenotypes40. This SNP is also located in the APOC1/APOE 
region, which has been shown to be associated with Alzheimer’s disease41. Among novel potential 

Essential_hypertension(10.303)	 Pain(13.338)	 19.175	 8	 KIAA1671,	SGSM1,	IGLL3P	

Heart_failure(7.101)	 Pain(13.338)	 17.129	 8	 KIAA1671,	SGSM1,	IGLL3P	

Hypertensive_chronic_kidney_disease(7.426)	 Pain(13.338)	 17.404	 8	 KIAA1671,	SGSM1,	IGLL3P	

Hypotension(6.693)	 Pain(13.338)	 16.037	 4	 KIAA1671,	SGSM1,	IGLL3P	

Other_diseases_of_endocardium(5.845)	 Pain(13.338)	 16.677	 4	 KIAA1671,	SGSM1,	IGLL3P	

22:28250172	
	rs1997739	 Cardiac_dysrhythmias(10.517)	

Pain(4.966)	 12.443	
22.064	

19	 ZNRF3,	TTC28-AS1	

22:33079917	
rs5749490	

Cardiac_dysrhythmias(11.280)	

Hereditary_and_idiopathic_peripheral_neuropathy(3.04

9)	 11.884	

23.601	

9	 FBXO7,	SLC5A4-AS1	

Inflammatory_and_toxic_neuropathy(3.958)	 12.254	 2	 FBXO7,	SLC5A4-AS1	

Mononeuritis_of_lower_limb_and_unspecified_site(3.1

53)	 12.242	 2	 FBXO7,	SLC5A4-AS1	

Pain(8.424)	 16.011	 9	 FBXO7,	SLC5A4-AS1	

Hypertensive_chronic_kidney_disease(6.449)	 Pain(8.424)	 12.064	 9	 FBXO7,	SLC5A4-AS1	

Hypertensive_heart_disease(4.191)	 Pain(8.424)	 10.592	 10	 FBXO7,	SLC5A4-AS1	

Hypotension(8.197)	 Pain(8.424)	 12.959	 3	 FBXO7,	SLC5A4-AS1	
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pleiotropic variants identified by all three methods and colocalization analysis, 6 out of 9 variants 
locate on chromosome 22, suggesting its potential crucial contribution to the link between 
cardiovascular and neurological diseases. In particular, the eGene FBXO7 has been associated with 
multiple sclerosis42 as well as heart disease43. As part of future work, we will conduct pathway 
analyses or conditional analyses to have confidence in a singular pleiotropic association or shared 
biology between these disease groupings.  

The limitations of this study are that (1) using only ICD-9 codes instead of both ICD-9 and ICD-
10 codes may have reduced the number of cases in our data; (2) the use of disease category instead 
of disease code as phenotype might have reduced the specificity of detected associations. We are 
planning to incorporate ICD-9 and ICD-10 codes to define primary phenotypes and examine disease 
heterogeneity in the future; (3) sample size considerations led to some diagnosis codes being left 
out of analyses; (4) given our very conservative multiple comparison thresholds, we have likely 
reported only a fraction of all potential pleiotropic signals, leading to type II errors, and (5) we were 
unable to investigate how many additional associated variants obtained using bivariate analyses in 
comparison to univariate and multivariate were “true positives”. One way to investigate this would 
be to test for statistical colocalization on top bivariate analyses hits27. However, this necessitates 
that summary statistics be obtained from independent datasets which was not the case with our data. 
Replication of these signals in independent cohorts in future can help us address this limitation.  

In summary, we provide a framework for future pleiotropy analyses in EHR data. Our work 
expands the pleiotropy detection framework from univariate methods (e.g. PheWAS) to bivariate 
and multivariate methods in large-scale real-world EHR data to detect a broader net of potentially 
pleiotropic signals across cardiovascular and neurological disorders. We also utilize colocalization 
analyses to enhance our understanding of the influence of gene expression on these potentially 
pleiotropic variants and consequently on disease risk. In future, we will also try to replicate the 
partially overlapping SNP signals in independent cohorts.  
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Patient responses to cancer immunotherapy are shaped by their unique genomic landscape
and tumor microenvironment. Clinical advances in immunotherapy are changing the treat-
ment landscape by enhancing a patient’s immune response to eliminate cancer cells. While
this provides potentially beneficial treatment options for many patients, only a minority of
these patients respond to immunotherapy. In this work, we examined RNA-seq data and
digital pathology images from individual patient tumors to more accurately characterize the
tumor-immune microenvironment. Several studies implicate an inflamed microenvironment
and increased percentage of tumor infiltrating immune cells with better response to specific
immunotherapies in certain cancer types. We developed NEXT (Neural-based models for
integrating gene EXpression and visual Texture features) to more accurately model immune
infiltration in solid tumors. To demonstrate the utility of the NEXT framework, we pre-
dicted immune infiltrates across four different cancer types and evaluated our predictions
against expert pathology review. Our analyses demonstrate that integration of imaging fea-
tures improves prediction of the immune infiltrate. Of note, this effect was preferentially
observed for B cells and CD8 T cells. In sum, our work effectively integrates both RNA-seq
and imaging data in a clinical setting and provides a more reliable and accurate prediction
of the immune composition in individual patient tumors.

Keywords: Cancer immunology, digital pathology, immune infiltration, machine learning.

1. Introduction

Immune infiltration and its spatial organization within the tumor microenvironment has long
been associated with cancer progression and clinical outcome.1,2 The potential of the immune
infiltrate as a prognostic biomarker has become increasingly relevant with the advent of cancer
immunotherapies. Checkpoint blockade and other cancer immunotherapies can induce clini-
cal responses in some cancer patients.3,4 However, clinical responses are only observed in a
proportion of patients and vary for different cancer types, suggesting that additional factors,
such as the composition of the immune infiltrate, may be important determinants of clinical
response.5,6 Several clinical studies show the tumor immune microenvironment, particularly
the presence or absence of key effector cells such as CD8 T cells, can affect tumor immune
responses.7,8 The challenge, then, is to develop accurate methods to characterize the immune
infiltrate in cancer patients in a reproducible and cost effective manner in order to ultimately
identify novel prognostic markers.

c© 2019 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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Fig. 1. Multi-modal approach used to train and validate NEXT for predicting the tumor immune
infiltrate fraction and composition. Alternate slides cut from primary tumor FFPE blocks were used
for RNA-seq or H&E staining. RNA expression data and visual features extracted from H&E slides
were then fed into NEXT. IHC staining for lineage specific immune markers (CD20, CD4, CD8,
CD68, CD56) was used by a pathologist to establish immune infiltration proportions.

Solid tumors are commonly infiltrated by adaptive and innate immune cells, including T
and B lymphocytes, natural killer (NK) cells, and macrophages (MACs).7,9 In the prevailing
model, distinct effector cells in the tumor-immune microenvironment cooperate to present, rec-
ognize, and respond to tumor-specific antigens. However, several roadblocks exist for routine,
accurate, and widespread pathological reporting of the immune infiltrate in tumor biopsies.
Visual assessment after immunohistochemistry (IHC) staining for lineage specific markers re-
mains the gold standard for evaluating immune cell infiltration in solid tumors. However,
routine IHC assessment is not possible due to additional tissue sample requirements and the
need for pathologist scoring. Alternatively, advances in genomic sequencing has facilitated
implementation of RNA-sequencing (RNA-seq) in clinical medicine, but due to the inherent
difficulty in deconvolving gene expression measurements into component immune cells, these
approaches encounter significant ambiguity in reliably identifying correct immune proportions.
Finally, emergent laboratory-based techniques, such as multiplex immunofluorescence, indexed
flow cytometry, and single cell RNA-seq, require specialized labs and expertise, which limits
widespread access.

We seek a middle ground by integrating coarse visual texture features from routine hema-
toxylin and eosin (H&E) staining of solid tumors used in cancer staging and diagnosis with
bulk tumor RNA-seq to reduce ambiguity in predicting the immune infiltrate. In particular,
this paper focuses on developing and applying a new framework, a neural network-based ap-
proach for integrating gene expression and visual texture features (NEXT) from solid tumor
samples in a clinical laboratory setting (Fig. 1). We present implementations for predicting
both the relative proportion of individual key effector immune cells and total fraction of the
tumor immune infiltrate. Consequently, owing to the flexibility of our neural network-based
approach, we are able to evaluate the integration of additional contextual features, such as
estimates of the total fraction of immune infiltrate, to boost the prediction of immune cell-type
proportions.

To test our model, we evaluated NEXT against current state-of-the-art methods for pre-
dicting the immune infiltrate as a proportion and benchmarked against expert pathologist
review of IHC stained sections. Previous methods for predicting the immune infiltrate have
either focused solely on RNA-based data or image-based data. Our approach is the first, to
our knowledge, to utilize a multi-modal approach to refine RNA-based immune cell estimates
by combining information from pathology imaging features.
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2. Materials and Methods

2.1. Data

61 colorectal (n = 14), breast (n = 15), lung (n = 17) and pancreatic (n = 15) formalin-fixed
paraffin-embedded (FFPE) solid tumor blocks were cut into alternating sections for RNA-seq,
hematoxylin and eosin (H&E) staining, and immunohistochemistry (IHC) staining (Fig. 1A).
Normalized read counts from RNA-seq for a specific panel of genes and visual texture features
from H&E stained slides were generated and used as input for NEXT. Immune infiltrate
predictions from NEXT were compared to pathologist expert review of IHC stained tumor
sections using a panel of immune lineage markers (Fig. 1B).

2.1.1. RNA extraction and sequencing

Total nucleic acid was extracted from FFPE tumor tissue sections, macrodissected based on
pathologist assessment of tumor cellularity, and proteinase K digested. Total nucleic acid was
extracted with a Chemagic360 instrument using a source-specific magnetic bead protocol and
stored at 4◦C if less than 24 hours and -80◦C if longer. RNA was purified from the total nucleic
acid by DNase I digestion and magnetic bead purification. RNA was quantified by a Quant-iT
picogreen dsDNA reagent Kit or Quant-iT Ribogreen RNA Kit (Life Technologies). Quality
was confirmed using a LabChip GX Touch HT Genomic DNA Reagent Kit or LabChip RNA
High HT Pico Sensitivity Reagent Kit (PerkinElmer).

The libraries were prepared using the KAPA RNA HyperPrep Kit. One hundred nanograms
of RNA per tumor sample was fragmented with heat in the presence of magnesium to an
average size of 200 base pairs. RNA underwent first strand cDNA synthesis using random
primers, followed by combined second strand synthesis, A-tailing, adapter ligation, bead-based
cleanup, and library amplification. After library preparation, samples were hybridized with
the IDT xGEN Exome Research Panel. Target recovery was performed using Streptavidin-
coated beads, followed by amplification using the KAPA HiFi Library Amplification Kit. The
RNA libraries were sequenced to obtain an average of 90 million reads, minimum of 50 million
reads, on an Illumina HiSeq 4000 System utilizing patterned flow cell technology.

After completion of sequencing, FASTQ files were uploaded to Amazon Web Services
(AWS) which triggers the sequence analysis pipeline that uses the CRISP clinical RNA-seq
pipeline10 orchestrated by the JANE workflow tool (Tempus Labs, Inc.). CRISP performs
pre-alignment QC, read grooming, alignment, post-align QC, and gene level quantification.
The gene level counts from CRISP are then converted to TPMs (transcripts per million) to
normalize for gene length and library size.

2.1.2. Visual texture feature extraction

H&E stained slide images were tiled and downsampled, generating overlapping square tiles
with 210x210 microns in tile size and 30 microns in shifting strip size. Image tiles were down-
sampled by 4 on each edge, as 1 micron equals 4 pixels in size. Statistical features for each
tile were generated and converted into 196 feature vectors, consisting of intensity and texture
features. Image intensity features included the mean, standard deviation, and sum, where
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applicable, for the gray level; red, green, blue layer; H&E stain layers; optical density (od) 3
channels; hue; and saturation. Texture features included zernike moments11 (0-24 moments),
threshold adjacency analysis12 values (statistics 0-53), local binary patterns13 (histogram bins
0-25), gray scale co-occurrence matrix14 and difference of Gaussian15 statistical measures.
QuPath software16 was utilized for histology slide visualization, tissue detection and tiling.
Scikit-image, scikit-learn and mahotas python libraries17 were used for image processing, fea-
ture generation and classification.

2.1.3. Immunohistochemistry staining for lineage specific markers

All FFPE slides were stained using the Leica Bond III automated IHC instrument and Leica
reagents. The Leica antibody panel included: CD45 clone X16/99, CD4 clone 4B12, CD8 clone
4B11, CD20 clone L26, CD56 clone CD564, and CD68 clone 514H12. CD20 was used in a 1:200
dilution, but all other antibodies were purchased prediluted. Slides were deparaffinized using
Dewax Solution. Heat induced epitope retrieval was used to reverse cross-linked proteins in
the tissue by heating slides to 38 degrees Celsius and applying Epitope Retrieval Solution 1, a
citrate-based solution with a pH of 6.0. The Bond Polymer Refine Detection kit was used for
IHC staining and hematoxylin counterstaining. Slides were then dehydrated, mounted, and
cover-slipped.

2.1.4. Expert pathology review of histology slides

The IHC and H&E stained slides were scored by a pathologist. The percent of each immune
cell-type of interest (CD20+ B, CD4+ T, CD8+ T, CD68 MAC, CD56 NK cells) and total
immune percentage (CD45) was determined by estimating the percent of cells that stained
positive by IHC for the protein uniquely expressed by that cell-type. The pathologist was
instructed to exclude staining of non-immune cells in their scoring. For instance, if 20% of
all cells on a slide stained positively for CD20 B cells, but half of those positively staining
cells were tumor cells, that sample would be scored as having 10% B cells. The percent
tumor, stroma, and immune cells were estimated from evaluating the cell morphologies on
their respective H&E slides. The relative abundance of the immune cell-types was determined
by dividing the percent of the particular cell-type by the percent of total immune cells.

2.2. NEXT architectures

Neural networks can function as flexible and efficient learning models when integrating het-
erogeneous features, such as gene expression imaging features. The NEXT framework involves
using a neural network-based architecture to integrate RNA-seq and imaging data. We used
this framework in three separate architectures: NN-RNA, NN-RNA-image, and NN-Transfer
(Fig. 2). Broadly, our framework was designed as a shallow neural network that consists of
< 3 layers containing a set of neurons where each neuron is a weighted sum of the inputs in
that layer. Non-linear activation functions are applied to the neurons to allow the model to
find non-linear relationships between gene expression and imaging features. The output of a
layer is then used as the input to the next layer. More specifically, given an input vector x, a
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Fig. 2. NEXT architectures: NN-RNA (red), NN-RNA-image (blue), and NN-Transfer models (or-
ange). The architecture takes in one or two inputs: RNA-seq gene expression alone (NN-RNA), or
RNA-seq gene expression plus image features (NN-RNA-image). These inputs are passed into sepa-
rate dense layers of 32 nodes in the first layer. The second layer contains a single dense layer of 32
nodes to integrate the information from the two sets of inputs. This layer is then fed into an output
layer which uses the softmax activation to generate a probability distribution. These architectures
can be used to predict relative immune cell-type abundances (left), or total fraction of tumor im-
mune infiltrate (right). In the NN-Transfer model, we further boost the prediction of relative immune
cell-type abundance through transfer learning by feeding the output of the total fraction of tumor
immune infiltrate into the second layer of the model.

set of weights W , a bias term b, and an activation function φ, the output of the hidden layer,
h, is calculated as:

h = φ(Wx+ b) (1)

The neural network in this study was trained using both RNA-seq features and image
features generated from image processing. The RNA-seq data was filtered using the LM22
gene list18 and the TPM values were log transformed (feature size = 547). The image features
included the mean and skewness values of the intensity and texture features across all tiles
in an image (feature size = 392). In the first layer of the network, each set of features was
used as inputs to their own fully connected layer which used the rectified linear unit (ReLU)
activation function.

ReLU(x) = max{0, x} (2)

The second layer concatenated outputs of the modularized dense layers to create an inte-
grated set of features. The values from this second layer were then passed to an output layer
which used the softmax function to predict the desired immune proportion. The softmax func-
tion squashes an n-dimensional vector of real valued numbers into a new n-dimensional vector
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with values in the range (0,1] and the sum of all the values is equal to one. More specifically,
given a set of values for Y = {y1, y2, ...yn}

Softmax(yi|Y ) =
eyi∑
j e

yj
(3)

Since our model was designed to predict a distribution, we trained it using the Kullback-
Leibler divergence cost. The Kullback-Leibler divergence measures the divergence of a given
probability distribution, Q, from a target probability distribution, P.

KL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
(4)

To prevent over-fitting of our model, we applied an L2 regularization to the weights for
every layer. This regularizes the model by diffusing the weight vectors so that the model uses
all of its weights rather than relying on a subset of higher valued weights. We also sought
to enforce a shallow neural network architecture by reducing layer sizes until performance
degradation was observed. Our final cost function for training was

C =
∑
i

yi log
yi
ŷi

+ λ
∑
L

||W (L)||2 (5)

Here yi is the true value for the probability of the ith output, ŷi is the predicted probability
for the ith output, λ is the L2 penalty coefficient, and W (L) are the weights for layer L.

The NN-RNA and NN-RNA-image architectures were trained to predict either the distri-
bution of different immune cell-types in the sample or the total fraction of the tumor immune
infiltrate. These models were trained using the ADAM optimizer for batch gradient descent
with a learning rate of 0.005 and a λ value of 0.01. Models were trained and evaluated using
leave-one-out cross validation. Specifically, for each left out example, we partitioned the other
60 samples into a training set of 40 and a validation set of 20. We then trained the model
until the validation loss had not decreased within the last 5 epochs. We then predicted and
reported the proportions of the single left out example.

After training the models, we evaluated if we could apply transfer learning by using one
model to boost the other. For this, we used the outputs of the NN-Transfer model predicting
the total fraction of the tumor immune infiltrate as additional inputs to the second layer of the
NN-RNA-image model predicting the relative cell-type proportions. The NN-Transfer model
was trained using the same methods and parameters described before.

3. Results

We tested the following four hypotheses. First, we tested whether NEXT could effectively
learn and predict immune infiltration cell-type proportions from RNA-seq data (Section 3.1).
Second, we tested whether integrating imaging features could further augment and improve
infiltrate cell-type proportion prediction (Section 3.2). Third, we evaluated the flexibility of
the NEXT architecture by predicting the total fraction of tumor immune infiltrate instead of
the proportion of five key immune cell-types (Section 3.3). Finally, we tested the hypothesis
that integrating estimates of the total fraction of immune infiltrate could yet further augment
and improve prediction of the key immune cell-types (Section 3.4).
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Fig. 3. Model performance benchmarking compared to expert pathologist assessment. (A) Predicted
proportions of B, CD4 T, CD8 T, MAC, and NK cells of five models are shown in comparison to
pathologist scoring of IHC lineage specific markers for 61 solid tumor samples. The sum of the
proportions for all the cells for a particular sample will equal 1. The color of each point denotes the
cell-type and the dotted line represents the linear regression line that best fits the data. The value
of the Pearson correlation coefficient is shown in upper left corner of each plot. (B) The same data
as (A) for the three neural network-based models (from top to bottom: NN-RNA, NN-RNA-image,
NN-Transfer), but separated by immune cell-types.

3.1. NEXT trained with RNA only (NN-RNA)

Several groups have proposed methods for gene expression deconvolution using regression-
based techniques. These include DeconRNASeq, which utilizes a non-negative linear regression
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approach and CIBERSORT, which has demonstrated best-in-class performance for deconvo-
lution using a support vector regression (SVR)-based approach.18,19 We sought to determine
if NEXT could perform comparably to these algorithms when trained on RNA-seq data only
(NN-RNA). Due to commercial restrictions, we independently implemented a support vec-
tor regression deconvolution algorithm using the LM22 matrix.18 Of the two regression-based
techniques tested, we found that the SVR method performed better than DeconRNASeq,
based on overall Pearson correlation.

To test the hypothesis that a neural network-based model (NN-RNA) could effectively
learn immune cell proportions using RNA data only, we trained NEXT on the RNA-seq data
using expert pathologist scoring of infiltration and evaluated performance using leave-one-out
cross validation. The NN-RNA architecture was used to predict relative proportions for B,
CD4 T, CD8 T, MACs, and NK cells. To establish a baseline against SVR, the RNA-seq data
was filtered using the LM22 gene list and the TPM values were log transformed.

We found that NN-RNA performed better than SVR based on overall Pearson correlation
(R=0.709; p=7.54e-48) (Fig. 3A). We attribute this improvement to two factors: (1) whereas
SVR is a linear deconvolution method, NEXT can learn non-linear interactions between gene
expression features; and (2) NEXT is trained and tested using RNA-seq data. While the
authors of CIBERSORT indicate the SVR method with the LM22 matrix is amenable to
RNA-seq data as well, we reason there is an advantage to using RNA-seq data for training
when performing deconvolution on RNA-seq data. Overall, we find that NN-RNA effectively
learns immune cell-type proportions and demonstrates better accuracies than current methods.
Similar to SVR, NN-RNA performed best on B cells and worst on NK cells. This is likely due
to B cells having a more distinct RNA profile, whereas NK cells likely share transcriptional
similarities with CD8 T cells and comprise a smaller proportion of the immune infiltrate.20

3.2. NEXT trained with RNA and image features (NN-RNA-image)

Information about infiltrating immune cells in histopathology slides is normally only accessible
by overlaying additional multiplexed immunofluorescence or immunohistochemistry stains.21

We reason that embedded in microscopic H&E slides is latent information about the tumor-
immune microenvironment, including the population structure and the underlying phenotypic
states of the tumor and immune cells. Thus, we sought to test if integrating imaging features
could further augment and improve the prediction of immune cell-type proportions.

To test this hypothesis, we obtained visual texture and intensity features from correspond-
ing H&E images for each tumor sample. We utilized H&E image derived features due to the
wide availability of H&E stained images used for cancer diagnosis and staging. To establish
a baseline against NN-RNA, the RNA-seq data was filtered again using the LM22 gene list
and the TPM values were log transformed. NN-RNA-image was trained to predict relative
proportions for B, CD4 T, CD8 T, macrophage, and natural killer cells and was evaluated
using leave-one-out cross validation.

NN-RNA-image boosted the prediction of immune cell-type proportions as evaluated by
overall Pearson correlation (R=0.717; p=2.12e-49) (Fig. 3A). Of note, improvements were pref-
erentially observed for CD8 T cells (R= .225; p=0.081) (Fig. 3B). These results suggest that
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Fig. 4. Benchmarking of the total immune infiltrate fraction. Scatter plots illustrate pathologist
counts compared to the immune score from ESTIMATE (left) and the predicted total fraction of
immune infiltrate from NN-RNA-image (right).

integration of imaging features can function to improve immune infiltrate cell-type prediction.

3.3. NEXT for predicting total tumor immune infiltration fraction

Our choice of a generalizable neural network-based architecture for NN-RNA-image was de-
liberate as we hypothesized this could easily be adopted for other related but distinct tasks.
We sought to evaluate the flexibility of NN-RNA-image in predicting the total fraction of im-
mune infiltrate instead of the proportion of key immune cell-types. The total immune fraction
framework seeks to predict the abundance of immune cells in the overall tumor microenviron-
ment, in contrast to relative proportions of immune subsets in the total leukocyte population
(Fig. 2). Here, a pathologist was instructed to assess immune cells (leukocytes) based on cell
morphologies from patient H&E slides. We implemented a version of NN-RNA-image to pre-
dict two outputs, percent immune and non-immune fractions. We trained NN-RNA-image
using RNA-seq data filtered using the LM22 gene set and imaging features. We evaluated
performance using leave-one-out cross validation.

To benchmark our results, we analyzed samples with ESTIMATE, which is a tool for
predicting tumor purity, and the presence of infiltrating stromal/immune cells in tumor tissues
using gene expression data (Fig. 4).22 We found that a neural network-based model (NN-RNA-
image) could be effectively adopted to learn the total immune infiltrate proportion. We found
that our NN-RNA-image trained model performed better than ESTIMATE based on overall
Pearson correlation. Taken together, NEXT provides a flexible framework for integrating RNA-
seq and imaging features, and for predicting estimates of tumor immune infiltrate.

3.4. NEXT augmentation with total immune infiltration fraction
(NN-Transfer)

Motivated by our previous results estimating the total fraction of immune infiltrate using
both RNA-seq and imaging features, we sought to test the fourth hypothesis that integrating
estimates of the total fraction of immune infiltrate could further augment and improve the
prediction of infiltration cell-type proportions. We reasoned that including the total immune
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and non-immune fraction may provide additional meaningful contextual features. Concomitant
predictions of the total fraction of immune infiltrate were concatenated to the RNA-seq and
imaging feature representations in the second layer of the network. Consistent with previous
models, the RNA-seq data was filtered using the LM22 gene list and the TPM values were
log transformed. We trained the NN-Transfer model using RNA-seq and imaging features and
evaluated performance using leave-one-out cross validation.

We found increased accuracy in immune infiltrate prediction as evaluated by overall Pear-
son correlation (R=0.735; p=4.89e-53) (Fig. 3A, NN-Transfer). This increased accuracy was
driven largely by increased correlations for specific immune cell-types, including B, CD4 T,
and MACs (Fig. 3B). In sum, we demonstrate the flexibility and utility of our framework by
transferring additional contextual features, suggesting that other relevant histological, molec-
ular or clinical features can be readily integrated and used for more accurate immune infiltrate
prediction.

4. Discussion

This study represents an important advancement in elaborating the tumor microenvironment
by predicting the tumor immunological composition of individual patients. We present a multi-
modal approach to estimating immune infiltration based on RNA-seq gene expression data
and histopathology imaging features. We demonstrate the NEXT framework is efficient and
flexible, allowing investigators to integrate pre-existing, routine clinical H&E stained slides
with RNA-seq data (Fig. 1 and 2). We also demonstrate increased accuracy in predicting the
abundance of key immune cell subtypes in solid tumors when compared to expert pathologist
assessment of IHC (Fig. 3 and 4).

To our knowledge, this is the first report using multiple laboratory-based modalities to
predict immune infiltration proportions in tumor samples and using gold standard expert
pathologist reviewed IHC samples. Our particular focus on developing a generalizable and
flexible framework for clinical RNA-seq and imaging data holds the potential for substan-
tial clinical impact, including broadening widespread pathological reporting of the immune
infiltrate in tumor biopsies and ultimately guiding patient treatment decisions.

We anticipate further research to fully evaluate these types of models in real-world clinical
settings, and across a larger distribution and spectrum of cancer types. We note that our
framework is amenable to larger datasets because it allows for larger or more layers to increase
learning capacity. Larger datasets would also allow for learning unsupervised input features.
Currently, our model incorporates supervised guided features of the human transcriptome and
imaging data, but larger datasets can enable us to learn unsupervised H&E image features,
such as through an auto-encoder, which may lead to performance boosts. Furthermore, our
current model treats each cell type independently, but in some cases, the relative and absolute
abundance of certain cell types may be correlated. Future work can also exploit the correlative
structure of immune infiltration.

Additionally, as new routine and widespread laboratory-based techniques become adopted,
our framework provides a principled approach for integrating relevant molecular and clini-
cal features to further improve model performance. As we demonstrated in the NN-Transfer
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model, the addition of other contextual information to the model can lead to better overall
prediction accuracy. Other assays, such as DNA sequencing, radiological imaging, methylation
profiling, immunofluorescence or other histological staining techniques, flow or mass cytome-
try, can be used to generate distinct features that can be integrated with the RNA and image
components of the model in a similar fashion to NN-Transfer.

Finally, we note that NEXT can also be used to train a model for predicting any arbitrary
mixture of cells with known proportions. For instance, instead of immune cell subtypes or total
immune fraction, the approach can be adjusted to estimate the relative proportion of tumor
and endothelial cells, which would provide information about how much vascularization is
present in a tumor. The utility of these models is also not limited to cancer samples. Inferring
the relative and absolute proportions of different cell types in complex mixtures has value in
many other disease areas, like lupus and rheumatoid arthritis, and is also a useful tool in basic
science research.
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Transcriptome-wide association studies (TWAS) have recently gained great attention due to their 
ability to prioritize complex trait-associated genes and promote potential therapeutics development 
for complex human diseases. TWAS integrates genotypic data with expression quantitative trait loci 
(eQTLs) to predict genetically regulated gene expression components and associates predictions with 
a trait of interest. As such, TWAS can prioritize genes whose differential expressions contribute to 
the trait of interest and provide mechanistic explanation of complex trait(s). Tissue-specific eQTL 
information grants TWAS the ability to perform association analysis on tissues whose gene 
expression profiles are otherwise hard to obtain, such as liver and heart. However, as eQTLs are 
tissue context-dependent, whether and how the tissue-specificity of eQTLs influences TWAS gene 
prioritization has not been fully investigated. In this study, we addressed this question by adopting 
two distinct TWAS methods, PrediXcan and UTMOST, which assume single tissue and integrative 
tissue effects of eQTLs, respectively. Thirty-eight baseline laboratory traits in 4,360 antiretroviral 
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treatment-naïve individuals from the AIDS Clinical Trials Group (ACTG) studies comprised the 
input dataset for TWAS. We performed TWAS in a tissue-specific manner and obtained a total of 
430 significant gene-trait associations (q-value < 0.05) across multiple tissues. Single tissue-based 
analysis by PrediXcan contributed 116 of the 430 associations including 64 unique gene-trait pairs 
in 28 tissues. Integrative tissue-based analysis by UTMOST found the other 314 significant 
associations that include 50 unique gene-trait pairs across all 44 tissues. Both analyses were able to 
replicate some associations identified in past variant-based genome-wide association studies 
(GWAS), such as high-density lipoprotein (HDL) and CETP (PrediXcan, q-value = 3.2e-16). Both 
analyses also identified novel associations. Moreover, single tissue-based and integrative tissue-
based analysis shared 11 of 103 unique gene-trait pairs, for example, PSRC1-low-density lipoprotein 
(PrediXcan’s lowest q-value = 8.5e-06; UTMOST’s lowest q-value = 1.8e-05). This study suggests 
that single tissue-based analysis may have performed better at discovering gene-trait associations 
when combining results from all tissues. Integrative tissue-based analysis was better at prioritizing 
genes in multiple tissues and in trait-related tissue. Additional exploration is needed to confirm this 
conclusion. Finally, although single tissue-based and integrative tissue-based analysis shared 
significant novel discoveries, tissue context-dependency of eQTLs impacted TWAS gene 
prioritization. This study provides preliminary data to support continued work on tissue context-
dependency of eQTL studies and TWAS. 

Keywords: TWAS; integrative; context; PrediXcan; UTMOST. 

 
1.  Introduction 
Improving antiretroviral therapy (ART) efficacy and safety is an ongoing goal for addressing the 
HIV pandemic. According to the Joint United Nations Programme on HIV and AIDS (UNAIDS) 
(http://aidsinfo.unaids.org/), approximately 36.7 million people worldwide were living with human 
immunodeficiency virus (HIV) in 2016. Over the past three decades there has been immense 
progress on HIV care and treatment, and in 2017 there were about 20.9 million HIV-positive people 
who had access to ART. The connection of genomics with pharmacology has led to the discovery 
of numerous single nucleotide polymorphisms (SNPs) in drug absorption, distribution, metabolism, 
and elimination (ADME) genes and off-target genes. Many SNPs have been related to effects and/or 
pharmacokinetics of antiretroviral drugs1-6. However, most trait-related SNPs lack connections to 
actual functional genes, which suggests the need for alternative analysis approaches. 

The emerging field of transcriptome-wide association studies (TWAS) offer a new way to 
directly identify gene-trait associations via integration of genotypic data and expression quantitative 
trait loci (eQTLs). eQTLs are an important class of genetic functional elements, which affect 
transcriptional regulation on target genes. Integration of eQTL information with genotypic data 
allows TWAS to estimate the extent to which a gene’s expression level is regulated by genetic 
variants and how this correlates with traits of interest8. The Genotype Tissue Expression Project 
(GTEx7) provides the data and the opportunity to identify eQTLs and estimate effect sizes for 
multiple human tissues (44 tissues in GTEx v6p). With GTEx, TWAS can explore gene-trait 
associations on tissues whose gene expression profiles are otherwise hard to obtain, such as liver 
and heart. However, current TWAS focuses primarily on eQTLs identified in a tissue-by-tissue 
manner, while many studies have either acknowledged or supported the power of an integrative 
tissue context in identifying single-tissue and multi-tissue eQTLs9,10.  

In this study, we aimed to address whether and how single tissue and integrative tissue context 
of eQTLs influence TWAS gene prioritization by comparing two distinct TWAS methods, 
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PrediXcan11 and Unified Test for MOlecular SignaTures (UTMOST12). PrediXcan uses elastic-net 
regression model and identifies eQTLs in a tissue-by-tissue manner. UTMOST adopts group-lasso 
and search through all tissues at once to spot eQTLs of a certain gene. This strategy allows 
UTMOST to identify single-tissue specific eQTLs similar to PrediXcan but increase the chance of 
detecting multi-tissue eQTLs. Here, 38 baseline (i.e. pre-ART) laboratory values and genotypic data 
of 4,360 ACTG clinical trials participants from multiple previous studies13-19 comprised the input 
for TWAS. Genotyping had been previously generated in multiple phases with Illumina assays: 
650Y (phase I), 1M Duo (phase II and III), or Human Core Exome (phase IV). We performed the 
two TWAS methods separately in a tissue-specific manner (i.e. 44 tissues) (Figure 1). If tissue 
context-dependency of eQTLs did not affect TWAS gene prioritization, we expected to observe 
shared gene-trait associations between single tissue-based analysis (PrediXcan) and integrative 
tissue-based analysis (UTMOST). The results partially supported this hypothesis, but also suggested 
varied gene prioritization abilities of single tissue-based and integrative tissue-based approaches 
respectively. The former found more unique gene-trait pairs, while the latter tended to prioritize 
genes expressed in multiple tissues. This study provides supportive evidence for tissue context-
dependency of eQTLs and its impact on TWAS gene prioritization.  

2.  Methods 

2.1.  Data and Study Participants 

In this study, we used four different genotyping phases of ACTG studies in a combined dataset that 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. This study investigates the influence of tissue context-dependency of eQTLs on TWAS gene 
prioritization by comparing two distinct TWAS methods, PrediXcan and UTMOST. PrediXcan assumes single 
tissue context of eQTLs, while UTMOST assumes eQTLs to possibly have effects in multiple tissues.  

Pre-imputation Quality Control
- Sex check
- Genotype and sample call rate (> 99%)
- Minor allele frequency (> 5%)
- Relatedness check

Genotype Data

ACTG Phases Sample Size Number of Variants

Phase I-IV 4,396 3,751,837

Imputed Data

ACTG Phases Sample Size Number of Variants

Phase I-IV 4,396 27,438,241 

Phenotypic Data

ACTG Phases Sample Size Baseline Lab Traits

Phase I-IV 5,185 39

Phenotype Quality Control
- Normal distribution 
- Inclusion of samples in genotyping
- Sample missing rate (< 80%, i.e., about 1K 

individuals each trait)

Post-imputation Quality Control
- Filter for biallelic SNPs
- Imputation score (> 0.7)
- Sex check
- Genotype call rate (> 99%)
- Sample call rate (> 98%)
- Minor allele frequency (> 5%)
- Relatedness check (!" < 0.25)
- Principal component analysis

Final Imputed and Phenotypic Data
ACTG 
Phases

Sample 
Size

Number of 
Variants

Baseline Lab 
Traits

Phase I-
IV 4,360 2,185,490 38

- Gene prioritization
1) Overlapped genes between PrediXcan and 

UTMOST
2) Distinct genes

- Prioritized tissues
- Replication

1) Replications between methods
2) Replication with precedent studies

- Visualization
1) Manhattan plots

Subsequent Analysis and Visualization

Transcriptome-wide Association Analysis
- Gene-trait associations
- Significance threshold: Tissue-wise q-value < 0.05

Transcriptome-wide Association Analysis

Predict Gene Expression Levels 
- 2 kinds of eQTLs from PrediXcan and UTMOST, 

separately
- 44 different tissues

Predict Gene Expression Levels

Sex Distribution
- 3,538 males (81.8%) 
- 822 females (18.9%)
Self-reported Race/ethnicity Distribution
- 1,814 White, non-Hispanic (41.6%)
- 1,570 Black, non-Hispanic (36.0%)
- 855 Hispanic (19.6%)
- 121 varied others (2.9%)
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included samples and data from participants in prospective, randomized ART-naïve treatment 
trials13-19. Clinical trial designs and results, and results of a genome-wide pleiotropic study results 
for baseline laboratory values have been described elsewhere13-21.  

2.2.  Quality Control 

2.2.1.  Genotypic data 

A total of 4,393 individuals were genotyped in four phases. Phase I was genotyped using Illumina 
650Y array; Phase II and III were genotyped using Illumina 1M duo array; Phase IV was genotyped 
using Illumina HumanCoreExome BeadChip. 

The computational preparation of genotypic data included pre-imputation quality control (QC), 
imputation, and post-imputation quality control. Pre- and post-imputation quality control followed 
the same guidelines22 and used PLINK1.9023 and R programming language. Imputation was 
performed on ACTG phase I-IV combined genotype data. Genotyped variants surviving the pre-
imputation quality control comprised the input datasets for imputation, which used IMPUTE224 with 
1000 Genomes25 Phase 1 v3 as the reference panel. ACTG phase I-IV combined imputed data had 
4,941 individuals and 27,438,241 variants. The following procedures/parameters were used in the 
post-imputation quality control by PLINK1.90: sample inclusion in phase I-IV phenotype 
collection, biallelic SNP check, imputation score (> 0.7), sex check, genotype call rate (> 99%), 
sample call rate (> 98%), and minor allele frequency (MAF > 5%), and relatedness check (!" > 0.25). 
Subsequent principal component analysis (EIGENSOFT26) projected remaining individuals onto the 
1000 Genomes Project sample space to examine for population stratification. The first three 
principal components were used as covariates to adjust for population structure in the subsequent 
analysis. The final QC’ed ACTG phase I-IV combined imputed data contained 2,185,490 genotyped 
and imputed biallelic SNPs for 4,360 individuals (Figure 1).  

2.2.2.  Phenotypic data 

The ACTG clinical trials included in this analysis collected baseline (i.e., pre-ART) laboratory traits 
from 5,185 ART-naïve individuals. We only retained individuals who have been genotyped and 
traits that were normally distributed and met a criterion of phenotype missing rate < 80%. The final 
combined phenotype dataset of ACTG genotyping phase I-IV retained 38 traits and the same number 
of individuals as the QC’ed imputed dataset (Figure 1).  

2.3.  Predict Unmeasured Gene Expression Levels 

We adopted two TWAS methods, PrediXcan and UTMOST, to predict unmeasured gene expression 
levels in a tissue-specific manner. PrediXcan and UTMOST have estimated SNP effect sizes on 
gene expression levels in 44 tissues, which are available at http://predictdb.org/ and 
https://github.com/Joker-Jerome/UTMOST, respectively. The PrediXcan and UTMOST scripts 
were pulled from their GitHub project repositories on April 23rd and Jun 6th, 2018, respectively.  

PrediXcan and UTMOST followed the same multivariate models. Let # denote the sample size 
and $ denote the number of eQTLs in a certain gene. A gene’s expression level can be predicted 
using the multivariate model as follows: 
 % = '( (1)
where % is the # × 1 vector of predicted gene expression levels of the gene, ' is the # ×$ matrix 
of genotypes, and ( is the $ × 1 vector of eQTLs’ estimated regulatory effects on the gene.  
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Predicted gene expression levels were likely to differ between the two methods as each has a 
different hypothesis of eQTL regulatory mechanisms in terms of tissue context-dependency. To 
discover trait-related tissues without assumptions, we predicted gene expression levels in 44 tissues.  

2.4.  Transcriptome-wide Association Analysis 

We tested for gene-trait associations by performing transcriptome-wide association tests on 
predicted gene expression levels and ACTG baseline lab traits using PLATO27,28. All baseline lab 
traits included in this study were continuous and thus were modeled using linear regression. Age, 
sex, and the first three principal components calculated by EIGENSOFT were included as covariates 
in linear models to adjust for sampling biases and underlying population structure. PrediXcan and 
UTMOST have different degrees of diversity in the number of eGenes and gene-trait associations 
among tissues. To avoid biases due to an uneven number of associations among tissues, p-values 
were adjusted using FDR with using Benjamini–Hochberg procedure29 in a tissue-specific manner. 
For this study, we consider gene-trait associations significant if they had single tissue-wise q-value 
< 0.05. 

3.  Results 
We compared the influence of tissue context-dependency of eQTLs on TWAS gene prioritization 
by comparing single tissue-based analysis (PrediXcan) and integrative tissue-based analysis 
(UTMOST). We performed TWAS on ACTG phase I-IV combined datasets. The data aggregation 
of ACTG phase I-IV provided a larger sample size to ensure the power of identifying gene-trait 
association. QC procedures left the ACTG phase I-IV combined imputed data with 4,360 individuals 
and 2,185,490 SNPs. There were 38 baseline lab traits in the final phenotypic datasets. 

Single tissue-based and integrative tissue-based analysis identified a total of 430 significant 
gene-trait associations (103 unique gene-trait pairs regardless of tissue, q-value < 0.05) and share 
11 unique gene-trait pairs. Single tissue-based analysis identified 116 of the 430 significant 
associations (64 unique gene-trait pairs), encompassing 41 genes, 17 traits, and 28 tissues. 
Integrative tissue-based analysis identified the remaining 314 significant associations (50 unique 
gene trait pairs), encompassing 38 genes, 20 traits, and all 44 tissues.  

3.1.  Tissue Context-dependency Influenced TWAS Gene Prioritization 

Gene prioritization results from single tissue-based analysis (PrediXcan) and integrative tissue-
based analysis (UTMOST) were compared to evaluate the influence of tissue context-dependency 
of eQTLs on TWAS. Single and integrative tissue-based analyses shared 11 of 103 unique gene-
trait pairs regardless of tissue (Table 1). Several of these replicated the findings of previous studies 
(Table 2). The lowest p-value by integrative tissue-based analysis was for MROH2A-total bilirubin 
levels20 (UTMOST, q-value = 6.0e-27), which had a moderate p-value from single tissue-based 
analysis (q-value = 0.005). Another replication was between PSRC1 and two lipid-related traits, 
cholesterol and LDL, which have been reported in other studies30-33. Although it was SORT1, which 
neighbors PSRC1, that has been functionally related to LDL via mice knockdown experiments34.  
ALDH5A1 and GPLD1 have been  associated with the liver function test, alkaline phosphatase 
(ALP)35. In the cases of PSRC1, ALDH5A1, and GPLD1, integrative tissue-based analysis 
(UTMOST) prioritized the genes in their biological function-related organ, liver, which was not    
always the case for single tissue-based analysis (PrediXcan). Possible novel associations were 
observed between absolute neutrophil count and C1orf20436, ATF6, and VANGL237.  
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Table 1. Significant gene-trait associations (q-value < 0.05) shared by single and integrative tissue-based analysis. The 
two different analyses shared 11 out of 103 unique significant gene-trait pairs. 

Traits Genes Methods #Tissues Major Tissue Types* 

Absolute 
neutrophil 

count 

ATF6 
ATF6 

PrediXcan 1 Brain 

UTMOST 2 Brain, Transformed Fibroblasts 

C1orf204 
C1orf204 

PrediXcan 1 Brain 

UTMOST 5 Brain, Ovary, Pituitary 

VANGL2 
VANGL2 

PrediXcan 1 Brain 

UTMOST 1 Brain 

Alkaline 
phosphatase 

ALDH5A1 PrediXcan 9 Artery, Colon, Liver, Lung, Nerve, Pancreas, Skin, Thyroid, Transformed 
Lymphocytes 

ALDH5A1 UTMOST 39 

Adipose, Adrenal Gland, Artery, Brain, Breast, Colon, Esophagus, Heart, Liver, 
Lung, Nerve, Ovary, Pancreas, Pituitary, Prostate, Skeletal Muscle, Skin, Small 
Intestine, Spleen, Stomach, Testis, Thyroid, Transformed Lymphocytes, Uterus, 
Vagina 

GPLD1 PrediXcan 2 Artery, Thyroid 

GPLD1 UTMOST 24 
Adipose, Artery, Brain, Esophagus, Heart, Liver, Lung, Nerve, Pituitary, 
Prostate, Skeletal Muscle, Skin, Small Intestine, Stomach, Testis, Thyroid, 
Transformed Lymphocytes, Vagina, Whole Blood 

Cholesterol 
PSRC1 PrediXcan 9 Brain, Esophagus, Lung, Pancreas, Pituitary, Skeletal Muscle, Skin, Whole 

Blood 

PSRC1 UTMOST 25 Adipose, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve, Ovary, 
Pancreas, Pituitary, Prostate, Skeletal Muscle, Skin, Testis, Uterus, Whole Blood 

Fasting 
cholesterol 

PSRC1 PrediXcan 9 Brain, Esophagus, Lung, Pancreas, Pituitary, Skeletal Muscle, Skin, Whole 
Blood 

PSRC1 UTMOST 22 Adipose, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve, Ovary, 
Pituitary, Prostate, Skeletal Muscle, Skin, Testis, Uterus, Whole Blood 

Fasting LDL 

PSRC1 PrediXcan 11 Brain, Esophagus, Lung, Pancreas, Pituitary, Skeletal Muscle, Skin, Testis, 
Thyroid, Whole Blood 

PSRC1 UTMOST 27 
Adipose, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve, Ovary, 
Pancreas, Pituitary, Prostate, Skeletal Muscle, Skin, Testis, Thyroid, Uterus, 
Whole Blood 

Hemoglobin 

CAMSAP1 PrediXcan 1 Nerve 

CAMSAP1 UTMOST 31 
Adipose, Artery, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve, 
Ovary, Prostate, Skeletal Muscle, Skin, Small Intestine, Spleen, Thyroid, 
Transformed Fibroblasts, Transformed Lymphocytes, Whole Blood 

LDL 

PSRC1 PrediXcan 11 Brain, Esophagus, Lung, Pancreas, Pituitary, Skeletal Muscle, Skin, Testis, 
Thyroid, Whole Blood 

PSRC1 UTMOST 27 
Adipose, Brain, Breast, Colon, Esophagus, Heart, Liver, Lung, Nerve, Ovary, 
Pancreas, Pituitary, Prostate, Skeletal Muscle, Skin, Testis, Thyroid, Uterus, 
Whole Blood 

Total bilirubin 
MROH2A PrediXcan 1 Adipose 

MROH2A UTMOST 1 Stomach 
* For simplicity, only major tissue types were shown. Skin, heart, esophagus, colon, brain, artery, and adipose have subtypes. 
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Table 2. Validation of some of the TWAS prioritized genes. 

GENES METHODS TISSUES Q-
VALUE+ ACTG TRAITS GWAS CATALOG 

REPORTED TRAITS PMID 

ATF6 PrediXcan Brain 1.30E-02 Absolute neutrophil count White blood cell count 28158719 UTMOST Transformed Fibroblasts*, Brain 1.63E-02 

VANGL2 PrediXcan Brain 1.30E-02 Absolute neutrophil count Multiple sclerosis 24076602 UTMOST Brain 4.70E-02 

ADAMTS4 UTMOST Artery 1.50E-04 Absolute neutrophil count*, White 
blood cell count 

Monocyte percentage of 
white cells 27863252 

ALDH5A1 

PrediXcan Colon*, Artery, Liver, Lung, Nerve, Pancreas, Skin, 
Thyroid, Transformed Lymphocytes 1.57E-05 Alkaline phosphatase 

Liver enzyme levels 
(alkaline phosphatase) 22001757 

UTMOST 

Artery*, Adipose, Adrenal Gland, Brain, Breast, Colon, 
Esophagus, Heart, Liver, Lung, Nerve, Ovary, Pancreas, 

Pituitary, Prostate, Skeletal Muscle, Skin, Small 
Intestine, Spleen, Stomach, Testis, Thyroid, Transformed 

Lymphocytes, Uterus, Vagina 

6.58E-03 Alkaline phosphatase 

ITLN1 PrediXcan Stomach 1.04E-05 
Alkaline phosphatase, Absolute 

basophil count, Triglyceride, Viral 
load 

Crohn's disease 18587394 

CELSR2 PrediXcan Brain*, Skeletal Muscle 6.67E-06 Cholesterol, Fasting cholesterol, 
Fasting LDL, LDL Total cholesterol, LDL 20686565, 17903299 

PSRC1 

PrediXcan Lung*, Brain, Esophagus, Pancreas, Pituitary, Skeletal 
Muscle, Skin, Whole Blood 8.47E-06 

LDL*, Cholesterol, Fasting 
cholesterol, Fasting LDL Total cholesterol, LDL 

20686565, 17903299, 
19936222, 17903299, 

25101658 UTMOST 

Heart*, Adipose, Brain, Breast, Colon, Esophagus, 
Liver, Lung, Nerve, Ovary, Pancreas, Pituitary, Prostate, 

Skeletal Muscle, Skin, Testis, Thyroid, Uterus, Whole 
Blood 

1.75E-05 

CETP PrediXcan Colon 3.24E-17 HDL*, Fasting HDL HDL cholesterol 25884002, 20686565 

MROH2A PrediXcan Adipose 5.23E-03 Total bilirubin Bilirubin levels 25884002, 21646302 UTMOST Stomach 5.97E-27 
UGT1A1 PrediXcan Skin 7.13E-07 Total bilirubin Bilirubin levels 25884002, 21646302 

UGT1A7 UTMOST Skin*, Adrenal Gland, Colon, Esophagus, Liver, 
Stomach 5.15E-40 Total bilirubin Bilirubin levels 25884002, 21646302 

APOA1 PrediXcan Brain 2.93E-02 Triglyceride Total cholesterol, 
Triglyceride, LDL, HDL 20686565, 17903299 

APOC3 PrediXcan Heart 1.61E-02 Triglyceride Total cholesterol, 
Triglyceride, LDL, HDL 20686565, 17903299 

 
Bolded tissues are known trait-related tissues.  
* denotes the most significant tissue and/or trait that were associated with genes. 
+ q-value in the most significant tissue denoted by asterisk.   
 

Pacific Symposium on Biocomputing 2019

302



 

3.2.  Single Tissue-based Analysis Found a Greater Number of Unique Gene-trait 
Associations 

Single tissue-based analysis using PrediXcan identified 64 unique gene-trait association across 
different tissues (Figure 2). Some associations have been reported previously (Table 2). PrediXcan 
associated total bilirubin levels with UGT1A120 (skin, q-value = 7.1e-07) and MROH2A20 (adipose, 
q-value = 0.005), and LDL and cholesterol to CELSR2 30,38,39 (most significant with LDL in brain, 
q-value = 6.7e-06). HDL was associated with CETP20,32 (most significant in colon with q-value = 
3.2e-17) and  NLRC538 (adrenal gland, q-value = 7.8e-12). Triglyceride was associated with 
APOA130,39 (brain, q-value = 0.029) and APOC330,39 (heart, q-value = 0.016). 

Single tissue-based analysis identified novel gene-trait associations, which warrants further 
investigation. One interesting example was the association of ITLN1 with multiple traits, including 
HIV-1 viral load, triglyceride, and total neutrophil count. As ITLN1 was reported in a previous 
Crohn’s disease study40, our result suggested an potential relationship between Crohn’s disease and 
HIV infection41. 

3.3.  Integrative Tissue-based Analysis Found Multi-tissue Gene-trait Associations 

Regardless of tissue, integrative tissue-based analysis using UTMOST identified 50 unique gene-
trait pairs (Figure 3). Although it prioritized fewer genes, the integrative tissue-based analysis was 
more likely to prioritize multiple tissues where genes are expressed. For instance, PSRC1 is highly 
expressed in almost all tissues7. PSRC1-LDL and cholesterol associations were prioritized in at least 
ten more tissues by integrative tissue-based analysis Most importantly, they were found consistently 
in the liver which is critically involved in lipid regulation. There was some evidence for distinct 

Figure 2. Manhattan plot of gene-trait associations identified by PrediXcan. X-axis showed only significant traits. Y-
axis was the q-value transformed by -log10. For simplicity, the plot only shows the lowest p-value of a gene-trait pair, 
which may appear in multiple tissues.  
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associations identified via integrative tissue-based approach (Table 2), such as ADAMTS442 with 
white blood cell count (artery,  q-value = 0.023), and AMFR43  with fasting HDL (most significant 
in heart, q-value = 3.2e-05).  

Other prioritized genes suggested novel associations and potential pleiotropy. Most prioritized 
genes have been associated with other traits by GWAS according to GWAS Catalog44. Similar to 
the single tissue-based approach, integrative tissue-based analysis prioritized total bilirubin-
associated genes from the UGT1A45 gene locus (UGT1A7 and UGT1A10) across multiple tissues.  

4.  Discussions 

This study investigated whether and how TWAS gene prioritization was influenced by tissue 
context-dependency of eQTLs by comparing two approaches, single tissue-based TWAS 
(implemented in PrediXcan) and integrative tissue-based TWAS (implemented in UTMOST). 
PrediXcan evaluated eQTLs’ effects in the context of a single tissue, which did not consider 
potential multi-tissue effects of eQTLs� UTMOST estimated eQTLs’ effect in an integrative tissue 
setting and increase the chance of identifying multi-tissue eQTLs. We found that both types of 
analyses could replicate associations discovered by previous studies and identify novel ones. While 
there were a fair number of overlaps, the two types of analyses prioritized different sets of genes. 
Single tissue-based analysis identified more unique gene-trait associations. Integrative tissue-based 
analysis tended to prioritize the same associations in multiple tissues and most importantly 
association were found in tissues critically related to traits of interest. Results suggest that tissue 
context-dependency of eQTLs influenced TWAS gene prioritization results. 

The comparison raised questions of power and type I error rate of tested TWAS approaches. 
Integrative tissue context has shown an improved power in identifying eQTLs. As such, integrative 

Figure 3. Manhattan plot of gene-trait associations identified by UTMOST. X-axis showed only significant traits. Y-
axis was the q-value transformed by -log10. For simplicity, the plot only showed the most significant p-value of a gene-
trait pair, which may appear in multiple tissues. 
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tissue-based analysis might have universally greater power in identifying trait-associated genes than 
single tissue-based analysis. However, in this study, single tissue-based analysis found more 
validated associations (Table 2). It is hard to tell if integrative tissue-based analysis has universally 
greater power as expected, whereas single tissue-based analysis happened to identify more false 
positives. It is also possible that one type of analysis outperformed the other at certain scenarios. A 
simulation study is necessary to discern these possibilities.�

Similar to GWAS, prioritized genes might merely be tag genes for causal ones. Both kinds of 
analyses prioritized genes at the chromosome 1p13.3 locus where a lipid-related gene, SORT1, is 
located. Single tissue-based analysis associated multiple lipid-related traits with genes that neighbor 
SORT1, such as SARS, CELSR2, PSRC1, and ALX3, which all are in the 1p13.3 locus and the same 
topologically associating domain (TAD46,47). Besides PSRC1, integrative tissue-based analysis 
repetitively identified SLC6A17. Even though it is not adjacent to SORT1, this gene is in the 1p13.3 
locus and might serve as a tag gene for causal one(s). Hence, for TWAS, prioritized genes might be 
merely tag genes and fine-mapping of causal genes may need a larger search boundary than GWAS, 
such as TADs.   

Future investigation or validation experiments may be needed to explain the prioritized genes 
and/or tissues. For example, UGT1A1 glucuronidates bilirubin in the liver48, but single tissue-based 
analysis only identified a UGT1A1-total bilirubin association in skin. Further analysis found that 
there was no single UGT1A1 eQTL identified in liver by either PrediXcan or UTMOST trained on 
GTEx v6p or v7 data. It is likely that identification of UGT1A1 eQTLs is limited by tissue sample 
size (!"#$%& = 175 ) or genetic variants may regulate UGT1A1 via mechanisms other than 
transcriptional regulation. Another observation of this study was that genes adjacent to UGT1A1 
sporadically showed up as significant in either single tissue-based or integrative tissue-based 
analysis, including USP40, UGT1A6, UGT1A7, UGT1A10, KCNJ13, and also MROH2A20. These 
genes span 1Mbp in chromosome 2 and locate within the same TAD46,47. The repetitive pattern may 
suggest a specific regulatory activity that targets the whole genetic region of KCNJ13-USP40-
UGT1A-MROH2A.  

TWAS can prioritize trait-related genes, which may be important for HIV-positive patients 
regarding genetically informed therapeutic development and drug safety. This study showed that 
TWAS were able to not only replicate known associations, but also identify novel gene-trait 
associations. It also suggested the importance of biological context in eQTL studies, and the 
ensemble of TWAS methods with different transcriptional regulation assumptions gave a more 
comprehensive picture of gene-trait relationships. In the future, we would like to perform cross-
tissue TWAS analysis12,49, which aggregate gene-trait association information across all tissues and 
even across different consortia to further prioritize the trait-related genes and better describe the 
genetic architecture of complex diseases.  
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Repurposing existing drugs for new therapeutic indications can improve success rates and streamline 
development. Use of large-scale biomedical data repositories, including eQTL regulatory 
relationships and genome-wide disease risk associations, offers opportunities to propose novel 
indications for drugs targeting common or convergent molecular candidates associated to two or 
more diseases. This proposed novel computational approach scales across 262 complex diseases, 
building a multi-partite hierarchical network integrating (i) GWAS-derived SNP-to-disease 
associations, (ii) eQTL-derived SNP-to-eGene associations incorporating both cis- and trans- 
relationships from 19 tissues, (iii) protein target-to-drug, and (iv) drug-to-disease indications with 
(iv) Gene Ontology-based information theoretic semantic (ITS) similarity calculated between protein 
target functions. Our hypothesis is that if two diseases are associated to a common or functionally 
similar eGene - and a drug targeting that eGene/protein in one disease exists - the second disease 
becomes a potential repurposing indication. To explore this, all possible pairs of independently 
segregating GWAS-derived SNPs were generated, and a statistical network of similarity within each 
SNP-SNP pair was calculated according to scale-free overrepresentation of convergent biological 
processes activity in regulated eGenes (ITSeGENE-eGENE) and scale-free overrepresentation of common 
eGene targets between the two SNPs (ITSSNP-SNP). Significance of ITSSNP-SNP was conservatively 
estimated using empirical scale-free permutation resampling keeping the node-degree constant for 
each molecule in each permutation. We identified 26 new drug repurposing indication candidates 
spanning 89 GWAS diseases, including a potential repurposing of the calcium-channel blocker 
Verapamil from coronary disease to gout. Predictions from our approach are compared to known 
drug indications using DrugBank as a gold standard (odds ratio=13.1, p-value=2.49x10-8). Because 
of specific disease-SNPs associations to candidate drug targets, the proposed method provides 
evidence for future precision drug repositioning to a patient’s specific polymorphisms. 
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1.  Introduction 

Drug repurposing is an approach that investigates an approved drug for its potential efficacy as a 
treatment for other diseases1. This strategy can be cheaper, faster, and more efficient than de novo 
drug discovery since many preclinical and safety studies have already been completed2, 3.  

Some reported repurposing successes have relied on serendipitous clinical observation (i.e., 
Sildenafil/Viagra repurposed from pulmonary arterial hypertension to erectile dysfunction)4 while 
many others use disease-specific basic biology hypotheses where a single molecular factor has been 
independently associated with pathology in two or more diseases (i.e., FYN in solid tumor 
proliferation and Alzheimer’s)3. Employing scalable computational methods offers great potential 
for finding credible, novel, and hypothesis-free repurposing opportunities2, 5 by rapidly linking 
genetic risk factors and/or molecules perturbed during disease processes with known drug targets or 
other identified consequences of therapy2, 5-7. Several computational network analysis methods have 
been developed for drug repurposing, generally beginning from a seed set of well-described proteins 
or druggable targets. These then incorporate data from protein-protein and/or protein-drug 
biochemistry to propose new functional candidate molecules and drug activity based on presumptive 
physical interactions8, 9. Other methods examine gene expression changes to predict signature 
similarity between two diseases or between a disease and a drug exposure as a way to propose 
candidates10, 11. However, these methods are limited due to (i) typically relying on single-scale 
methodologies and (ii) focusing on coding DNA or their gene products. High-level integration of 
different data sources and knowledge are required to efficiently perform multiscale analysis for a 
more thorough approach to hypothesis-free drug repurposing, as well as integration of signals from 
noncoding areas of the genome.  

Genome-wide association studies (GWAS) represent a large potential source of information on 
genetic factors associated with disease risk or severity. However, about 50% of associations detected 
by GWAS have mapped to intergenic or noncoding sequences, suggesting altered regulatory 
capacity that remains difficult to interpret12. Fortunately, massive amounts of new data have been 
generated to address questions of noncoding function. These include the Genotype-Tissue 
Expression (GTEx) resource which mapped expression quantitative trait loci (eQTL) linking single 
nucleotide polymorphisms (SNP) to tissue-specific regulation of gene transcripts (eGenes)13. 
Colocalization of GWAS positional loci with these data14, 15 and/or with additional computational 
integration of data in other knowledge bases (e.g., protein-protein interaction networks, Gene 
Ontology (GO)16 annotations) shows that GWAS loci are enriched in putatively functional regions13, 

14. In addition, non-scalable and rate-limited studies have led to the discovery and characterization 
of several new disease-gene and disease-biological pathway mechanistic candidates17-21. 

Motivation. We have previously designed a multiscale network approach where SNPs from 
GWAS are connected to gene products and their annotations via eQTL22. In that study, we 
demonstrated that pairs of independently segregating GWAS SNPs associated to the same disease 
were significantly more likely to be involved in similar biological processes, colocalized with 
binding sites for the same transcription factor(s), and involved in chromatin interactions with each 
other when compared to pairs of SNPs where each SNP mapped to a different disease22. This is 
consistent with the prevailing idea that heterogeneous risk factors for a given complex disease will 
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display some form of coalescent properties and/or converge into a few non-random, key pathways 
involved in driving pathology, at least in many cases23, 24.  

In this study, we hypothesized that the downstream convergence of eQTL signals between 
highly similar SNP-SNP pairs can be leveraged to identify druggable molecular targets relevant to 
two diseases. Therapeutic modulation of that factor or the pathways it is involved with present a 
potential opportunity for drug repurposing. We computed similarity scores between risk factors 
(here, SNP-SNP pairs) based on information theoretic semantic (ITS) similarity of their associated 
gene ontology biological process terms (ITSGENE-GENE) and overrepresentation of shared or similar 
eGenes (ITSSNP-SNP). These data were integrated with drug targeting data25, 26. We further 
demonstrate that a scale-free resampling analysis of the resulting multiscale network discovers and 
prioritizes a significant number of known drug-to-indication relationships from our gold standard, 
i.e., known treatments for the network diseases. We also report a repurposing example with literature 
evidence confirming the plausibility of our findings. The drug repurposing approach we developed 
is different from the standard approaches (for a review refer to5) since, to our knowledge, no method 
has been yet published that integrates GWAS studies with eQTL associations as pairs, with gene 
ontology similarities leveraged to repurpose drugs across diseases incorporating both identical and 
similar pathological effectors and mechanisms.  

2.  Methods 

2.1.  Datasets 

    GWAS SNP-to-disease associations were obtained from the NHGRI-EBI GWAS Catalog27 
(11/20/2017) comprising 53,009 associations between 2,373 diseases/traits and 41,973 lead SNPs. 
    SNP-to-eGene associations. A comprehensive secondary cis- and trans-eQTL analysis by Fagny 
et al19 of the original raw data in the Genotype-Tissue Expression dataset28 (GTEx vers. 6.0) was 
used for linking SNPs to eGenes (http://networkmedicine.org:3838/eqtl/ ; 19 tissues). Fagny et al19 
adjusted p-values for multiple testing using Benjamini-Hochberg correction for cis- and trans- 
eQTL separately, and suggest retaining associations with False Discovery Rate (FDR)< 0.2. Sample 
genotypes were imputed by GTEx29, providing comprehensive overlap with the GWAS SNP set. 
The entire dataset included 5,896,354 associations between 1,114,453 SNPs and 21,971 eGenes.  
    Molecular drug-to-indication and target-to-drug and associations were downloaded from 
DrugBank API Portal (v1, 02/01/2018)25 and DrugBank (01/11/2017)26 respectively. The database 
consisted of 4,943 associations linking 1,133 drugs with 2,622 unstructured indications (i.e., 
diseases), as well as 11,978 associations linking 2,515 molecular targets with 5,623 drugs. 
    Gene Ontology (GO)30 (06/28/2016) provided 29,690 GO IDs in Biological Processes (GO-BP) 
and 120,779 associations involving 16,604 genes and 11,052 GO-BP IDs.  

2.2.  Building the drug repurposing network  

Briefly, we constructed an integrated multiscale biomolecular network connecting (i) diseases to (ii) 
SNPs to (iii) eGenes (eQTL transcripts) and cognate proteins intersected with both (iv-a) GO 
biological processes annotations (GO-BP) and (iv-b) drugs acting on the protein molecular targets 
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(Fig. 1). This network thus links each SNP to a set of eGenes and GO-BP terms. All possible SNP-
SNP pairs were created, filtered to remove those marking the same linkage locus, and SNP-SNP 
similarity was computed based on information theoretic semantic similarity of each eGene pair’s 
GO-BP terms (ITSeGENE-eGENE) and overrepresentation of the SNP-pair’s shared or similar eGenes 
(ITSSNP-SNP). Statistically prioritized SNP pairs within a disease were used for method and target 
validation (Fig. 1D). SNP pairs that spanned two diseases yet still showed an overrepresentation of 
shared and/or highly similar molecular downstream eGenes were suggested as repurposing 
candidates (Fig. 1C and 4B). 

Preprocessing the data was necessary for the integration of each element in the drug repurposing 
network. First, disease terms used by the GWAS Catalog and DrugBank required standardization 
into a formal representation (Methods 2.2.1), as well as an automated approach for match identical 
or highly similar diseases between these datasets (Methods 2.2.2). Next, we developed a method to 
establish the convergent biomolecular processes revealed by within-disease GWAS risk SNP-SNP 
pairs and compute similarity of these processes across diseases. We propose a nested information 
theoretic distance that considers the functional similarities between downstream eGenes of SNP 
pairs for prioritization of SNP pairs (Methods 2.2.3-5). Once the statistically significant eGene and 
SNP pairs are identified (FDR<0.05), we construct the biomolecular layer (Methods 2.2.6) and 
integrate this with the drug information (Methods 2.2.7) to create the Drug Repurposing Network. 

2.2.1.  Formal representation of disease terms (NHGRI GWAS and DrugBank). Multiple GWAS 
disease traits collected from the NHGRI GWAS Catalog were grouped into semantic disease 
bundles, each assigned to a SNOMED-Clinical Terms (CT) concept representation31. The GWAS 
curator-assigned Experimental Factor Ontology (EFO)27 was used to filter out non-disease 
phenotypes (e.g., pharmacogenomics responses, etc.) by retaining those under the branch 
EFO0000408: disease, reducing the 2,373 GWAS traits to 533 diseases. Text mining scripts and 
cross-mapping were used to link SNOMED-CT concepts to the EFO diseases, which were checked 
and curated into 262 bundles and coded to SNOMED-CT IDs. These bundles are referred to as 
“GWAS diseases” hereafter. We similarly coded 1,936 out of the 2,622 unstructured text disease 
terms of “DrugBank indications” to 2,054 distinct SNOMED IDs (Fig.1C). Note that one 
DrugBank indication can map to multiple SNOMED IDs. 

2.2.2.  Disease similarity computation. SNOMED-CT ontology was chosen because of its rich 
hierarchical relationships and high clinical coverage relevant to GWAS diseases and DrugBank 
indications. Disease-disease semantic similarity was determined by applying Lin’s information-
theoretic similarity (ITS) metric32 with Sánchez et al.’s information content (IC) estimation33 (Eq.1). 
By integrating these, ITS between diseases d1 and d2 (ITSDISEASE-DISEASE) can be calculated through 
Eq. 2, based on the hierarchical structure of the SNOMED-CT ontology. ITS similarity scores range 
from 0 to 1, where 1 corresponds to identity and 0 to complete dissimilarity. Two disease concepts 
with ITS>0.7 were considered similar. Using SNOMED, similarity is computed between every 
disease pair within the GWAS disease list as well as across the GWAS disease list and the DrugBank 
indication list (Eq. 2). Of note, drug repurposing is predicted between independent GWAS 
disease(s)-associated SNPs with non-trivial convergent eQTL mechanisms (Sections 2.2.3-5), in 
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which one of these GWAS diseases is similar or identical to a DrugBank indication 
(ITSGWAS_Disease−DrugBank_Indication(d1,d2)>0.7, applied Eq.2; Methods 2.2.7).    

	   𝐼𝐶(𝑐) = 	  −𝑙𝑜𝑔,
|./01/2(3)|

|245246/72(3)|	  89

:;<	   _>?;@?A89
B	  	  (1)	  	  	  	  	  	  	  	  𝐼𝑇𝑆FGHIJHIKFGHIJHI(𝑑9, 𝑑N) =

N	  ×	  GPQ>R;(ST,	  SU)V
GP(ST)8GP(SU)

	  	  	  (2)	   	  

where |leaves(c)| is the number of leaf nodes under the concept c, |subsumers(c)| is the number of 
ancestor nodes above the concept, max_leaves is the total number of leaves covered by the root 
node, d is a disease, and lca is the least common ancestor to d1 and d2. 

2.2.3.  Information theoretic similarity between two eGenes using GO Biological Processes. We 
also applied the information-theoretic approach that we previously published34 to calculate 
functional similarity between any pair of eGenes (Fig.1A), i.e., ITSeGENE-eGENE. In GO, each gene 
product (gx), used here as the canonical cognate protein of an eGene transcript, can be annotated to 
a set of GO terms (T), denoted as T(gx). The similarity between eGene 1 (g1) and eGene 2 (g2) is 
calculated by semantic similarity between T(g1) and T(g2). For each GO-BP term (ti) associated to 
g1, the similarity score ITSGO-GO(ti, tj) is then calculated for every GO term (tj) associated to g2 (ti ∈ 
T(g2)) (Fig.1A) and use the maximum value among them (max); and vice-versa for g2. The similarity 
between two genes g1 and g2 is thus calculated as the average of all these maximum scores (Eq.3):  

	   𝐼𝑇𝑆?YIZIK?YIZI(𝑔9, 𝑔N) = 	  
∑ :;<

\]∈^(_U)
`GaHbcdbcQef,e]Vg	  8	  ∑ :;<

\f∈^(_T)
`GaHbcdbcQef,e]Vg\]∈^(_U)\f∈^(_T)

|a(hT)|8|a(hU)|
	   (3)	  

where |T(g1)| is the cardinality of the set T(g1). The ITSeGENE-eGENE output has a range between 0 and 
1, where 0 indicates two genes having no similar GO annotations and 1 indicates two genes having 
identical GO annotations.  

2.2.4.  Information theoretic similarity between SNPs. The ITS of a SNP-SNP pair was calculated 
where both are (i) associated with at least one of the 262 GWAS diseases (Methods; 2.1.1) and (ii) 
regulate at least one eGene. Our previously published calculation22 of similarity between a pair of 
SNPs (ITSSNP-SNP) is an extension of the ITSeGENE-eGENE. Since every SNP can be associated with 
multiple eGenes and every eGene can be associated with multiple GO terms, the ITSSNP-SNP is a 
nested calculation that leverages the ITSeGENE-eGENE scores. It is based on the average similarity of 
the set of genes associated by eQTL with the two SNPs, as shown in Eq.4 below:  

	   𝐼𝑇𝑆HZjKHZj(𝑠9, 𝑠N) = 	  
∑ :;<

_]∈b(2U)
`GaH/blmld/blmlQhf,h]Vg	  8	  ∑ :;<

_f∈b(2T)
`GaH/blmld/blmlQhf,h]Vg_]∈b(2U)_f∈b(2T)

|Y(AT)|8|Y(AU)|
	  (4)	  

where SNP s1 was associated with a set of genes G(s1), and |G(s1)| is the cardinality of the set 
G(s1), similarly for s2. The ITSeGENE-eGENE is the similarity of two genes computed with Eq.3. 
Likewise, the ITSSNP-SNP has a score ranging from 0 to 1; a value of 1 indicates two SNPs of perfect 
similarity, and 0 refers to two SNPs of null functional similarity. 
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Fig. 1.  Overview of the construction, computational prioritization, and validation of the drug repurposing 
network. A) ITS computation. We applied ITS to compute the similarity between GO-BPs, SNPs, and genes through 
a cascade process as described in Methods 2.2.3-5. This began construction of the biomolecular network layer. B) 
Integration of multiscale biomolecular associations using GWAS diseases, SNPs, and eGenes as nodes. The 
associations (edges) between nodes were obtained by extracting GWAS disease-to-SNP, and SNP-to-eGene (SNP-
eG) relationships from the database resources described (Methods 2.1). The biomolecular network was then filtered 
to remove SNP-SNP pairs not meeting the introduced criteria (Edge Legend, Methods 2.2.6.). ITSSNP-SNP is computed 
as in Eq.4 considering all the eGenes extracted from eQTL data and the network was further refined to include only 
significantly similar eGene-eGene pairs, i.e. ITSSNP-SNP and ITSeGENE-eGENE (Eq.3) False Discovery Rate (FDR) <0.05. 
Drug-eGene and Drug-indication associations extracted from Drugbank (drug information layer) are included to 
obtain the final drug-repurposing network. C) Network validation. The drug repurposing network is validated by 
querying if the network predicted a significantly high number of gold standard treatments for GWAS diseases. Two 
conditions of validation are proposed, one stringent and one more relaxed (**). D) Drug repurposing patterns. We 
extracted GWAS disease pairs and the related convergent mechanisms where at least a gold standard treatment was 
predicted for one of the two GWAS diseases. The approach predicts new candidate therapies by repositioning drugs 
across these GWAS disease pairs.  
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2.2.5.  Scale-Free permutation for FDR estimation of ITS. 10,000 and 100,000 conservative scale-
free permutations were performed to estimate statistical significance of the ITSeGENE-eGENE and 
ITSSNP-SNP scores (~500,000 core hours), respectively. In each permutation, the node degree of every 
node in the gene-GO annotation network was preserved (each specific gene retained the node degree 
of GO term associations and vice-versa). Multiplicity of prioritization was controlled by Benjamini-
Hochberg with a cutoff of FDR≤0.05 (p.adjust for both ITSeGENE-eGENE and ITSSNP-SNP).  

2.2.6.  Biomolecular network layer construction (Fig.1). The drug repurposing network construction 
starts by defining its biomolecular layer. This level associates GWAS diseases, SNPs, and 
molecular targets (Fig.1A). Disease-to-SNP edges were obtained from GWAS lead SNPs, and 
SNP-to-regulated molecular target (eGene) edges were obtained from eQTL data as described in 
Methods 2.1.2. This produced a network of 9,750 associations between 8,955 SNPs and 235 unique 
diseases, where each of the retained SNPs was also associated with at least one eGene via eQTL. 
All SNP-SNP pairs were generated and filtered to remove SNP pairs (i) separated by less than 5Mb, 
(ii) in linkage disequilibrium with one another (r2>0.01) according to HapMap and 1000 Genomes 
CEU data, and/or (iii) SNP pairs where both mapped within the Major Histocompatibility Complex 
(MHC; Chr6: 28,477,797-33,448,355, ±2 Mb; GRCh37). SNP-SNP pairs where only one SNP 
mapped to the MHC were retained. This was done to remove SNP pairs trivially marking the same 
locus. Similarity is computed (ITSSNP-SNP) for each retained SNP pair according to Eq.4 (Methods 
2.2.4). Focusing only on the SNP pairs that were statistically significant (ITSSNP-SNP; FDR<0.05), 
ITSeGENE-eGENE is computed (Eq.3) to further filter. SNP pairs that satisfied both ITSSNP-SNP and 
ITSeGENE-eGENE at FDR<0.05 were considered as having convergent biological mechanisms and used 
to construct the final biomolecular network.  

2.2.7.  Construction of the drug repurposing network. The final network construction step involves 
the integration of drug knowledge (Fig.1B) with the biomolecular level by matching protein-coding 
eGenes with the molecular targets of drugs acquired from DrugBank (Methods 2.1.3). In this step, 
the disease indications are included for these drugs, as they serve to validate our predictions when 
recapturing known indications (validation, Methods 2.3) and to identify novel opportunities 
predicted by our method that can be used for drug repurposing (Methods 2.4).  

2.3.  Validation of the drug repurposing network  

Before analyzing potential drug repurposing candidates, we validated our drug repurposing network 
by determining whether known drug indications for the included GWAS diseases could be inferred 
from the network above the chance expectation (Fig.1C). To this end, a Fisher’s Exact Test (FET) 
is performed considering: (i) all druggable molecular targets (DMTs) and (ii) all druggable diseases 
(DD). In this validation, a DMT was defined as any eGene that has at least one drug in DrugBank 
targeting the cognate protein, and that the drug is indicated for one or more of the 262 GWAS 
diseases defining our set (Methods 2.2). A DD is defined as any GWAS diseases in the network 
associated with at least one target eGene found in DrugBank, and therefore corresponds to all the 
GWAS diseases that could theoretically be validated using these databases. In this way, we can 
determine how many of the theoretical combinations of DMTs and DDs (DMTs*DDs) are predicted 
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by analysis of significant eGenes associated with prioritized SNP pairs with convergent 
mechanisms. The enrichment of gold standard drug indications among the predictions is conducted 
assuming that the GWAS disease-eGenes analysis can, in principle, discover any drug targets in 
DrugBank. We constructed the contingency table to perform the FET by counting the number of 
DMT-DD interactions (i) present/not present in Drugbank vs (ii) included/not included in our final 
ITS-filtered network (Fig.1C). 

The validation procedure includes similarity between GWAS diseases and indications (Fig.1D; 
ITSGWAS_Disease−GWAS_Disease, Eq.2; Methods 2.2.2). The network validation procedure is then 
conducted by applying two additional conditions, one stringent and one more relaxed (Fig.1D), 
using DrugBank as a gold standard. First, convergent mechanisms between two SNPs associated 
with the same GWAS are prioritized (ITSGWAS_Disease−GWAS_Disease>0.7), i.e., similar SNP pairs 
(ITSSNP-SNP FDR<0.05) with eGene pairs (ITSeGENE-eGENE FDR<0.05), and the number of eGene-
GWAS disease associations that were identical or similar (ITSGWAS_Disease−DrugBank_Indication>0.7) to the 
related molecule-indication associations found in DrugBank were counted (Fig.1D). In the relaxed 
condition, the same procedure is applied, but without the constraint that both SNPs in the prioritized 
pair must map to the same disease (Fig.1D). 

2.4.  Drug repurposing pattern identification 

Drug repurposing candidates are identified by analyzing specific network patterns as illustrated in 
Fig.1D. We prioritized all subnetworks involving pairs of GWAS diseases related to convergent 
mechanism in which at least one eGene was targeted by a drug known to treat one of the two GWAS 
diseases or a similar (ITSGWAS_Disease−DrugBank_Indication ≤0.7) disease. Thus, if the drug is prescribed as 
a treatment for two diseases dissimilar in the pair (ITSGWAS_Disease−GWAS_Disease>0.7), then it is 
predicted as a repurposing candidate across the two GWAS diseases. 

3.  Results and discussion  

3.1.  Overall results and visualization 

The drug repurposing network (Fig.2A) comprises 1,865 nodes and 15,655 edges (Fig.2B) and was 
obtained after considering the similarity of 479,896 SNP-SNP pairs. 74,803 SNP pairs are 
prioritized with significant convergent biomolecular mechanisms (ITSSNP-SNP with FDR<0.05, Eq.4; 
Methods 2.2.5). The list of similar SNP-pairs is further constrained to those with an association to 
at least one disease for which an indication is known in DrugBank, resulting in 9,418 retained SNP 
pairs, their associated significant eGene pairs (ITSeGENE-eGENE with FDR<0.05, Methods 2.2.3), and 
drug information (Methods 2.2.7). All retained SNP pairs marked two independently segregating 
disease loci, based on the positional and linkage filters applied in Methods 2.2.6. SNP pair similarity 
was driven by both cis- and trans-eQTL associations, with 8,329 SNP pairs prioritized through 
regulation of similar eGenes found in cis to each SNP, and 1,089 SNP pairs prioritized based on at 
least one trans-regulated eGene by one of the SNPs (Fig.2A). Fig.2B shows details of the network 
nodes and edges. While they remain a minority, having 12% of prioritized SNP pairs reliant on 
trans-eQTL relationships highlights the importance of including these complex regulatory data, as 
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these would have been overlooked by focusing exclusively on those genes near the GWAS SNP. 
The subnetwork relevant for drug repurposing comprises only the SNP-pairs for which their 
prioritized eGenes code for the protein target of an existing drug (Fig.2C). 
 

3.2.  Network validation results 

We validated our network by calculating the enrichment of drug targets predicted by our method 
(Methods 2.3) over drug targets reported in a curated database gold standard (DrugBank). First, 
identical or similar disease indications matched to any of the 262 GWAS diseases are extracted, 
which resulted in 127 “druggable” diseases (DD) together with their 1,336 associated druggable 
molecular targets (DMT). This yielded 169,672 eGene-disease combinations that could potentially 
be predicted (DMT*DD). Assuming the stringent criterion where DrugBank’s annotated drug 
indication must be identical or similar to the GWAS disease and both SNPs in the prioritized SNP-
SNP pair must be associated to that same GWAS disease, our method predicted 56 relationships 
involving DMTs and GWAS diseases. DrugBank included 2,783 DMT-DD associations with 10 
overlapping (Fisher’s Exact Test-FET p=2.5x10-8; odds ratio=13.1). When considering the more 
relaxed criterion of high similarity between gold standard diseases and predicted indications, we 
found 29 overlapping, from a total of 299 potential predictions (FET p= 3.6x10-14; odds ratio= 6.5).   

 
Fig. 2. Drug Repurposing Network. A) Comprehensive biomolecular network comprising significant convergent 
cis- and trans-eQTL mechanisms between GWAS disease-associated SNPs (ITSSNP-SNP FDR<0.05; ITSeGENE-eGENE 

FDR<0.05), for which there exists indications in DrugBank (i.e., the molecular target of Drugi is the protein 
transcribed by at least one eGene associated by eQTL to SNP-SNP Pairx; Fig.1B; Methods 2.2). B)  Tables 
summarizing the number of nodes and edges of the network shown in panel A; for each edge type we also reported 
the mean node outdegree. C) Prioritized subset of the network in panel A relevant for drug repurposing because it 
satisfies one additional criteria: the disease indication of a Drugi is identical or similar to the GWAS disease 
associated to the SNP-SNP Pairx related to the eGene targeted by the Drugi (Fig.1C; Methods 2.4; 
ITSGWAS_Disease−DrugBank_Indication>0.7). In Supplementary Material -Figure S1, we reported a high-resolution 
version of this network with labeled network node names.   
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Fig.3A illustrates a drug target for Rheumatoid Arthritis (RA) that was predicted by eQTL 
similarity of two distinct GWAS SNPs35 (ITSSNP-SNP FDR=0.0007) and confirmed in DrugBank as 
the known target of Etanercept indicated for Polyarticular Juvenile Idiopathic Arthritis (PJIA)36, 37. 
These two RA SNPs (rs72717009 and rs4239702) affect the expression of FCGR2C and CD40 
respectively. The gene products of FCGR2C and CD40 are annotated to highly similar biological 
processes (ITSeGENE-eGENE FDR=0.01), suggesting a convergent mechanism revealed by these two 
independently segregating factors. Since RA and PJIA are highly similar diseases (ITSRA-PJIA=0.78), 
our approach could correctly predict Etanercept as a treatment for RA37. 

3.3.  Drug repurposing results 

Following the procedure in Methods 2.4, we extracted the GWAS diseases having convergent 
mechanisms (ITSSNP-SNP FDR<0.05 and ITSGENE-GENE FDR<0.05) with one of the GWAS diseases 
for which at least one gold standard indication was present in the network. In detail, we identified 
181 distinct GWAS disease pairs involving 90 diseases. 19 of these diseases had a molecularly-
targeted treatment indicated in DrugBank that matched the eGene-prioritized molecular targets (i.e., 
GWAS diseaseA shown in Fig.1D). 89 diseases had new drug candidates identified by our network, 
potentially allowing repurposing (i.e., GWAS diseaseB in Fig.1D). We extracted 1,288 patterns 
(Supplementary Material -Table S1) including 26 drug candidates relevant to at least one of the 
89 GWAS diseases. The subnetwork obtained by considering the drug repurposing patterns is 
depicted in Fig.2B and comprises 628 nodes (90 GWAS diseases, 253 SNPs, 108 eGenes, 26 drugs 
and 151 indications) and 1,758 edges. Within the 391 SNP-SNP pairs (edges), 25 were prioritized 
based on at least one trans-eQTL association and 366 are driven exclusively by cis-eQTL 
associations. Tissue source of each eQTL association are provided in Table S1. As eQTL detection 
power varied between tissues in our input and multi-organ pathologies are common in complex 
diseases, we chose not to restrict our results to only those with shared or overlapping tissue sources. 
However, as candidates are considered more closely, these filters may allow prioritization and/or a 
cleaner set of hypotheses. 

Fig.3B illustrates Verapamil as a candidate drug target for gout repositioned from coronary 
artery disease that was predicted by eQTL similarity of their respective distinct GWAS SNPs 

 
Fig. 3. Examples of prediction by eQTL signal convergence across distinct chromosomes. A) Gold standard 
validation. In the drug repurposing network, we could confirm Etanercept as standard treatment for Rheumatoid 
arthritis. B) Drug repurposing. Our approach was able to predict Verapamil as a new potential treatment for gout, for 
which a retrospective study reports lower incidence of gout.   
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(ITSSNP-SNP FDR=0.000039). The proposed method predicted that KCNH2 is involved in similar 
biological processes as KCKN7 (FDR ITSeGENE-eGENE FDR<10-4). Verapamil is a calcium channel 
blocker and inhibitor of the protein Potassium voltage-gated channel subfamily H member 2 
(KCNH2)38. It is a class IV anti-arrhythmia agent currently used to treat hypertension, angina, and 
cluster headache. The cross-disease prioritized SNP pair indicates that variation at rs13232179 
(coronary artery disease39) modulates expression of KCNH2 in tibial artery and that variation at 
rs10791821 (gout40) modulates expression of KCNK7 in tibial artery, transverse colon, esophagus 
muscularis, and thyroid. Functional similarity between KCNH2 and KCNK7 suggests that effective 
pathway modifying medications may play a role in both conditions. Supporting this prediction, 
studies have demonstrated that other calcium channel blockers are associated with a lower risk of 
incident gout41.  

4. Limitations and future studies 

Currently, our method cannot detect if the effect of the expression from eQTL studies is concordant; 
and so, the proposed method may predict adverse events as well as drug repurposing opportunities. 
For example, Adalimumab (Fig.2C), currently prescribed for inflammatory bowel disease, is 
predicted as a possible treatment for Multiple Sclerosis (MS). However, anecdotal cases report 
worsening of MS patients treated with this drug42. Regulation of eGenes in distinct tissues may also 
have important biological consequences. Future studies will focus on (i) experimental validation of 
select candidates, (ii) to provide the data with filtering and analysis tools as an online public 
repository, and (iii) the integration of directional eQTL information in the presence of specific SNP 
variants to determine if these cases can be predicted. 

5. Summary and conclusion 

Drug repurposing offers novel venues to use currently available or investigational drugs. We 
developed a computational drug repurposing approach leveraging several data and knowledge 
resources, by integrating GWAS studies, eQTL data, drug information, and GO similarities in a 
multi-partite hierarchical network. Our approach is anchored on the identification of convergent cis- 
and trans- eQTL targets across distinct disease-associated polymorphisms. These repurposings are 
distinct from previous approaches in that we integrate convergent downstream cis- and trans-eQTL 
signals from any polymorphism, inclusive of intergenic regions. This automatically suggests drug 
repurposing through shared molecular target candidates identified across diseases, beyond the 
straightforward “host” or “nearest” gene overlap (e.g., protein-interaction networks). Our study 
demonstrates that GWAS and eQTL-derived networks can predict a significant number of gold 
standard indications and novel drug repurposing suggestions. Because of specific disease SNPs-
associations to candidate drug targets, the proposed method provides evidence for future precision 
drug repositioning to a patient’s specific polymorphisms. 
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Laboratory testing is an integral tool in the management of patient care in hospitals,
particularly in intensive care units (ICUs). There exists an inherent trade-off in the selection
and timing of lab tests between considerations of the expected utility in clinical decision-
making of a given test at a specific time, and the associated cost or risk it poses to the
patient. In this work, we introduce a framework that learns policies for ordering lab tests
which optimizes for this trade-off. Our approach uses batch off-policy reinforcement learning
with a composite reward function based on clinical imperatives, applied to data that include
examples of clinicians ordering labs for patients. To this end, we develop and extend principles
of Pareto optimality to improve the selection of actions based on multiple reward function
components while respecting typical procedural considerations and prioritization of clinical
goals in the ICU. Our experiments show that we can estimate a policy that reduces the
frequency of lab tests and optimizes timing to minimize information redundancy. We also find
that the estimated policies typically suggest ordering lab tests well ahead of critical onsets—
such as mechanical ventilation or dialysis—that depend on the lab results. We evaluate our
approach by quantifying how these policies may initiate earlier onset of treatment.

Keywords: Reinforcement Learning, Dynamic Treatment Regimes, Pareto Learning

1. Introduction

Precise, targeted patient monitoring is central to improving treatment in an ICU, allowing
clinicians to detect changes in patient state and to intervene promptly and only when necessary.
While basic physiological parameters that can be monitored bedside (e.g., heart rate) are
recorded continually, those that require invasive or expensive laboratory tests (e.g., white blood
cell counts) are more intermittently sampled. These lab tests are estimated to influence up
to 70% percent of diagnoses or treatment decisions, and are often cited as the motivation for
more costly downstream care [1, 2]. Recent medical reviews raise several concerns about the
over-ordering of lab tests in the ICU [3]. Redundant testing can occur when labs are ordered
by multiple clinicians treating the same patient or when recurring orders are placed without
reassessment of clinical necessity. Many of these orders occur at time intervals that are unlikely
to include a clinically relevant change or when large panel testing is repeated to detect a
change in a small subset of analyses [4]. This leads to inflation in costs of care and in the
likelihood of false positives in diagnostics, and also causes unnecessary discomfort to the patient.

∗These authors contributed equally to this work.
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Moreover, excessive phlebotomies (blood tests) can contribute to risk of hospital-acquired
anaemia; around 95% of patients in the ICU have below normal haemoglobin levels by day 3 of
admission and are in need of blood transfusions. It has been shown that phlebotomy accounts
for almost half the variation in the amount of blood transfused [5].

With the disproportionate rise in lab costs relative to medical activity in recent years,
there is a pressing need for a sustainable approach to test ordering. A variety of approaches
have been considered to this end, including restrictions on the minimum time interval between
tests or the total number of tests ordered per week. More data-driven approaches include an
information theoretic framework to analyze the amount of novel information in each ICU lab
test by computing conditional entropy and quantifying the decrease in novel information of a
test over the first three days of an admission [6].

In a similar vein, a binary classifier was trained using fuzzy modeling to determine whether
or not a given lab test contributes to information gain in the clinical management of patients
with gastrointestinal bleeding [7]. An “informative” lab test is one in which there is significant
change in the value of the tested parameter, or where values were beyond certain clinically
defined thresholds; the results suggest a 50% reduction in lab tests compared with observed
behaviour. More recent work looked at predicting the results of ferratin testing for iron
deficiency from information in other labs performed concurrently [8]. The predictability of
the measurement is inversely proportional to the novel information in the test. These past
approaches underscore the high levels of redundancy that arise from current practice. However,
there are many key clinical factors that have not been previously accounted for, such as
the low-cost predictive information available from vital signs, causal connection of clinical
interventions with test results, and the relative costs associated with ordering tests.

In this work, we introduce a reinforcement learning (RL) based method to tackle the
problem of developing a policy to perform actionable lab testing in ICU patients. Our approach
is two-fold: first, we build an interpretable model to forecast future patient states based on past
observations, including uncertainty quantification. We adapt multi-output Gaussian processes
(MOGPs; [9, 10]) to learn the patient state transition dynamics from a patient cohort including
sparse and irregularly sampled medical time series data, and to predict future states of a given
patient trajectory. Second, we model patient trajectories as a Markov decision process (MDP).
This framework has been applied to the recommendation of treatment strategies for critical
care patients in a variety of different settings, from recommending drug dosages to efficiently
weaning patients from mechanical ventilation [11–13]. We design the state and reward functions
of the MDP to incorporate relevant clinical information, such as the expected information gain,
administered interventions, and costs of actions (here, ordering a lab test). A major challenge
is designing a reward function that can trade off multiple, often opposing, objectives. There
has been initial work on extending the MDP framework to composite reward functions [14].
Specifically, fitted Q-iteration (FQI) has been used to learn policies for multi-objective MDPs
with vector-valued rewards, for the sequence of interventions in two-stage clinical antipsychotic
trials [15]. A variation of Pareto domination was then used to generate a partial ordering of
policies and extract all policies that are optimal for some scalarization function, leaving the
choice of parameters of the scalarization function to decision makers.
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Here, we look to translate these principles to the problem of lab test ordering. Specifically,
we focus on blood tests relevant in the diagnosis of sepsis or acute renal failure, two common
conditions associated with high mortality risk in the ICU: white blood cell count (WBC), blood
lactate level, serum creatinine, and blood urea nitrogen (BUN). We present our methods within
a flexible framework that can in principle be adapted to a patient cohort with different diagnoses
or treatment objectives, influenced by a distinct set of lab results. Our proposed framework
integrates prior work on off-policy RL and Pareto learning with practical clinical constraints
to yield policies that are close to intuition demonstrated in historical data. We apply our
framework to a publicly available database of ICU admissions, evaluating the estimated policy
against the policy followed by clinicians using both importance sampling based estimators for
off-policy policy evaluation and by comparing against multiple clinically inspired objectives,
including onset of clinical treatment that was motivated by the lab results.

2. Methods

2.1. Cohort selection and preprocessing

We extract our cohort of interest from the MIMIC III database [16], which includes de-identified
critical care data from over 58,000 hospital admissions. From this database, we first select adult
patients with at least one recorded measure for each of 20 vital signs and lab tests commonly
ordered and reviewed by clinicians (for instance, results reported in a complete blood count or
basic metabolic panel). We further filter patients by their length-of-stay, keeping only those in
the ICU for between one and twenty days, to obtain a final set of 6,060 patients (Table 1).

Table 1. Total recordings, mean & standard deviation (SD) for covariates in selected cohort.

Covariate Count Mean SD

Respiratory Rate (RR) 1,046,364 20.1 5.7
Heart Rate (HR) 964,804 87.5 18.2
Mean Blood Pressure (Mean BP) 969,062 77.9 15.3
Temperature, ◦F 209,499 98.5 1.4
Creatinine 67,565 1.5 1.2
Blood Urea Nitrogen (BUN) 66,746 31.0 21.1
White Blood Cell Count (WBC) 59,777 11.6 6.2
Lactate 39,667 2.4 1.8

Included in the 20 physiological traits we filter for are eight that are particularly predictive
of the onset of severe sepsis, septic shock, or acute kidney failure. These traits are included in
the SIRS (System Inflammatory Response Syndrome) and SOFA (Sequential Organ Failure
Assessment) criteria [17]. The average daily measurements or lab test orders across the chosen
cohort for these eight traits is highly variable (Figure 1). Of these eight traits, the first three are
vitals measured using bedside monitoring systems for which approximately hourly measurements
are recorded; the latter four are labs requiring phlebotomy and are typically measured just
2–3 times each day. We find the frequency of orders also varies across different labs, possibly
due in part to differences in cost; for example, WBC (which is relatively inexpensive to test)
is on average sampled slightly more often than lactate. In order to apply our proposed RL
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Fig. 1. Mean number of recorded measurements per day, of chosen vitals and lab tests.
These eight traits are commonly used in computing clinical risk scores or diagnosing sepsis.

algorithm to this sparse, irregularly sampled dataset, we adapt the multi-output Gaussian
process (MOGP) framework [10] to obtain hourly predictions of patient state with uncertainty
quantified, on 17 of the 20 clinical traits. For three of the vitals, namely the components of the
Glasgow Coma Scale, we impute with the last recorded measurement.

2.2. MDP formulation

Each patient admission is modelled as an MDP with:

(1) a state space S, such that the patient physiological state at time t is given by st ∈ S;
(2) an action space A from which the clinician’s action at is chosen;
(3) an unknown transition function Psa that determines the patient dynamics; and
(4) a reward function rt that constitutes the observed clinical feedback for this action.

The objective of the RL agent is to learn an optimal policy π∗ : S → A that maximizes the
expected discounted accumulated reward over the course of an admission:

π∗ = argmax
π

E

[
T∑
t=0

γtrt|π

]
, where T is admission length, γ is the discount factor.

We start by describing the state space of our MDP for ordering lab tests. We first resample
the raw time series using a multi-objective Gaussian process with a sampling period of one
hour. The patient state at time t is defined by:

st =
[
mSOFA
t ,mvitals

t ,mlabs
t , ylabst , ∆labs

t

]>
(1)

Here, mt denotes the predictive means and standard deviations respectively of each of the vitals
and lab tests. For the predictive SOFA score mSOFA

t , we compute the value using its clinical
definition, from the predictive means on five traits—mean BP, bilirubin, platelet, creatinine,
FiO2—along with GCS and related medication history (e.g., dopamine). Vitals include any
time-varying physiological traits that we consider when determining whether to order a lab
test. Here, we look at four key physiological traits—heart rate, respiratory rate, temperature,
and mean blood pressure—and four lab tests—creatinine, BUN, WBC, and lactate. The values
yt are the last known measurements of each of the four labs, and ∆t denotes the elapsed
time since each was last ordered. This formulation results in a 21-dimensional state space.
Depending on the labs that we wish to learn recommendations for testing, the action space A
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is a set of binary vectors whose 0/1 elements indicate whether or not to place an order for a
specific lab. These actions can be written as at ∈ A = {1, 0}L, where L is the number of labs. In
our experiments, we learn policies for each of the four labs independently, such that L = 1, but
this framework could be easily extended to jointly learning recommendations for multiple labs.

In order for our RL agent to learn a meaningful policy, we need to design a reward function
that provides positive feedback for the ordering of tests where necessary, while penalizing the
over- or under-ordering of any given lab test. In particular, the agent should be encouraged
to order labs when the physiological state of the patient is abnormal with high probability,
based on estimates from the MOGP, or when a lab is predicted to be informative (in that the
forecasted value is significantly different from the last known measurement) due to a sudden
change in disease state. In addition, the agent should incur some penalty whenever a lab test
is taken, decaying with elapsed time since the last measurement, to reflect the effective cost
(both economic and in terms of discomfort to the patient) of the test. We formulate these ideas
into a vector-valued reward function rt ∈ Rd of the state and action at time t, as follows:

rt =
[
rt

SOFA , rt
treat , rt

info , −rtcost
]>

(2)

Patient state: The first element, rSOFA, uses the recently introduced SOFA score for sepsis
[18] which assesses severity of organ dysfunction in a potentially septic patient. Our use of
SOFA is motivated by the fact that, in practice, sepsis is more often recognized from the
associated organ failure than from direct detection of the infection itself [19]. The raw SOFA
score ranges from 0 to 24, with a maximum of four points assigned each to symptom of failure
in the respiratory system, nervous system, liver, kidneys, and blood coagulation. A change
in SOFA score ≥ 2 is considered a critical index for sepsis [18]. We use this rule of thumb to
design the first reward term as follows:

rt
SOFA = 1at 6=0 · 1f(·)≥2 , where f(·) = mSOFA

t −mSOFA
t−1 . (3)

The raw score mSOFA
t at each time step t is evaluated using current patient labs and vitals [19].

Treatment onset: The second term is an indicator variable for rewards capturing whether
or not there is some treatment or intervention initiated at the next time step, st+1:

rt
treat = 1at 6=0 ·

∑
i∈M

1st+1(treatment i was given), (4)

where M denotes the set of disease-specific interventions of interest. Again, the reward term
is positive if a lab is ordered; this is based on the rationale that, if a lab test is ordered
and immediately followed by an intervention, the test is likely to have provided actionable
information. Possible interventions include antibiotics, vasopressors, dialysis or ventilation.

Lab redundancy: The term rt
info denotes the feedback from taking one or more lab tests

with novel information. We quantify this by using the mean absolute difference between the last
observed value and predictive mean from the MOGP as a proxy for the information available:

rt
info =

L∑
`=1

max (0, g(·)− c`) · 1at[`]=1 , where g(·) =

∣∣∣∣∣m(`)
t − y

(`)
t

σ
(`)
t

∣∣∣∣∣ , (5)
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where σ`t is the normalization coefficient for lab `, and the parameter c` determines the minimum
prediction error necessary to trigger a reward; in our experiments, this is set to the median
prediction error for labs ordered in the training data. The larger the deviation from current
forecasts, the higher the potential information gain, and in turn the reward if the lab is taken.

Lab cost: The last term in the reward function, rtcost adds a penalty whenever any test is
ordered to reflect the effective “cost” of taking the lab at time t.

rt
cost =

L∑
`=1

exp

(
−∆

(`)
t

Γ`

)
· 1at[`]=1, (6)

where Γ` is a decay factor that controls the how fast the cost decays with the time ∆t elapsed
since the last measurement. In our experiments, we set Γ` = 6 ∀` ∈ L.

2.3. Learning optimal policies

Once we extract sequences of states, actions, and rewards from the ICU data, we can generate
a dataset of one-step transition tuples of the form D = {〈snt , ant , snt+1〉, rnt }, n = 1...|D|. These
tuples can then be used to learn an estimate of the Q-function, Q̂ : S ×A → Rd —where d = 4

is the dimensionality of the reward function—to map a given state-action pair to a vector of
expected cumulative rewards. Each element in the Q-vector represents the estimated value
of that state-action pair according to a different objective. We learn this Q-function using a
variant of Fitted Q-iteration (FQI) with extremely randomized trees [13, 20]. FQI is a batch
off-policy reinforcement learning algorithm that is well-suited to clinical applications where
we have limited data and challenging state dynamics. The algorithm adapted here to handle
vector-valued rewards is based on Pareto-optimal Fitted-Q [15].

In order to scale from the two-stage decision problem originally tackled to the much
longer admission sequences here (≥ 24 time steps), we define a stricter pruning of actions:
at each iteration we eliminate any dominated actions for a given state—those actions that
are outperformed by alternatives for all elements of the Q-function—and retain only the set
Π(s) = {a : @a′ (∀ d, Q̂d(s, a) < Q̂d(s, a

′))} for each s. Actions are further filtered for consistency :
we might consider feature consistency to be defined as rewards being linear in each feature
space [15]. Here, we relax this idea to filter out only those actions from policies that cannot be
expressed by our nonlinear tree-based classifier. The function will still yield a non-deterministic
policy (NDP) as, in most cases, there will not be a strictly optimal action that achieves the
highest Qd for all d. We suggest one possible approach for reducing the NDP to give a single
best action for any given state based on practical considerations in the next section.

3. Results

Following the extraction of our 6,060 admissions and resampling in hourly intervals using the
forecasting MOGP, we partitioned the cohort into training and test sets of 3,636 and 2,424
admissions respectively. This gave approximately 500,000 one-step transition tuples of the
form 〈st, at, st+1, rt〉 in the training set, and over 350,000 in the test set. We then ran batched
FQI with these samples for 200 iterations with discount factor γ = 0.9. Each iteration took
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Algorithm 1 Multi-Objective Fitted Q-iteration with strict pruning (MO-FQI)

Input:
One-step transitions F = {〈snt , ant , snt+1〉, rnt+1}n=1:|F|;
Regression parameters θ; action space A; subset size N
Initialize Q(0)(st, at) = 0 ∈ Rd ∀st ∈ F , at ∈ A
for iteration k = 1→ K do

Sample subsetN ∼ F ; initialize S ← []

for i ∈ subsetN do
Generate set Π(si) using Q(k−1)

Initialize classification parameters φ
φ← classify(si, ai)

for πi ∈ Π : do
a′ ← πi(si+1) ∩ predict(si+1, φ)

Q(k)(si, ai)← ri+1 + γQ(k−1)(si+1, a
′)

end
S ← append(S, 〈(si, ai), Q(k)(si, ai)〉)

end
θ ← regress(S)

end
Result: θ

100,000 transitions, sampled from the training set, with probability inversely proportional to
the frequency of the action in the tuple. The vector-valued outputs of estimated Q-function
were then used to obtain a non-deterministic policy for each lab considered (Section 2.3). We
chose to collapse this set to a practical deterministic policy as follows:

Π(s) =

{
1, Q̂d(s, a = 0) < Q̂d(s, a = 1) + εd, ∀ d
0, otherwise.

(7)

In particular, a lab should be taken (Π(s) = 1) only if the action is optimal, or estimated
to outperform the alternative for all objectives in the Q-function. This strong condition for
ordering a lab is motivated by the fact that one of our primary objectives here is to minimize
unnecessary ordering; the variable εd allows us to relax this for certain objectives if desired.
For example, if cost is a softer constraint, setting εcost > 0 is an intuitive way to specify this
preference in the policy. In our experiments, we tuned εcost such that the total number of
recommended orders of each lab approximates the number of actual orders in the training set.

With a deterministic set of optimal actions, we could train our final policy function
π : S → A; again, we used extremely randomized trees. The estimated Gini feature importances
of the policies learnt show that in the case of lactate the most important features are the mean
and measured lactate, the time since last lactate measurement (∆) and the SOFA score (Figure
2). These relative importance scores are expected: a change in SOFA score may indicate the
onset of sepsis, and in turn warrant a lactate test to confirm a source of infection, fitting typical
clinical protocol. For the other three policies (WBC, creatinine, BUN) again the time since last
measurement of the respective lab tends be prominent in the policy, along with the ∆ terms
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Fig. 2. Feature importances over the 21-dimensional state space, for each of our four policies.

for the other two labs. This suggests an overlap in information in these tests: For example,
abnormally high white blood cell count is a key criteria for sepsis; severe sepsis often cascades
into renal failure, which is typically diagnosed by elevated BUN and creatinine levels [21].

Once we have trained our policy functions, an additional component is added to our final
recommendations: we introduce a budget that suggests taking a lab at the end of every 24 hour
period for which our policy recommends no orders. This allows us to handle regions of very
sparse recommendations by the policy function, and reflects clinical protocols that require
minimum daily monitoring of key labs. In the policy for lactate orders in a typical patient
admission, looking at the timing of the actual clinician orders, recommendations from our
policy, and suggested orders from the budget framework, the actions are concentrated where
lactate values are increasingly abnormal, or at sharp rises in SOFA score (Figure 3).

3.1. Off-Policy Evaluation

We evaluated the quality of our final policy recommendations in a number of ways. First, we
implemented the per-step weighted importance sampling (PS-WIS) estimator to calculate the
value of the policy πe to be evaluated:

V̂PS-WIS(πe) =

n∑
i=1

T−1∑
t=0

γt
WIS

[
ρ
(i)
t∑n

i=1 ρ
(i)
t

]
r
(i)
t , where ρt =

t−1∏
j=0

πe(sj |aj)
πb(sj |aj)

,

given data collected from behaviour policy πb [22]. The behaviour policy was found by training
a regressor on real state-action pairs observed in the dataset. The discount factor was set to
γWIS = 1.0, so all time steps contribute equally to the value of a trajectory.

We then compared estimates for our policy (MO-FQI) against the behaviour policy and a
set of randomized policies as baselines. These randomized policies were designed to generate
random decisions to order a lab, with probabilities p = {0.01, pemp, 0.5}, where pemp is the
empirical probability of an order in the behaviour policy. For each p, we evaluated ten randomly
generated policies and averaged performance over these. We observed that MO-FQI outperforms
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Treatment: mechanical ventilation

Fig. 3. Demonstration of one test trajectory of recommending lactate orders. The shaded
green region denotes the range of normal lactate values (0.5–2 mmol/L).

Fig. 4. Evaluating V̂d(πe) for each reward component d, across policies for four labs. For random-
ized policies, error bars show standard deviations across 10 trials. The (?) indicates the best performing
policy for each reward component; for absolute cost, this corresponds to the lowest estimated value.

the behaviour policy across all reward components, for all four labs (Figure 4). Our policy
also consistently approximately matches or outperforms other policies in terms of cost—note
that lower cost is better—even with the inclusion of the slack variable εcost and the budget
framework. Across the remaining objectives, MO-FQI outperforms the random policy in at
least two of three components for all but lactate. This may be due in part to the relatively
sparse orders for lactate resulting in higher variance value estimates.

In addition to evaluating using the per-step WIS estimator, we looked for more intuitive
measures of how the final policy influences clinical practice. We computed three metrics here:
(i) estimated reduction in total number of orders, (ii) mean information gain of orders taken,
and (iii) time intervals between labs and subsequent treatment onsets.
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Fig. 5. Evaluating Information Gain of clinician actions against MO-FQI across all labs: the
mean information in labs ordered by clinicians is consistently outperformed by MO-FQI: 0.69 vs 1.53
for WBC; 0.09 vs 0.18 for creatinine; 1.63 vs 3.39 for BUN; 0.19 vs 0.38 for lactate.
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Fig. 6. Evaluating Time to Treatment Onset of lab orders by the clinician against MO-FQI
across all labs: the mean time intervals are as follows (Clinician vs MO-FQI): 9.1 vs 13.2 for WBC;
7.9 vs 12.5 for creatinine; 8.0 vs 12.5 for BUN; 14.4 vs 15.9 for lactate.

In evaluating the total number of recommended orders, we first filter a sequence of recom-
mended orders to the just the first (onset) of recommendations if there are no clinician orders
between them. We argue that this is a fair comparison as subsequent recommendations are made
without counterfactual state estimation, i.e., without assuming that the first recommendation
was followed the clinician. Empirically, we find that the total number of recommendations
is considerably reduced. For instance, in the case of recommending WBC orders, our final
policy reports 12,358 orders in the test set, achieving a reduction of 44% from the number of
true orders (22,172). In the case of lactate, for which clinicians’ orders are the least frequent
(14,558), we still achieved a reduction of 27%.

We also compared the approximate information gain of the actions taken by the estimated
policy, in comparison with the policy used in the collected data. To do this, we defined the
information gain at a given time by looking at the difference between the approximated true
value of the target lab, which we impute using the MOGP model given all the observed values,
and the forecasted value, computed using only the values observed before the current time. The
distribution of aggregate information gain for orders recommended by our policy and actual
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clinician’s orders in the test set shows higher mean information gain with MO-FQI (Figure 5).
Lastly, we considered the time to onset of critical interventions, which we define to include

initiation of vasopressors, antibiotics, mechanical ventilation or dialysis. We first obtained a
sequence of treatment onset times for each test patient; for each of these time points, we traced
back to the earliest observed or recommended order taking place within the past 48 hours, and
computed the time between these: ∆t = ttreatment − torder . The distribution of time-to-treatment
for labs taken by the clinician in the true trajectory against that for recommendations from
our policy, for all four labs, shows that the recommended orders tend to happen earlier than
the actual time of an order by the clinician—on average over an hour in advance for lactate,
and more that four hours in advance for WBC, creatinine, and BUN (Figure 6).

4. Conclusion

In this work, we propose a reinforcement learning framework for decision support in the
ICU that learns a compositional optimal treatment policy for the ordering of lab tests from
sub-optimal histories. We do this by designing a multi-objective reward function that reflects
clinical considerations when ordering labs, and adapting methods for multi-objective batch
RL to learning extended sequences of Pareto-optimal actions. Our final policies are evaluated
using importance-sampling based estimators for off-policy evaluation, metrics for improvements
in cost, and reducing redundancy of orders. Our results suggest that there is considerable
room for improvement on current ordering practices, and the framework introduced here can
help recommend best practices and be used to evaluate deviations from these across care
providers, driving us towards more efficient health care. Furthermore, the low risk of these
types of interventions in patient health care reduces the barrier of testing and deploying
clinician-in-the-loop machine learning-assisted patient care in ICU settings.
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Abstract 
Single-cell genomics technology is an exciting emerging area that holds the promise to revolutionize 
our understanding of diseases and associated biological processes. It allows us to explore processes 
active in bulk tissue samples, survey tissue complexity, characterize heterogeneous cell populations 
and explore the role of cellular heterogeneity and interactions in disease. To deal with these new 
experimental data, new computational methods, software, and data portals to analyze, integrate and 
interpret the complexity of the system are clearly needed. The many areas where new analytical 
methods are needed include: (1) computational methods to identify bona fide patterns of gene 
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expression, mutations, or DNA methylation among single cells; (2) imaging of gene expression or in 
situ transcriptomic analysis to allow study of the spatial-temporal relationships of single cells in 
complex tissues; (3) new tools and methods to integrate multi-omics single cell data that can handle 
the sparsity associated with those data, and (4) new software packages and data portals to enable 
cloud/HPC deployment to both developers and non-informatics end-users. Here we briefly review 
the state-of-the-art single cell analysis methods, ranging from clustering to visualization, and discuss 
the future directions of single cell bioinformatics that overcomes the computational and technical 
challenges as well as promotes the wide-spread adoption in biomedical research labs. 

Keywords: single cell; bioinformatics; software; computation; analysis; sequencing; clustering; 
visualization; pipeline 

1. Background

Single cell genomics represents a major breakthrough in biological science. The technology has
challenged both our understanding of how cells function alone and in communities, and the methods
we have developed to analyze data from bulk tissue samples1–3. The most widely used single-sell
technology is single cell RNA-sequencing (scRNA-seq). Platforms, such as Drop-seq, Fluidigm C1
system, and 10x Genomics Chromium System, have made it possible to study a large number of
single cells in various biological systems in individual labs as well a world-wide consortium, the
Human Cell Atlas, which has as its goal the creation of a reference human cell data resource.
Beyond understanding fundamentals of gene expression patterns in each cell, this technology has
been utilized in many areas of applications, such as characterizing developmental processes,
discovering new cell types, revealing the heterogeneity within tumors, depicting tumor
microevolution, as well as identifying novel biomarkers for disease progression and drug
resistance4.

As an exciting frontier of genomics technology, scRNA-seq data analysis is also computationally 
difficult, due in part to both the technology and basic biology of single cells5. For example, as each 
cell has very limited amount of RNA molecules and the capturing technology is not even close to 
100% efficient, specific RNAs may be omitted and appear as “drop-outs”, meaning that the assay 
fails to capture them and thus their expression value is falsely reported as zero. PCR is sometimes 
used to amplify RNA as part of the product, “jackpotting” can occur; leading to inflated read counts 
for other genes. When using droplet based methods, occasionally multiple cells may be incorporated 
in the droplet, leading to doublets which can confuse data interpretation. Additionally, batch effect 
is known in single-cell experiments, like other omics assays. All of these factors have impact on 
estimating true expression values and each requires the use of rigorous modeling methods to 
estimate the effect and correct for it. 
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To address various issues such as the ones stated above, we have seen numerous computational 
methods reported recently. There are also new bioinformatics pipelines, packages and data portals 
available for public use, depending on users’ background and preference6,7. A scRNA-seq analysis 
pipeline usually includes the following preprocessing steps: batch-effect removal, outlier removal, 
normalization, imputation and gene filtering. Downstream analyses include methods for clustering, 
differential expression analysis, pathway/ontology enrichment analysis, protein network interaction 
mapping, and pseudo-time construction. Read counts, the representation of gene expression (GE), 
are conventionally used as the inputs for bioinformatics analysis. However, some researchers also 
proposed to use other information, such as small nucleotide variation (SNV) as less bias-prone 
features to conduct downstream functional analysis8.   
 
2.   Summary of single cell analysis session at PSB 2019 

In the single cell analysis session at PSB 2019, four submitted full-length manuscripts were 
accepted. They cover a range of topics from visualization, pseudo-time inference, and evaluation of 
clustering methods to probabilistic approach to include gene expression data for metabolic 
modeling.  
 
The work from Ouyang’s group reports on a new method called LISA: Landmark Isomap for Single 
cell Analysis. It is an unsupervised method that constructs cell trajectory and the pseudo-time 
relationships. The authors present a thorough comparison to two widely used methods, TSCAN and 
Monocle2, using both simulated and real data. Their analysis concludes that LISA captures the 
biology of the system being analyzed more efficiently than Monocle2 or TSCAN, yet is more 
computationally efficient. Thus, it can be applied to ever-larger scRNA-seq data sets and might 
potentially useful in the analysis of other single cell omics data. 
 
Huang et al. use a topological analysis method called Mapper to visualize single cell RNAseq 
subpopulation data. Topological analysis of scRNA-seq is very interesting and allows the 
delineation of complex relationships that extend beyond the simple clustering that is more 
commonly used. The authors compared their method to tSNE and showed that Mapper better 
preserves continuous structure in the data.  
 
In Wolpert and Macready’s No Free Lunch Theorem paper, they argued against general purpose 
algorithms tested on small data sets and built without taking advantage of prior knowledge of the 
system being analyzed 9. The work of Greene et al. is a case study in this regard, applied to scRNA-
seq analysis. The authors analyzed the effects of parameter tuning in a variational autoencoder 
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(VAE) on the clustering of simulated scRNA-seq results. They warned that without proper 
parameter sets, deep learning results can lead to significant error.  
 
Gold et al. presents new application of prior work on sparsely-connected autoencoders (SSCA) and 
variation autoencoders (SSCVA), in single cell RNA-seq analysis. This paper replaces those 
statistical methods that were popular in this field with machine learning methods and adds some 
interpretability by mapping genes to gene sets. The results of SSCVA appear to be better than SSCA, 
but the gene-set level extraction is not better than raw gene expression.  

3.   Single cell analysis, what is in the future? 

At present, scRNA-seq is the most widely used method of single cell analysis. As we previously 
noted that there are many choices for each of the various steps along the data analysis pipeline for 
single cell data. However, there is no clear consensus as to what represents best practices. This, in 
large part, represents the fact that scRNA-seq is so new that even discoveries of apparently new cell 
types in a bulk tissue sample need substantial validation using other methods and independent data 
sets before one can consider them to be reliable. As a result, there are no reliable benchmark data 
sets that can be used to objectively evaluate the many methods and pipelines that are now available.  
 
Nevertheless, scRNA-seq data sets provide the opportunity to explore tens of thousands of 
individual cells—data sets that dwarf the number of samples in most other gene expression studies. 
Such expansive data provides many new opportunities for methods development and the use of 
creative approaches that can handle massive yet sparse data. Ultimately, these new methods must 
be critically assessed, and validation will require both careful evaluation of the methods and the 
design and conduct of experimental studies.  
 
What is most exciting about single cell field is that the technology continues to rapidly evolve, 
setting the stage for further methodology development. One particularly interesting application is 
spatially-informed single cell analysis, in which the spatial relationship between various cell types 
is preserved. Current scRNA-seq protocols first dissociate individual cells and remove debris, 
followed by single cell encapsulation and sequencing. Analysis of such expression data will require 
new computational methods to detect spatial patterns and model the relationships between cell types 
and their associations with various phenotypes.  
 
Another exciting possibility is the development of multi-omic analysis in which genomic, 
transcriptomic, epigenomic, or other data types are collected on each cell10,11. Development of these 
methods for single cell data presents great challenges as noisy or missing data can lead to incorrect 
conclusions about the interaction between the sources of those data. Computational methods 
developed for bulk cell multi-omics integration12, may be the first-line option for single-cell multi-
omics integration, after significant efforts on cleaning, imputation, and normalization that preserve 
relationships between data types.  
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Finally, efforts that improve user’s experience will be very valuable. One area is increasingly 
recognized as essential is the development of new methods for visual representation of complex 
data. With the potential to generate data on millions of cells from hundreds of cell types in a single 
experiment, there is a clear need for methods that can show the relationships that exist between those 
cell types that reflect their lineages, relationships, and interacting processes between cell types 
which are related to the phenotypes.  GUI based data portals for interactive scRNA-seq analysis will 
also help the researchers to navigate through massive amount of information.  
 
Regardless of which area one chooses to focus, it is clear that there are many opportunities for 
methods development and application in single cell analysis. More importantly, single cell analysis 
promises to help us understand the complexities of human health and disease—but only if we have 
appropriate analytical methods. 
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Cell trajectory reconstruction based on single cell RNA sequencing is important for obtaining the 
landscape of different cell types and discovering cell fate transitions. Despite intense effort, analyzing 
massive single cell RNA-seq datasets is still challenging. We propose a new method named 
Landmark Isomap for Single-cell Analysis (LISA). LISA is an unsupervised approach to build cell 
trajectory and compute pseudo-time in the isometric embedding based on geodesic distances. The 
advantages of LISA include: (1) It utilizes k-nearest-neighbor graph and hierarchical clustering to 
identify cell clusters, peaks and valleys in low-dimension representation of the data; (2) based on 
Landmark Isomap, it constructs the main geometric structure of cell lineages; (3) it projects cells to 
the edges of the main cell trajectory to generate the global pseudo-time. Assessments on simulated 
and real datasets demonstrate the advantages of LISA on cell trajectory and pseudo-time 
reconstruction compared to Monocle2 and TSCAN. LISA is accurate, fast, and requires less memory 
usage, allowing its applications to massive single cell datasets generated from current experimental 
platforms.  

Keywords: single cell RNA-seq; cell trajectory; pseudo-time; manifold learning. 

 
1.  Introduction  

Single cell RNA sequencing (scRNA-seq) is emerging to revolutionize the study of development 
and disease processes. It has been widely used to investigate the dynamic gene expression landscape, 
cell type identification, cell state transition, and pseudo-time estimation at single cell level [1-7]. 
     An important computational issue of scRNA-seq analysis is on the reconstruction of cell 
trajectory and pseudo-time for individual cells. Among existing methods, Monocle2 [8], TSCAN 
[9], and Slingshot [10] are shown to have relatively better performance [4]. Monocle2 utilizes the 
principal component analysis (PCA) and discriminative dimensionality reduction tree (DDRTree) 
[11]. It is often able to build a tree structure. But an arbitrarily large cell cluster number (usually > 
100) is used for minimum spanning tree (MST) construction. Slingshot extends the principle curve 
method to fit the lineages built on MST. Similar to DDRTree, it makes the tree structure smoother. 
But the users need to determine the dimension reduction and clustering methods and generate cell 
lineages before using Slingshot. TSCAN uses Gaussian mixture models and the Bayesian 
information criterion for automatically determining cell cluster number, and then build cell lineages 
by MST on cluster centers in the PCA space. TSCAN and Slingshot can only infer cell orders in 
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each cell lineage and are not able to estimate the global pseudo-time of all cells. Most of the existing 
methods were only applied to small scRNA-seq datasets. It is not clear whether they are feasible for 
massive scRNA-seq datasets.   
      Large scale scRNA-seq technologies [5], such as 10x Genomics [12], make it possible to profile 
more than tens or hundreds of thousands of cells. Such massive scRNA-seq datasets promote the 
development of new cell trajectory reconstruction methods [1-4]. Existing literature has used 
empirical approaches to study cell lineages supervised by known time labels and cell marker genes 
[1-4]. It is not known how well one can reconstruct complex cell trajectory and pseudo-time by 
unsupervised approaches.  
    We have developed the Landmark Isomap for Single-cell Analysis (LISA), an unsupervised 
method aiming to reconstruct cell trajectory and pseudo-time for massive scRNA-seq datasets. 
Briefly, LISA first automatically determines cell clusters, peaks and valleys based on k-nearest-
neighbor graph (kNN-graph) [13] and hierarchical clustering. Then it maps cells into the isometric 
embedding based on geodesic distances [14] using the peaks and valleys as landmarks. It then build 
the MST on the cluster centers as the main cell trajectory in the isometric embedding. Finally, it 
computes the pseudo-time by projecting cells onto the MST.  
      The rest of the paper is organized as follows: in Methods, we introduce the algorithm of LISA. 
In Results, we assess LISA on a simulated dataset, and two large scRNA-seq datasets. One dataset 
is on human embryo development containing 1,364 cells [15]. The other is on zebrafish 
embryogenesis including 38,731 cells [2]. We compared LISA with Monocle2 and TSCAN on cell 
trajectory reconstruction. We also compared LISA with Monocle2 on global pseudo-time estimation. 
The paper is concluded with a discussion.  

2.  Methods 

The workflow of LISA is shown in Fig. 1. We can start with either unnormalized or normalized 
gene expression values for K genes and N cells. If the input data are raw read counts, log2-
transformation will be performed. Lowly expressed genes will be filtered. Optionally, the genes 
with low variances will be removed. The details of the LISA method will be introduced as follows. 

2.1.  Visualize cells by PCA and t-Distributed Stochastic Neighbor Embedding (t-SNE) 

PCA and t-SNE are two common dimensionality reduction methods for visualization. We use PCA 
to select top ranked PCs that keep the major variations in the data. We then derive the t-SNE [16] 
coordinates based on the selected PCs.  

2.2.  Identify cell clusters, peaks, and valleys  

We identify cell clusters, peaks, and valleys based on kNN-graph and hierarchical clustering. We 
construct the kNN-graph based on the Euclidean distance with a default k as 50. To improve the 
speed, we use the kd-tree [13] to construct the kNN-graph, resulting a running time of O(NlogN), 
where N is the number of cells.  
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Figure 1.  Workflow of LISA. (1) Do PCA for the gene expression matrix (K genes * N cells) and select top ranked PCs. 
Then the N cells with the selected PCs are mapped into the t-SNE embedding. (2) Estimate cell density in the t-SNE 
embedding and build the k-NN graph to find peaks and valleys. Then perform hierarchical clustering until each cluster 
contains one peak point (star shape). Valley points are shown as inverted triangles. (3) Using peaks and valleys as 
landmark points and map the N cells with the selected PCs into the isometric embedding based on geodesic distances. 
(4) Build the main cell trajectory using MST on the cluster centers in the isometric embedding. (5) Estimate global 
pseudo-time by projecting cells onto the main cell trajectory.  
 

After building the kNN-graph, we then search for cell peaks and valleys. We first estimate cell 
density based on a nonparametric density estimation approach [17]. For each cell, if its density value 
is higher than all the k nearest neighbors, it is regarded as a peak. Conversely, if its density value is 
lower than all the k nearest neighbors, it is determined as a valley. Then we propose an iterative 
hierarchical clustering method as follows: 

1. Do hierarchical clustering in the t-SNE embedding. Cut the resulting dendrogram so that the 
number of clusters is equal to the number of peaks. 

2. Among the resulting clusters, if one cluster contains more than one peak, perform 
hierarchical clustering again on this cluster with the cluster number equal to the peak number 
in it. 

3. Do step 2 until each cluster contains at most one peak. 
4. For a cluster without a peak, merge it with another cluster containing a nearest peak. The 

nearest peak is defined as the one that is closest to the cluster with the minimum distance to 
the cells in the cluster.   

2.3.  Landmark Isomap 

We employ the nonlinear dimension reduction method Landmark Isomap for deriving cell 
landscapes which preserve the geometric features of the input data. Isometric feature mapping 
(Isomap) [18] is based on neighborhood graph construction and multidimensional scaling of 
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geodesic distances, with time complexity of O(N"). To improve the computing efficiency, we adapt 
the Landmark Isomap [14] to make it suitable for massive scRNA-seq datasets. When using n 
landmark points (n ≪ N), it has a time complexity of O(mnNlogN) + O(m&N), where m is the 
number of the nearest neighbors for constructing the neighborhood graph.  Here, we use the peaks 
and valleys as landmark points.   

2.4.  Estimating pseudo-time  

We build the main cell trajectory by MST on the cluster centers in the isometric embedding. We 
then map the cells on the main cell trajectory to estimate the pseudo-time for each cell. The detailed 
steps are as the following: 

1. Set a root node in the MST. 
2. For each cell c(, project it onto the nearest edge in the MST. Assume the nearest edge is 

e*,, = <v*, v,>, v* is closer to the root than v, does. The projection vector c(c(/00000000⃑   on the vector 

	ei,j0000⃑  can be expressed as c(c(/00000000⃑ 	= 56vi00000000⃑ ∗56vj00000000⃑
‖569:‖;569<;

‖569:‖
;569<;

c(vj0000000⃑ . The shortest distance of cell c( to e*,, 

can be expressed as  d(,>:,< = ?c(vi0000000⃑ − c(c(/00000000⃑ ?.   
3. For each projection point c(/ , calculate its distance to the root as the pseudo-time. The pseudo-

time  t5 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟𝑜𝑜𝑡, v*) + ‖c(/ v*‖. Here, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑟𝑜𝑜𝑡, v*) is the length of the path 
from v* to the root in the MST. 

     The time complexity of the pseudo-time estimation is O(N).  

3.  Results 

To demonstrate the capability of LISA to build cell trajectory and estimate pseudo-time accurately, 
we evaluated it on one simulated dataset and two real datasets. The sizes of datasets range from 
several hundreds to tens of thousands. All of them contain true time labels. LISA identified cell 
trajectory and estimate pseudo-time for all datasets. We used the Spearman correlation coefficients 
between the true time labels and the estimated pseudo-time to assess the performance of LISA. 
Furthermore, we compared our results with two other state-of-the-art tools, Monocle2 and TSCAN.   

3.1.  Datasets  

SLS3279 is a simulated dataset which contains 475 cells and 48 genes [19]. The time label ranges 
from 1 to 5 with continuous values. It contains two terminal lineages along with time.  
      The EMTAB dataset contains 1,529 cells from 88 human preimplantation embryos from E3 to 
E7 [15]. The processed Reads Per Kilobase of transcript per Million mapped reads (RPKM) values 
is downloaded from EMBL-EBI (https://www.ebi.ac.uk/). Here, we obtained 1,364 cells after 
filtering lowly represented cells using Seurat-1.4.1 [20]. We then used the 736 high variance genes 
from Petropoulos et al. [15]. The RPKM values were log2-transformed.     
      We also used 38,731 cells from zebrafish embryos across 12 developmental stages between 3.3-
12 hours [2]. The raw dataset was processed by URD (https://github.com/farrellja/URD). The 
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processed data were normalized to Transcripts Per Million (TPM) values. The TPM values were 
then log2-transformed. There were 1,883 highly variable genes in the dataset.    
      We compare the performance of LISA, Monocle2, and TSCAN on cell trajectory reconstruction. 
We also compared the performance of LISA and Monocle2 on global pseudo-time estimation. In 
the latter scenario, TSCAN was not compared as it cannot generate global pseudo-time for all cells. 
We also compared all three methods for running time and memory usage. 

3.2.  Simulation results  

First, we used the simulated dataset to verify the capability of LISA. In the simulated dataset, it 
contains two cell lineages. We did PCA for SLS3279, and all PCs were retained.  The PCA result 
was input for t-SNE. Fig. 2A shows the cell clusters, peaks, and valleys that were derived from the 
t-SNE embedding by kNN-graph and hierarchical clustering described in the Methods section. The 
cell densities were shown in Fig. 2B. Correspondingly, it contains four peaks. Then we performed 
Landmark Isomap and built the MST of the cluster centers (Fig. 2C). We obtained the cell trajectory 
with two terminal lineages by setting cluster 1 as the root cluster (Fig. 2D).  
   

 

Figure 2.  SLS3279 results. (A) The cell clusters, peaks, and valleys in the t-SNE embedding. (B) The cell density 
landscape. (C) The cell trajectory in the isometric embedding. (D)The cell trajectory reconstructed by LISA. (E) The 
cell trajectory reconstructed by Monocle2. (F) The cell trajectory reconstructed by TSCAN. In (D)-(F), the true time 
labels are shown. 
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For comparison, we applied Monocle2 and TSCAN to the simulated datasets. In the Monocle2 
result, the cells were more concentrated at the ends of the branches (Fig. 2E). And the Spearman 
correlation coefficients between the estimated pseudo-time and true time labels were higher in LISA 
(0.97) than in Monocle2 (0.92). In the TSCAN result, the cells were more dispersed (Fig. 2F) and 
the global pseudo-time was not obtained. These results showed the potential of LISA in 
reconstructing cell trajectory and pseudo-time.   

3.3.  Application to the EMTAB dataset  

We applied LISA to the EMTAB dataset which contains 1,364 cells [15]. It includes human 
preimplantation embryos cells developed into epiblast (EPI), primitive endoderm (PE) and 
trophectoderm (TE) cells from E3 to E7. The cell clusters, peaks and valleys were shown in Fig. 
3A. The cell density plot was shown in Fig. 3B implying the complexity of cell clustering. We 
obtained 10 cell clusters. We then built the main cell trajectory in the isometric embedding (Fig. 
3C). By setting cluster 9 as the root of cell trajectory, it clearly shows three terminal lineages in the 
cell differentiation path leading to cluster 5, 4, and 3, respectively. To understand the nature of the 
cell lineages, we used the 71 maker genes from EPI, PE and TE [15] to examine the genes expression 
patterns in different cell clusters (Fig. S1 in Appendix). It can be seen that cluster 5 is enriched for 
EPI marker genes, cluster 4 is enriched for PE marker genes, and cluster 3 is enriched for TE marker 
genes.  
 

Figure 3.  EMTAB results. (A) The cell clusters, peaks, and valleys in the t-SNE embedding. (B) The cell density 
landscape. (C) The cell trajectory in the isometric embedding. (D)The cell trajectory reconstructed by LISA. (E) The 
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cell trajectory reconstructed by Monocle2. (F) The cell trajectory reconstructed by TSCAN. In (D)-(F), the true time 
labels are shown. 
 

As comparison, applying Monocle2 to the EMTAB dataset resulted in only two terminal 
lineages (Fig. 3E). Moreover, the Spearman correlation coefficients between the estimated pseudo-
time and true time points were much higher in LISA (0.90) than in Monocle2 (0.77). The cell 
trajectory from TSCAN were shown in Fig. 3F, which also contains only two lineages. 

3.4.  Application to the Zebrafish dataset  

We further applied LISA to a large zebrafish embryo differentiation dataset which contains 38,731 
cells [2]. There are mainly three cell lineages including axial mesoderm, other mesendoderm, and 
ectoderm. In addition, it contains primordial germ and enveloping layer cells.  

The cell clusters, peaks, and valleys of the zebrafish dataset are shown in Fig. 4A. The cell 
density plot is shown in Fig. 4B. We identified 27 cell clusters, peaks and valleys. We used the cell 
type marker genes [2] to investigate whether the main cell trajectories (Fig. 4C) are corresponding 
to known paths. As shown in Fig. S2 in Appendix, the endoderm marker genes were enriched in 
cluster 11 and 12. The primordial germ cell markers were enriched in cluster 1, 2 and 3. The 
enveloping layer cells (EVL) marker genes were enriched in cluster 4. The intermediate/lateral 
mesoderm marker genes were enriched in cluster 18, 24 and 25. The axial mesoderm marker genes 
were enriched in cluster 12 and 13. The paraxial mesoderm marker genes were enriched in cluster 
19, 24 and 26. The pre-placodal ectoderm marker genes were enriched in cluster 21, 22, 26 and 27. 
The non-neural ectoderm marker genes were enriched in cluster 22, 23, 25, and 27. The hindbrain, 
fore/mid brain, neural crest and spinal cord marker genes were enriched in cluster 26 and 27. Based 
on the gene expression patterns, the cell lineage along cluster 11, 18, 12, and 13 was mainly 
corresponding to endoderm and axial mesoderm. The lineage along cluster 18, 20, 23, and 24 was 
mainly corresponding to intermediate/lateral mesoderm and paraxial mesoderm. The lineage along 
cluster 20, 21, 22, 25, 26, and 27 was corresponding to ectoderm which includes pre-placodal 
ectoderm, non-neural ectoderm, hindbrain, fore/mid brain, neural crest, and spinal cord. The lineage 
along cluster 1 was mainly corresponding to primordial germ cells. The lineage along cluster 4 was 
corresponding to EVL. Overall, the main cell trajectories reconstructed by LISA were consistent 
with those in Farrell et al. [2]. We set cluster 1 as the root of cell trajectory and estimated the pseudo-
time of all cells. The Spearman correlation coefficients between the true time labels and the pseudo 
time reconstructed by LISA is 0.91. 

As comparison, Monocle2 only generated one cell lineage (Fig. 4E). Furthermore, the pseudo-
time reconstructed by Monocle2 is reverse to the true time labels resulting in a negative Spearman 
correlation coefficient. The TSCAN derived cell lineages were compressed and hard to be 
distinguished (Fig. 4F). Also, the cell lineages were not corresponding to Farrell et al. [2].  
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Figure 4.  Zebrafish results. (A) The cell clusters, peaks, and valleys in the t-SNE embedding. (B) The cell density 
landscape. (C) The main cell trajectory in the isometric embedding. (D)The cell trajectory reconstructed by LISA. (E) 
The cell trajectory reconstructed by Monocle2. (F) The cell trajectory reconstructed by TSCAN. In (D)-(F), the true 
time labels are shown.   

3.5.  Performance comparisons 

To estimate the pseudo-time of all cells, we set the root cluster based on the initial time point. In our 
comparisons, the clusters which contain the most numbers of cells at the initial time point were 
selected as the roots for both LISA and Monocle2. However, in the Zebrafish dataset, Monocle2 
only found one lineage. In this case, the root cell was determined by Monocle2 automatically. The 
pseudo-time reconstructed by LISA was more consistent with the true time points than Monocle2 
did (Fig. 5).      

Overall, LISA showed better performance on reconstructing cell trajectory than Monocle2 and 
TSCAN did. Moreover, LISA used lower amount of computation time and required dramatically 
less memory than Monocle2 did (Fig. 6A-D). LISA used lower amount of computation time and 
memory than TSCAN did on the EMTAB dataset (Fig. 6A and C), and more computation time and 
similar memory usage compared to TSCAN on the Zebrafish dataset (Fig. 6B and D). In addition, 
in our tests, as cell number increases to exceed 50,000, Monocle2 was not able to estimate the 
pseudo-time, and TSCAN was not able to run its clustering procedure. 
 

Pacific Symposium on Biocomputing 2019

345



 
 

 
 

 

 
Figure 5.  Comparing the Spearman correlation coefficients between the pseudo-time and the true time labels for 
different datasets using Monocle 2 and LISA. (A) SLS3279. (B) EMTAB. (C) Zebrafish. 

 

 
Figure 6.  Computation time and memory usage of EMTAB and Zebrafish using LISA, Monocle2 and TSCAN. (A) 
The computation time on the EMTAB dataset. (B) The computation time on the Zebrafish dataset. (C) The memory 
usage of the EMTAB dataset. (D) The memory usage of the Zebrafish dataset. 

4.  Discussion 

LISA is a new tool to reconstruct cell trajectory and pseudo-time of cells from scRNA-seq data. It 
uses kNN-graph and hierarchal clustering for identifying cell clusters, peaks, and valleys in the t-
SNE embedding in an unsupervised way. It then uses the fast Landmark Isomap to derive the global 
geometrical structure of the data to estimate the main cell trajectory. Finally, it projects individual 
cells on the main cell trajectory and computes the global pseudo-time. 
     The assessments of cell trajectory and global pseduo-time reconstruction of LISA demonstrate 
its improved performance over existing methods such as Monocle2 and TSCAN. Meanwhile, LISA 
runs faster and requires less memory usage than Monocle2 does. In LISA, the root cluster can be set 
by the users for customized cell trajectory and pseudo-time analysis. Existing biological knowledge 
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of specific gene sets, e.g., known marker genes of cell types or states, can be used to reveal the 
biological meanings of the reconstructed cell lineages. In summary, LISA is an accurate, efficient, 
and flexible tool that can be broadly applied to massive scRNA-seq datasets.  
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6.  Appendix 

 
Figure S1. The gene expression heatmap of marker genes from three cell types (EPI, PE, TE). The branch names 
correspond to the cell clustering results.  
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Figure S2. The expression patterns of the marker genes of the 12 cell types in 27 clusters. (A) Enveloping layer cell 
and Periderm (B) Primodial germ (C) Axial mesoderm (D) Intermediate or lateral mesoderm (E) Paraxial Mesoderm 
(F) Endoderm (G) Neural cells (H) Spinal cord cells (I) Brain cells (J) Hindbrain cells (K) Non-neural ectoderm cells 
(L) Pre-placodal ectoderm.  
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Single-cell RNA sequencing (scRNA-seq) techniques have been very powerful in analyzing
heterogeneous cell population and identifying cell types. Visualizing scRNA-seq data can
help researchers effectively extract meaningful biological information and make new discov-
eries. While commonly used scRNA-seq visualization methods, such as t-SNE, are useful
in detecting cell clusters, they often tear apart the intrinsic continuous structure in gene
expression profiles. Topological Data Analysis (TDA) approaches like Mapper capture the
shape of data by representing data as topological networks. TDA approaches are robust
to noise and different platforms, while preserving the locality and data continuity. More-
over, instead of analyzing the whole dataset, Mapper allows researchers to explore biological
meanings of specific pathways and genes by using different filter functions. In this paper,
we applied Mapper to visualize scRNA-seq data. Our method can not only capture the
clustering structure of cells, but also preserve the continuous gene expression topologies of
cells. We demonstrated that by combining with gene co-expression network analysis, our
method can reveal differential expression patterns of gene co-expression modules along the
Mapper visualization.

Keywords: single-cell RNA sequencing; topological data analysis; Mapper
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1. Introduction

Single-cell RNA sequencing (scRNA-seq) has provided an unprecedented view of heterogene-
ity in cell populations. While traditional bulk RNA-seq experiments quantify molecular states
of cells by estimating mean expression profiles of millions of cells, scRNA-seq techniques can
generate expression profiles of individual cells. Such improvement of resolution has made
scRNA-seq a powerful tool to discover previously unknown cellular heterogeneity and func-
tional diversity.1

However, the improvement of scRNA-seq techniques also provides new challenges in data
analysis and interpretation. Firstly, the dimensionality of scRNA-seq data is very high. Typical
scRNA-seq data usually contains RNA sequencing profile of over thousands of genes. Secondly,
the number of cells is large. Recent high-throughput platforms are capable of generating data
for thousands of cells. Thirdly, different scRNA-seq platforms and biological experiments may
produce data with different biases or distributions, which introduces difficulty in comparing
data across different platforms.

To address the aforementioned challenges, many computational tools have been developed
to analyze and visualize high-dimensional scRNA-seq data, including Monocle,2 Wishbone,3

SMILE4 and FVFC.5 However, due to its advantage of detecting clusters in low dimensional
space, t-distributed Stochastic Neighbor Embedding (t-SNE)6 has become the most commonly
used technique in scRNA-seq data visualization to identify cell type clusters.7,8 However, cells
in a population do not always form clustering structures. Oftentimes, they show continuous
trajectories in space of gene expression profiles.3 Therefore there is a need for a scalable method
to capture such continuous gene expression topologies of cells.

Mapper9 is a Topological Data Analysis (TDA) approach that extracts descriptions of high
dimensional datasets in the form of simplicial complexes. As a method of representing data us-
ing topological networks, Mapper possesses several advantages when analyzing and visualizing
scRNA-seq data. Firstly, similar to t-SNE, Mapper can preserve small-scale similarities among
data points. However, while methods like t-SNE often tear apart the continuous structure in
the original high dimensional space, Mapper can instead capture such continuous variation.
Secondly, topological features are robust to small distortions of data, which makes Mapper
robust to noise. Thirdly, Mapper captures the shape of the data by the distance functions
chosen instead of depending on a specific coordinate system. Such coordinate-free approach
gives Mapper the ability to compare data across different platforms.10 Fourthly, Mapper pro-
duces a compressed representation of the shape of the dataset using a graph, where each node
represents a cluster of data points. While t-SNE relies on approximation approaches11 to scale
to large datasets, Mapper is highly scalable to recent scRNA-seq datasets with large number of
cells. Finally, Mapper can view data at multiple resolution.9 This means that Mapper is able to
discover patterns at different scales and capture details in large datasets with complex struc-
tures. Mapper has been applied to many biomedical problems, including identifying patient
subsets in breast cancer,12 analyzing murine embryonic stem cell (mESC) differentiation13 and
studying dynamical organization of the brain.14

In this paper, we used Mapper to visualize scRNA-seq data in order to extract different cell
types and understand the lineage relationship among them. Our approach is innovative in the
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following ways. Firstly, we visualize scRNA-seq data as combinatorial graphs through Mapper
to capture topological features of the data. Mapper can visualize the continuous trajectory of
cells over the space of gene expression profiles, which compliments the methods that recover the
clusters of cells. Secondly, Mapper enables researchers to explore different biological meanings
of scRNA-seq data by using different filter functions. In this paper, we took advantage of
gene co-expression network analysis (GCNA) and focused on gene co-expression modules with
biological functions. We further summarized gene modules into ”eigengenes” and incorporated
them into Mapper as filter functions or coloring of nodes. We applied our method on two large
scRNA-seq datasets (melanoma and pancrease cell) and demontrated that our method can
capture topological structures of scRNA-seq data. Combined with GCNA, Mapper also reveals
that gene co-expression modules are differentially expressed between certain branches in the
visualization and each is enriched with biological functions relevant to the corresponding cell
types.

2. Methods

2.1. Data

In this paper, we applied our method on two large scRNA-seq datasets of melanoma tumor
cells (GSE72056)7 and human pancreas cells (GSE85241).8 Details of datasets are summarized
in Table 1 and both datasets can be accessed through NCBI Gene Expression Omnibus.

Table 1. Summary of datasets used in this study.

Dataset Number of cells Number of genes Cell types(number of cells)

GSE72056 4645 23686
unresolved(132), malignant(1257)

non-malignant(3256: T(2040), B(512), Macro(119),
62(Endo), CAF(56), NK(51), other(416))

GSE85241 2126 19126
acinar(219), alpha(812), beta(448), delta(193),

ductal(245), endothelial(21), epsilon(3),
mesenchymal(80), pp(101), unclear(4)

The expression level of gene i in cell j was quantified as Gij = log2(TPMij/10 + 1), where
TPMij is transcript-per-million (TPM) for gene i in cell j. In scRAN-seq, due to the low
number of RNA transcriptomes, dropout events, where expression measurements of some
random transcripts are missed as zeroes, often occur. To account for the dropout events, we
filtered out genes with the lowest m thr percent of mean expression level or the lowest v thr
percent of variance. We used m thr = 95 and v thr = 95 for the melanoma cell dataset and
retained 775 genes after pre-processing. We used m thr = 90 and v thr = 90 for the pancreas
cell dataset and retained 500 genes after pre-processing.
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2.2. Mapper

Mapper, introduced by Singh et al.,9 is one of the most commonly used TDA approaches.
Mapper contains four steps: filtering, binning, clustering and graph generation and we reiterate
them as Algorithm 1.

Algorithm 1 Mapper on scRNA-seq data

Input: a pre-processed gene expression matrix G
Output: a graph Grph capturing topological features of G
1. filtering: apply a filter function f on G
2. binning: fragment the range of f into overlapping intervals and separate G into over-
lapping bins {B1, B2, ..., Bn}
3. clustering: apply hierarchical clustering on each bin and get a series of overlapping
clusters C
4. graph generation: create a graph Grph to capture the shape of G based on C

Filtering step uses a filter function f to project gene expression data G to a lower dimen-
sional space, usually R or R2. Different filter functions may generate networks with different
shapes and researchers could view data from different perspectives by choosing different filter
functions. One of the commonly used filter functions is eccentricity, which is a family of func-
tions capturing the geometry of data. For cell ci ∈G, given p with 1 ≤ p < +∞, we define the
eccentricity of ci as

Ep(ci) = (

∑
cj∈G d(ci, cj)

p

N
)1/p (1)

where ci, cj ∈ G. d(ci, cj) is the distance between ci and cj and N is the number of cells in
G. When p = +∞, we define L∞ eccentricity as E∞(ci) = maxcj∈Gd(ci, cj). L∞ eccentricity
has being used as a filter function to identify patient subtypes in breast cancer.10 Dimension
reduction methods such as Principle Component Analysis (PCA),10 Multi-Dimensional Scaling
(MDS)13 and t-SNE14 can also be used as filter functions. Researchers can also choose their
own pre-computed data as filter functions.

After applying f on G, range of f is fragmented into overlapping intervals S =

{S1, S2, ..., Sn}. The size of each interval is determined by several parameters: number of inter-
vals n, fraction of overlap between adjacent intervals p and the interval generation method,
which includes generating each interval with the same size or with the same number of cells.
Cells in G are then put into a series of overlapping bins B = {B1, B2, ..., Bn} according to S.

Hierarchical clustering is used to cluster cells in each bin Bi and researchers could choose
from different distance metrics and linkage functions. A histogram is plot with the threshold
values for each transition in the hierarchical clustering dendrogram and the number of clusters
ki is determined by the number of local maximas in the histogram.

After the clustering step, cells in G have been separated into a series of clusters C =

{C1,1, C1,2, ..., C1,k1
, ..., Cn,kn

}. A graph Grph is constructed where each cluster Ci ∈ C is repre-
sented as a node and an edge is drawn between Ci and Cj if Ci ∩ Cj 6= ∅. Grph is the output
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of Mapper and can capture the topological features of the original data G.

2.3. Gene co-expression network analysis

For GCNA, we applied local maximal Quasi-Clique Merger (lmQCM)15 to identify densely
connected modules such as quasi-cliques in weighted gene co-expression networks. Different
from methods like WGNCA,16 which partition genes into disjoint sets and do not allow overlap
between clusters, lmQCM is a greedy approach that allows genes to be shared among multiple
clusters. This is consistent with the fact that genes could participate in multiple biological
processes. The lmQCM algorithm has four parameters: γ, α, t and β. γ determines if a new
module can be initiated by setting the weight threshold for the first edge of the module,
and has the largest influence on the result. We used γ = 0.2, α = 1, t = 1 and β = 0.4 in
our experiments. After identifying gene co-expression modules, we further summarized them
into ”eigengenes” by taking the first principle component of gene expression profiles of the
modules.

We used ToppGene Suite17 for gene set functional enrichment analysis to determine if
gene modules detected by lmQCM are biologically meaningful. ToppGene finds biological
annotations such as Gene Ontoogy (GO) items that are significant in a set of genes. To provide
meaningful results, we only performed functional enrichment analysis on gene modules that
contain at least 10 genes and at most 500 genes.

2.4. Visualizing networks

The output of Mapper on scRNA-seq data is a network where each node is a cluster of cells and
each edge means that two clusters share some common cells. We used a force directed layout
algorithm to calculate the position of each node, which means the positions of individual nodes
do not have particular meanings and only the connections between nodes are informative.

Figure 1. Cursor hovering for detailed information: hovering over a node (left) and hovering
over an edge(right).

Each node contains several features of the cluster it represents. The size of a node is
proportional to the number of cells in the node. The color of each node represents a specific
property of cells, which could be determined by users. For quantitative features, such as
the expression level of a gene or an eigengene, mean value is used to represent the cluster.
For categorical features, such as types of cells, the majority category is used to represent
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the cluster. Pie charts is another option to visualize the category composition of the nodes,
but it could clutter the visualization, making perception of composition difficult. However,
to compensate the information loss by using the majority as representation, we utilized an
interactive visualization technique that allows users to get the cell type composition of a node
or an edge by hovering over it. An example of this is shown in Figure 1.

3. Results

3.1. Visualizing melanoma cells using Mapper

We first compared Mapper with several commonly used dimensionality reduction algorithms
(t-SNE,6 PCA, Isomap,18 LLE19 and Spectral Embedding20) by visualizing the melanoma
cell dataset and the results are shown in Figure 2. We also compared Mapper with one of
the state-of-the-art scRNA-seq visualization methods, Monocle 2.2 Each node in the Mapper
visualization represents a cluster of cells while each point in other visualizations represents a
cell.

Figure 2. Visualization of melanoma cells.

We observe that all above algorithms are capable of separating malignant cells from non-
malignant ones. Particularly, t-SNE separates malignant cells from different tumors into dif-
ferent clusters, which implies that t-SNE may be influenced by batch effects of different cell
populations besides differentiating malignant and non-malignant cells. This also suggests that
t-SNE often tends to break the continuous trajectory of cells in the space of gene expression
profiles. On the other hand, by visualizing the shape of the data, Mapper not only sepa-
rates malignant cells from non-malignant cells, but also preserves the continuous structure
in scRNA-seq data by visualizing malignant cells as a branch separating from non-malignant
cells. Monocle 2 also provides an interesting visualization, where non-malignant cells branch
out into two clusters of malignant cells. However, further analysis did not find different patterns
in expression levels of gene co-expression modules between the two malignant cell clusters.
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Another advantage of Mapper is that it can view data under different resolutions and
capture patterns of different scales. Figure 3 shows a series of visualizations of melanoma cell
dataset with different number of bins (nbins) in the binning step. We observe that the graph
representation of the data is coarse when the number of bins is low, which captures the global
structure of the data. As the number of bins increases, more detailed structures are revealed
and we can detect patterns at a higher resolution.

Figure 3. Mapper visualization of melanoma cells with different number of bins.

Moreover, we could still take the advantage of t-SNE within the Mapper framework by
using t-SNE as the filter function. Using t-SNE as the filter function can produce a compressed
representation that captures the clustering structure of the t-SNE visualization.

3.2. Using eigengenes for node coloring in Mapper

GCNA can identify gene co-expression modules with potential biological meanings, which
helps the interpretation of our visualizations. One way to utilize information from GCNA is
to use expression profiles of eigengenes to color the nodes in graphs produced by Mapper, as
shown in Figure 4.

Figure 4. Mapper visualization of melanoma cells with coloring of eigengene expression profiles.

Two gene co-expression modules were identified in the melanoma dataset by applying
lmQCM on the pre-processed scRNA-seq data. Gene set enrichment analysis results with
false discovery rate corrected p values generated by ToppGene Suite are summarized in Table
2. Figure 4 shows obvious difference of the two eigengene expression profiles between the
malignant branch and non-malignant cells. This is consistent with the fact that biological
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processes such as cell activation, immune response and regulation of cell migration are strongly
associated with malignancy of cells.

Table 2. Gene co-expression modules in the melanoma dataset.

Module ID Number of genes Enriched GO items (p value)

1 26
GO:0001775 cell activation (1.983E-12)

GO:0006955 immune response (1.983E-12)
GO:0045321 leukocyte activation (1.983E-12)

2 16
GO:0042470 melanosome (7.681E-7)

GO:0030334 regulation of cell migration (5.356E-4)
GO:2000145 regulation of cell motility (5.356E-4)

We further investigated genes in eigengene 2 and two non-overlapping sub-modules were
discovered. One contains five genes (TYR, CTSB, MLANA, GPNMB, PMEL) which en-
riches with proteins associated with melanosome - a structure associated with melanocytes
and potentially melanoma. The other contains seven genes (TIMP1, TMSB4X, SGK1, GSN,
LGALS3, SERPINE2, APOD) and enriches with regulation of cell migration and extracellular
matrix. Figure 5 shows that genes in both sub-modules have lower expression level in malig-
nant cells than non-malignant cells, which indicates functions related to normal melanosome
and cell migration activities may be disrupted in malignant melanoma cells.

Figure 5. Using eigengene expression profiles of two sub-modules in eigengene 2 as coloring of
nodes. The first sub-module is enriched in melanosome proteins and the second sub-module
is enriched in cell migration and extracellular space.

3.3. Using eigengenes as filter functions in Mapper

By using different filter functions, researchers can rapidly explore different biological hypothe-
ses in scRNA-seq data through Mapper. So, we can also incorporate GCNA into Mapper by
using expression profiles of eigengenes as filter functions. Figure 6 shows L∞ eccentricity, a
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commonly used filter function, fails to separate different types of human pancreas cells. On
the other hand, t-SNE completely separate different cell types into different clusters. Since
similarities between points with long distances are not reliable in t-SNE visualization, we are
not able to investigate the relationships between different cell types through t-SNE. By using
the expression level of eigengene 2 as a filter function, Mapper can separate different types
of pancreas cells with a branch-shape visualization, which preserves the continuity of cells at
the same time. More specifically, the exocrine compartment of pancreas, including acinar cells
and ductal cells, is visualized as a branch separating from the endocrine compartment. The
shape of the visualization is consistent regardless of the linkage function in the clustering step
(single or complete linkage). Enrichment analysis shows that eigengene 2 is associated with
delta cells and PP cells of mouse adult pancreas in co-expression atlas, which indicates that
eigengene 2 may contain genes conserved between species. This suggests that the eigengene 2
is worthy of further investigation for deeper understanding in pancreatic biology.

Figure 6. Visualization of pancreas cells using t-SNE and Mapper.

Moreover, we can combine multiple eigengene profiles as filter functions. From Figure 7, we
observe that using a single eigengene as the filter function can only differentiate some of the cell
types in the melanoma cell dataset. However, combining two eigenegenes as the filter function
can further differentiate different types such as macrocells and endothelial cells. Comparing to
t-SNE, Mapper visualization using two eigenegenes not only preserves the similarities between
B cells and T cells, but also reduces the batch effect by visualizing all malignant cells as a
group of tightly connected clusters.
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Figure 7. Visualization of melanoma cells using t-SNE and Mapper with eigengene expression
profiles as filter functions.

3.4. Mapper reveals potential functional relationships between exocrine
cells in pancreas

To further investigate the biological significance of Mapper visualization, we used the ex-
pression levels of established marker genes for each of the six main pancreatic cell types in
the human pancreas cell dataset to color the nodes in our visualization. From Figure 8, we
observe that expression levels of marker genes in endocrine cells show significant difference
in the corresponding cell types. However, KRT19 and PRSS1 could not well separate ductal
cells and acinar cells in the exocrine branch, which indicates potential relationships within
exocrine cells. We further applied GCNA on ductal cells and acinar cells separately, as well
as combined together. Two gene co-expression modules were identified across all three cell
populations. However, as shown in Figure 9, module 1 in the combined cell population shows
very small overlap with all the gene modules identified from the ductal-only and acinar-only
population. Enrichment analysis shows that module 1 in the combined cell population is asso-
ciated with neuron part (GO:0097458, p = 1.141E-3) and extracellular space (GO:0005615, p
= 5.735E-3), which could relate to enzymes production activities of acinar cells. Module 1 also
enriches secretory granule (GO:0030141, p = 7.314E-3), which could relate to the production
of bicarbonate-rich secretion in ductal cells.

4. Conclusion

The scRNA-seq technology is becoming a common approach to study cellular heterogeneity
and dynamic cellular process. Visualization techniques can help researchers effectively extract
that information from scRNA-seq data. In this paper, we applied a TDA algorithm, Mapper,
on two large scRNA-seq datasets. We showed that Mapper is able to preserve the continuous
structure in gene expression profiles while effectively differentiate different cell types at the
same time. This advantage allows us to investigate the relationships and connections between
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Figure 8. Mapper visualization of pancreas cells, with coloring of marker genes expression
levels.

Figure 9. Gene co-expression module detected only in combined cell population of acinar and
ductal cells.

different cell types through visualization. Mapper also allows researchers to explore different
biological hypotheses through different filter functions and generates results with rich bio-
logical information. We took this advantage by incorporating information from GCNA into
our visualization. GNCA helps to differentiate different cell types more effectively and en-
richment analysis of gene co-expression modules helps the interpretation of the visualization
results. Moreover, our method provides various options for researchers to explore the data
from different perspectives and is highly scalable to large number of cells.

While our method shows potential in effectively extracting biological insights from scRNA-
seq data, some limitations still exists. Firstly, although different filter functions could produce
networks with different structures, allowing researchers to explore data from different perspec-
tives, not all filter functions could generate networks with meaningful shapes. Researchers need
to work with the data experimentally in order to find informative visualizations. Secondly, en-
richment analysis only provides preliminary results of potential biological significance and
more rigorous experiments are needed to validate the findings. Finally, we plan to implement
our method as a web tool so that more researchers can easily access our method.
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Single-cell RNA sequencing (scRNA-seq) is a powerful tool to profile the transcriptomes of a 
large number of individual cells at a high resolution. These data usually contain measurements of 
gene expression for many genes in thousands or tens of thousands of cells, though some datasets now 
reach the million-cell mark. Projecting high-dimensional scRNA-seq data into a low dimensional 
space aids downstream analysis and data visualization. Many recent preprints accomplish this using 
variational autoencoders (VAE), generative models that learn underlying structure of data by 
compress it into a constrained, low dimensional space. The low dimensional spaces generated by 
VAEs have revealed complex patterns and novel biological signals from large-scale gene expression 
data and drug response predictions. Here, we evaluate a simple VAE approach for gene expression 
data, Tybalt, by training and measuring its performance on sets of simulated scRNA-seq data. We 
find a number of counter-intuitive performance features: i.e., deeper neural networks can struggle 
when datasets contain more observations under some parameter configurations. We show that these 
methods are highly sensitive to parameter tuning: when tuned, the performance of the Tybalt model, 
which was not optimized for scRNA-seq data, outperforms other popular dimension reduction 
approaches – PCA, ZIFA, UMAP and t-SNE. On the other hand, without tuning performance can 
also be remarkably poor on the same data. Our results should discourage authors and reviewers from 
relying on self-reported performance comparisons to evaluate the relative value of contributions in 
this area at this time. Instead, we recommend that attempts to compare or benchmark autoencoder 
methods for scRNA-seq data be performed by disinterested third parties or by methods developers 
only on unseen benchmark data that are provided to all participants simultaneously because the 
potential for performance differences due to unequal parameter tuning is so high.  

Keywords: Single Cell; Variational Autoencoder; Dimensionality Reduction; Latent Spaces. 

1. Introduction

Single-cell RNA sequencing (scRNA-seq) profiles the transcriptomes of individual cells [1], 
allowing researchers to study heterogeneous cell characteristics and responses [2, 3]. Due to the 
small amount of RNA captured in each cell as well as technical factors related to capture efficiency, 
scRNA-seq data have a high dropout rate (many genes have no measured expression in each cell). 

© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and 
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.
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Researchers often analyze these data by projecting cells into a low dimensional space, which enables 
downstream analysis such as imputation of missing measurements and visualization.  

Widely used approaches include the linear principal component analysis (PCA) [4], which 
doesn’t take dropout into account, and ZIFA [5], which uses zero-inflated factor analysis to model 
the dropout events and do dimension reduction. The t-distributed stochastic neighbor embedding (t-
SNE) method is also widely used [6]. This method uses local structure, but it is time consuming for 
large datasets and has been reported to be highly sensitive to hyperparameters [7]. The recently 
proposed Uniform Manifold Approximation and Projection (UMAP) [8] method attempts to address 
these limitations by preserving more global structure and as much local structure as t-SNE. These 
approaches do not model the dropout characteristic of scRNA-seq data.  

Deep generative neural network models can learn low-dimensional representations from large 
amounts of unlabeled data and have been successfully applied to many domains, such as image and 
text generation [9]. Variational autoencoders (VAE) learn this representation by compressing data 
into a constrained, low-dimensional space [10]. VAEs have been used in biology to analyze large-
scale gene expression data and drug response predictions [11, 10]. In recent months, preprints 
proposing numerous deep neural network models for scRNA-seq data have been posted. Grønbech 
et al. [12] proposed a Gaussian-mixture VAE model for raw counts from scRNA-seq data and found 
the model can learn biologically groupings of scRNA-seq dataset. Eraslan et al. developed a deep 
count autoencoder based on zero-inflated negative binomial noise model for data imputation [13]. 
Lopez et al. developed single-cell Variational Inference (scVI) based on hierarchical Bayesian 
models, which can be used for batch correction, dimension reduction and identification of 
differentially expressed genes [14]. Deng et al. propose an autoencoder that includes a feedback step 
after zeroes are imputed [15]. These methods often report performance, but while many report 
hyperparameter selections, few describe how those parameters were reached. 

 In this work, our goal was to understand the extent to which reported performance of the neural 
network methods was due modifications for scRNA-seq data. We applied a straightforward VAE 
developed for bulk gene expression data, Tybalt [10], to simulated and real scRNA-seq data under 
various parameter settings. Some performance characteristics, including a decrease in performance 
when the number of examples was increased, suggest substantial sensitivity to hyperparameters. We 
sought to optimize parameters and adjust the dimensionality of the model to rescue performance. In 
our prior work from PSB 2015 using autoencoders for the analysis of bulk gene expression data, 
performance was relatively stable over many parameter values [16]. In contrast, the performance of 
the standard VAE, Tybalt, changes from dismal to better than other popular dimension reduction 
approaches – PCA, ZIFA, UMAP and t-SNE – with only modest parameter tuning. 

These results should guide the reporting of new methods. First, it is critically important that 
reviewers expect manuscripts in this area to report the extent to which hyperparameters affect 
performance across multiple datasets. Second, manuscripts reporting new techniques should be 
evaluated both on theoretical grounding as well as empirical results. Because results can be changed 
easily by light tuning, self-reported performance numbers may provide only weak evidence. Third, 
assessments and benchmarking should be done by disinterested parties with a realistic amount of 
parameter tuning or should be performed by first parties on datasets for which the labels are not 
revealed until after predictions are made. 
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2.  Methods 

2.1.  Data Simulation 

We simulated scRNA-seq data using Splatter [17]. We used the default simulation parameters 
provided by Splatter to generate synthetic scRNA-seq data with variable numbers of genes, cell 
types, cells, outliers, etc. We simulated data with variable numbers of cells (ncell: 500 - 5000), 
genes (nGenes: 20000 - 60000), cell types (nGroups: 5 – 15) and probabilities of expression 
outliers (outlier: 0.1 – 0.5). In total, we generated 40 simulated single-cell datasets. We 
normalized the raw count matrix by TPM (Transcripts Per Kilobase Million). 

2.2.  Model Structure and Training 

VAEs model the distribution P(X) of data in a high dimensional space from a low dimensional 
latent space z. VAEs consist of two connected neural networks: the encoder and decoder. Data are 
compressed by the encoder and reconstructed by the decoder. The variation probability Q(z|X) is 
used to approximate the posterior distribution P(z|X), which is then optimized to minimize the 
Kullback–Leibler (KL) divergence between Q(z|X) and P(z|X) and reconstruction loss [18, 19]. A 
baseline model for gene expression data, termed Tybalt and which we use here, was described in 
[10]. The encoder was a multi-layer (varied from 0 to 2) neural network. The representative latent 
space z was sampled from a Gaussian distribution 𝑞"(𝑧|𝑋), with mean and variance generated by 
the encoder network. The learned latent space z was used to re-generate the count matrix X’ by the 
decoder, which was also a multi-layer neural network (from 0 to 2) (Figure 1). For the first stage, 
we trained Tybalt with three structures: a one-layer model with a gene-wise TPM vector connected 
to 20 latent features and then reconstructed output; a two-layer model with the TPM vector encoded 
into a 100-node hidden layer, then the 20 latent features, then a 100-node hidden layer, and then the 
reconstructed output; and a three-layer model which contains two 100-node hidden layers. The 
model was built in Keras (version 2.0.6) [20] with a TensorFlow (Version 1.0.1) backend [21]. 
 

 
Figure 1: Overview of the structure of variation autoencoder. The model consists an encoder network and a decoder 

network, both of them are designed as 0-2 layers fully connected neural networks. 

2.3.  Parameter Tuning 

We tuned parameters using a grid search over batch size (50, 100, 200), epochs (25, 50, 100, 
200), neural network depth (2, 3) and, for models with two or more layers, the dimensionality 
of the first layer (100, 250, 500). Simulated data were partitioned into training and test data, with 
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the test set being 10% of the full data. For real data, we selected three single cell datasets with 
author-assigned cell type labels [25 – 27]. We downloaded count matrices from the Hemberg 
Group repository of data (https://hemberg-lab.github.io/scRNA.seq.datasets/). We zero-one 
normalized the count matrix before training the VAE. 

2.4.  Performance Measurement 

We used three evaluation metrics to measure performance: 1) k-means based 2) kNN based 3) 
average silhouette score. The k-means based and kNN based measurements measure how well the 
low-dimensional space allows simple methods to recover simulated cell types. The average 
silhouette score measures the extent to which clusters are separable in the latent space. An ideal 
method is accurate and produces separable clusters. 

2.4.1.  k-means performance assessment 

In the k-means based evaluation we performed iterative k-means clustering on the low-dimensional 
latent space. We compared the predicted clustering results with the known cell types in the simulated 
data. We performed k-means clustering for 50 times to get a stable measurement and – to evaluate 
a best-case scenario – we set the number of clusters, k, to the number of true cell types in the data. 
We assessed methods by the normalized mutual information (NMI) [22], between cell types and the 
known categories as well as the adjusted rand index (ARI) [23]. 

2.4.2.  kNN performance assessment 

For the kNN evaluation, we used k nearest neighbors to predict cell type from latent space distances 
and assessed performance by 5-fold cross validation within the simulated dataset. To more closely 
replicate how methods are used in practice, the model was tuned within only the training data by a 
sweep over the neighbor number parameter with 3-fold cross validation. We assessed performance 
using accuracy, precision, recall and f-score, but report only accuracy due to space constriants. 

2.4.3.  Average silhouette score performance assessment 

We used the silhouette score [24] to measure the extent to which simulated cell type clusters are 
internally close in the latent space but separated from other cell types. The silhouette value is 
between -1 to 1. A silhouette value of 1 indicates that the data point is of distance zero from other 
points of the same type, while one of -1 indicates that the point is distance zero from all points of a 
different cluster but some distance from points of the same cluster. Average silhouette score over 
all points then indicates how separable each cell type is in the latent space. 

3.  Results  

3.1.  The performance of multiple methods on simulated data 

We tested the performance of five dimension reduction approaches: Tybalt, ZIFA, UMAP, t-SNE 
and PCA using the three different evaluation metrics over the data simulated by Splatter [17] as 
described in the Methods section. We selected metrics that would be sensitive to the quality of 
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reduced representations (k-means, knn, and silhouette width) because our goal was to assess these 
representations and not to build the best possible cell type predictor. The k-means clustering 
approach evaluates the extent to which a hypersphere in the latent space is capable of capturing cell 
types accurately. We used both NMI and ARI to measure performance, though results for each are 
relatively similar so we present only NMI within the main text due to space constraints. The kNN 
approach evaluates the extent to which local structure in the latent space reflects cell type. The 
silhouette width approach evaluates the extent to which the within-type distances in the latent space 
are smaller than the between-type distances.  

 
Figure 2: Performance of different dimensionality reduction approaches based on simulated single cell datasets 

measured by normalized mutual information (NMI) 

3.1.1.  k-means based results 

The performance of most methods varied substantially under simulation parameters (Figure 2). As 
expected, more cell types led to reduced performance, assessed via NMI, of PCA, ZIFA, and the 
variational autoencoders. As the number of cells changed, the performance of ZIFA and PCA 
fluctuated. Intriguingly, the three-layer VAE, which had the most parameters to fit and which should 
have improved with more data, performed worse as the number of cells increased. Later we show 
that this result is due to substantial parameter sensitivity. Less surprisingly, increasing the number 
of genes (and consequently parameters) reduced the performance of larger autoencoders. Outliers 
reduced the performance of PCA but had relatively inconsistent effects on other methods. For the 
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default parameters, the two-layer Tybalt model was generally high-performing, but both the one- 
and three-layer models showed variable performance. This surprising sensitivity to simulated data 
characteristics suggests that VAEs may be very sensitive the fit between parameters and data. 

3.1.2.  kNN and silhouette score results 

Results based on the kNN and silhouette evaluations are consistent with the results from k-
means. We display results for representative datasets to show variability. The GitHub repository 
contains complete results. Performing kNN in the latent space revealed relatively poor performance 
of the linear methods (Figure 3, PCA and ZIFA). UMAP and t-SNE perform well across many 
combinations, and the VAEs generally performed reasonably well until the number of genes became 
very high, presumably because the number of parameters leads to insufficient training data. 

The silhouette score evaluation tests something slightly different than the k-means and kNN 
evaluations. While those focus on the extent to which there is some detectable separation between 
cell types, the silhouette score evaluates the extent to which within cell-type distances are smaller 
than between cell-type distances. Despite this difference, the results remain consistent (Figure 4) 
with the other evaluations. As the number of cell types increases, the performance of all method is 
drops, though the decrease is somewhat less pronounced with t-SNE and UMAP. This evaluation 
also shows the same unexpected performance drop as the number of cells (thus, examples) increases 
with three-layer VAE models. 

 
 

Figure 3: kNN performance for representative simulated single cell datasets under different parameters. Error bars 
show the standard deviation of accuracy across cross validation intervals, and stability differed between methods. 
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Figure 4: Performance of different dimensionality reduction approaches based on average silhouette score. 

3.1.3.  Summary of the performance comparison 

Our results indicate that no dimensionality reduction method outperformed the rest in all cases. 
The performances of the linear methods (PCA and ZIFA) were generally poorer under the cases that 
we tested, and the performances of t-SNE and UMAP were generally quite robust within the bounds 
that were tested. Perhaps the most interesting finding of this stage of the analysis was that the VAE-
based methods struggled in expected situations (i.e., when the number of genes, and consequently 
parameters, increased) but also in unexpected situations (i.e., when the number of cells, and 
consequently training examples, increased). This suggested that either the model structure or 
parameter combinations must be poor, because otherwise more examples would always lead to 
better performance. We explore the implications of this finding more fully in Section 3.3. 

3.2.  2-dimensional projection of simulated datasets 

To visualize the results associated with the evaluation described in 3.1, we projected cells into 
the learned latent spaces and then reduced those spaces to 2-dimensional space via t-SNE on the 
latent space values while coloring by the simulated cell types (Figure 5). We observe performance 
characteristics that hint at why the methods exhibited strong or poor performance in different 
settings. For example, with few outliers the structure of t-SNE remains reasonable, but as the number 
of outliers increases some points begin to shift to the extremes of the projection. UMAP generally 
has high between-group distances and low within-group distances and is not affected by cell types. 
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The linear methods (ZIFA and PCA) along with the single-layer variational autoencoder (Tybalt) 
appear to unequally space the cell types, even though these are not correlated with each other. The 
two- and three-layer Tybalt models do not have this relationship, though the three-layer model 
appears to train poorly with more outliers. 

 

Figure 5: 2-dimensional projection of simulated single cell data using one-, two- and three-layer VAE models 
(Tybalt), t-SNE, ZIFA, UMAP and PCA based on different proportions of outliers (0.1 – 0.5). 

3.3.  Analysis of VAE performance failures 

As observed in the previous section, we found that the three-layer Tybalt model’s performance 
dropped precipitously under certain conditions. Our hypothesis was that the hyperparameters were 
not appropriate for this setting. We sought to determine the extent to which we could rescue 
performance under the least expected failure mode from Section 3.1: namely that performance 
dropped when the number of examples increased. We performed a parameter sweep as described in 
section 2.3. Note that this grid search is of a very modest size, so we would expect modest 
performance changes.  Results for the k-means evaluation are shown in Table 1. We noticed that the 
performance of VAE changes dramatically during parameter selection. In this case, performance 
varies from dismal to better than most the other dimensionality reduction approaches. With 30,000 
cells the worst three-layer model has an NMI of zero, while the best has an NMI of 0.96 (Table 1). 
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Table 1.  Best and worst parameter values for two- and three- layer Tybalt models with many cells for simulated 
datasets. l: learning rate, b: batch size, e: epoch, c: dimensionality of the first hidden layer. 

2-layer model            
Best combination Worst combination 

ncells l b e c NMI ARI l b e c NMI ARI 
10000 0.0005 200 25 100 0.99 0.99 0.0005 50 200 500 0.08 0.05 
20000 0.001 200 25 250 0.98 0.95 0.001 200 200 500 0.2 0.13 
30000 0.0005 100 100 100 0.97 0.97 0.0005 50 100 500 0 0 

3-layer model            
Best combination Worst combination 

ncells l b e c NMI ARI l b e c NMI ARI 
10000 0.001 50 100 100 1 1 0.002 200 200 500 0.06 0.04 
20000 0.0005 100 25 250 0.97 0.95 0.001 100 100 500 0.02 0.01 
30000 0.0005 100 25 250 0.96 0.94 0.0005 50 200 250 0 0 

 
We also selected three single cell datasets of various cell numbers and tissues where author-

assigned sample labels were available. Baron et al. [25] and Wang et al. [26] assay the human 
pancreas with 8569 and 635 cells respectively. Camp et al. [27] measured 777 cells from human 
liver tissue. As with simulated data, VAE performance changed substantially after parameter tuning, 
although the range of reasonable parameters appears to be broader than in simulated data (Table 2). 
 
Table 2.  Best and worst parameter values for two- and three- layer Tybalt models for real datasets. l: learning rate, b: 

batch size, e: epoch, c: dimensionality of the first hidden layer. 
2-layer model             

Best combination Worst combination 
Datasets l b e c NMI ARI l b e c NMI ARI 

Baron et al. 0.0005 100 25 100 0.64 0.38 0.002 50 200 500 0.36 0.17 
Wang et al. 0.001 200 200 500 0.46 0.3 0.0005 200 25 100 0.2 0.11 
Camp et al. 0.002 50 25 500 0.81 0.71 0.0005 100 25 100 0.64 0.47 

3-layer model             
Best combination Worst combination 

Datasets l b e c NMI ARI l b e c NMI ARI 
Baron et al. 0.0005 100 25 500 0.63 0.36 0.001 100 200 500 0.33 0.17 
Wang et al. 0.0005 50 200 500 0.45 0.3 0.0005 200 25 100 0.24 0.13 
Camp et al. 0.0005 200 50 500 0.76 0.62 0.0005 200 25 250 0.61 0.42 

 
We projected cells into the latent space learned by Tybalt models pre- and post-tuning to 

visualize the effect of hyperparameters (Figure 6). The two-layer model was robust within the tested 
range. With the optimal parameters there was a slightly larger gap between cell types, but the cell 
types were still clearly separated. For the three-layer model there were substantial differences. 
Before tuning, the three-layer model shows some signs of a failure to train, which could explain the 
poor quantitative performance. After tuning, the cell types were clearly separated. These results 
demonstrate that parameter tuning dramatically affects performance for VAE models in this domain. 
In the case we evaluated, this appears to be more pronounced with the deeper neural network. 
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However, it is also possible that the default parameters that we selected to tune around happened to 
be a relatively robust space for two-layer networks for scRNA-seq data. 

4.  Conclusions 

Certain preprints now report good performance for deep neural network methods using VAEs 
or other types of autoencoders for the analysis of scRNA-seq data [12, 13, 14, 15]. In certain cases, 
the authors report performance using a set of parameters (see Table 2 of Lopez et al.) without 
reporting how hyperparameters were tuned or how performance varied through tuning [14]. This 
poses a particular challenge when authors report performance comparisons with other methods. For 
example, Deng et al. [15] compare their scScope method with scVI, but they report “we followed 
the same parameter setting in the original study Lopez et al. [14] and setting the latent dimension to 

 
Figure 6: Parameter tuning improve the performance for deeper network. 2-dimensional projection of simulated 

single cell data using tybalt_depth2 and Tybalt_depth3 before and after parameter tuning. 
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50.” However, Lopez et al., report numerous potential parameter combinations, so which ones were 
used is impossible to interpret. 

We sought to understand the extent to which reported variability in performance was due to 
differences in methods versus differences in parameter settings. Thus, we evaluated the performance 
of a simple VAE model developed for bulk gene expression data, Tybalt, under various parameter 
settings. We find that, in many cases, a base VAE of two layers performs similarly to other methods. 
However, we also find substantial performance differences with hyperparameter tuning. Though 
this is not entirely unexpected, the sensitivity of this class of methods under various parameter 
settings is not widely reported in the literature. Indeed, papers sometimes neglect to report the extent 
to which parameters were tuned and the extent to which authors optimize the parameter settings of 
other methods is unclear. 

Wolpert and Macready [28] reported a No Free Lunch theorem that states that improved 
performance of an optimizer on one problem is paired with a decrease in performance in some other 
area. Our results suggest that algorithms that are more sensitive to parameters, combined with a 
publication process that encourages method developers to compare their own approaches to others, 
may experience a Continental Breakfast Included (CBI) effect. We term this the CBI effect because 
it accrues primarily to certain methods in specific settings. The CBI effect arises when researchers 
expend more researcher degrees of freedom [29] on their own method instead of other methods. The 
CBI effect is particularly strong when methods are highly sensitive to parameters, because the results 
change more substantially with each researcher degree of freedom that is expended. 

Our results indicate evaluation of model performance based on empirical results can be 
misleading in the presence of the CBI effect. For example, we are able to make performance on the 
same dataset for a three-layer neural network vary from near random to near perfect (Section 3.3). 
At the current time, we recommend that authors who which to apply these methods expect to 
perform parameter tuning to achieve acceptable performance, which is likely to require substantially 
more compute time than is often reported because many manuscripts report only the compute time 
to train the final model. Moving forward, an unbiased approach is important for model evaluation 
and comparison. We recommend that authors developing these methods refrain from emphasizing 
comparisons unless methods are equally tuned and/or some sort of blinded design is used to control 
researcher degrees of freedom. It may be most practical to rely primarily on disinterested third 
parties or challenge-based frameworks for comparisons between methods.  

5.  Reproducibility 

We provide the source code and scripts to reproduce the analysis at 
https://github.com/greenelab/CZI-Latent-Assessment/tree/master/single_cell_analysis  
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When analyzing biological data, it can be helpful to consider gene sets, or predefined groups of 
biologically related genes. Methods exist for identifying gene sets that are differential between 
conditions, but large public datasets from consortium projects and single-cell RNA-Sequencing have 
opened the door for gene set analysis using more sophisticated machine learning techniques, such as 
autoencoders and variational autoencoders. We present shallow sparsely-connected autoencoders 
(SSCAs) and variational autoencoders (SSCVAs) as tools for projecting gene-level data onto gene 
sets. We tested these approaches on single-cell RNA-Sequencing data from blood cells and on RNA-
Sequencing data from breast cancer patients. Both SSCA and SSCVA can recover known biological 
features from these datasets and the SSCVA method often outperforms SSCA (and six existing gene 
set scoring algorithms) on classification and prediction tasks. 

Keywords: autoencoder, variational autoencoder, single-cell RNA-Sequencing, gene set  

1.  Introduction 

RNA-Sequencing (RNA-Seq) experiments can quantify the RNA expression levels for ~20,000 
human genes and this data may reveal differences between experimental conditions, such as 
cancerous tissue vs. healthy tissue. Typically, RNA-Seq analysis begins with identifying genes with 
differential RNA levels across conditions and determining if such genes are over-represented in any 
predefined gene sets (i.e. groups of biologically related genes). This standard approach can be useful 
but is also quite simplistic; it ignores relationships among the genes and assumes all genes in a gene 
set are equally important to the group.  
 Consortium projects (such as The Cancer Genome Atlas (TCGA) [1]) and the development of 
single-cell RNA-Sequencing (scRNA-Seq) [2] have yielded large public datasets for RNA-Seq 
analysis; this has permitted the use of more complex machine learning techniques, such as 
autoencoders [3] and variational autoencoders (VAEs) [4], for analyzing those data. These methods 
can project the high-dimensional gene space onto a lower-dimensional latent space, which may help 
with visualization, denoising, and/or interpretation [5–7]. Additionally, some neural networks and 
autoencoders have even been designed to incorporate biological information by using sparsely-
connected nodes that only receive inputs from biologically-related genes [8,9]. 
 Many of these neural-network-based and autoencoder-based approaches have focused primarily 
on increasing accuracy, but recently, groups have used these methods for data interpretation. For 
example, Way and Greene (2018) used a VAE on TCGA data, wherein they projected RNA-Seq 
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data onto a reduced latent space, identified nodes that differentiate cancer subtypes, and used the 
learned model parameters to search for biological significance [10]. Chen et al. (2018) detailed a 
similar approach, whereby they used sparse connections to project genes onto gene sets and then 
had a fully-connected layer between the gene set nodes and latent nodes [11]; a gene set was 
considered meaningful if it had a high input weight into a relevant latent superset node.  
 Here we describe a different approach for using autoencoders for gene set analysis. We present 
shallow sparsely-connected autoencoders (SSCAs) (Figure 1A) and shallow sparsely-connected 
variational autoencoders (SSCVAs) (Figure 1B) as tools for projecting gene-level data onto gene 
sets, wherein those gene set scores can be used for downstream analysis. These methods use a single-
layer autoencoder or VAE with sparse connections (representing known biological relationships) in 
order to attain a value for each gene set. Chen et al. (2018) mentioned the SSCA model (Figure 1A) 
but did not thoroughly explore its utility for gene set projection [11]. There are many statistical 
methods for gene set scoring (see Section 2.5), but these techniques often rely on assumptions that 
do not reflect the underlying biology (e.g. all genes are equally important to a gene set). That being 
said, the machine-learning approaches presented in this work allow for learning a specific nonlinear 
mapping function for each gene set; thus, each gene within a gene set can be weighted differently 
and a single gene can have distinct weights across gene sets.  
 Ideally, the gene set scores should be able to retain high-level information from the gene-level 
data and provide new insights regarding the relevant gene sets. To test whether the SSCA and 
SSCVA algorithms can extract such gene set scores, we ran both algorithms on scRNA-Seq data 
from human blood cells and on RNA-Seq data from patients with breast cancer; we used 
classification and prediction tasks to compare these new methods to six existing gene set scoring 
algorithms and assessed the biological interpretability of SSCA and SSCVA by performing 
differential analysis using the computed scores.     

2.  Methods 

2.1.  Model Summary 

This work explores shallow sparsely-connected autoencoders (SSCAs) (Figure 1A) and shallow 
sparsely-connected variational autoencoders (SSCVAs) (Figure 1B). Autoencoders learn an encoder 
function that projects input data onto a lower dimensional space and a decoder function that aims to 
recover the input data from the low-dimensional projections. The model is trained by minimizing 
the reconstruction loss (i.e. some measure of distance between the reconstructed output and the 
original input).  
 Variational autoencoders (VAEs), however, learn a continuous distribution (typically a 
multivariate gaussian) to represent the input data. The encoder learns projections onto both a mean 
vector and a standard deviation vector (which are used to represent a multivariate Gaussian) and the 
decoder takes samples from the encoded distribution and learns a function to project these samples 
onto the original space. For VAEs, the model is trained by minimizing both the aforementioned 
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reconstruction loss and the KL divergence between the learned multivariate Gaussian and a chosen 
prior distribution (typically the unit Gaussian).  
 The shallow sparsely-connected autoencoders and VAEs discussed in this work are based on 
said algorithms, but with two notable restrictions: the encoding/decoding functions are only one 
layer deep and these layers are sparse (not fully-connected like standard autoencoders), with 
connections based on known biological relationships. For SSCA, each encoded node represents a 
gene set and only receives inputs from gene nodes included in the set. For SSCVA, each gene set is 
represented by a mean vector node and a standard deviation vector node, both of which only receive 
inputs from the relevant gene nodes. When analyzing the trained SSCVA models, we considered 
the score for each gene set to be the value of the mean vector node. 
 
 

 

 

 

 

 

 

 

 

 

 
Fig 1. Diagram for Shallow Sparsely-Connected Autoencoder (SSCA) and Variational Autoencoder 
(SSCVA). A) SSCA model. B) SSCVA model. For SSCA, the input genes (G1 - Gp) are connected to gene 
set nodes (GS1 - GSq). Each gene set node only receives inputs from the genes within the gene set. Light blue 
denotes the reconstructed gene values (G!1 - G!p). SSCVA follows the same model, except there is " node and 
# node for each gene set. The z values are collected using the following scheme: z% 	= 	 µ% 	+ (σ, ∗	ϵ%)	 where  
ϵ%	~	1(0,1). Those values are then used to project onto G!1- G!p. 

2.2.  Model Coding 

We implemented the models in python using the TensorFlow package [12] (version 1.8.0) and select 
functions from Keras (version 2.1.6) [13]. We employed hyperbolic tangent (tanh) activation for the 
encoder functions and sigmoid activation for the decoder functions. For the encoders, we used batch 
normalization (which scales values to zero mean and unit variance) after linear activation and before 
tanh activation. Additionally, we trained both models using Adam optimization [14]. The SSCVA 
code is largely based on public code from Way and Greene (2018) [10] and the sampling procedure 
follows the scheme where z% 	= 	 µ% 	+ (σ, ∗ 	ϵ%)	 and ϵ%	~	1(0,1) (Figure 1B).  
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2.3.  Data and Gene Set Summary 

We used two publicly available data sets for this analysis: a single-cell RNA-Seq dataset of 1078 
blood cells (dendritic cells and monocytes) [15] and an RNA-Seq dataset from patients with breast 
cancer from The Cancer Genome Atlas (TCGA) [1,16]. The scRNA-Seq data matrix consists of 
preprocessed log TPM values for genes for 1078 high-quality cells [15]. For training, the data was 
scaled to a range of 0-1 using min-max scaling. The breast cancer dataset includes 1093 patients 
with RNA-Seq data (log2(FPKM + 1) transformed RSEM values) and matching clinical data [1,16]. 
A small number of patients have multiple RNA-Seq runs and for these cases, the mean RSEM value 
for each gene across runs was assigned to the patient. After this step, the breast cancer data was 
processed in the same manner as the scRNA-Seq dataset. 
 The gene sets used to create the sparse layers are from the Molecular Signatures Database [17]. 
We used the transcription factor targets collection (C3.TFT) for scRNA-Seq analysis and the cancer 
signatures collection (C6) for the breast cancer survival analysis. We then filtered the collections to 
include only gene sets with more than 15 genes and less than 500 genes, reducing the C3.TFT 
collection from 615 to 550 gene sets and the C6 collection from 189 to 187 gene sets. Using only 
the remaining genes, the input matrices were 1078 cells x 10992 genes for the scRNA-Seq data and 
1093 patients x 10650 genes for the breast cancer analysis. 

2.4.  Hyperparameter Selection 

We considered the following variables for a parameter sweep: learning rate (0.00075, 0.001, 0.002), 
epochs (50, 100, 150), and L2 regularization (0, 0.05, 0.1). Additionally, we tested warmup (5) 
(0.05, 1) for the SSCVA model, where 5 controls how quickly the KL loss contributes to the total 
loss being minimized in the VAE [18]. We kept the optimizer (Adam) and batch size (50) consistent 
for all trials. We used 90% of the samples for training and 10% for validation and chose the 
hyperparameters corresponding to the model with the lowest validation loss. For both the blood cell 
and the breast cancer data, the validation loss for SSCA was lowest for a learning rate of 0.002, 150 
epochs, and no L2 regularization. For SSCVA in both analyses, the validation loss was minimized 
by a learning rate of 0.002, 150 epochs, L2 regularization of 0.1, and 5 of 0.05. Hu and Greene [25] 
recently raised concerns about model comparison analysis when some models are heavily reliant on 
hyperparameter tuning. Thus, in this work, the SSCA and SSCVA models chosen for comparison 
are the ones that minimize loss, without any regard for task performance.   

2.5.  Other Projection Methods 

In addition to SSCA and SSCVA, we assessed the performance of six other methods for projecting 
gene data onto gene sets: Average Z-score (Z-Score) [19], Pathway Level Analysis of Gene 
Expression (PLAGE) [20], Gene Set Variation Analysis (GSVA) [21], single-sample Gene Set 
Enrichment Analysis (ssGSEA) [22], FastProject (FP) [23], and simple averaging (Average). The 
Z-Score method normalizes each gene by z-score across samples and considers the gene set score 
to be the mean normalized value of all genes in a set. PLAGE uses the same z-score normalization 
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and then performs singular value decomposition (SVD) for each gene set; the gene set scores are 
the first right singular vector obtained from the SVD. GSVA and ssGSEA are enrichment-based 
algorithms that utilize distinct methods to rank each gene per sample and then calculate a score for 
each gene set based on the difference in ranks for genes within the set compared to those outside of 
it. The averaging method is the arithmetic mean of the RNA-Seq values of all the genes within a 
gene set. Lastly, FastProject is a tool built for scRNA-Seq data; the algorithm normalizes the data 
using z-scores while also accounting for sparsity common in scRNA-Seq data and then assigns the 
gene set score as the mean of the normalized values.  
 We used the GSVA package in R (version 1.26.0) [24] to calculate GSVA, PLAGE, Z-Score, 
and ssGSEA scores and ran the FastProject program [23] to compute FP scores. Averaging and 
autoencoder training were performed in python (per the above procedure). To help with training, 
we used min-max scaled RNA-Seq values as inputs for the SSCA and SSCVA methods. The other 
methods used the normalized RNA-Seq values (log TPM for blood cells and RSEM for breast 
cancer). The only exception is that min-max scaled RNA-Seq values were used for the averaging 
projection for the breast cancer survival prediction as raw values led to convergence issues.  

2.6.  Dendritic Cell Type Classification 

We used the python package Scikit-learn (version 0.19.1) to train the logistic regression models and 
gaussian mixture models (GMMs) [26]. For the GMMs, we set k = 3 and initialized each model five 
times (using n_init = 5), with the best result being kept. To compare the predicted clusters to known 
cell types (provided by [15]), we calculated normalized mutual information using Scikit-learn [26]. 

2.7.  Breast Cancer Prediction 

We analyzed five-year survival on the breast cancer dataset and only kept patients who survived 
greater than five years (i.e. TCGA “days_to_follow_up” > 1825 days) or who passed away within 
five years (i.e. TCGA “days_to_death” < 1825 days). This left 352 patients: 253 survivors and 99 
who have passed away. For the survival analysis, we used the lifelines package in python [27] to 
train a Cox proportional hazards model (Cox PHM) with a step size of 0.3 to help with convergence. 
Using a 4:1 train/test split, we trained the Cox PHM to predict days of survival from the gene set 
scores and compared the predicted days of survival to the true values using the concordance index 
(CI). To assess the importance of gene sets in predicting days of survival, we ranked the gene sets 
in ascending order by their p-values using a Wald test. We generated boxplots using the python 
package Matplotlib [28] and performed Mann-Whitney U tests using the python package SciPy [29].  

3.  Results 

We analyzed scRNA-Seq data from blood cells [15] and RNA-Seq data from breast cancer patients 
[1] to assess the utility of shallow sparsely-connected autoencoders (SSCA) and variational 
autoencoders (SSCVA) for projecting gene data onto gene sets. We compared the two autoencoder-

Pacific Symposium on Biocomputing 2019

378



 
 

   
 

 

based methods to six existing methods for gene set projection (see Methods): GSVA, PLAGE, Z-
Score, ssGSEA, FP, and Average. 

3.1.  Blood scRNA-Seq Analysis 

When analyzing scRNA-Seq data, it can be difficult to assess the importance of specific 
transcription factors (TFs) because mRNA levels do not always correlate with protein abundance 
[30,31], and TF activity is affected by other factors in the cell, such as chromatin accessibility. One 
potential solution is to use transcription factor target gene sets (i.e. genes whose expression is 
potentially affected by a given TF); if the genes regulated by a TF are differential between 
conditions, this could suggest that the TF is biologically relevant. Thus, in order to explore the 
scRNA-Seq data set from human blood cells, we performed gene set analysis on 550 transcription 
factor target gene sets from the Molecular Signatures Database [17]. We performed classification 
tasks using the gene set encodings to determine whether these projections retain high-level 
information about the dataset and then analyzed the differential features for biological significance. 

3.1.1.  Supervised Classification of Cell Types 

The scRNA-Seq data set contains over 1000 individual cells, each of which was assigned one of ten 
cell types by Villani et al. (2017) [15] (six dendritic cell types (DC1-6) and four monocyte cell types 
(Mono1-4)). We first ran the eight projection methods using the transcription factor target gene sets 
and then used the resulting gene set scores to train a logistic regression to predict cell type. We used 
80% of the samples for training and compared the methods on classification accuracy using test 
data. This procedure was repeated for multiple distinct cell type combinations (Figure 2).  
 The cell types used in a given run affected the peak model accuracy, which ranged from 84% 
(all ten cell types) to 100% (DC1-DC6-Mono1). The model trained using SSCVA gene set scores 
yielded the highest accuracy in all six trials and was the sole top performer in five of six trials (DC1-
DC6-Mono1 being the exception, where many algorithms achieved 100% accuracy). We also 
compared the performance of SSCVA-based models to logistic regression models trained directly 
on the gene-level RNA-Seq data; models trained on SSCVA gene set scores never outperformed the 
RNA-Seq models (Figure 2) but were always within 2% accuracy. Average-based models often led 
to the second highest accuracy and SSCA-based models typically resulted in the lowest accuracy 
among the methods tested. These results suggest that for the blood cell dataset, the SSCVA 
encodings retain more gene-level information about cell type than the other projection methods.  
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Fig 2. Logistic Regression Test Data Accuracy. Each row represents a trial with the specific cell types 
shown in the first column. Additional columns indicate the data type used for training for cell type prediction 
(i.e. gene-level RNA-Seq data or gene set scores from one of eight algorithms). Values are the classification 
accuracy of cell types on test data. Yellow emphasizes the highest test accuracy in each row. Scaled RNA-
Seq (Min-max scaled gene TPM values from [15]). Raw RNA-Seq (gene TPM values from [15]). See 
Methods for the full names of gene set projection algorithms. 
 
 
 

 
Fig 3. Gaussian Mixture Model Clustering Normalized Mutual Information (NMI) Values. A) Training 
Data normalized mutual information (NMI). B) Test Data normalized mutual information (NMI). Each row 
represents a trial with the specific cell types shown in the first column. Additional columns indicate the data 
used for training (gene-level RNA-Seq data or gene set scores from one of eight algorithms). Values are the 
normalized mutual information scores between output clusters and known cell types. Yellow emphasizes the 
highest NMI in each row. Scaled RNA-Seq (Min-max scaled gene TPM values from [15]). Raw RNA-Seq 
(gene TPM values from [15]).  See Methods for the full names of gene set projection algorithms.  
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3.1.2.  Unsupervised Clustering of Cell Types 

We then examined whether unsupervised clustering of the gene set projections could separate 
samples by cell type. We trained a Gaussian mixture model on the gene set scores from each method 
for 80% of the relevant samples and this model was used to predict clusters for the training and test 
data. In order to evaluate the quality of clustering, we calculated the normalized mutual information 
(NMI) between the predicted clusters and the known cell types. This procedure was repeated for 
five distinct groups of three cell types and the results are summarized in Figure 3. 

For the training data (Figure 3A), SSCA-based and PLAGE-based models performed best with 
SSCA-based models having the highest NMI in three cases and PLAGE-based models in two cases. 
SSCVA-based and GSVA-based models also led to comparatively high NMI scores, while Z-Score-
based and Average-based models performed poorly in almost all cases. We observed different 
results for the test data (Figure 3B), however. The DC1-DC6-Mono1 task led to a tie between the 
models based on scores from GSVA, PLAGE and SSCVA; on the four remaining tasks, SSCVA-
based models and PLAGE-based models each scored highest on two. It is noteworthy that the model 
trained using SSCVA encodings outperformed the SSCA-based model on the test data, a trend also 
observed in the logistic regression analysis.  

3.1.3.  Top Features Detected for SSCVA and SSCA 

In addition to retaining high-level information about the samples, gene set projection methods 
should help identify biologically meaningful gene sets from the data. In order to assess whether 
these new methods can recover known biology, we performed differential analysis using the gene 
set scores. The first trial focused on the DC6 cells, which are also known as plasmacytoid dendritic 
cells [15]. For each of the 550 gene sets, we calculated the median score for all DC6 samples and 
the median score for all other dendritic cell samples (DC1-5) and ranked the gene sets based on the 
absolute value of the difference between these medians. We then performed the same analysis 
comparing all the dendritic cell types (DC1-6) with monocytes (Mono1-4). 

The top hits for these trials are shown in Figure 4. For the DC6 vs. DC1-5 experiment (Figure 
4A), STAT5A target genes are the 5th ranked feature for SSCVA. STAT5 plays a substantial role in 
repressing the development of DC6 cells [32] and thus it makes sense this gene set would distinguish 
DC6 cells from the other dendritic cells. For the dendritic cells vs. monocytes trial (Figure 4B), the 
top five hits from the SSCA algorithm include targets of AHR (aryl hydrocarbon receptor), which 
is noteworthy as AHR has been shown to promote the differentiation of monocytes into dendritic 
cells [33]. Additionally, CEBPB (also known as C/EBP6) targets are the top differential feature for 
SSCVA and this result is reinforced by research showing that CEBPB is one of the key 
transcriptional regulators of monocyte cells [34]. These few examples support the notion that 
SSCVA and SSCA may be able to utilize transcription factor target gene sets to help identify 
transcription factors with differential activity between conditions or cell types. 
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Fig 4. Top Five Differential Features for Dendritic Cell Analysis. A) Top features comparing DC6 cells 
vs. the other five dendritic cell types (DC1 - 5). B) Top features comparing all dendritic cells (DC1 - 6) vs. 
all monocytes (Mono1 - 4). 
 

 
Fig 5. Breast Cancer Survival Analysis. A) Box and Whisker Plot for Concordance Index Values. Each 
gene set projection algorithm was tested 50 times for survival prediction and the concordance index scores 
are plotted with the median CI value labeled. ** emphasizes the significant difference between SSCVA and 
SSCA at p < 0.005 (Mann-Whitney U test). SSCVA is also significantly different from GSVA, Z-Score, 
ssGSEA, FP and Average at p < 0.005. B) Top ranked features in predicting breast cancer survival (see 
Methods). Avg. Rank shows the mean rank out of 187 gene sets over the fifty runs. 

3.2.  Breast Cancer Survival Analysis 

We also analyzed a dataset from The Cancer Genome Atlas (TCGA) that includes RNA-Seq data 
and clinical survival data from 1093 breast cancer patients. In order to attain gene set scores, we 
first ran the RNA-Seq data through the eight projection algorithms using 187 cancer signature gene 
sets; since the analysis was focused on predicting five-year survival, the dataset was then reduced 
to the 352 patients that have been followed for more than five years or have passed away. Once the 
final datasets were processed, we trained a Cox proportional hazards model (Cox PHM) to predict 
survival from the encodings for each method using 80% of the training data. The trained Cox PHM 
was then used to predict survival on the training and test data and success was measured by the 
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concordance index between the actual and predicted days of survival. This was repeated fifty times 
with distinct training/test splits. 
 When analyzing the Cox PHM predictions on the test data,  models for all eight gene set 
scoring methods showed a wide range of concordance index values across the fifty trials (Figure 
5A). PLAGE-based and SSCVA-based models performed best (median concordance index ~0.58), 
while the other projection methods led to models with a median concordance index of ~0.54. There 
is no significant difference between the SSCVA and PLAGE results, but SSCVA concordance index 
values are significantly different than the other six models (p value < 0.005, Mann-Whitney U test).  
 Additionally, each Cox PHM outputs a list of features ranked by their effect on survival (see 
Methods). We collected this ranked list for each of the fifty models for the SSCA and SSCVA 
encodings (Figure 5B). For SSCVA, the top ranked feature across the fifty runs is RB_DN.V1_DN 
and the RB-loss signature (low RB1) is associated with poor disease outcome in breast cancer [35]. 
Additionally, the top ranked feature for SSCA is E2F1_UP.V1_UP; this result is supported by 
previous research as well, as E2F1 transcript levels are related to breast cancer outcome [36].  

4.  Discussion 

This work explores shallow sparsely-connected autoencoders (SSCAs) and variational autoencoders 
(SSCVAs) as methods for projecting RNA-Seq data onto gene sets. When using test data, models 
trained on the SSCVA encodings often performed as well as the models trained on the gene-level 
RNA-Seq data and frequently outperformed (or matched) the existing projection algorithms. SSCA-
based models, however, performed well on training data, but poorly on test data. These results 
suggest that the SSCVA encoding space may be better suited to extrapolation than that of SSCA, 
but future work is necessary to confirm and interpret this trend.  
 Additionally, it is difficult to assess a method’s ability to recover known biology without a 
ground truth, but we evaluated SSCA and SSCVA on whether differential analysis produced 
reasonable results. For the blood scRNA-Seq data set, we found the top hits for SSCVA and SSCA 
included known transcriptional regulators of the groups being tested. Moreover, for the cancer 
analysis, the top gene sets for both SSCA and SSCVA are cancer signatures related to genes 
previously associated with breast cancer survival. These observations do not prove that SSCA and 
SSCVA can uncover insightful biology in all situations, but it is encouraging that the methods 
identify known features in the data sets tested. 
 Compared to the other methods discussed, the shallow sparsely-connected autoencoder 
framework provides greater flexibility for modeling biological phenomena. For instance, if a 
transcription factor acts as both an activator and a repressor, any given target gene may be up or 
downregulated. The averaging-based methods (Z-Score, FP, and Average) may miss this trend 
because the combination of high and low values can reduce the signal. Additionally, the averaging-
based approaches and the enrichment-based approaches (ssGSEA and GSVA) both weight all genes 
equally within a gene set, despite the fact some genes may be more relevant to the gene set than 
others. PLAGE addresses this issue by learning a specific mapping for each gene set, but the 
algorithm is limited to finding a linear combination of gene values. SSCA and SSCVA, however, 
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can learn specific nonlinear mappings for each gene set, which could be useful for modeling 
complex biological relationships. Moreover, the mapping functions learned by SSCA and SSCVA 
can potentially provide more information about the importance of genes within specific gene sets.  
 Further exploration is required to better understand the utility of these models for single-cell 
omics data sets. For instance, SSCVAs may be particularly useful for analysis of cellular 
differentiation. Variational autoencoders are designed to produce an encoding space where clusters 
are distinguishable, but close together, and this can result in smooth transitions between groups of 
samples; thus, the SSCVA scores can potentially be leveraged for identification and visualization 
of gene sets that transition in importance throughout differentiation. Additionally, this framework 
could potentially be applied to other gene-associated omics types, such as methylation. 
 Unfortunately, a weakness of autoencoder-based methods is that the results may not be entirely 
consistent between runs; the other six methods tested yield the same result every time, but since 
autoencoders are initialized randomly each trial, the learned encoder function (and thus the gene set 
scores) may not be identical across runs. This observation has also been noted by Chen et al. (2018) 
[11] and we are currently exploring whether changes in activation functions, hyperparameters, 
and/or regularization can improve consistency, while maintaining classification accuracy.  
 Overall this work supports the use of SSCA and SSCVA for gene set analysis on large RNA-
Seq data sets. These methods still require more rigorous testing and evaluation, and future work on 
this project will be dedicated to improving consistency between runs and understanding situations 
and data types where SSCA and/or SSCVA may be particularly useful.  
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1.  Introduction 

      Data privacy is an important topic of debate crossing many different fields such as ethics, sociology, 
law, political science and forensic science. Thanks to the rapid reduction of the DNA sequencing cost in the 
past decade, the number and the volume of available genomic data have exponentially increased [1]. 
Hence, individuals’ genomic data has recently emerged as one of the major foci of studies on privacy as 
availability of genetic information gives rise to privacy concerns [2]. For example, individuals express 
concern that genetic predisposition to diseases may bias insurance companies or enable unlawful 
discrimination by employers [3,4,5]. On a larger scale, imagine the economic repercussions had it been 
leaked that the CEO of Apple Computer had pancreatic cancer and was not adhering to a typical 
oncological regimen.  Recently it has been also shown that high throughput molecular phenotype datasets 
such as functional genomic and metabolomics measurements, and microbiome measurements increased the 
number of quasi-identifiers for participating individuals that can be used by adversaries for re-identification 
purposes [6,7,8,9]. In addition, the emergence of electronic health records (EHR) with the rise of 
personalized medicine makes patients vulnerable to breaching privacy. These results indicate that privacy 
concerns over sharing personalized biological data will increase quickly with the increase in the number of 
genetic and ancestry testing companies, which collect and distribute very large amount of health related 
data, including genetic data (such as 23andMe) or health and fitness tracking data (such as fitbit). The data 
collection and sharing methods that these companies use call for a public discussion of privacy 
considerations around these new concepts. Moreover, the recent arrest of the Golden State Killer, through 
long-range familial search on consumer genomics databases, sparked questions over the risk of re-
identification based on genetic testing taken by a relative. Recent two studies showed the statistical risk of 
identifying relatives as being high by using long-range familial searches [10,11]. 
 
      Protecting the privacy of study participants has emerged as an important issue in genotype-phenotype 
association studies. Several studies investigated whether a genome of an individual can be detected in a 
mixture [12,13,14,15]. As a result, various counter-measures have been proposed to protect participant 
privacy [16]. As the number of genotype-phenotype datasets increase, new routes for breaching privacy 
such as cross-referencing multiple databases opened up [17,18]. Access control, data anonymization and 
cryptographic techniques were studied to prevent privacy breaches [4]. Ultimately, the ability to keep these 
data private is unclear, and so preparations for both small and catastrophic leaks must be made [5].  As the 
technologies increase, new data types are being released and more studies to investigate the potential 
privacy breaches will be needed. This area of research has become more and more interdisciplinary, where 
ethics researchers inform researchers who work on privacy-preserving techniques, while these techniques 
inform policymakers to reform laws and policies. 
 
      On the other side of the privacy problem, the benefit and importance of open data sharing is widely 
acknowledged, as the solutions such as access control or cryptographic techniques delay the access to the 
data by average researchers either by creating bureaucratic bottlenecks or technical challenges. Open data 
sharing harbors the collaboration between different biomedical researchers by allowing rapid exchange of 
the information. Funding agencies and research organizations are increasingly supporting new means of 
data sharing and new requirements for making data publicly available while preserving participants' privacy 
[19].  This increases the value of the techniques and policies that prevent the sensitive information leakage 
while promoting data sharing. 
 
      The papers featured in this session represent various aspects of biological data privacy highlighting a 
number of problems and solutions that need to be addressed to protect privacy of individuals while 
encouraging open data sharing. Topics in this session include making inferences on complex phenotypes in 
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large biobanks, patient re-identification through electronic health records and countermeasures, privacy-
preserving GWAS studies as well as efforts on improving  informed consents for AllofUs research project. 

2.  Podium Presentations 

     After the seminal work by Homer et. al [12], the policies on how to share GWAS results have been 
changed and only summary statistics are allowed to share publicly. Gasdaska et al. [20] explore the 
possibility of using these summary statistics to make inferences about the hidden, complex phenotypes that 
are derived from two or more phenotypes. This potentially reveals information about the participants that 
they may not want to disclose. Investigators validated their statistical derivations on simulated and real 
datasets.  
 
     As A. Gasdaska and colleagues [20] showed that sharing statistical aggregates from GWAS might have 
sensitive information leakages and also demonstrated that how complex phenotypes can be analyzed in 
terms of simple phenotypes in a privacy preserving fashion, S. Simmons and colleagues [21] showed us 
how we could reduce this leakage by introducing a Laplacian noise to the released data. The investigators 
presented a novel method for measuring privacy loss in GWAS summary statistics. This was achieved by 
providing a probabilistic formulation for measuring the risk of releasing summary statistics as the posterior 
probability of an individual being in the cohort. With the introduction of an MCMC-based method for 
computing this posterior probability, the authors reduced the degree of privacy leakage with the same 
amount of data released. This work presented interesting ideas on how to control the privacy risk by setting 
a noise level and the amount of data to be released.  
 
     K. Johnson and colleagues [22] studied the privacy leakages of Electronic Health Records. They 
showed that lab tests can be used as quasi-identifiers for patients for re-identification of patients’ medical 
records. The investigators used the EHR at Mount Sinai Hospital as a case study. This study took an even 
more interesting turn when they used variational auto-encoder to encode the lab test results to reduce the 
privacy risk of re-identification. They showed a substantial decrease in re-identification risks when the lab 
tests were stored as latent variables while the encoded test results still provide almost the same utility as 
original results when compared in terms of classification accuracy. Although further work is required to 
show how decoding-encoding will be achieved in this new representation, the novel idea of storing data 
will open up the doors for storing other kind of private data in the future. 

3.  Posters with Published Papers 

     This year’s poster session with papers published in the proceedings will feature a unique study that has 
not been explored at PSB before by M. Doerr and colleagues [23]. They designed a study to give a 
comprehensive overview of existing jurisdictions for the informed consent process for the AllofUs 
initiative and its compliance with the state/territory regulations. This study will be of great interest for the 
investigators of the AllofUs project, which aims to collect a vast amount of biomedical data from a million 
of Americans. 
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As genetic sequencing becomes less expensive and data sets linking genetic data and medical records (e.g., 

Biobanks) become larger and more common, issues of data privacy and computational challenges become 

more necessary to address in order to realize the benefits of these datasets. One possibility for alleviating 

these issues is through the use of already-computed summary statistics (e.g., slopes and standard errors 

from a regression model of a phenotype on a genotype). If groups share summary statistics from their 

analyses of biobanks, many of the privacy issues and computational challenges concerning the access of 

these data could be bypassed. In this paper we explore the possibility of using summary statistics from 

simple linear models of phenotype on genotype in order to make inferences about more complex phenotypes 

(those that are derived from two or more simple phenotypes). We provide exact formulas for the slope, 

intercept, and standard error of the slope for linear regressions when combining phenotypes. Derived 

equations are validated via simulation and tested on a real data set exploring the genetics of fatty acids.  

 

Keywords: privacy, biobank, genetics, genome-wide association study, single nucleotide variant, 

computational challenges, data security, phenotypes 

____________________________ 
† Contributed equally 
a Work supported by NIH-2R15HG006915 and Dordt College 
* Corresponding author  

Pacific Symposium on Biocomputing 2019

391

mailto:aegasdaska@gmail.com
mailto:derekfriend@outlook.com
mailto:rschen@ncsu.edu
mailto:westrajason@hotmail.com
mailto:mattz@umich.edu
mailto:William.Lindsey@dordt.edu


1. Introduction 

The continued move to digitize medical records raises a plethora of opportunities and challenges 

in the search to elucidate the genetic and environmental contributions to human disease. The 

amount of genetic, environmental, and disease-related data continues to grow rapidly, offering 

new opportunities to discover relationships between genetic variants and expressed physical 

characteristics. Of particular interest are the genetic contributions to diseases that can have 

dramatic impacts on societal well-being (e.g., cardiovascular diseases, mental health, and cancer). 

The advent of large, publicly available biobanks (e.g., UK Biobank1) offers exciting possibilities 

for leveraging these datasets to have a dramatic impact on human health and disease.  

However, this unprecedented opportunity also comes with roadblocks and challenges.2 The 

size of datasets in biobanks makes it challenging to transfer, store, and analyze them locally. And 

even though cloud computing minimizes some of these issues, they bring their own challenges 

with regard to cost (storage and computation), transfer, and access to cloud computing systems. 

Furthermore, data security and privacy issues are of paramount importance throughout all aspects 

of the data access, storage, and analysis pipeline.3-4 Thus, there is a great demand for simplified 

data transfer, exploration, visualization, and analysis strategies which simultaneously address 

privacy, security, storage, and computational challenges, while still allowing researchers to make 

the best possible use of biobank repositories. 

An interesting recent development related to these issues are efforts to provide summary 

statistics in publicly available formats. For example, GeneAtlas provides basic summary statistics 

for simple linear regression models of each available single nucleotide variants with each available 

phenotypic variable for 452 thousand individuals in the UK Biobank.5 Likewise, Pheweb provides 

access to the UK Biobank data via a series of easy-to-navigate visualization and summary tools 

based on publicly available data produced by the Neale lab.5-6 GeneAtlas and Pheweb mitigate 

many of the privacy and security concerns mentioned above since no individual information is 

shared. There is no way to use summary statistics alone to gather information about any one 

individual. In addition, the size of these repositories are only fractions of the size of the individual 

level datasets, making transfer and storage of the data much more efficient. Finally, these services 

have already computed some of the most common summary statistics, which alleviates much of 

the computational burden on researchers. 

However, while these approaches are promising and provide valuable insight, major questions 

abound about how to best leverage this summary-level information in more complex downstream 

analyses. While basic exploratory data analysis and data visualization are straightforward and 

commonplace, using pre-computed genotype-phenotype associations (summary statistics) to 

explore ‘complex’ phenotypes, which are functions of existing phenotypes present in a biobank, 

hasn’t been previously investigated. For example, if a researcher is interested in phenotype 𝑌, 

where 𝑌 = 𝑓(𝒚𝟏, 𝒚𝟐, 𝒚𝟑, … 𝒚𝒎) and 𝒚𝟏, 𝒚𝟐, 𝒚𝟑, … , 𝒚𝒎 are existing phenotypes present in the 

biobank (with 𝑚 being the number of phenotypes), is there a way to utilize the precomputed 

summary statistics from each linear model fit for each 𝒚𝟏, 𝒚𝟐, 𝒚𝟑, … , 𝒚𝒎 in order to make 

conclusions about the relationship between 𝑌 and genetic variation? This is the primary question 

of interest for this manuscript.  
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In particular, we begin by providing a framework for how to think about using summary 

statistics from individual phenotypes to investigate general classes of ‘complex’ phenotypes. We 

then illustrate how to utilize summary statistics for inferences about a complex phenotype which 

is a linear combination of an arbitrarily large set of individual phenotypes. Despite extensive 

literature review we have found little in the way of similar approaches thus most of our work has 

been built from the ground up. We validate our approach using both simulated data and real data 

from the Framingham Heart Study. 

2. Methods 

2.1 Notation 

Throughout this paper we use 𝑦𝑖𝑗 to represent the phenotypes, where 𝑖 ∈  {1, 2, . . . , 𝑚} with 𝑚 

being the number of phenotypes and j ∈ {1, 2, . . . , 𝑛} with 𝑛 being the number of subjects. 

Similarly, 𝑥𝑗 is used to represent the genotype. We use bolded letters (such as 𝒚𝑖 and 𝒙) to refer to 

a vector of values across all subjects. The term 𝒚𝑐 is used to represent the linear combination of 

the 𝒚𝑖’s (𝒚𝑐 = 𝑐1𝒚1 + 𝑐2𝒚2+. . . +𝑐𝑚𝒚𝑚) with the 𝑐𝑖
′𝑠 being constants. For each linear regression 

model fit for 𝒚𝑖  ~ 𝒙, we use the notation 𝒚𝑖 = 𝛽𝑖𝒙 + 𝛼𝑖, where 𝛽𝑖 is the slope and 𝛼𝑖 is the 

intercept. The standard error for 𝛽𝑖 is represented by SE(𝛽𝑖).  We use 𝜷𝒊 to represent all betas for 

phenotype i across all genotypes. 

In addition, the following formulas are used frequently in this paper and should be kept in 

mind. 

 

 
𝛽𝑖 =  

cov(𝒙, 𝒚𝑖)

var(𝒙)
=

∑ (𝑥𝑗 − �̅�)(𝑦𝑖𝑗 − �̅�)𝑛
𝑗=1

∑ (𝑥𝑗 − �̅�)2𝑛
𝑗=1

 

 

(1) 

 

 
SE(𝛽𝑖) =  

√∑ (𝑦𝑖𝑗 − �̂�𝑖𝑗)
2𝑛

𝑗=1

𝑛 − 2

√∑ (𝑥𝑗 − �̅�)
2𝑛

𝑗=1

 
(2) 

2.2. Linear combination of two phenotypes using only summary statistics 

We will first show the formulas for the slope, intercept, and standard error of the slope in the case 

of a linear combination of two phenotypes (𝒚𝑐 =  𝑐1𝒚𝟏 +  𝑐2𝒚𝟐), where 𝑐1 and 𝑐2 are any 

constants. We will then show how these formulas generalize to an arbitrary number of phenotypes. 

In this portion of the paper we will only state the formulas – detailed derivations for each of the 

formulas can be found in the supplemental materials. 

2.2.1. Slope 

To determine the slope, �̂�𝑐, for the combined linear model of a linear combination of two 

phenotypes (𝒚𝑐 =  𝑐1𝒚𝟏 +  𝑐2𝒚𝟐), formula 1 was manipulated. We begin by inserting 𝒚𝑐 =
 𝑐1𝒚𝟏 +  𝑐2𝒚𝟐, into the least squares estimate of the slope: 
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�̂�𝑐 =  

∑ (𝑥𝑗 − �̅�𝑛
𝑗=1 )((𝑐1𝑦1𝑗 + 𝑐2𝑦2𝑗) − (𝑐1𝒚𝟏 +  𝑐2𝒚𝟐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))

∑ (𝑥𝑖 − �̅�𝑛
𝑖=1 )2

 

 

(3) 

After algebraic simplifications, �̂�𝑐 equals the same linear combination of the two phenotypes 

except with the slope instead of the phenotype: 

 

 �̂�𝑐 = 𝑐1�̂�1 + 𝑐2�̂�2 (4) 

 

2.2.2. Intercept 

To determine the y-intercept, �̂�, for the combined linear model of a linear combination of two 

phenotypes, the mathematical formula for the least-squares estimate of the intercept was 

manipulated. As before, we begin by inserting 𝒚𝑐 =  𝑐1𝒚𝟏 + 𝑐2𝒚𝟐, into the formula for the 

intercept in a standard least squares linear regression: 

 

 �̂�𝑐 = 𝑐1𝒚𝟏 + 𝑐2𝒚𝟐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ −  �̂�𝑐�̅�. (5) 

 

Simplifying this equation shows that �̂�𝑐 equals the same linear combination of the two 

phenotypes except with the intercepts instead of the phenotypes: 

 

 �̂�𝑐 =  𝑐1�̂�1 +  𝑐2�̂�2 (6) 

 

2.2.3. Standard error of slope 

To determine the standard error of  �̂�𝑐, SE(�̂�𝑐), formula 2 was manipulated. 𝑐1𝑦1𝑗 + 𝑐2𝑦2𝑗 was 

substituted for 𝑦𝑖 and (𝑐1�̂�1 + 𝑐2�̂�2)𝑥𝑗 + (𝑐1�̂�1 +  𝑐2�̂�2) for �̂�𝑖𝑗. After some algebraic 

manipulation of the formula for SE(�̂�𝑐), the formula was determined to be (see supplement 3 for 

details):  

 

 SE(�̂�𝑐) =  √c1
2SE(�̂�1)2 + c2

2SE(�̂�2)2 +
2c1c2

𝑛 − 2
(

cov(𝒚𝟏, 𝒚𝟐)

var(𝒙)
 − �̂�1�̂�2 ) (7) 

 

2.3. Linear combination of an arbitrary number of phenotypes using summary statistics 

Having provided the formulas for the linear combination of two phenotypes, we now explore the 

more general case of a linear combination of m phenotypes. 

2.3.1. Slope 

Following from the demonstration of the resulting �̂�𝑐 formula for the linear model for a linear 

combination of two phenotypes, it can be shown that the �̂�𝑐 from the linear regression of the linear 

combination of an arbitrary number of phenotypes is simply the same linear combination of the 

phenotypes except with �̂�𝑖’s from the simple linear regressions instead of the phenotype (complete 
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demonstration in supplement 1). Thus if there is a linear combination of 𝑚 phenotypes the slope 

of the combined linear model is 

 

 �̂�𝑐 = 𝑐1�̂�1 + 𝑐2�̂�2 + ⋯ + 𝑐𝑚�̂�𝑚. (8) 

 

2.3.2. Intercept  

Following from the demonstration of the resulting �̂�𝑐 formula for the linear model in which there 

is a linear combination of two phenotypes, it can easily be seen that the �̂�𝑐 from the linear 

regression of the linear combination of an arbitrary number of phenotypes is simply the same linear 

combination of the phenotypes except with the �̂�𝑖’s from the simple linear regressions instead of 

the phenotypes (complete demonstration in the supplement 2). Thus if there is a linear combination 

of m phenotypes the intercept of the combined linear model is 

 

 �̂� =  𝑐2�̂�1 +  𝑐2�̂�2 + ⋯ +  𝑐𝑚�̂�𝑚. (9) 

 

2.3.3. Standard error of beta 

Following from the demonstration of the resulting SE(�̂�𝑐) formula for the linear model for a linear 

combination of two phenotypes, it can be demonstrated through induction that the SE(�̂�𝑐) from 

the linear regression of the linear combination of an arbitrary number of phenotypes is the 

following (complete demonstration in the supplement 4): 
 

SE(�̂�𝑐) = 

√(∑ 𝑐𝑖
2SE(�̂�𝑖)2

𝑚

𝑖=1

) +
2

𝑛 − 2
(

∑ ∑  𝑐𝑞𝑐𝑟cov(𝒚𝑞 , 𝒚𝑟)𝑚
𝑟=𝑞+1

𝑚−1
𝑞=1

var(𝒙)
 − ( ∑ ∑ 𝑐𝑞𝑐𝑟�̂�𝑞�̂�𝑟

𝑚

𝑟=𝑞+1

𝑚−1

𝑞=1

)) 
(10) 

 

2.3.3.1. Estimating terms in the equation for the standard error of beta 

All of the terms in formula 10 for the standard error of the combined �̂� are summary level statistics. 

While this eliminates the need for individual level data and thus alleviates many of the previously-

discussed privacy issues, there are two summary statistics within that formula that aren’t often 

publicly available. In particular, the covariances between each unique pair of phenotypes and the 

variance of x are not frequently provided. As such, it would be helpful if there were methods for 

estimating these terms from the information that is readily available. 

We first explore a method for estimating the covariance between a given pair of phenotypes. 

Since linear models have already been run on the entire data set, slopes are given for each 

genotype-phenotype combination. Thus, we hypothesized that the correlation between two of the 

response variables could be estimated by finding the correlation between the betas for the first 

phenotype and the betas for the second phenotype. However, the quantity needed for the standard 
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error formula is covariance. Therefore, to find the covariance, we propose the following 

approximation: 

 

𝑐𝑜𝑣(𝑦1, 𝑦2) = 𝑐𝑜𝑟(𝑦1, 𝑦2) ∗ √𝑣𝑎𝑟(𝒚𝟏)𝑣𝑎𝑟(𝒚𝟐)  ≈ 𝑐𝑜𝑟(𝜷𝟏, 𝜷𝟐) ∗  √𝑣𝑎𝑟(𝒚𝟏)𝑣𝑎𝑟(𝒚𝟐) (11) 

 

Note that this, in turn, requires that we have the variance of 𝒚𝟏 and 𝒚𝟐. 

Next, we explore a method for estimating the variance of x. Because we can model x by the 

binomial distribution, the variance of x can be estimated using the minor allele frequency (MAF). 

Thus, by using the formula for the variance of a binomial distribution we can accurately estimate 

the variance of x using the known minor allele frequency. 

 

 2𝑀𝐴𝐹(1 − 𝑀𝐴𝐹).  (12) 

 

While this approximation is close to the true value, the accuracy of the estimate changes with 

the Hardy-Weinberg equilibrium (HWE) p-value. In the next section we explore this using 

simulations. 

2.4. Simulations 

2.4.1. Estimation of covariance of y’s simulations 

To test the hypothesis for our covariance estimate, simulations were conducted in R.7 We wrote a 

function for performing these simulations, which generated two phenotypes and a large number of 

genotypes. The parameters altered from trial to trial were the number of observations, the number 

of genotypes, the covariance between the two phenotypes, and the variance of each of the two 

phenotypes.  

2.4.2. Estimation of variance of x simulations 

To check the accuracy of the variance of x, simulations were run in R. Ten thousand genotypes 

from 1,000, 10,000, 100,000, and 500,000 subjects were generated using a binomial distribution. 

The genotypes were of varying minor allele frequencies and varying Hardy-Weinberg 

equilibrium p-values. For each genotype the following statistics were calculated: MAF, HWE p-

value, the observed variance, estimated variance, and the difference between the observed 

variance and the estimated variance. At HWE p-value thresholds of 0.05, 0.5, 0.75, 0.90, and 

0.99, the mean difference between the observed variance and the estimated variance of 

genotypes, and the standard deviations of those differences of the genotypes that met or 

exceeded the thresholds were also calculated.  

2.5. Real data analysis 

Previous genome wide association studies, investigated the association between 425,380 SNP’s 

and red blood cell fatty acid (RBC FA) levels indicative of cardiovascular health using data from 

the offspring cohort (n=2384) of The Framingham Heart Study as we’ve done in other recent 

publications. 8-11 Two of the RBC FA included were Docosahexaenoic acid (DHA) and 

Eicosapentaenoic acid (EPA). The sum of DHA and EPA is reported as the omega3 index (O3I). 
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In the studies, genome wide association analyses were conducted for DHA, EPA, and O3I using 

residual models adjusting for age, sex, and familial relationships. We will use this data to 

demonstrate our method. We will show the accuracy of the slope and standard error of the slope 

calculated using the summary statistics from the individual EPA and DHA models and the 

method presented in this paper as compared to the slope and standard error that is obtained from 

running the entire linear model specifically on the O3I. Please refer to the studies cited for more 

information about the significance of their findings, the collection of red blood cell fatty acids 

and the Framingham cohort.8-11 

3. Results 

3.1. Estimating the covariance of phenotypes 

We begin by investigating the performance of our proposed estimation (formula 11) for the 

covariance of phenotypes (yi’s). As seen in Table 1, our results suggest that the error in our 

approximation is highest when the correlation between 𝒚𝟏 and 𝒚𝟐 is close to 0. As the correlation 

between a pair or yi’s increases, the standard deviation of the error in the estimated correlation 

decreases. 

 The other two parameters (number of genotypes and number of observations) had little to no 

impact on the standard deviation of the errors (detailed results not shown). 
 
Table 1. This table shows the results from the simulations. The “Correlation” column lists the correlation at which the 

data was generated. The other two columns display the mean and standard deviation of the error of the estimate. 

Correlation 

Mean error of estimated  

correlation  

Standard deviation of error of 

estimated correlation  

0 -0.000486 0.050 

0.3 0.000400 0.045 

0.75 6.23E-05 0.022 

0.9 0.000282 0.0096 

 

3.2. Estimating variance of genotype 

The detailed results of the variance of x simulations can be found in Table 2. Overall, the difference 

between the observed variance of x and the estimated variance of x across all simulated genotypes 

was small with a mean of 0.000043 and standard deviation of 0.0064. Thus as the length of the 

genotype gets larger, the difference between the observed and estimated variances seems to go to 

zero. While the mean differences are quite small, they are nearly all positive indicating that we are 

underestimating the variance. Because the standard error formula (formula 7) divides by the 

variance our standard error will be inflated and thus this method will be slightly conservative.  

Additionally, as can be seen in Table 2 and Figure 1, genotypes with larger HWE p-values have 

differences between the observed and estimated variances that are closer to zero.  
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Fig. 1. This plot shows the results of the simulation of 10,000 genotypes from 500,000 subjects. The Hardy-

Weinberg equilibrium p-value is on the y-axis and the difference in the variance is on the x-axis.  

 
Table 2. Results for variance of x simulations, with 10,000 genotypes simulated for 500,000, 100,000, 10,000 and 

1,000 individuals. 

Number of 

individuals 

P-value Number of 

genotypes that 

fall at or above p-

value threshold 

Mean of the 

difference 

between 

observed and 

estimated 

variance 

Lower bound of 

Wald 

confidence 

interval for 

mean 

Upper bound of 

Wald 

confidence 

interval for 

mean 

500,000 ≥ 0.99 104 1.4E-06 -7.1E-06 1.0E-05 

 ≥ 0.90 1042 2.6E-06 -7.8E-05 8.3E-05 

 ≥ 0.75 2510 7.5E-07 -2.0E-04 2.0E-04 

 ≥ 0.50 5002 4.5E-06 -4.1E-04 4.2E-04 

 ≥ 0.05 9494 9.6E-06 -9.3E-04 9.5E-04 

 All  10000 4.1E-06 -1.1E-03 1.1E-03 

100,000 ≥ 0.99 98 4.3E-06 -1.3E-05 2.2E-05 

 ≥ 0.90 1025 1.1E-06 -1.7E-04 1.8E-04 

 ≥ 0.75 2551 6.8E-06 -4.4E-04 4.5E-04 

 ≥ 0.50 5015 2.3E-06 -9.2E-04 9.3E-04 

 ≥ 0.05 9497 6.9E-06 -2.1E-03 2.1E-03 

 All 10000 1.2E-05 -2.4E-03 2.4E-03 

10,000 ≥ 0.99 94 3.7E-05 -2.6E-05 1.0E-04 

 ≥ 0.90 999 4.5E-05 -5.2E-04 6.2E-04 

 ≥ 0.75 2481 5.1E-05 -1.4E-03 1.5E-03 

 ≥ 0.50 4938 5.0E-05 -2.8E-03 2.9E-03 

 ≥ 0.05 9501 5.5E-05 -6.8E-03 6.7E-03 

 All 10000 -8.4E-05 -7.7E-03 7.5E-03 

1,000 ≥ 0.99 114 3.8E-04  1.2E-04 6.4E-04 

 ≥ 0.90 962 3.9E-04 -1.4E-03 2.2E-03 

 ≥ 0.75 2439 3.4E-04 -4.2E-03 4.8E-03 

 ≥ 0.50 4963 4.1E-04 -8.8E-03 9.6E-03 

 ≥ 0.05 9452 1.8E-04 -2.1E-02 2.1E-02 

 All 10000 2.4E-04 -2.4E-02 2.4E-02 

3.3. Real data results 

3.3.1. Using exact formulas 

Pacific Symposium on Biocomputing 2019

398



We first consider the accuracy of adding the two residual models after adjusting for covariates. It 

appears that the predictions for the slope of the combined linear model made using prediction 

β̂𝐸𝑃𝐴 + β̂𝐷𝐻𝐴 = β̂𝑅𝑂3𝐼  were accurate. The predictions of the model adjusting for covariates after 

addition (�̂�𝑂3𝐼) had a mean difference of 0.0000469 and a standard deviation of 0.00204. Figure 2 

shows the observed values of �̂�𝑂3𝐼 plotted against the estimate values, and appears to show that 

the estimate is relatively accurate on the entire range of true slopes. 
 

 

Fig. 2. The observed beta values are on the y-axis 

and the predicted beta values are on the x-axis. This 

shows the accuracy of the combined beta formula. 

Fig. 3. The observed standard errors for the beta is 

on the y-axis and the predicted standard errors of 

the beta is on the x-axis. This shows the accuracy 

of our standard error estimate. 
 

Using formula 7 for predicting the standard error for the 𝛽𝑅𝑂3𝐼, there was a mean error of -

0.00000177 with a standard deviation of 0.00004717. When comparing the estimate for standard 

error to the actual O3I standard error, the mean error was 0.00058 with a standard deviation of 

0.000276. Figure 3 demonstrates that when applying the covariates separately to the models DHA 

and EPA we see a slight over prediction of the standard errors.  

3.3.2 Estimating covariance of the y’s 

Using the method described in 2.4 the estimated correlation between EPA and DHA was 0.707 

while the actual correlation between the two variables is 0.682. The error between the true value 

and the predicted value will in turn lead to a slightly inflated standard error estimate. 

3.3.3 Estimating the variance of x  

When using our estimate of the variances of the genotype in the standard error equation, we see 

some increased variation in the estimations, as seen in Figure 4. However, filtering by Hardy 

Weinberg equilibrium p-value (eliminate genotypes with HWE p-values less than 0.000001 as 
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per GWAS standard)12 removes all of the extreme variation between estimated and predicted 

estimates of the variation of the genotypes. 

 

Fig 4. The graph on the left demonstrates the accuracy of the standard error estimates for the beta values 

using all SNP’s in the data set. The graph on the right filters by Hardy-Weinberg equilibrium p-value of 

0.000001, which removes most of the less accurate predictions. 

3.3.4 Analysis of p-value 

We examine –log10 p-value plots to see the overarching effect the method presented in this paper 

has on the significance of the study. In this analysis we compare the p-values obtained from using 

our summary statistic model with the true p-values from the linear model before adjusting for 

covariates. When estimating the variance of the genotype we filtered by a Hardy-Weinberg 

equilibrium p-value of 0.000001. 
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Fig 5. The graph on the left demonstrates the accuracy of the negative log of the p-value when our formulas 

for the slopes and standard errors are used with the true variance of 𝒙 and covariances between phenotypes. 

The middle graph shows the accuracy when covariance of the y’s is estimated using our estimation. The 

graph on the right depicts the accuracy of the p-values when the covariance of the y’s and the variance of x 

are estimated using our given estimates. 

3.3.5 Careful analysis of top hits 

One of the important aspects of using summary level statistics is that it will not greatly affect the 

most significant genotype phenotype associations. As seen in supplemental tables 5, 6, and 7 the 

differences in β, SE(β) and overall p-values between the summary statistic model and the 

traditional model is minimal.  

4. Discussion 

We have demonstrated how to accurately estimate the strength of association for a linear 

combination of an arbitrary number of individual phenotypes with a single genotype of interest 

using only commonly available summary statistics from large biobanks. In addition, we have 

provided a mathematical overview of why these relationships hold, demonstrated how to estimate 

these values from summary statistics and distributions of summary statistics, and then evaluated 

their performance on both simulated and real data.  

Practically, we have now provided a tool for researchers to perform genome-wide and related 

analyses on linear combinations of phenotypes using only summary statistics, which has the 

potential to dramatically reduce computational time and storage, simplify data transfer, and grossly 

mitigate privacy and security concerns, especially for large biobank-style datasets.  For example, 

in our data analysis of The Framingham Heart Study the Rdata file size needed to run the analysis 

was reduced from 1.2 GB to 0.04 GBs.  Notably, the reduction in file size and processing time 

should increase significantly with an increased sample size. While linear combinations of 

phenotypes are a powerful tool (e.g., averaging multiple measurements of a trait of interest), future 

work is needed to explore more general ways of combining phenotypes which will have broader 

applicability. For example, multiplicative combinations of phenotypes (𝒚𝟏 ∗  𝒚𝟐 or 𝒚𝟏 𝒚𝟐⁄ ) and 

exponentiated phenotypes are also a powerful and common class of complex phenotypes (e.g., 

BMI = Weight/Height^2). ). If future work is able to establish a similar class of methods for 

multiplicative phenotypes as has been shown in this manuscript for linear combinations, we would 

then be in position to also derive general methods for ‘logical’ combinations of dichotomous 

phenotypes. Logical combinations can be expressed as arithmetic operations. The ‘and’ operation 

can be expressed as 𝒚𝟏∗ 𝒚𝟐 and the ‘or’ operation can be expressed as (𝒚𝟏+ 𝒚𝟐) − (𝒚𝟏∗ 𝒚𝟐). 

Future work also includes consideration of multi-allelic models, the impact of different 

assumptions in models/software creating summary statistics on downstream inference using our 

proposed method, and direct comparison and evaluation of changes in computation time.  

Some limitations of our method are worth noting. First, we have been able to accurately 

estimate the variance of x (𝒙 in other words, the genotype) using the variance formula for a 

binomial distribution and the minor allele frequency. This estimate has been verified through 

simulations and we have shown that as the genotypes reach perfect Hardy-Weinberg equilibrium 

the difference between the observed and estimated variances of x approaches 0. While in practice, 
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variants out of HWE are removed from the data, variants that are ‘nearly’ out of HWE using 

standard GWAS quality thresholds11 (e.g., HWE p-value < 1x10-6) may experience more noise in 

downstream estimates. Secondly, while our simulations and real data application are reasonably 

comprehensive, application to additional datasets and consideration of additional simulated 

datasets (e.g., with different sample sizes; different proportions of and distributions of missing 

data; different levels of correlation between phenotypes) is recommended.  

The use of summary statistics from large biobanks in downstream statistical analyses offers 

great promise to address numerous hurdles in the use of biobank data and dramatically increase 

the opportunity to leverage biobanks to understand the etiology of complex human diseases. We 

have provided precise equations to leverage summary statistics for linear combinations of 

phenotypes. The method presented in this paper sets the essential foundation and provides a 

necessary building block for being able to investigate the genetic associations of millions of 

complex phenotypes with summary statistics alone. Future work is needed to explore 

multiplicative and other more complex ways to combine phenotypes to provide a complete 

approach to phenotype combinations. 

 

Supplemental materials can be found here: 

http://www.nathantintle.com/supplemental/supplement_leveraging_summary_statistics.pdf  
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The proliferation of sequencing technologies in biomedical research has raised many new pri-
vacy concerns. These include concerns over the publication of aggregate data at a genomic
scale (e.g. minor allele frequencies, regression coefficients). Methods such as differential pri-
vacy can overcome these concerns by providing strong privacy guarantees, but come at the
cost of greatly perturbing the results of the analysis of interest. Here we investigate an alter-
native approach for achieving privacy-preserving aggregate genomic data sharing without
the high cost to accuracy of differentially private methods. In particular, we demonstrate
how other ideas from the statistical disclosure control literature (in particular, the idea of
disclosure risk) can be applied to aggregate data to help ensure privacy. This is achieved
by combining minimal amounts of perturbation with Bayesian statistics and Markov Chain
Monte Carlo techniques. We test our technique on a GWAS dataset to demonstrate its utility
in practice. An implementation is available at https://github.com/seanken/PrivMCMC.

Keywords: Genomic Privacy; GWAS; MCMC

1. Introduction

There is a tension in modern human genomics between data sharing and privacy concerns.1

On the one hand, genomic data holds the promise of greatly improving human health, so the
ability to share it is paramount. On the other hand, our genomes are some of the most private
pieces of information we have, and the risks of sharing it openly are far from understood. Even
releasing aggregate genomic data (statistics calculated on an entire group of individuals, such
as odds ratios or minor allele frequencies - MAF) can raise privacy concerns.2–5

∗Corresponding Authors.

c© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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Numerous approaches have been suggested for enabling the sharing of aggregate genomic
data while respecting participants privacy.1,6 In practice, most data is either open access
(posted online with minimal privacy considerations) or controlled access (only shared with
trusted individuals). Recently, there has been a push to develop alternative methods for shar-
ing this data publicly while still preserving privacy.3,7,8 Most of these methods rely on strong
assumptions about the background population (such as independent SNPs, lack of stratifica-
tion, etc). As such, it is unclear how accurate a measure they provide on real world populations.
Moreover, it is unclear how to extend them to more general classes of statistics (beyond MAF,
etc). Alternatively, there have been methods suggested that give strong privacy guarantees
with little to no assumptions about the underlying data (namely differential privacy, see sec-
tion 2.5 for a definition).9–15 Though these methods are effective at sharing small amounts
of data while preserving strong privacy guarantees, current methods become inaccurate when
scaled to more than a few genomic loci.14,15

Here we introduce a method for preserving privacy that begins to address both concerns.
We build upon ideas from the statistical disclosure literature. In particular, our approach is
based off of measuring the risk of reidentification using Bayesian approaches.16 Our method
aims to protect private disease status information for participants in GWAS studies, while
making minimal assumptions about how the genomic data was generated (in particular, we
assume that the individual trying to learn private information, known as the adversary, does
not have any information allowing them to distinguish cases from controls a priori), and
allowing release of more accurate statistics than that achieved by current differentially private
methods. Moreover, unlike differential privacy, it is straightforward to apply our approach to
almost any statistic of interest.

2. Methods

2.1. The Model

In the model underlying our method, we are given two pieces of information: the genotype
data of each individual, and their disease status. Let D = {d1, · · · , dn}, where di ∈ {0, 1, 2}m for
i = 1, . . . , n, be the genotype data of all individuals in our study. Let y = (y1, · · · , yn) ∈ {0, 1}n

be the vector of disease statuses (yi = 1 if individual i has the disease, yi = 0 otherwise). Let
n1 be the number of times a 1 occurs in y (number of cases), n0 the number of times 0 occurs
(number of controls), n the total number of individuals, and m the number of SNPs we want
to share aggregate data about.

Let Y be a random variable which takes values in {0, 1}n. This variable represents the
adversaries prior belief about how likely each individual in the study is to be a case or control.

In particular, we will define it so that Pr(Y = y′) is equal for all y′ ∈ {0, 1}n such that y′

with exactly n1 ones, and 0 otherwise; i.e.:

Pr(Y = y′) =
1(
n
n0

)
This represents the prior probability of each individual in the study being either a case or

control, assuming all such assignments are equally likely. In essence, this model is meant to
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represent an adversary who knows everything about the study (genotypes, etc) except has no
idea who is a case and who is a control.

2.2. The Privacy Approach

We want to release some statistics based on y and D. In order to protect participants privacy,
however, we add a small amount of noise to them.

More formally, consider a statistic X that takes in both genotype data and disease status
information, and outputs a vector of statistical information in Rk for some integer k. We want
to release X(y,D) while preserving privacy. In order to do this, we instead release X+ε, where
ε = (ε1, · · · , εk) is a random noise term.

For our purposes, we will assume that each εi is either a Laplacian random variable or a
truncated Laplacian random variable. This choice is so as to be consistent with the Laplacian
mechanism, a standard diferentially private technique.17 In particular, for given parameter λ
and bound δ, we have that:

Pr(εi = z) ∝

{
exp(− |z|λ ), −δ < z < δ

0 otherwise

Here λ controls the variance, and δ the maximum/ minimum amount of noise added. When
δ is set to infinity, we get a standard (unbounded) Laplacian random variable, represented by
Lap(0, λ).

2.3. The Privacy Measure

Having specified a method for releasing privacy-preserving statistics, we want to be able to
measure how much privacy is lost upon releasing them. Instead of using differential privacy
based measures, however, we suggest an alternative approach based on prior probability, spec-
ified by the random variable Y . The measure of privacy we use is based on the assumption that
anyone looking at the statistics does not know which participants are in the case versus the
control cohort. In particular, we consider all possible permutations of participants disease sta-
tus, and assume that all such assignments are equally likely from an outsiders point of view.
This probabilistic model is inspired by the model used to justify k-anonymity (a standard
technique in the statistical disclosure literature) and related techniques.16,18,19

For a given statistic X, genetic dataset D, and a disease status vector y, we want to release
χ, a noisy version of X, defined as:

χ(y,D) = X(y,D) + ε

In order to measure the disclosure risk of releasing this data, we consider, for the ith
individual, the probability

Pr(Yi = 1|χ(Y,D) = χ(y,D))
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This can be seen as measuring the probability that the adversary believes the ith individual
has the disease based on the perturbed statistic χ(y,D). Our goal is to keep this quantity as
small as possible, particularly when yi = 1 (when the individual has the disease). It is worth
noting that, for a randomly chosen i, this has an expected value of n1

n . Note that we do
not consider the probability that Yi = 0, since in general revealing that a given individual
does not have a disease is not considered a privacy breach. This decision is consistent with
the membership privacy idea used in previous work,10,20 though our method can be easily
modified to consider the probability Yi = 0 as well.

2.4. Estimating the Posterior

In theory, we would like to have an exact estimate of Pr(Yi = 1|χ(Y,D) = χ(y,D)). In practice,
however, there does not seem to be an easy way to do this. Short of brute force, there does not
seem to be a general method that works for more than a handful of statistics. As such, we use
a form of Markov Chain Monte Carlo (MCMC) known as the Metropolis-Hastings algorithm21

to estimate this probability.
In order to achieve this, we first draw y′ ∼ Pr(Y = y′|χ(Y,D) = χ(y,D)) using a two step

process.

(1) Pick y′ ∼ Pr(Y = y′|X(Y,D) + Lap(0, λ) = χ(y,D)) using Metropolis-Hastings, where
Lap(0, λ) is a k-dimensional unbounded Laplacian variable. The proposal distribution, q,
we use to do this is chosen so that q(y1, y2) ∝ 1 if |y1 − y2|1 = 2 and equals 0 otherwise.

(2) If max∀i |Xi(y
′, D)− χi(y,D)| < δ return y′, else go back to the previous step

Here, the proposal distribution dictates the probability of each step in the random walk
used for MCMC. Our choice ensures each such jump corresponds to swapping one case and
one control.

Note that, if the noise is not truncated, then step 1 suffices. We can use the above algorithm
to generate a series of samples which can be used to estimate Pr(Yi = 1|χ(Y,D) = χ(y,D)). It
can be shown that this approach results in a correct asymptotic estimate of the probabilities
of interest. Note that we use 100,000 steps as burn-in with 10,000 steps between samples in
the Metropolis-Hastings algorithm.

2.5. Comparison to differential privacy

Differential privacy17 is a common definition of privacy in the cryptographic literature. For-
mally:

Definition 1. A random function F is ε-differentially private, if for all datasets D and D′

that differ in exactly one entry, and for all sets S, we have that

Pr(F (D) ∈ S) ≤ exp(ε)Pr(F (D′) ∈ S)

Note that it is hard to directly compare the privacy guarantees of differential privacy to
the privacy guarantees provided by risk based methods, since there is no clear correspondence
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(they have different assumptions, one gives a risk bound and one a risk estimate, etc). In an
attempt to overcome this qualitative difference, we note that, under reasonable assumptions
(namely that the distribution is a mutually independent distribution,10 assumptions we believe
reasonable to assume in our setting), differential privacy can be thought of as ensuring that,
for any dataset D1 and any d ∈ D1

log(Pr(d ∈ D1|F (D1))/Pr(d ∈ D1)) ≤ ε

In our setting, if we take D1 to be the case cohort and our statistic of interest to be the MAF
(see Section 2.8), this corresponds to

log(Pr(Yi = 1|χ(Y,D) = χ(y,D))/Pr(Yi = 1)) ≤ ε

Therefore, in order to compare differential privacy— in particular a well-known differentially
private mechanism known as the Laplacian mechanism17— to our method, we compare this
upper bound to the maximum value of our MCMC based estimate of log(Pr(Yi = 1|χ(Y,D) =

χ(y,D))/Pr(Yi = 1)) taken over all individuals in the case cohort. The smaller this quantity, the
smaller the risk relative to the background risk. Though not a perfect comparison, it gives us
some idea of how our method compares to differential privacy. To vary epsilon in our analysis
the number of SNPs is varied from 10 to 50 SNPs, using noise parameter λ = .01, and the log
probability ratios are calculated with both our approach and the Laplacian mechanism.

2.6. Error in MCMC

To measure the error in our MCMC approach, we consider a dataset with 1000 individuals,
50 cases and 950 controls, each with 20 SNPs. By error, we mean the difference between our
estimated probabilities and the theoretical ones. For each SNP, the controls have 0 copies
of the minor allele, and the cases have 2 copies. For this dataset, it is easy to calculate the
marginals of interest using simple combinatorial and probabilistic arguments. As such, we are
able to compare the exact marginals on this dataset with the marginals estimated by our
method.

2.7. The Data

In order to test our method, we use genotype data from Plenge et al.22 This data is from a
rheumatoid arthritis dataset. In most of our tests, we used 50 random cases and 950 random
controls. Note that we did not use the full dataset, since our method requires that the con-
trols out number the cases by a large margin—in particular, it is aimed at datasets without
ascertainment biases (e.g. studies that have the same percentage cases as the background pop-
ulation). Otherwise, simply knowing someone is in the dataset reveals that they have a greater
risk of having the disease being studied than someone in the general population. Though his-
torically GWAS have been enriched for cases compared to the background population, recent
population level datasets (such as the UK biobank, direct to consumer studies, etc) have
started to change this, a trend likely to continue. Note that this dataset was used in all the
results below, except for Fig 2 and Fig 4 where we use data from a GWAS of bladder cancer,23

choosing 50 cases and 950 controls, and in Section 3.4 where simulated data was used. For all
results we used randomly chosen SNPs with MAF greater than .05 and no missing values.
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2.8. Statistics of Interest

We test our method on the MAF of the case cohort and the log odds ratio from the entire
dataset. The MAF is defined as:

maf(y,D) =
1

2n1

∑
i

yidi

while the log odds ratio is defined, for the jth snp, as:

logOddsj(y,D) = log

(
aj(1− bj)
bj(1− aj)

)
where aj = mafj(y,D) and bj = mafj(1̄− y,D).

3. Results

3.1. The Privacy Cost of Releasing More Data

We first apply our method to the minor allele frequency (MAF) of the case cohort. In par-
ticular, we use a set of 50 cases and 950 controls from a Rheumatoid Arthritis GWAS (see

a. b.

Fig. 1. Number of SNPs versus privacy. We compare the disclosure risk versus the number of SNPs
whose MAF data we release from a rheumatoid arthritis GWAS, with both (a) unbounded and (b)
bounded noise. This demonstrates that, unsurprisingly, privacy is greatly affected by the amount of
data released. Less intuitively, we see most of this privacy loss is suffered by a few individuals, rather
than being evenly shared between all individuals in the cohort. More importantly, it demonstrates the
utility of disclosure risk to measure the level of privacy concerns. The risk is calculated on a dataset
of 50 cases, 950 controls, with the number of SNPs released varying between 10 and 50 SNPs, with
noise λ = .01. The bounded noise is bounded by δ = .05.
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Methods). In order to ensure privacy, we add Laplacian noise with parameter λ = .01 to
the output MAF for each SNP (see Methods). This corresponds to an expected error in the
returned statistic of .01.

In this setting, we used our method to measure the amount of privacy lost when releasing
the MAF from various numbers of SNPS between 10 and 50 (Fig 1a). We look at randomly
chosen SNPs, though one could use similar techniques to look at SNPs of particular interest
(such as those with low p-values). Unsurprisingly, we see that, as the number of SNPs increases,
the disclosure risk (that is to say the amount of privacy loss) increases for individuals in the
case cohort. Less intuitively, we see that, though the average risk for cases increases slowly
as more data is released, there are a few outliers with much higher risk. This suggests the
possibility of removing these individuals in an attempt to lower the risk of releasing the data
(assuming that doing so does not introduce bias into the results). We also tested our method
on another GWAS of bladder cancer patients and found similar results (Fig 2).

Many practitioners are uncomfortable with the idea of adding unbounded noise to a statis-
tic, even in the name of ensuring privacy. Unlike differential privacy, our method is flexible
enough to allow us to bound the error of our output. As such, we considered adding bounded
Laplacian noise to the MAF, to see how bounding the noise effects privacy (see Methods).
This ensures that the released statistic is within a window of length .1 centered around the
true MAF. Using this noise, we ran the same experiment that was run for Laplacian noise
above (Figure 1b). Again, we see that disclosure risk increases as the number of SNPs released
increases, most notably in a few outliers.

Fig. 2. Number of SNPs versus privacy. We compare the disclosure risk versus the number of SNPs
whose MAF data we release, with unbounded noise on a bladder cancer GWAS dataset. The results
are, unsurprisingly, similar to those in the Rheumatoid Arthritis dataset.
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Fig. 3. Privacy versus accuracy. We compare the effect of the amount of noise versus disclosure
risk when adding unbounded noise. We see that, as the noise increases, disclosure risk decreases, so
privacy level increases. This increase in privacy, however, sees diminishing returns with fairly low
errors, suggesting that adding large amounts of noise might not be needed. The risk is calculated on
a rheumatoid arthritis GWAS dataset of 50 cases, 950 controls, with 25 SNPs released, and noise
varying between λ = .01 and λ = .1.

3.2. Accuracy Versus Privacy

We are also interested in exploring the trade off between accuracy and privacy. The larger the
amount of noise added to our statistics, the less privacy risks are encountered. At the same
time, the more noise that is added, the less accuracy that is achieved. As such, we compared
the the amount of noise added to the level of risk. In particular, we considered releasing the
MAF for 25 SNPs with Laplacian noise added to them. We varied the expected error per SNP
between .01 and .1 (Fig 3). This was achieved by varying the λ parameter of the Laplacian
distribution. We see that, as the accuracy increases, the risk of disclosure increases as well.
The trade off between accuracy and privacy is important, since it can help determine which
choice of noise parameter is reasonable in any particular setting. In particular, we see that
the privacy gains of increasing the error level off quickly, suggesting that there is not much
incentive to add large amounts of noise to the data.

It is also of interest to figure out the amount of privacy lost when publishing unperturbed
statistics. Unfortunately, our method relies on the addition of noise to calculate the risk (to
enable MCMC). Having said that, as the noise approaches zero, the risk should approach that
of releasing the unperturbed statistics. As such, the risk we see in Fig 3 for low levels of noise
should give us some idea about the risk of the unperturbed dataset.
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Fig. 4. Comparison to differential privacy. We compare ε to the log probability ratio (see methods)
when adding unbounded noise for both bladder cancer (BC) and rheumatoid arthritis (RA) cohorts.
We see that the log ratio for our measure is much smaller than that predicted by differentially
private bounds for the Laplacian mechanism, differing by roughly a factor of 10. This shows that,
under reasonable assumptions, the Laplacian mechanism greatly overestimates the level of noise
required to achieve a given level of privacy. The risk is calculated on a rheumatoid arthritis dataset
of 50 cases, 950 controls, with 10 to 50 SNPs released, and noise λ = .01.

3.3. Comparison to Differential Privacy

One of the main candidates that has been suggested for privacy preserving statistical calcula-
tions is known as differential privacy. The informal idea behind differential privacy is that, by
adding noise to a released statistics, one is able to achieve a level of plausible deniability that
a particular individual was in your dataset. This level of deniability is measured by a privacy
parameter, ε. The larger the ε parameter, the less plausible deniability is preserved.

Under reasonable assumptions ε can be seen as being an upper bound on the ratio of the
probability of any individual being in the dataset before and after releasing the perturbed
statistic of interest (see Methods). The smaller this log ratio, the less information that is
being leaked. As such, we wanted to compare this upper bound with the log probability ratio
produced by our probability model (Fig 4). Note that we apply the unbounded version of
our method, since standard differential privacy techniques do not allow for bounded noise.
To this end, we apply a standard differentially private mechanism, known as the Laplacian
mechanism. We see that the log ratio for our measure is much smaller than that predicted by
the differentially private bounds from the Laplacian mechanism, differing by roughly a factor
of 10— far outside the normal range for differential privacy. Importantly, these results shows
that our approach allows for the release of much more data, at the cost of a slightly weaker
privacy guarantee.

Pacific Symposium on Biocomputing 2019

411



3.4. Accuracy of MCMC

Our method aims to estimate the true disclosure risk using a sampling based technique. Such
sampling techniques introduce uncertainty in the estimated disclosure risk. In order to quantify
this, we generated a dataset were we could directly calculate the probability of any particular
individual being in the output (see Methods). We then compared the true probability versus
the estimated probability using our MCMC based approach. We see that, for 98.5% of the
simulated individuals the error is less than .05, with only one individual having an error of
greater than .1. Moreover, the estimates can be improved by increasing the number of samples
taken, as well as the number of MCMC iterations per sample.

3.5. Beyond MAF: applications to log odds ratios

Fig. 5. Privacy and the log odds ratio. We compare the disclosure risk versus the number of SNPs
whose log odds ratio data we release, with unbounded noise. The results are qualitatively very close
to those we see for the MAF. More importantly, this shows that our technique can be extended to
new statistics, and is not just limited to one. The risk is calculated on a rheumatoid arthritis dataset
of 50 cases, 950 controls, varying the number of SNPs released from 10 and 50 SNPs, with λ = .1.

So far we have focused on using our approach to measure the privacy loss when releasing
MAF for a large number of SNPs. As mentioned, however, the approach introduced here can
be applied to almost any real valued statistic (or collection of statistics). To see this, we apply
our method to measure the amount of privacy lost when releasing information about the odds
ratio. More specifically, we release the log odds ratio for numerous SNPs.

We calculate these log odds ratios on 50 cases and 950 controls from the rheumatoid
arthritis GWAS (Figure 5). We add (unbounded) Laplacian noise with parameter λ = .1 (this
corresponds to an average additive error of .1 in the returned log odds ratio), and measured
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the privacy for various number of SNPs. We see that, in this experiment, the disclosure risk is
fairly small for most individuals, with a few outliers who have greater risk. In particular, the
results are comparable to what we see when releasing noisy MAF. This suggests that releasing
noisy log odds ratios has a minimal effect on privacy when λ = .1.

4. Conclusion

We have introduced a novel method for measuring privacy loss in aggregate genomic data. Our
method manages to avoid making the strong assumptions about the background population
required by many other methods (assumptions that might not hold in practice), while still
achieving better accuracy than standard differentially private methods.

The framework we introduced here can be extended in many ways, enabling more expres-
sive analysis. For example, the current method requires adding noise to the output statistic.
If this noise is small enough, the effect on accuracy is minimal, and is similar to the effect
of only releasing a small number of significant digits (a common practice in most analysis).
Even still, many practitioners are uncomfortable with the idea of adding noise to their data,
so extending the method to unperturbed data would be of great use. For example, ideas from
approximate Bayesian calculations might be used to help achieve this.24

Another important direction for future work is to improve runtime. This direction is of
particular importance since most datasets without ascertainment bias (the type of datasets our
method is meant to be applied to) are quite large. To address this, we are currently exploring
approximate methods, such as variational techniques, to allow for greater scalability.25

Our method provides another tool to help understand the privacy risks inherent in sharing
genomic data. Many of the arguments between those who want to publicly share genomic
data (and health data more broadly) and those who want to keep it under lock and key
revolve around the fact that we are still not certain about the real world risks posed by
public disclosure of genomic data. As such, continuing to investigate the benefits and risks of
sharing this data is paramount in order to be able to improve human health without negatively
effecting study participants.

Acknowledgements

We want to acknowledge Jadwiga Bienkowska for introducing us to the data set we used, as
well as Noah Daniels, Jian Peng, Hoon Cho, and other members of the Berger and Sahinalp
labs for useful discussions.

B.B. and C.S. are partially supported by the US National Institutes of Health grant
GM108348. C.S. and S.S. were partially funded by NSERC Discovery Frontiers Program,
”The Cancer Genome Collaboratory”. C.S. is partially funded by Indiana University Preci-
sion Health Initiative.

References

1. Y. Erlich and A. Narayanan, Routes for breaching and protecting genetic privacy, Nature Reviews
Genetics 15, 409 (2014).

Pacific Symposium on Biocomputing 2019

413



2. N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. Pearson, D. Stephan,
S. Nelson and D. Craig., Resolving individual‘s contributing trace amounts of DNA to highly
complex mixtures using high-density snp genotyping microarrays, PLoS Genet 4 (2008).

3. X. Zhou, B. Peng, Y. Li, Y. Chen, H. Tang and X. Wang, To release or not to release: evaluating
information leaks in aggregate human-genome data, in ESORICS , 2011.

4. E. Schadt, S. Woo and K. Hao, Bayesian method to predict individual snp genotypes from gene
expression data, Nat Genet 44, 603 (2012).

5. H. Im, E. Gamazon, D. Nicolae and N. Cox, On sharing quantitative trait GWAS results in an
era of multiple-omics data and the limits of genomic privacy, Am J Hum Genet 90, 591 (2012).

6. X. Jiang, Y. Zhao, X. Wang, B. Malin, S. Wang, L. Ohno-Machado and H. Tang, A community
assessment of privacy preserving techniques for human genomes, BMC Medical Informatics and
Decision Making 14 (2014).

7. S. Sankararaman, G. Obozinski, M. Jordan and E. Halperin, Genomic privacy and the limits of
individual detection in a pool, Nat Genet 41, 965 (2009).

8. S. Simmons and B. Berger, One size doesn’t fit all: Measuring individual privacy in aggregate
genomic data, in GenoPri , 2015.

9. C. Uhler, S. Fienberg and A. Slavkovic, Privacy-preserving data sharing for genome-wide asso-
ciation studies, Journal of Privacy and Confidentiality 5, 137 (2013).

10. F. Tramer, Z. Huang, J. Hubaux and E. Ayday, Differential privacy with bounded priors: Rec-
onciling utility and privacy in genome-wide association studies, in CCS , 2015.

11. S. Wang, N. Mohammed and R. Chen, Differentially private genome data dissemination through
top-down specialization, BMC Medical Informatics and Decision Making 14 (2014).

12. F. Yu and Z. Ji, Scalable privacy-preserving data sharing methodology for genome-wide asso-
ciation studies: an application to idash healthcare privacy protection challenge, BMC Medical
Informatics and Decision Making 14 (2014).

13. Y. Zhao et al., Choosing blindly but wisely: differentially private solicitation of DNA datasets
for disease marker discovery, JAMIA 22, 100 (2015).

14. S. Simmons and B. Berger, Realizing privacy preserving genome-wide association studies, Bioin-
formatics 32, 1293 (2015).

15. S. Simmons, C. Sahinalp and B. Berger, Enabling privacy-preserving gwass in heterogeneous
human populations, Cell Systems 3, 54 (2016).

16. J. Forster, Bayesian methods for disclosure risk assessment, in Monographs of Official Statistics,
2006.

17. C. Dwork and R. Pottenger, Towards practicing privacy, J Am Med Inform Assoc 20, 102 (2013).
18. L. Sweeney, K-anonymity: a model for protecting privacy, International Journal on Uncertainty,

Fuzziness and Knowledge-based Systems 10, 557 (2011).
19. K. E. Emam, E. Jonker, L. Arbuckle and B. Malin, A systematic review of re-identification

attacks on health data, PLoS ONE 6 (2011).
20. N. Li, W. Qardaji, D. Su, Y. Wu and W. Yang, Membership privacy: a unifying framework for

privacy definitions, in SIGSAC , 2013.
21. W. Hastings, Monte carlo sampling methods using markov chains and their applications,

Biometrika 57, 97 (1970).
22. R. Plenge et al., Traf1-c5 as a risk locus for rheumatoid arthritis– a genomewide study, New

England Journal of Medicine , 1199 (2007).
23. J. Figueroa et al., Genome-wide association study identifies multiple loci associated with bladder

cancer risk, Hum Mol Genet 23, 1387 (2014).
24. M. Sunnaker, A. Busetto, E. Numminen, J. Corander, M. Foll and C. Dessimoz, Approximate

bayesian computation, Plos Computational Biology 9, p. e1002803 (2013).
25. C. Bishop, Pattern Recognition and Machine Learning (Springer, 2006).

Pacific Symposium on Biocomputing 2019

414



© 2018 The Authors listed above. Open Access chapter published by World Scientific Publishing 
Company and distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-
NC) 4.0 License. 

Evaluation of patient re-identification using laboratory test orders  
and mitigation via latent space variables 

 
Kipp W. Johnson1*, Jessica K. De Freitas1*, Benjamin S. Glicksberg2, Jason R. Bobe1, Joel T. Dudley1# 

 
1Institute for Next Generation Healthcare 

Department of Genetics and Genomics Sciences,  
Icahn School of Medicine at Mount Sinai,  

770 Lexington Ave 15th Fl. 
New York, NY 10065, USA 

2Bakar Computational Health Sciences Institute  
The University of California San Francisco 

San Francisco, CA 10065, USA 

*Authors contributed equally 
#Corresponding author: joel.dudley@mssm.edu 

Anonymized electronic health records (EHR) are often used for biomedical research. One persistent 
concern with this type of research is the risk for re-identification of patients from their purportedly 
anonymized data. Here, we use the EHR of 731,850 de-identified patients to demonstrate that the average 
patient is unique from all others 98.4% of the time simply by examining what laboratory tests have been 
ordered for them. By the time a patient has visited the hospital on two separate days, they are unique in 
72.3% of cases. We further present a computational study to identify how accurately the records from a 
single day of care can be used to re-identify patients from a set of 99 other patients. We show that, given 
a single visit’s laboratory orders (even without result values) for a patient, we can re-identify the patient 
at least 25% of the time. Furthermore, we can place this patient among the top 10 most similar patients 
47% of the time. Finally, we present a proof-of-concept technique using a variational autoencoder to 
encode laboratory results into a lower-dimensional latent space. We demonstrate that releasing latent-
space encoded laboratory orders significantly improves privacy compared to releasing raw laboratory 
orders (<5% re-identification), while preserving information contained within the laboratory orders 
(AUC of >0.9 for recreating encoded values). Our findings have potential consequences for the public 
release of anonymized laboratory tests to the biomedical research community. We note that our findings 
do not imply that laboratory tests alone are personally identifiable. In the attack scenario presented here, 
reidentification would require a threat actor to possess an external source of laboratory values which are 
linked to personal identifiers at the start. 

 

Keywords: Electronic health records, anonymization, patient re-identification, data privacy, variational 
autoencoder  
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1.   Introduction 

Electronic Health Records (EHRs) have been widely adopted as a component of the modern 
American healthcare system (1). EHRs contain information such as disease-related diagnosis billing 
codes, lab test orders and results, procedures performed, and medications prescribed. Although 
EHRs are primarily designed for the purpose of encounter documentation and billing, the data can 
also be repurposed for efforts to improved clinical care (2, 3) or for biomedical investigation (4–6).  
 
For use in research, EHRs are often de-identified in accordance with the Health Insurance Portability 
and Accountability Act (HIPAA) (7). HIPAA’s Privacy Rule mandates protection for identifiable 
variables such as name, zip code, date of birth, etc. Because of this, public release of EHR data 
requires either (1) expert “determination” or (2) “safe harbor” privacy practices. Expert 
determination involves an individual with appropriate knowledge and experience determining that 
data poses minimal risk.  “Safe harbor” practice is the removal of 18 pieces of information from the 
EHR, with the 18th being a “catch-all” category for “any other unique identifying characteristic.” 
However, the definition for what constitutes individually identifiable information has been 
challenged by a variety of re-identification attacks and privacy breaches (8, 9). In practice, the  
privacy rule does not constrain the types of uses of health data once it has been de-identified by 
these methods, although covered entities sometimes take additional precautions such as data use 
agreements that forbid intentional re-identification. 
 
Re-identification is the process of matching anonymized personal data with its owner via linkage 
with an external resource. Information such as a person’s name and address are obviously 
identifying, but in some circumstances data such as disease diagnoses or lab tests may be 
identifiable. In fact, there have been several important examples of this type of privacy attack. 
Loukides et al. demonstrated that existing privacy protection methods were not sufficient to protect 
against re-identification by identifying a subset of 2800 patients from using EHR diagnosis codes 
alone (10). Although the diagnosis code dataset from EHRs were anonymized, the risk for re-
identification came from cross-referencing with a secondary data source that contained the patient’s 
exact diagnosis codes. Other researchers have developed strategies to anonymize combinations of 
disease billing codes with linked demographics (11).  
 
In this manuscript, we first demonstrate the uniqueness of the pattern of physician-ordered 
laboratory tests for specific individuals. After finding that these laboratory orders are highly specific, 
we propose an algorithm and evaluation framework to re-identify patients using only a single day 
of laboratory orders. Following this, we explore if latent variables can be constructed using a 
variational autoencoder which simultaneously preserve information contained within the laboratory 
orders and also increase patient privacy. 
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2.   Methods 

We present an overall workflow of the study in Figure 1. While we do use EHRs of real patients in 
this paper, our dataset is anonymized (i.e., de-identified) and does not include any explicit identifiers 
for patients such as name, social security number, hospital medical record number, or specific dates 
of encounters. Our dataset uses pseudo-identifiers for each patient that are internally consistent but 
do not map to outside datasets. All re-identification methods and results presented do not attempt to 
match pseudo-identifier to real identities, as that would violate ethical research practice, patient 

privacy, the Health Insurance 
Portability and Accountability Act of 
1996 (HIPAA), and institutional 
policies of the Mount Sinai Hospital and 
Icahn School of Medicine at Mount 
Sinai. 

2.1.   Data preparation of 
research cohort and laboratory 
tests 

We used the EHRs of patient visits from 
the Mount Sinai Hospital (MSH), a 
tertiary-care urban hospital located on 
the Upper East Side of Manhattan in 
New York City. For this study, we 
obtained the records of all individuals 
between 18-90 years old. Since we 
sought to obtain generalized re-
identifiability statistics, we did not 
select for patients based upon any 
particular criteria.  
 
We queried the MSH EHRs for all 
possible laboratory tests ordered and 
their values. We removed laboratory 
tests that did not have numeric value 
results, could not be made to give binary 
data (e.g. positive/negative result), 
could not be used to give ordinal results 
(e.g. low/medium/high), had results 
which were clearly erroneous and 
nonsensical results (e.g., some labs had 
values which were long text strings 

Figure 1. Overall workflow of our study. A) Data for this study 
was obtained from the Mount Sinai Hospital Data Warehouse  
B) Cosine distances between each patient-day event were 
calculated C) Evaluation by Recall @ n from n = 1 to n = 100  
D) Use of a variational autoencoder to anonymize laboratory 
orders. 
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describing laboratory tests in place of results), or had other missing information such as order date. 

2.2.   Assessment of how characteristic patient laboratory tests are for individual patients 
 
We first characterized how unique each patient’s laboratory tests were. To do this, we 
concatenated all the laboratory tests which had been ordered at any time point for each patients 
into a single standardized text string. We then computed the MD5 hash of this standardized text 
string so that each unique combination of laboratory tests could be represented as a unique 128-
bit checksum. Ultimately, patients who have received the same permutations of laboratory tests 
will have exactly the same MD5 hash. Finally, we checked for overlap among the MD5 hashes 
in order to determine the uniqueness of laboratory test orders.  

2.3.   Assessing if using one day of patient records is sufficient to re-identify patients 

We next sought to determine if a single day of patient records would be sufficient to re-identify a 
patient compared to a random sample of other patients. For computational tractability we included 
in this analysis only those laboratory tests which had been ordered at least 500 times.  

2.3.1.   Creation of patient-day-laboratory vectors 

Each individual patient’s laboratory records were collapsed to the day in which they were ordered. 
If the same laboratory test was ordered more than once on the same day, we took only one 
occurrence of that test. We thus assembled each patient-day as a vector θ of length l, where l is the 
count of all laboratory tests obtained from the EHRs. Laboratory tests for a given patient-day were 
considered to be a binary variable where 0 denotes absence (laboratory test not ordered for this 
patient on this day) and 1 denotes presence (laboratory test ordered for this patient on this day) 

2.4.   Vector distance metrics  

After computing the binary lab vector for each patient-day, we then determined pairwise similarities 
between patient-day vectors by computing their cosine distance. The cosine distance is a 
straightforward measure of similarity between vectors computed by taking the dot product of two 
vectors divided by the product of the two vectors’ magnitude (Eq. 1).  
 

                      (1) 
 
We thus assembled a symmetric MxM pairwise cosine distance matrix where M is the total number 
of patient-days. Each (i,j) entry in the distance matrix corresponds to the cosine distance between 
laboratory tests on patient-day i and patient-day j. We selected cosine distance as the similarity 
metric because it is a vector space metric commonly used information retrieval settings. The cosine 
distance in the special case of non-negative binary data (e.g. 0, 1) is also known as the Ochai distance 
and has a range of [0, 1] where 0 is perfect dissimilarity and 1 is perfect similarity. 
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2.5.   Patient-day re-identification algorithm 

Because the running time of pairwise distance computation grows according to the square of the 
patient-day counts (i.e. O(n2), quadratic complexity), it was not computationally feasible to 
compute the pairwise distances between all patient-day vectors. We thus posed our re-
identification task as an attempt to see if, given a single-day of patient records, we could re-
identify the patient based upon his or her other day’s records compared to the records of 99 other 
randomly selected individuals.  

Specifically, we randomly selected a single patient-day vector to act as the seed “breached 
record” for query. Our dataset for re-identification comprised of that breached patient’s other 
patient-day vectors, not including the breached record, and all of the patient-day vectors of 
another 99 randomly selected patients. We then computed the cosine distance of this query 
vector from all other patient-day vectors in our sample. Then for each patient, we calculated the 
mean of the cosine distances of all their vectors from the query vector. Thus, in the end, given 
one patient-day record we had 100 distances corresponding to the mean distance of 100 other 
patients from this one patient-day. We computed this for all patient-days in the dataset. We then 
repeated the entire above algorithm 100 times. 

For each iteration of the previous algorithm, we ultimately obtained 100 scores for distance 
between our query patient-record and 99 randomly selected individuals, plus the other records 
belonging to the initial patient from whom we extracted the seed “breached” record. 

2.6.   Patient-day re-identification evaluation framework 

We evaluated our performance using a modified version of the “Recall @ n” metric commonly used 
in information retrieval. Since there is only one correct patient match to our query “breached” 
record, we evaluated if this correct patient match was within the scores corresponding to the n closest 
patients. The score per patient record and n was computed as a binary variable (e.g. patient is within 
n closest records = 1 or patient not within n closest records = 0). Recall @ n=1 implies that the 
correct match was the closest score to our patient. Recall @ n=100 will always be 100% since that 
implies that the patient is within the closest 100 patients queried, which will always be the case since 
we are querying a sample of 100 patients.  
 
The expected recall @ n is n/100 for a completely random classifier. Thus, we can assess our re-
identification algorithm as the improvement over random classification (the null hypothesis). This 
formulation analogous to the area under the receiver-operating characteristic curve (“AUROC”) 
commonly used for assessing supervised machine learning classification performance. 

2.7.   Generalization of patient laboratory test data using a variational autoencoder  

Finally, we sought to determine whether we could encode laboratory tests orders into a reduced-
dimensional latent space which was still useful but could reduce re-identifiability. To do this, we 
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employed a variational autoencoder implemented in Keras (https://github.com/keras-team). 
Variational autoencoders feature two major architectural components: First, an encoding model 
which takes a sequence of inputs (in our case, binary presence or absence of lab tests) and encodes 
them into a latent hidden representation space. A generative decoder then decodes the latent space 
representation back into a probability distribution representing the input data. We employed a 
standard VAE loss function which is the sum of the binary cross entropy between the input lab test 
vectors and output lab test vectors plus the Kullback-Liebler divergence between the learned 
encoding probability distribution and a unit Gaussian (Eq. 2). 
 

    (2) 
 

Our hypothesis is that releasing the 
latent-state variables instead of the 
raw laboratory tests would still be 
useful to researchers, but would 
importantly reduce the potential for 
direct re-identifiability. After 
obtaining latent-space variable from 
this method, we employed the same 
technique as in the previous section 
(cosine distance between person-day 
latent variable vectors) in order to 
see if we could re-identify patients 
given one single day of data (e.g., the 
latent variables corresponding to 
that day). For ease of computation, 
we desired a minimal number of 
neurons in the latent space which 
could accurately recapitulate the 
input vectors. We found that 21, 22, 

and 23 latent neurons were insufficiently accurate, but 24 (16) latent space neurons produced 
experimentally acceptable results. The architecture of the model is given Figure 2. 
 

Figure 2: Architecture of variational autoencoder 
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3.   Results 

3.1.   Electronic health record data  

From the selected cohort of 731,850 individuals, we obtained laboratory records from those with 
at least one recorded laboratory test. These individuals had 342,485,583 laboratory test values 
for 2,635 different possible laboratory procedures. These distinct labs had been ordered on 
average 468.0 times per patient (standard deviation: 1,415) with a minimum frequency of one 
and a maximum frequency of 94,749 different laboratory results. This range of results is likely 
due to the fact that Mount Sinai Hospital sees a unique mix of patients, from everyday office 
visits to patients who may remain in the intensive care unit for weeks. The average patient had 
records for 49.8 different kinds of labs (standard deviation of 40.4) with a minimum of one kind 
of laboratory test and maximum of 442 types of different laboratory tests. The laboratory tests 
in total represented a period totaling 17,657 years (6,449,310 patient-days). Patients had a mean 
of 8.81 different days (standard deviation: 20.6) with at least one laboratory test result.  The total 
range of days per patient was from one day to 2.47 years. 81.6% of patients had 10 or fewer 
days of laboratory results and 90.7% had fewer than 20 days of laboratory values. There were 
218 different laboratory tests ordered only once (8.3% of all tests) and 1,186 laboratory values 
were ordered less than 1000 times (45.0% of all tests). 

3.2.   What percentage of patients can be uniquely identified by laboratory tests ordered for 
them? 

We analyzed the uniqueness of the laboratory 
tests ordered per patient, e.g. what percentage 
of patients had perfectly unique laboratory 
tests different from all other patients (Figure 
3). This corresponds to the ability to perfectly 
recognize a patient by simply knowing what 
laboratory test have been ordered. We did not 
consider the numerical results for the lab, but 
merely assessed whether the tests had been 
ordered for a given patient or not. In total, 
56.1% of patients could be perfectly 
characterized by their laboratory results (e.g., 
their particular combination of laboratory 
tests was completely different from all other 
patients in the EHR). However, the 
distinguishability increased very rapidly with 

increasing count of encounters in the EHR. 
Patients who had at least two days of 
laboratory values were different from all 

Figure 3: Percentage of patients whose particular 
pattern of visits are completely unique to them, by 
number of visits to hospital. 
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other patients 72.3% of the time. Patients who had at least nine days of laboratory values (the 
mean number of days per patient) were different from all other patients 98.4% of the time. 

3.3.   Can we re-identify patients using only 1 day of laboratory tests? 

 

 

 

 

 

 

 

 

We next formulated a theoretical privacy “attack”: Given only a single day of records for a 
patient, could we re-identify this individual from a set of 99 other individuals? We show the 
performance for this re-identification task in Figure 4. Here, the red line represents the 
probability for random re-identification and the blue line represents the added ability to 
distinguish above random. We ranked the query individual as the most similar individual 25% 
of the time. We could place the query individual among the top 10 individuals 47% of the time. 

3.3.1.   Assessing the performance of latent variables from variational autoencoder to predict 
laboratory orders 

After applying a variational autoencoder to encode input EHR variables, we first assessed 
whether our encoded latent variables indeed adequately model the dataset. This is important, 
because we do want to ensure they retain adequate information in the data. We then attempted 
to predict whether a given test would be ordered for a patient or not on a given day. It is important 
to show that the latent variables are actually associated with laboratory results before we can 
demonstrate that they may be useful for anonymity. 

Figure 4: Reidentification performance using only one day of lab values. 
Panel on right shows distribution from 250 simulations. 
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We found that our latent 
variables were highly 
predictive of the lab 
order status, achieving 
an area under the 

receiver-operating 
characteristic curve of 
0.94 and area under the 
precision-recall curve 
of 0.91, as 
demonstrated in Figure 
5. This means that they 
recapitulate the 
underlying laboratory 
tests well. 

3.3.2.   Comparing raw lab tests to latent-space abstracted laboratory tests for privacy 
preservation 

We assessed the ability to re-identify patients based upon cosine distance of latent variables. 
This is the same algorithm as used previously to re-identify patients, but with our encoded 
variables representing patient labs instead of using the patient labs themselves. We found that 
in every case, using encoded latent variables gave greater privacy protection compared to the 
raw lab values used for the same samples (Figure 6). 

Figure 5: Ability of learned encodings to recapitulate input laboratory 
order vectors on a held-out validation set. ROC curve on left and 

Precision-recall curve on right. 

Figure 6: The learned latent space 
neurons were significantly better at 
reducing recall @ n for all a values of n. 
The red line represents the situation 
where the re-identification recall @ n 
score is the same between the unencoded 
lab tests and the latent space lab tests. 
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For recall @ 1 through recall @ 99 (since 100 samples were used per assessment), latent space 
performed significantly better at all points (p<10-16, matched pairs t-test). We were only able to 
perfectly match the individual from one day of laboratory orders 5% of the time, compared to 
25% of the time using the raw laboratory orders as shown previously. 

4.   Discussion 

Using the Mount Sinai Hospital (MSH) patients’ laboratory test history and a straightforward 
similarity measure, we discovered that by the time the patient has had contact with the hospital on 
nine separate days, their laboratory test orders are completely unique to that patient 98.4% of the 
time. This is a significant finding, since it implies that public datasets which contain all of the 
laboratory tests ordered for a specific person may be able to be matched against a known set of 
electronic health records (EHR) with perfect fidelity in some cases. We also show that we can obtain 
reasonable re-identification performance using a single day of laboratory values. Finally, we 
demonstrate that latent encoded variables make the problem of re-identification significantly more 
difficult without knowing the exact model used to encode the latent variables. 
 
One of our primary motivations for this study stems from the idea that lab tests as are commonly 
used as covariates in statistical models to help to produce more accurate probability estimates for 
outcomes. For example, if a researcher intended to study the effect of statin therapy on incident 
heart disease, he or she would need to adjust for a levels of baseline LDL cholesterol and other lab 
tests. Instead of using actual lab tests, lower-dimensional encoded variables which contain the 
same amount of information as the lab tests would serve just as well as control variables. This is 
exactly analogous to the use of genetic SNP principal components to represent genetic ancestry in 
genome-wide association studies. One of the major values of our study is that we demonstrate that 
lower-dimensional representations of the EHR contain similar amounts of information as 
unprocessed records, while simultaneously preserving privacy. 
 
Our study had several limitations. First, the work was performed with data from only one healthcare 
institution. However, MSH is a large tertiary care hospital with a significant diversity of patients. 
We also focused exclusively on laboratory test orders and did not include data such as disease 
diagnoses, ethnicity, gender, etc. which are often included in EHR. In our re-identification analysis, 
we attempted to identify an individual against a subset of 99 other random individuals, not the entire 
cohort of patients. Although this is a realistic scenario when performing biomedical research on a 
specific patient population, further analysis is needed to understand if our methods hold true when 
identifying an individual from the entire database. Finally, we assessed here only the binary presence 
or absence of laboratory test orders. It is quite possible that considering the numeric results of 
laboratory tests could increase re-identifiability substantially. For example, hypothetical patients 
with LDL cholesterol test results of 60mg/dL vs. 600mg/dL would be easily separable, although our 
current method considers only the fact that LDL tests were ordered for both patients. However, as 
we have demonstrated, considering only the binary absence or presence of orders already works 
reasonably well and we believe our performance metrics are conservative.  
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Potentially, replacing our variational autoencoder with other kinds of autoencoders or other 
dimensionality-reduction methods would also have been effective. Autoencoders essentially work 
by learning compression and decompression functions which minimize a loss function, whereas 
variational autoencoders learn a probability distribution which minimizes a loss function. 
Experimentally, our use of a VAE worked well enough to learn latent variables. By introducing this 
as a proof-of-concept, we felt that it would not be too valuable to benchmark against other 
alternatives. Future experimental and theoretical work could explore the dimensionality reduction 
methods used in this paper more thoroughly. Finally, we cannot release the training dataset since it 
contains the real patient records of hundreds of thousands of patients and could potentially enable 
future reidentification attacks. 
 
We must also note here that our findings do not imply a threat model whereby patients may be 
identified from laboratory tests themselves, without a threat actor having an outside source of 
information. We show here only that lab tests are highly distinctive. For re-identification, the 
techniques presented here would require the threat actor to have at least some amount of information 
from another data source containing laboratory tests which were matched to actual patient 
identifiers. Furthermore, our re-identification technique only attempted to re-identify from one out 
of 100 instead of one out of the entire dataset, since our method for computing pairwise vector 
distances would not scale computationally to that extent. 
 
Taken altogether, we believe that our findings have significant implications for the release of 
anonymized laboratory test results to the broad biomedical research community. Researchers should 
consider the possible consequences of making extensive laboratory order data for patients freely 
available, and should inform patients that this level of detail may potentially make them open to re-
identification.  

If researchers choose to release data, we suggest they consider providing latent-variable encoded 
laboratory values instead if this data would remain useful in their particular scientific context. 
Potentially, the methods we demonstrate here for laboratory test orders could be applied to other 
forms of data contained within the EHR.  

Scientists have an obligation to respect their subjects’ generosity in donation of data by maintaining 
their privacy and here we have demonstrated one method to make re-identification more 
challenging.  
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The United States’ All of Us Research Program is a longitudinal research initiative with ambitious 
national recruitment goals, including of populations traditionally underrepresented in biomedical 
research, many of whom have high geographic mobility. The program has a distributed 
infrastructure, with key programmatic resources spread across the US. Given its planned duration 
and geographic reach both in terms of recruitment and programmatic resources, a diversity of state 
and territory laws might apply to the program over time as well as to the determination of 
participants’ rights. Here we present a listing and discussion of state and territory guidance and 
regulation of specific relevance to the program, and our approach to their incorporation within the 
program’s informed consent processes. 

Keywords: Informed consent, conflicts of law, choice of law, ELSI, bioethics

 
1. Background 

 
1.1 The All of Us Research Program 
The All of Us Research Program (AoURP) is a longitudinal national cohort program funded by the 
United States (US) National Institutes of Health (NIH) with investigators, study infrastructure, 
data management systems, and governance schema distributed across the US. All participating 
institutions signed Reliance Agreements ceding authority to the All of Us Institutional Review 
Board (AoU IRB) for ethical and regulatory oversight.  

AoURP aims to enroll one million or more persons living within the US to contribute personal 
health information, including protected health information and biospecimens, to a central resource 
designed to accelerate research and improve health. Recruitment goals were established based on 
US 2040 census projections with purposeful oversampling of populations traditionally 
underrepresented in biomedical research to ensure sufficient statistical power for subpopulation 
analysis. The program intends to follow participants for at least 10 years. 

Germane to AoURP is the well-documented geographic mobility of the US population, with 
the percentage of those living in the US who report having moved in the past 5 years at least 2 
times greater than most African, Asian, Central and South American, and European nations [1]. 
Within the US, people who do not self-identify as white and those of lower annual income 
demonstrate higher geographic mobility, on average, compared to people who self-identify as 

                                                
* © 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed under 
the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License 
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white and those of greater annual income [2]. Many populations who have traditionally been 
underrepresented in biomedical research, such as people who are migrant workers, homeless, or 
identify as gender and sexual minorities, demonstrate exceptionally high rates of geographic 
mobility. 

 
1.2 Overview of the AoURP informed consent process 
All persons wishing to participate in AoURP must complete an informed consent process that 
unambiguously indicates their consent to join. Given its ambitious recruitment goals, the program 
decided that the primary modality for the consent process would be electronic (i.e., web- or app-
mediated) to allow for broad deployment and rapid scaling. Further, it was the program’s desire 
that the consent process be consistent for all persons regardless of geographic location, enrollment 
method, or affiliation (participants can enroll directly or through an affiliated healthcare provider 
organization). Finally, due to the longitudinal and evolving nature of the study and, further, to 
provide a flexible participant experience, the informed consent for AoURP is modular (Table 1). 
Following an initial consent experience (Primary Consent), additional “modules” for program 
activities not included in the Primary Consent can be presented to participants at the program’s 
choosing and completed by participants at their convenience. At this time, all consent modules 
require an electronic signature from the participant.  
 

Table 1: Overview of AoURP consent modules 
Module Addresses 
Primary  Overview of all program activities. Signature indicates consent to take part in 

surveys and data linkage from external sources (e.g., state cancer registries), and, 
if invited, physical measurements, biospecimen collection (including biobanking 
and biomarker/genomic assays), and sensor/wearable technology activities.  

HIPAA 
Authorization 

Signature indicates consent to regular collection of electronic health records from 
all identifiable health care providers/entities including Part 2 (substance use 
disorder treatment) records and personally identifiable information (PII) from 
any source. 

Return of Genomic 
Results 

Signature indicates consent to receive medically-actionable genomic testing 
results from the program.  

 
Each consent module is comprised of three informational components: eConsent screens, 

formative evaluation questions, and a form requiring signature. The eConsent screens employ 
visual icons, short videos, and concise, highly structured text blocks to highlight key features of 
program participation (Figure 1). The formative evaluation is a learning reinforcement tool 
focusing attention on essential concepts in research participation. Questions specifically target 
common misconceptions in human subject research (e.g., therapeutic misconception). With the 
participant’s signature, the form serves as the documentation of participant’s affirmative consent 
to take part in a given set of research activities. 
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Figure 1: Example AoURP eConsent screen 

 
1.3 Choice of law and human subjects research 
The AoUPR’s distributed structure and planned duration, when coupled with the geographic 
mobility of the US population, render questions regarding what research conduct is required, 
permissible, or prohibited challenging to resolve. Different state and territory laws might apply to 
the study itself over time and, likewise, to the determination of any given participant’s rights over 
time. The desired goal of creating a unified informed consent process is further complicated by the 
threat of vertical conflicts of law (i.e., misalignment of local, state/territory, and federal 
requirements), horizontal conflicts of law (i.e., differing requirements as a participant moves from 
state to state or as research efforts are conducted in one location or another), as well as the varying 
ways in which these conflicts are resolved when disputes arise in tort or contract theory2.  

A “governing law” or “choice of law” clause allows parties to a contract to specify which 
jurisdiction’s laws, statutes, and regulations will apply to a contract and be used for dispute 
resolution and thereby resolve much of the uncertainty or variability in contract interpretation. The 
US Department of Health and Human Services (HHS) specifies that contracted health services, 
including human subject research, must include a choice of law clause for work conducted 
overseas (i.e., outside of the US 50 states, 5 inhabited territories, and District of Columbia) 
[HHSAR 333.215-70(a)]. By contrast, there is guidance, e.g., the US Food and Drug 
Administration 21 CFR Part 50.25(d), against choice of law for studies conducted within the US.  

While establishing a uniform governing law for the AoURP might be desirable for 
programmatic ease, this is not easily accomplished. Most injuries from research participation are 
based in tort theory (not contract theory), and, in tort matters, conflicts of law are typically 
governed by the rule of lex loci dilicti (or the law of the place of the injury). Research consent 
materials conventionally have not been framed as contracts per se but, rather, as documentation of 
informed consent or an assumption of risks that would be a full or partial defense to a tort action if 
one were to arise. Additionally, to the extent consent documents could be construed as contracts, 
exculpatory language that purports to function as a waiver of participants’ legal rights or a limit on 

                                                
2 Conflicts of law are resolved by courts in a number of ways, including use of the lex loci dilicti rule, “most 
significant contacts” test, “comparative governmental interest” test, or a combination.  
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tort liability is generally not permissible (see 21 CFR 50.20). The inclusion of a choice of law 
provision within informed consent materials has, as a result, not been a viable solution for research 
in the US. For these reasons, a thorough understanding of state and territory-specific variations in 
regulations pertaining to human subject research is essential to meeting the program’s regulatory 
and ethical obligations. 

At the US Federal level, informed consent processes for human subject research are guided by 
the Common Rule [45 CFR Part 46, Subpart A] and overseen by HHS’s Office for Human 
Research Protections (OHRP). The Common Rule contains a non-preemption clause3 as well as 
direct recognition of additional state-specific informed consent requirements4. At least 275 of the 
50 states, 5 inhabited territories, and District of Columbia have enacted further jurisdiction-
specific regulations regarding human subject research generally, although several simply reference 
the Common Rule as the guidance standard (Appendix A).  

The release of protected health information from covered entities6 for research (as well as for 
other purposes) is regulated by the Health Insurance Portability and Accountability Act of 1996 
(HIPAA) Privacy Rule [45 CFR Part 160, Subparts A and E; 45 CFR Part 164] and overseen by 
HHS’s Office of Civil Rights (OCR). The HIPAA Privacy Rule sets forth a specific set of 
protections and, for a limited set of enumerated circumstances, allows for state/territory law to 
offer additional protections7 [45 CFR Part 160, Subpart B]. At least 26 of the 50 states, 5 inhabited 
territories, and District of Columbia have specified further guidance, creating a patchwork of 
additional regulations across the country (Appendix A).  

To enable research regarding substance use disorders to reduce stigma and advance our 
understanding toward more effective prevention and treatment, AoURP includes records regarding 
substance use disorder treatment within its request for access to a participant’s protected health 
information records. In addition to the HIPAA Privacy Rule, release of substance use disorder 
records is regulated by 42 CFR Part 2, the Confidentiality of Substance Use Disorder Patient 
Records (Part 2) overseen by HHS’s Substance Abuse and Mental Health Services Administration 
(SAMHSA). Part 2 details the requirements for release of these records. 

Consistent with the core values of AoURP, participants will have access to the full 
complement of data they contribute to the program. Additionally, with participant consent, the 
program will interpret a limited set of data for participants; these interpreted data are considered 
individual research results (IRR). At this time, although the Common Rule applies to IRR equally 
to all other aspects of human subject research participation, the only Federal law considered by 
some to be specific to IRR is the Clinical Laboratory Improvement Amendments of 1988 (CLIA) 
although some have argued the HIPAA Privacy Rule may apply to IRR from non-CLIA certified 

                                                
3 “This policy does not affect any State or local laws or regulations which may otherwise be applicable and which 
provide additional protections for human subjects” 
4 "The informed consent requirements in this policy are not intended to preempt any applicable Federal, State, or local 
laws which require additional information to be disclosed in order for informed consent to be legally effective." 
5 This count includes regulations specific to HIV testing and status, as well as general regulations 
6 Defined by 45 CFR § 160.103 as “(1) A health plan. (2) A health care clearinghouse. (3) A health care provider who 
transmits any health information in electronic form in connection with a transaction covered by this subchapter.” 
7 When “State law has the specific purpose of protecting the privacy of health information or affects the privacy of 
health information in a direct, clear, and substantial way” (i.e., the state/territory law “relates to the privacy of 
individually identifiable health information” as defined by HIPAA at 45 CFR 160.202) and “is more stringent” than 
HIPAA (as “more stringent” is defined by HIPAA at 45 CFR 160.202). 
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laboratories [3]. However, at least 17 states’ laws further guide IRR, especially the return of 
genomic results (Appendix A). 

There has been no comprehensive documentation of US state/territory-specific guidance and 
requirements to date. Therefore, to ensure compliance with all applicable Federal and 
state/territory guidance and regulation, AoURP consulted with OHRP, OCR, and SAMHSA, 
sought guidance from the NIH Office of General Counsel, and conducted an independent legal 
review of the informed consent and HIPAA Authorization processes for this national research 
program. 
 
2. Implementation 
We have developed a “parent” version of each consent module. Parent module versions are 
consistent with the greatest number of state and territory regulations. However, some states and 
territories have regulations that, if applied to other jurisdictions, might be considered to limit or 
additionally burden participants. To address these distinctive requirements, we have modified the 
parent version of modules, creating specific “child” versions of modules for use in those 
jurisdictions.  
 
2.1 State/territory compliant primary consent 
To determine the prospective participant’s pathway through the program’s informed consent 
modules, we ask participants a series of questions. First, we ask participants their state or territory 
of residence. Those who answer California are presented an Experimental Subject’s Bill of Rights 
as described by the Protection of Human Subjects in Medical Experimentation Act (California 
Health and Safety Code 24170-24179.5) in advance of the primary consent. We then ask the 
participant to confirm they have reached the age of majority for research participation within their 
state or territory of residence: 18 years of age in all US states and territories with the exception of 
Alabama (age 19) and Puerto Rico (age 21) (Appendix A). Of note, the Northern Mariana Islands 
do not have regulations regarding the age of majority; we have elected to use age 18, consistent 
with the majority of other states and territories. Finally, we ask participants the state or territory in 
which they receive most of their healthcare.  

 
2.2 State/territory compliant HIPAA Authorization/Part 2 data release 
We link the version of HIPAA Authorization/Part 2 data release to the state or territory in which 
the participant reports receiving most of their healthcare. The majority of state- and territory-
specific regulations additional to the HIPAA Privacy Rule focus on the term of expiry for the 
HIPAA Authorization, with states requiring a specific date of expiry or specific term of expiry 
where the HIPAA Privacy Rule allows for an event of expiry (e.g., the end of the research 
project). Please see Appendix B for further detail. Of note, the Illinois statute that requires a date 
of expiry (the Mental Health and Developmental Disabilities Confidentiality Act, 740 ILCS 110), 
relates only to "therapists." Therapist is defined as, “a psychiatrist, physician, psychologist, social 
worker, or nurse providing mental health or developmental disabilities services or any other 
person not prohibited by law from providing such services or from holding himself out as a 
therapist if the recipient reasonably believes that such person is permitted to do so”[740 ILCS 
110/2 from Ch. 91 1/2, par. 802 section 2], however state convention is to apply this requirement 
to all Authorizations. 

A subset of states require that the release of “sensitive data” such as HIV status, drug and 
alcohol use, and sexual history be specifically highlighted to the signatory of the release (i.e., MA 
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104 CMR 31. 05; ORS 192.566; Tex. Bus and Com code 602.051). While the release of these data 
are highlighted within the parent version of AoURP HIPAA Authorization form to all participants, 
participants in Massachusetts, Oregon, and Texas are additionally presented with a “sensitive data 
confirmation” screen as part of the HIPAA Authorization eConsent (Appendix B). 

It is important to note that the AoURP HIPAA Authorization does not provide participants 
the option of granular release of electronic health records; participants either agree to the release 
of all available records or they decline to give permission for any of their records’ release. This 
decision was taken by the program based on the program’s core principle of transparency and the 
technical difficulty of ensuring a completely “clean” data release. We did not want to allow 
participants the opportunity to request the hold back specific classes of health information only to 
have that information inadvertently released, for example, within a free-text clinician report about 
treatment for a separate condition.   

Finally, also based on the IL Mental Health and Developmental Disabilities Confidentiality 
Act, Illinois convention is that HIPAA Authorizations require a “witness signature” in addition to 
the signature of the participant themselves (Appendix B). The witness can be any person who can 
attest to the identity of the participant. Interestingly, in Illinois, based on the same statute, 
withdrawal of consent is also conventionally interpreted to require a witness signature. 
 
2.3 State/territory compliant consent for the return of genomic results 
AoURP participants may consent to receive medically-actionable genomic testing results, a form 
of IRR. The specific set of medically actionable results are defined by the program based on 
professional society guidelines and similar sources (e.g., those of the American College of 
Medical Genetics and Genomics [4]), and will evolve over time. Given the additional potential 
risks and benefits the return of medically actionable findings may pose to participants [5], AoURP 
will use an explicit opt-in informed consent module for the return of genomic results.  

Among the relevant state and territory regulations that govern the return of genomic results 
(Appendix 1), many do not specify if they pertain to clinical care, research endeavors, or both. 
Further muddying the waters, definitions of genetic information vary [6]. AoURP has elected to 
use the broad federal definition referenced in the Genetic Information Nondiscrimination Act 
(GINA) of genetic information which includes family history in addition to information regarding 
genetic tests [42 U.S.C. § 300gg-91]. 

Most jurisdiction-specific laws require that the informed consent process for the return of 
genomic results include a general purpose or description of the genetic tests to be performed, as 
well as potential uses and limitations of those tests [e.g., Del. Code 16 §1201 (4)]. However, both 
the State of New York and Commonwealth of Massachusetts require that the consent process 
include a description, “of each specific disease or condition tested for” [NYCL (CVR) §79-
L(2)(b); MGL Public Health 111 §70G(a)]. Notably, NYCL (CVR) §79-L(2)(f) allows for 
modification of this requirement if, “the research protocol does not permit such degree of 
specificity.” Additionally, NYCL (CVR) §79-L(9)(a) provides that, “samples may be used for 
tests other than those for which specific consent has been obtained for purposes of research 
conducted in accordance with applicable law and regulation and pursuant to a research protocol 
approved by an institutional review board [IRB] provided that the individuals who provided the 
samples have given prior written informed consent… and did not specify time limits or other 
factors that would restrict use of the sample for the test.” Thus, a broad description of the diseases 
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or conditions tested for is allowed under IRB oversight for participants within the State of New 
York.  

In the case of Massachusetts, there is no explicit clause within MGL Public Health 111 
§70G that specifies any ability to modify the requirement for inclusion of a general description of 
each specific disease or condition tested for within the consent process. However, current research 
convention mirrors New York’s: with the oversight of an IRB, participants of genomic research 
are consented to the return of genomic results of broad description. In practice, both the AoURP 
parent eConsent and consent form for the return of genomic results will link out to an inventory of 
conditions being tested for with explicit notation that this list may be updated over time. 
Additionally, in consideration of subpart (c) of the Massachusetts statue, this inventory will 
address for all participants each tests’ reliability and predictive value. 

Massachusetts further specifics a discussion with, “the medical practitioner ordering the 
test” regarding the reliability and certainty of test results prior to consent. Given the research 
context of AoURP’s return of genomic results, genetic counseling will be made available to all 
participants prior to completing the consent process, regardless of their state of residence, but will 
not be required. This is also consistent current practice in Massachusetts. 

In FLA. Stat. Ann 760.40(3), the State of Florida sets forth a number of requirements for 
DNA analysis and the return of results.8 Two of these requirements are incorporated into the 
parent version of the return of genomic results consent process for all AoURP participants. First, 
AoURP will enable participants to track the journey of their sample from receipt by the biobank, 
to analysis for tests specified in the return of genomic results inventory, to its receipt by the 
genetic counseling core and/or deposit in their AoURP participant record. Secondly, the parent 
consent form includes a statement that AoURP, as a research program, is not engaged in any 
decisions to grant or deny insurance, employment, mortgage, loan, credit, or educational 
opportunities and, therefore, that these results will not be used for those purposes by the program.  

The one FLA. Stat. Ann 760.40(3)-required customization of the return of genomic results 
consent process not incorporated into the parent consent process will be accommodated by an 
addition to the eConsent (Appendix B). Within the eConsent process, residents of the state of 
Florida will be able to specify a healthcare provider to whom the participant would like their 
results sent [FL 760.40 (3)]. This feature will likely be made available to all participants (once 
trialed in Florida), pending review of relevant state-specific considerations. In the interim, study 
participants may independently choose to share their test results with healthcare providers.  
 
3. Conclusion 
The All of Us Research Program is an ambitious national cohort study designed to accelerate 
understanding of human health. The diversity of laws, statutes, and regulations across the US 
challenge large, dispersed research efforts such as AoURP in ways not unlike those faced by 
international research efforts [7]. Creating a pattern of distinct informed consent interactions over 
time, with each consent module having its own specific ask, including potential risks, benefits, and 
set of scientific “unknowns” that arise naturally in cutting edge research, supports participant 

                                                
8 FLA. Stat. Ann 760.40(3), a civil rights statute which predates GINA, was drafted to prevent 
“surreptitious,” and potentially discriminatory, genetic testing without a focus on the statues’ 
potential implications for research. For this reason, IRBs in Florida have generally rejected a 
narrow interpretation of this statute when considering research initiatives like AoURP.  
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autonomy while allowing for flexibility in the face of legal and regulatory uncertainty. Empirical 
legal research will be essential to facilitate this and similar biomedical research efforts and to 
enable research teams in their efforts to respect and promote participant’s rights.   

There are several limits to our analysis. First and foremost, despite having consulted with 
experts across the nation, there is no central clearinghouse or curated resource for the most current 
US state/territory research regulations. Additionally, as we noted in our analysis, it is sometimes 
difficult to tease apart state/territory requirements and convention. As the clinical and research 
genetics community knows well, few of these rules and regulations have been adequately stress-
tested in the courtroom, leaving a dearth of guidance for researchers and policy makers alike. It is 
also important to note that while this analysis is, to the best of our knowledge, complete as of 
January 1, 2018, laws, technologies, research practices, and societal norms are constantly 
evolving; AoURP will engage in regular re-review of its consent materials and approaches to 
ensure their currency. 
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5. Appendices 
 
Appendix A: State/territory laws informing the All of Us Research Program primary informed consent process, 
HIPAA Authorization, and Return of Genomic Results consent 

Domain State Statue 
Age of Majority Alabama Ala. Code § 26-1-1- Infants and incompetents 

Although not germane to AoURP, nb subpart (f), “a person who is 18 
years of age or older may consent to participate in research 
conducted by a college or university that is accredited by a federally 
recognized accrediting agency if the research has been approved by 
the Institutional Review Board of the institution.” 

Puerto Rico 31 L.P.R.A. §971 
Bill of Rights California California Health and Safety Code 24170-24179.5 
Primary Consent Alabama AL Code § 22-56-4 AL Code § 22-11A-51; § 22-11A-53 

Arizona AZ Rev Stat § 36-663 
California Cal Health & Safety Code § 24173; Cal Pen Code § 3521 CA Health 

& Safety Code § 121075; § 121105 
Colorado  Col Rev Stat § 25-4-410  
Connecticut CT Gen Stat § 19a-583; § 19a-585; § 19a-582 
Delaware 16 DE Code § 715 
District of 
Columbia 

DC Code § 7-1305.09  

Guam Ch 24 Guam Research Review Board § 24106   
Hawaii HI Rev Stat § 325-16 
Illinois Illinois Mental Health and Developmental Disabilities 

Confidentiality Act; AIDS Confidentiality Act 410 ILCS 50/3.1   410 
ILCS 305/8 

Kansas KS Code § 65-4974  
Massachusetts 104 CMR 31.05  ALM GL ch. 111, § 70F 
Montana TITLE 53. SOCIAL SERVICES AND INSTITUTIONS  

CHAPTER 21. MENTALLY ILL 53-21-147  
Nebraska NE Rev Stat § 71-531 
New Hampshire  NH Rev Stat 141-F:5 
New Jersey  NJ Stat. § 26:14-4; N.J. Stat. § 26:14-5  
New Mexico NM Stat § 24-2B-2 
New York NY CLS Pub Health § 2441; NY CLS Pub Health § 2442 NY CLS 

Pub Health § 2781; NY CLS Pub Health § 2782   
Oklahoma 63 OK Stat § 63-3102A  
Oregon ORS 433.075 
Pennsylvania 35 P.S.§ 7605 
South Carolina SC Code § 44-26-180  
South Dakota SD Codified L § 27B-8-41.  
Texas Texas Health & Safety Code § 81.105; §81.106. 
Virginia VA Code Ann. § 32.1-162.20; § 32.1-162.16; § 32.1-162.18  
Washington RCW § 70.24.330 
West Virginia WV Code § 16-3C-2 

(continued next page)  
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Appendix A (continued) 
Domain State Statue 
HIPAA 
Authorization 

Alabama AL Code § 22-11A-22; AL Code § 22-11A-54 
Arizona AZ Rev. Stat. § 36-664 
California CA Civ Code § 56.10 
Colorado CO Rev Stat § 25-1-1201 
Connecticut CT Insurance Information and Privacy Protection Act § 19a-581; § 

19a-585; Conn. Gen. Stat. § 20-7c; Conn. Gen. Stat. § 52-146g  
Delaware Del. Code Ann. tit. 16, § 717; Del. Code § 1212 
District of 
Columbia 

DC Code § 7-1605; § 7-1203.06 

Florida FL Stat § 381.004 
Georgia GA Code § 24-12-2; § 24-12-21; § 24-12-12; § 31-33-8; § 37-4-125 
Hawaii HI Rev Stat Ann § 325-101 
Illinois Personal Information Protection Act § 50; 735 ILCS 5/8-2001 
Indiana IN Code § 16-39-2-5 
Iowa Iowa Code § 228.2; § 228.3; § 228.4; § 141A.9 
Louisiana LA Rev Stat. § 22:1023 
Maine ME Rev Stat § 1711-C 
Maryland MD HEALTH-GENERAL Code Ann. § 4-303 
Minnesota MN Stat § 144.293;144.294;144.295 
Montana MT Code  § 50-16-502; § 50-16-527; § 50-16-1009   
New Mexico NM Stat § 24-2B-6; § 24-2B-7; § 43-1-19; § 24-14B-6 
Ohio OH Rev Code § 3701.17;§ 3701.243; § 5119.27 
Oklahoma OK Stat §43A-1-109 
Oregon OR Rev Stat § 192.553; § 192.556; §192.566; § 431A.865 
Pennsylvania Title 35 P.S. Health and Safety § 7607 
Puerto Rico Title 26 Subtitle 3 Chapter 112 § 9240 
Rhode Island RI Gen L § 5-37.3-4 
Texas INS § 602.051 

Return of genomic 
results9 

Alaska AS §18.13.010 
Delaware Del. Code 16 §1201 et seq. 
Florida FS §760.40(2)(a); FS §760.40(3) 
Georgia OCGA §33-54-3(b) 
Iowa  Iowa Code §§729.6 
Massachusetts  MGL Public Health 111 §70G(a) 
Michigan MCL §333.17520(2) 
Minnesota  MS §13.386 Subd.3(a) 
Nebraska NRS §71-551(1) 
Nevada NRS §629.151; §629.161; §629.181; §629.101 et seq. 
New Hampshire NHS §141-H:1; NHS § 141-H:2 
New Jersey NJ Rev Stat §10:5-45 
New Mexico NMSA §24-21-3 
New York NYCL (CVR) §79-L(2)(b); NYCL (CVR) §79-L(9)(c); NYCL 

(CVR) §79-L(9)(e)  
Oregon ORS §192.535; ORS §192.538(5) 
South Carolina SCCL §38-93 et seq. 
South Dakota SDCL §34-14-22 

                                                
9 Note: regulations related to disclosure authorizations and genetic information definitions are not included in this 
listing 
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Appendix B: Summary of State-Specific Variations of the AoURP Consent Process 
States/Territories Primary Consent HIPAA Authorization Return of Genomic 

Results Consent 
Bill of 
Rights 

eConsent 
version 

Form 
version 

eConsent 
version 

Form 
version 

eConsent 
version 

Form 
version 

AL, AK, AZ, AR, CO, CT*, 
DC, GA*, HI, ID, IA, KS, 
KT, MI, MS, MO, NE**, 
NV, NH, NJ, NM, NY, NC, 
ND, PA, RI, SC, SD, TN, 
UT, VT, VA**, WV, WI, 
Puerto Rico, US Virgin 
Islands, Guam, American 
Samoa, Northern Mariana 
Islands 

none Parent Parent Parent Parent Parent Parent 

CA required Parent Parent Parent Date of 
expiry: 
Standard 

Parent Parent 

DL, IN, LA, MN, OH, OK, 
WA 
 

none Parent Parent Parent Date of 
expiry: 
Standard 

Parent Parent 

MA, OR, TX none Parent Parent Sensitive 
Data 
Confirmation 

Parent Parent Parent 

ME, MT** none Parent Parent Parent Date of 
expiry: 
30-
month 

Parent Parent 

MD, WY none Parent Parent Parent Date of 
expiry: 
12-
month 

Parent Parent 

IL none Parent Parent Witness 
Signature 

Access 
to 
records 

Parent Parent 

FL none Parent Parent Parent Parent Share with 
healthcare 
provider 

Parent 

*In Connecticut and Georgia HIPAA Authorizations are valid for one year from their date of signature to request of 
records from insurance providers.  
** In Montana, Nebraska, and Virginia HIPAA Authorizations are valid for two years from their date of signature for 
the request of records from insurance providers.  
Other notes: 
• In the states of Maine and Montana, HIPAA Authorizations are only valid 30 months (in Montana, only if expiry 

date is provided). Given the nature of rolling enrollment, we will update the form used by those in Maine and 
Montana on an annual basis to state a date 30 months from January 1st of the enrollment year. At the date of 
expiry (30 months from January 1st of the enrollment year), all persons consented that calendar year would be 
contacted for re-authorization on a form listing a date 30 months hence. For example, the 2018 form will expire 
on 7/1/2020. Those consented in 2018 would be asked to re-sign a form 7/1/2020 expiring 12/31/2022. 

• In the states of Maryland and Wyoming, HIPAA Authorizations are only valid for one year. Annually, people 
who receive care in Maryland or Wyoming will be invited to re-sign the same form with a 12-month expiry (but 
no date) listed.  
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The vision of precision medicine relies on the integration of large-scale clinical, molecular 
and environmental datasets. Data integration may be thought of along two axes: data fusion 
across institutions, and data fusion across modalities. Cross-institutional data sharing that 
maintains semantic integrity hinges on the adoption of data standards and a push toward 
ontology-driven integration. The goal should be the creation of query-able data repositories 
spanning primary and tertiary care providers, disease registries, research organizations etc. to 
produce rich longitudinal datasets. Cross-modality sharing involves the integration of multiple 
data streams, from structured EHR data (diagnosis codes, laboratory tests) to genomics, 
imaging, monitors and patient-generated data including wearable devices. This integration 
presents unique technical, semantic, and ethical challenges; however recent work suggests 
that multi-modal clinical data can significantly improve the performance of phenotyping and 
prediction algorithms, powering knowledge discovery at the patient- and population-level.     

Keywords: Data fusion, interoperability, multi-modal data, big data, phenotyping 

 
The quantity of digitized health information has increased exponentially over the past decade, 
with growing data repositories across all sectors of the health system [1]. The rise of 
electronic health records has enabled the creation of large datasets containing structured, 
semi-structured and unstructured data, ranging from diagnostic codes and laboratory results 
to continuous monitoring signals, clinical notes, medical imaging and pathology. However, 
there are also rich clinical, molecular and environmental datasets held by government 
agencies, disease registries, employers, pharmaceutical companies and research 
organizations. Meanwhile, the proliferation of health tracking apps, wearables and home 
sensors have created new clinical data streams controlled by the patient, which capture 
granular information about lifestyle and micro-environmental exposures. Even an 
individual’s social media footprint may be considered as a source of clinical insights. Weber 
et al. have described the spectrum of clinical data available for an individual as a “tapestry of 
high-value information sources” ranging from the micro (genomic/molecular data) through to 
the macro (behavioral/lifestyle data) [2]. 
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Many have predicted that the convergence of rich clinical, molecular and environmental data 
streams will accelerate knowledge discovery in biomedicine and help us to move toward the 
high-level goal of precision medicine [3,4]. Certainly, larger datasets combining information 
from numerous sources will improve the performance of diagnostic and prognostic machine 
learning algorithm, fuelling observational research and improving clinical decisions at the 
point of care. The critical challenge is how to integrate disparate clinical data streams in a 
flexible, query-able format while preserving patient privacy and data governance. This 
integration challenge may be thought of along two axes: data fusion across institutions, and 
data fusion across modalities.   
  
The first challenge involves cross-institutional data sharing. Federal incentive programs 
launched through the Health Information Technology for Economic and Clinical Health 
(HITECH) Act supported the creation of health information exchanges (HIEs) as a platform 
for clinical data sharing; however based on a 2015 survey, only 23% of HIEs currently 
supported research, with a further 47% planning to support secondary use in the future [5]. 
Furthermore, a 2016 review found that the number of HIEs had declined between 2012 and 
2014 and only half report being financially sustainable [6]. In 2015, the Office of the 
National Coordinator of Health IT (ONC) published an Interoperability Roadmap, which 
outlines a national agenda for improving health information exchange [7]. One key objective 
is achieving syntactic and semantic interoperability by adoption of common vocabularies, 
including SNOMED-CT and RxNorm, and common data formats, including consolidated 
clinical document architecture (C-CDA) and Fast Health Interoperability Resources (FHIR). 
The roadmap also calls for the adoption of secure transport standards and outlines best 
practices for matching patient identities between sites. In parallel, there have been a number 
of academic endeavors to build platforms for observational clinical research, including the 
Observational Health Data Sciences and Informatics (OHDSI) network [8], SHARPn project 
[9], and the Informatics for Integrating Biology and the Bedside (i2b2) initiative [10]. 
  
An emerging theme throughout these cross-institutional data fusion efforts, from industry to 
academia, is the power of ontology-driven data integration, inspired by the rise of semantic 
web technologies [11–13]. This approach has a number of distinct advantages including the 
ability to synthesize across many disparate data sources via high-level ontologies and the 
ability to reason over a knowledge base [14]. Ongoing technical challenges include 
representing data provenance, temporal relationships and data quality [15]; however the 
prevailing challenge is operational - how to shift organizational culture toward 
interoperability and data sharing [16]. Beyond this, the infrastructure for interoperability may 
vary, with successful examples of centralized data warehouses [17], decentralized 
blockchain-based health records systems [18], and patient-controlled health records [19].  
 
The second major component of data fusion is cross-modality integration. Most EHRs 
contain a diversity of data types that have traditionally been analyzed independently, ranging 
from structured diagnosis codes to signal data, clinical notes and imaging. Furthermore, the 
interoperability advances mentioned above are making it possible to harmonize traditional 
EHR data with novel clinical data streams including genomic, microbiome, metabolic and 
patient-generated health data (PGHD). There is an expanding evidence base showing that 
multi-modal data integration can support precision medicine by stratifying patients based on 
their ‘deep phenotype’ [20]; improving the performance of clinical decision support 
algorithms for diagnosis and prediction [21]; and uncovering new phenotypes altogether [22]. 
For example, Zhao et al. developed a risk prediction model for cardiovascular events using 
EHR data, but found a significant performance boost when those data were fused with 
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patient-level genomic information [23]. Meanwhile, by using unsupervised learning on a 
combined dataset of metabolome, microbiome, genetics and imaging data, Shomorony et al. 
were able to identify a signature of biomarkers that identified diabetic patients more 
accurately than traditional clinical metrics (glucose, insulin resistance, and body-mass-index) 
- suggesting novel pathways that may be involved in the development of diabetes [24].  
 
The combination of traditional health data with PGHD or social media data has enabled 
knowledge discovery in the realms of both precision medicine and population health. 
Santillana et al. combined hospital visit data with Twitter, Google searches, and posts on an 
online health forum to predict influenza incidence [25]. Vilar et al. describe efforts to identify 
drug-drug interactions by combining social media posts with the biomedical literature [26]. 
On a more granular level, there is a push to integrate patient-reported outcomes (PROs) into 
EHRs as a way to promote patient-centric care (an example of heterogeneous data fusion 
potentially driving behavior change) [27] which has fueled interesting insights into the 
relationship between PROs and clinical outcomes such as mortality [28]. The rise of the 
‘Internet of Things’ in healthcare - the ecosystem of connected monitoring devices that 
surround a patient - as well as ambient information such as geo-location are creating 
opportunities for even richer multi-modal datasets [29–31]. These data no longer reside 
exclusively in hospitals. Private sector initiatives such as Verily’s Project Baseline and 
Apple’s HealthKit program are enabling patients to aggregate multiple medical data sources 
[32,33]. Meanwhile, the All Of Us initiative is a National Institutes of Health program to 
collect molecular, clinical and environmental data on a diverse cohort of volunteers for 
research purposes [34]. As the pathophysiology behind chronic disease is a complex interplay 
of clinical, molecular and behavioral factors acting over extended time periods, the datasets 
required to tackle the global epidemic of chronic disease will need to be similarly layered and 
sophisticated. There is both a clinical opportunity and an economic one, with increasing 
evidence to suggest that data integration can reduce overall healthcare costs [35].  
 
Cross-modality data integration is associated with a number of challenges, of which we 
highlight three below. First, there is the issue of how to harmonize data from distant parts of a 
knowledge graph reflecting radically different levels of abstraction e.g. diagnosis codes 
(high-level) with proteomic data (low-level). This creates challenges for data storage and 
makes it difficult to generate feature vectors to train classifiers. Several recent studies have 
shown that deep learning can be used to create efficient abstract representations of structured 
and unstructured EHR data, for example the DeepPatient representation using stacked 
denoising autoencoders [36]. A similar approach might be considered for a broader range of 
input data. A second caveat is around data stewardship, particularly with respect to privacy 
and security [37]. Fusion of data streams may accelerate scientific discovery and clinical 
care, but this comes with an increased risk of patient re-identification. Further work is needed 
around de-identification, consent processes and access control when data are contributed to 
shared repositories. The increasing volume of digital health information available to 
clinicians also raises questions around liability and duty of care i.e. the extent to which 
clinicians are responsible for the full expanse of information in an aggregated health 
repository. A third challenge is around equity and inclusion. A 2018 report by Ferryman et al. 
on ‘Fairness in precision medicine’ highlights the potential for bias in large-scale biomedical 
training data, stemming from historical discrimination in the health system and recruitment 
biases at academic medical centers [38]. Data-fusion efforts must be cognizant of the 
distribution of important demographic variables, such as gender, ethnicity and socioeconomic 
status in their input data.  
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The fusion of heterogeneous datasets from different institutions and across different 
modalities presents a powerful opportunity to drive knowledge discovery in biomedicine. 
There are technical and operational challenges to enable data sharing across borders of 
institutional ownership, which we are beginning to overcome with interoperability standards 
and data sharing platforms. Arguably the more nuanced problem today is how to grapple with 
extremely diverse data types that encompass the micro and macro scales of a patient’s data 
signature, including how to create flexible data storage and machine learning architectures, 
and how to design stewardship processes to govern these data appropriately. Holzinger et al. 
claimed in 2014 that “biomedical research is drowning in data, yet starving for knowledge”. 
Today we have more health data than ever before, but the challenge remains how to 
harmonize, structure and learn from multi-modal datasets [39].    
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Reading between the genes: interpreting non-coding DNA in high-throughput 
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Identifying functional elements and predicting mechanistic insight from non-coding DNA and non-
coding variation remains a challenge. Advances in genome-scale, high-throughput technology, 
however, have brought these answers closer within reach than ever, though there is still a need for 
new computational approaches to analysis and integration. This workshop aims to explore these 
resources and new computational methods applied to regulatory elements, chromatin interactions, 
non-protein-coding genes, and other non-coding DNA. 

Keywords: non-coding; bioinformatics; epigenetics; transcription factor; systems biology 

 
1.  Introduction 

GWAS studies have frequently identified variation in non-coding regions as associated with a 
variety of complex traits and diseases. However, it remains difficult to assign and validate the 
functional consequences of these variants or to suggest a mechanism by which they actually 
influence an outcome. These challenges become even more difficult to address at scale, or in high-
throughput, when a clear biological candidate molecule and hypothesis cannot be readily tested 
through experimentation. The most commonly considered mechanisms for altered function are 

                                                        
†    all workshop co-chairs contributed equally, and are listed alphabetically  
© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and 
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License. 
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altered regulatory activity of an effector molecule (including eQTL, transcription factor binding, 
enhancers/insulators, epigenetic marks, etc.), alternative splicing, changes to chromosome 
conformation, or altered biology of non-coding RNA genes. 2017 saw the public release and 
extension of multiple major data resources exploring biological and biochemical functions of non-
coding regions at genome scale, including across multiple tissue and cell contexts (e.g., GTEx (1), 
ENCODE(2)). Emerging genetic engineering and molecular editing technologies have also 
accelerated, with use of CRISPR expanding beyond hypothesis-driven gene knockouts into targeting 
of non-coding elements, unbiased tiling assays, and genome-wide screening applications (3).  

Advances in computational methods are required to analyze these new data types, identify 
patterns, integrate across biological scales, and derive biologically and/or clinically useful insights 
during primary analyses, by secondary exploration of data in publicly-available resources, and/or 
by integrating across data sets and using new models. In addition to targeted biomedical questions, 
there also arises a unique opportunity for computational biologists to identify network and systems 
properties of non-coding DNA, linking evidence from these assays, genetics, and evolutionary 
biology with other datasets(4).  

2.  Speakers and abstracts 

From genetics to therapeutics: uncovering and manipulating the circuitry of non-coding 
disease variants 
Manolis Kellis, Professor, MIT Computer Science and Artificial Intelligence Lab 
Institute Member, Broad Institute of MIT and Harvard 

Perhaps the greatest surprise of human genome-wide association studies (GWAS) is that 90% 
of disease-associated regions do not affect proteins directly, but instead lie in non-coding regions 
with putative gene-regulatory roles. This has increased the urgency of understanding the non-coding 
genome, as a key component of understanding human disease. To address this challenge, we 
generated maps of genomic control elements across 127 primary human tissues and cell types, and 
tissue-specific regulatory networks linking these elements to their target genes and their regulators. 
We have used these maps and circuits to understand how human genetic variation contributes to 
disease and cancer, providing an unbiased view of disease genetics and sometimes re-shaping our 
understanding of common disorders. For example, we find evidence that genetic variants 
contributing to Alzheimer’s disease act primarily through immune processes, rather than neuronal 
processes. We also find that the strongest genetic association with obesity acts via a master switch 
controlling energy storage vs. energy dissipation in our adipocytes, rather than through the control 
of appetite in the brain. We also combine genetic information with regulatory annotations and 
epigenomic variation across patients and healthy controls to discover new disease genes and regions 
with roles in Alzheimer’s disease, heart disease, prostate cancer, and to understand their pleiotropic 
effects by integration with electronic health records. Lastly, we develop systematic technologies for 
systematically manipulating these circuits by high-throughput reporter assays, genome editing, and 
gene targeting in human cells and in mice, demonstrating tissue-autonomous therapeutic avenues in 
Alzheimer’s disease, obesity, and cancer. These results provide a roadmap for translating genetic 
findings into mechanistic insights and ultimately therapeutic treatments for complex disease. 
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Modeling methyl-sensitive transcription factor motifs with an expanded epigenetic alphabet 
Michael M. Hoffman, Principal investigator, Princess Margaret Cancer Centre & Assistant 
Professor, Departments of Medical Biophysics and Computer Science, University of Toronto 

Introduction: Many transcription factors (TFs) initiate transcription only in specific sequence 
contexts, providing the means for sequence specificity of transcriptional control. A four-letter DNA 
alphabet only partially describes the possible diversity of nucleobases a TF might encounter. 
Cytosine is often present in the modified forms: 5-methylcytosine (5mC) or 
5-hydroxymethylcytosine (5hmC). TFs have been shown to distinguish unmodified from modified 
bases. Recent chemical probing and sequencing methods provide the opportunity to assess a variety 
of DNA modifications. Modification-sensitive TFs provide a mechanism by which widespread 
changes in DNA methylation and hydroxymethylation can dramatically shift active gene expression. 

Methods: To understand the effect of modified nucleobases on gene regulation, we developed 
methods to discover motifs and identify TF binding sites in DNA with covalent modifications. Our 
models expand the standard A/C/G/T alphabet, adding m (5mC), h (5hmC) and other symbols—
permitting computational representations of modified sequence. We also enhanced parts of the 
MEME Suite and RSAT to handle custom alphabets, expanding the position weight matrix (PWM) 
formulation of TF binding affinity and enabling clustering of modified PWMs. 

Results: We created an expanded-alphabet sequence using whole-genome maps of 5mC and 
5hmC in mouse naive T cells and human K562 cells. Using this sequence and ChIP-seq data from 
ENCODE and others, we identified modification-sensitive cis-regulatory modules. We reproduced 
known binding preferences, including the preference of ZFP57 for methylated motifs and the 
preference of c-Myc for unmethylated motifs. We have made several novel predictions, and are 
validating them using ChIP-BS-seq and CUT&RUN. (5) 
 
Quantifying the impact of non-coding mutations on transcriptional regulation 
Raluca Gordân, Assistant Professor, Biostatistics and Bioinformatics, Duke University 

Most disease-associated genetic variants occur in non-coding regions where they can alter gene 
regulation, rather than gene sequence. Focusing on putative regulatory variants that can affect 
transcription factor (TF) binding to the genome, I will present new methods for quantifying the 
change in TF binding due to binding site variants, as well as the statistical significance of the 
predicted change. Briefly, using as input high-throughput in vitro data for hundreds of mammalian 
TFs, we developed regression models of TF-DNA binding that implicitly take into account the 
quality of the training data. Thus, in the case of low-quality data that leads to a large variance in the 
estimated model parameters, only large changes in TF binding will reach statistical significance; in 
contrast, high-quality training data sets allow us to identify even subtle changes in TF binding due 
to genetic variants. To assess the quality of our predictions, we leverage high-throughput enhancer 
assay data where all possible single base-pair mutations in specific regulatory regions have been 
tested directly for their effect on gene expression. We find that our TF binding models can explain 
about ~50% of the variation in gene expression. We are currently using the TF binding change 
predictions in collaborative GWAS studies to prioritize non-coding variants for further 
computational and experimental analyses. 
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CRISPR-SURF: Discovering regulatory elements by deconvolution of CRISPR tiling screen 
data 
Luca Pinello, Principal Investigator and Assistant Professor, Massachusetts General Hospital & 
Harvard Medical School 

Tiling screens using CRISPR-Cas technologies provide a powerful approach to map regulatory 
elements to phenotypes of interest, but computational methods that effectively model these 
experimental approaches for different CRISPR technologies are not readily available. Here we 
present CRISPR-SURF, a deconvolution framework to identify functional regulatory regions in the 
genome from data generated by CRISPR-Cas nuclease, CRISPR interference (CRISPRi), or 
CRISPR activation (CRISPRa) tiling screens. We validated CRISPR-SURF on previously published 
and new data, identifying both experimentally validated and new potential regulatory elements. 
With CRISPR tiling screens now being increasingly used to elucidate the regulatory architecture of 
the non-coding genome, CRISPR-SURF provides a generalizable and accessible solution for the 
discovery of regulatory elements. (6)  

 
Delineation and annotation of the human regulatory landscape across 400+ cell types and 
states 
Wouter Meuleman, Investigator, Altius Institute for Biomedical Sciences 

The human genome encodes vast numbers of non-coding elements whose combined actuation 
patterns reflect regulatory processes across cellular states and conditions. Despite large-scale 
technology development for interrogating non-coding parts of the genome, pragmatic annotated 
high-resolution maps of regulatory regions and their inter-cell type dynamics have been lacking. To 
address this issue, we applied a joint experimental and computational approach, integrating 733 
deeply sequenced DNase I hypersensitivity assays spanning more than 400 distinct human cell types 
and states. These data enable a systematic and principled approach to studying regulatory 
architecture and dynamics on a global scale. We define a common coordinate system for regulatory 
DNA marked by DNase I hypersensitive sites, encompassing over 3 million elements defined and 
annotated with unprecedented resolution and detail. Through systematic analysis of the dynamics 
of these regulatory regions across cell types and states, we derive a collection of Regulatory 
Components, providing a novel multi-component annotation of the human regulome. Using 
admixtures of multiple components, we show that it is possible to decompose biological features of 
cell and tissue samples and define the extent to which individual regulatory elements contribute to 
broader cellular regulatory programs. These previously unappreciated features allow us to 
characterize the functional properties of genes and pathways. For instance, based solely on their 
regulatory landscape, we readily identify genes coding for lineage-specifying factors. Moreover, we 
associate specific regulatory structures with distinct binding site motifs, as well as with gene 
expression patterns across cell types. Moreover, our Regulatory Components provide a 
fundamentally new framework for understanding how disease-associated variation maps to genome 
function, not otherwise appreciated. Taken together, through integrative analysis across hundreds 
of cell types and states, we provide a novel multi-component annotation of the human regulatory 
landscape. Our Regulatory Components are predictive for functional and regulatory characteristics 
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of genes, pathways and genetic variants. As such, they open up new horizons on the architecture of 
human genome regulation and function. 

 
Genetically explainable non-coding RNA expression by SNVs 
Lana Garmire, Associate Professor, Molecular Biosciences and Bioengineering, U of Michigan 

Long intergenic non-coding RNAs have been shown to play important roles in cancer. However, 
because lincRNAs are a relatively new class of RNAs compared to protein-coding mRNAs, the 
mutational landscape of lincRNAs and the impact of mutations on lincRNA expression are not 
extensively studied. We comprehensively characterize expressed somatic nucleotide variants within 
lincRNAs using 6118 primary tumor samples from 12 cancer RNA-Seq datasets in TCGA. Due to 
uncertainty of somatic or germline mutations from analyzing un-paired RNA-Seq data alone, we 
first build a highly accurate machine-learning model (AUC 0.987) to discriminate somatic variants 
from germline variants within lincRNAs, using a subset of samples that have both exome-seq and 
RNA-seq data. We use this model to predict highly confident eSNVs (expressed SNVs) and found 
that they are especially enriched in chr2p11.2, chr14q32.33, chr22q11.22 and chr3q29 regions. To 
understand the effect of molecular features on lincRNA somatic eSNVs, we build another model 
(AUC 0.72) and identify molecular features that are strongly associated with lincRNA mutations, 
including copy number variation, conservation, substitution type and histone marker features. 
Finally, we prioritize the lincRNAs by their eSNV influence, and propose a short list of genetically 
affected lincRNAs to be validated by experimental studies. 

 
Interpreting genetic variants by gene regulatory network  
Yong Wang, Professor, Institute of Applied Mathematics, Academy of Mathematics and Systems 
Science & National Ctr for Mathematics and Interdisciplinary Science, Chinese Academy of Science 

Interpreting genetic variance (including SNP and structural variants) is the key to precision 
health. Most of these variants will affect disease risk, response to drugs or other traits such as height 
in a tissue or condition-specific way. How can we figure out which variants affect the function and 
regulation of genes in which condition? We propose to use gene regulatory network to integrating 
omics data and interpret genetic variants. Particularly, we will discuss the models and algorithms to 
organize, analyze, model, and integrate the genetic variant, DNA accessibility data, transcriptional 
data, and functional genomic regions together. We believe that the integrative paradigm on 
chromatin and expression levels will eventually help us to understand the information flow in cell 
and will influence research directions across many fields. 
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Precision medicine, an approach for disease treatment and prevention that considers “individual 

variability in genes, environment, and lifestyle” 1 was endorsed by the National Institutes of Health, 

aided by the presidential Precision Medicine Initiative (PMI), in 2016. PMI provided funding for 

cancer research and for building a national cohort of one million or more U.S. participants, now 

known as the “All of Us” Research Program, which aims to expand its impact to all diseases. PMI 

was the catalyst to a widespread effort around precision medicine, as evidenced by the more than 

1000 grants funded by different NIH institutes in just the last two years. The data being generated by 

these efforts is growing exponentially, and becomes both the greatest treasure and the greatest 

challenge for researchers. This workshop is a continuation of a similar session in PSB 2018, 

providing a forum for researchers with strong background in text mining or natural language 

processing (NLP) and/or machine learning (ML) who are actively collaborating with bench scientists 

and clinicians to tackle the challenges brought about by this explosion of data. 

† Work partially supported by the National Library of Medicine of the National Institutes of Health (NIH) 

under grant number R01LM011176 (GGH) and its Intramural Research Program (ZL and RL). The content is 

solely the responsibility of the authors and does not necessarily represent the official views of the NIH. 
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1.  Introduction 

According to the National Research Council, "personalized medicine" is an older term with a 

meaning similar to "precision medicine." However, "personalized" could be thought to imply that 

treatments and preventions are being developed for each individual; in contrast to what is really 

intended, which is identifying which approaches will be effective for which group of patients based 

on shared or similar genetic, environmental, and lifestyle factors. Thus, the preferred term for the 

presidential initiative launched in 2015 was "precision medicine" rather than "personalized 

medicine”, heralding the switch to the later.  The Precision Medicine Initiative (PMI) working group 

report2 outlines the goals of precision medicine, “to redefine our understanding of disease onset and 

progression, treatment response, and health outcome”, suggests the means to accomplish this, “more 

precise measurement of molecular, environmental, and behavioral factors that contribute to health 

and disease”, and the expected outcomes “more accurate diagnoses, more rational disease 

prevention strategies, better treatment selection, and the development of novel therapies”. However, 

in order to go from the means to the outcomes, one must deal with the onslaught of data that those 

“more precise” measurements entail. 

Big data in health is both a blessing and a curse. It is enabling, promising, but has been the 

largest roadblock to true progress in precision medicine, as much of key information remains hidden 

in descriptive text or in  patterns that are only obvious after cleverly feeding massive amounts of the 

right data to machine learning algorithms. Selecting, integrating, and analyzing the right data from 

medical records (EMRs), standardized clinical data (such as what is required by Medicare), 

administrative data –from hospitals, insurance companies, and pharmacies-, patient surveys and 

self-reports in social media or health forums, or via wearable sensors, the published literature, 

clinical trials, and research data deposited in public collections such GenBank or the Gene 

Expression Omnibus (GEO) database, and many curated databases of interactions and pathways, to 

name just a few, is one of the major challenges to precision medicine. 

Big data and the advance of machine learning, especially deep learning, has led to an explosion 

of the application of machine learning techniques in precision medicine. For example, deep learning 

algorithms have been able to diagnose of pneumonia on chest x-ray images3, apply for personalized 

risk stratification based on clinical data4, and detect spread of breast cancer into lymph node tissue 

on microscopic specimen images5. However, there is no silver bullet. The majority of such studies 

have not been conducted with scientific rigor regarding data reproducibility and model 

validity/portability in real-world scenario, and are thus limited to the framework and data used for 

the study itself.  

We have also seen significant advances in NLP methods that have enabled unstructured data to 

be used for decision support systems and predictive algorithms, given that such data was found 

exclusively in unstructured form, as recent studies comparing text-mining results with curated 

databases showed6-8.  Barriers to progress include ambiguity in the data itself, as variant names in 

the papers are written irregularly and hard to be grounded and even recognized9,10, as well as lack 

of trust and standard validation approaches. For example, whereas there is almost universal 

acceptance of ICD based cohort selection, NLP does not enjoy the same level of trust, and inclusion 
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of a patient record in a study based solely on NLP based selection will be frowned upon unless it is 

followed by manual annotation. 

This workshop highlights original research and invited presentations on novel text mining, 

natural language processing (NLP), and visual analytics approaches at the intersection of lifestyle, 

environment, and genetics that enable further understanding of disease processes and effective 

treatment for individuals and cohorts that share specific characteristics.  

2.  Workshop Summary 

The workshop includes a keynote talks by Christopher Chute, plus 6 oral presentations by authors 

of abstracts submitted for competitive review and selected for presentation based on their innovation 

and significance. In addition, the workshop closes with presentations by a panel of experts, focusing 

on ‘Current Challenges in Incorporating Genomic, Clinical, Published, and User-generated Data for 

Precision Medicine’, which gives attendees a view of state of the art approaches and roadblocks to 

the advancement of text mining and machine learning methods that will enable the next big 

breakthrough in this area.  

2.1 Keynote: Comparability and Consistency of NLP for Biomedical Discovery and Translation 

The keynote talk is given by Dr. Christopher Chute, the Bloomberg Distinguished Professor of 

Health Informatics, Professor of Medicine, Public Health, and Nursing at Johns Hopkins University, 

and Chief Research Information Officer for Johns Hopkins Medicine.  He received his 

undergraduate and medical training at Brown University, internal medicine residency at Dartmouth, 

and doctoral training in Epidemiology and Biostatistics at Harvard.  He is Board Certified in Internal 

Medicine and Clinical Informatics, and an elected Fellow of the American College of Physicians, 

the American College of Epidemiology, HL7, and the American College of Medical Informatics 

(ACMI), as well as a Founding Fellow of International Academy of Health Sciences Informatics; 

he is currently president of ACMI through 2018.   

Dr Chute’s career has focused on how we can represent clinical information to support analyses 

and inferencing, including comparative effectiveness analyses, decision support, best evidence 

discovery, and translational research.  He has had a deep interest in semantic consistency, 

harmonized information models, and ontology.  His current research focuses on translating basic 

science information to clinical practice, and how we classify dysfunctional phenotypes (disease).  

He became founding Chair of Biomedical Informatics at Mayo Clinic in 1988, retiring from Mayo 

in 2014, where he remains an emeritus Professor of Biomedical Informatics. He is presently PI on 

a spectrum of high-profile informatics grants from NIH spanning translational science. He has been 

active on many HIT standards efforts and chaired ISO Technical Committee 215 on Health 

Informatics and the World Health Organization (WHO) International Classification of Disease 

Revision (ICD-11).   

2.2 Oral Presentations 

In Development and Validation of the PEPPER Framework (Prenatal Exposure PubMed ParsER) 

with Applications to Food Additives, Mary Regina Boland, Aditya Kashyap, Jiadi Xiong, John 
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Holmes, and Scott Lorch, note that although environmental factors contribute to 36% of child 

deaths worldwide, no comprehensive list of all prenatal environmental exposures exists. They 

present a method called PEPPER: Prenatal Exposure Pubmed ParsER that utilizes all full-text 

research articles from Pubmed Central to learn the ‘state-of-the-field’. They found that of 31,764 

prenatal exposure studies, only 53.0% were methodology studies. When PEPPER is coupled with 

the FDA’s food additive database (called EAFUS), PEPPER is able to capture 56.4% of the studied 

exposures. Prenatal exposure effects of food additives were studied for 176 compounds out of 3,968 

(4.4%) compounds contained in EAFUS. Of 16,832 prenatal exposure methodology studies, only 

1,886 (11.2%) investigate food additive effects. In total, 3,117 studies investigated prenatal 

exposure to food additives. The majority of these were methodology studies (60.5%), followed by 

non-methodology studies (27.2%), PDF only (8.9%) and systematic reviews (3.4%). Prenatal 

exposure to commonly used food additives (EAFUS category ASP) are rarely studied with a rate of 

only 0.24% of methodology studies. Surprisingly, there is also a paucity of research on the effects 

of banned food additives on prenatal development. Of 2,105 research articles investigating banned 

food additives, only four (0.19%) investigate effects during the prenatal period and only three 

(0.14%) were methodology studies. 

Jingcheng Du, Yang Xiang, Jing Huang, Xinyuan Zhang, Rui Duan, Jiayi Tong, Jiang 

Bian, Sahiti Myneni, Yong Chen, and Cui Tao, in Mining HPV Vaccination Health Beliefs from 

Twitter Using Deep Learning: A Longitudinal Analysis of Four-Year Data (2014 - 2017), focus on 

understanding the public perceptions of vaccines as it is the first step towards developing effective 

vaccine promotion strategies to fight against the increase of vaccine refusal and delay observed in 

the last two decades. Traditional surveying methods suffer significant limitations on accessing large-

scale public perceptions. The popularity of social media opens a new dimension. However, most of 

the studies were focusing on analyzing the frequency rather than contents of social media postings. 

The accurate understanding of the contents in the perspective of grounded behavior change theories 

is fundamental for the design of precise and targeted vaccination promotion strategies. According 

to the authors, their study is the first effort to map Twitter vaccination discussion to the grounded 

behavior change theory - Health Belief Model. They propose and evaluate a deep learning model 

and apply the model to automatically and accurately extract vaccination health belief from large-

scale Twitter data. The deep learning model shows superiority over machine learning baseline 

model. They identify manifestation of health belief constructs in Twitter corpus of vaccine 

discussions in a four-year Twitter dataset. 

In Data integration for prediction of time to insulin in type 2 diabetes patients, the subject of 

Rikke Linnemann Nielsen, Louise Donnelly, Agnes Martine Nielsen, Kaixin Zhou, Bjarne 

Ersboll, Ewan Pearson, and Ramneek Gupta  present Type an approach to predicting risk of a 

fast or slow disease progression, which varies between individuals. This variation is captured in 

electronic medical records of T2D patients and identification of biomarkers that are predictive of 

diabetes progression can possibly reveal relevant patient subgroups characteristics that may assist 

clinical decisions in T2D treatment management. In their study they analyze electronic medical 

records from a cohort-based population in Tayside, UK registered from 1994 to 2010 using machine 

learning approaches. They investigate if integration of life-style data, anthropometry, biochemical 

data, drug-prescription data and genetic variants could predict slow and fast progression based on 
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classification of time to insulin (TTI) in T2D patients using random forest and artificial neural 

network models. TTI is defined as the first day of insulin treatment or as the clinical need for insulin 

(HbA1c >8.5% treated with two or more non-insulin diabetes therapies) since the day diagnosis was 

confirmed by HbA1c. Prediction targets is TTI within year 1, 3 or 5 since time of diagnosis. The 

best performing ANN models with all data except genetics most accurately predicts T2D patients 

with fast progression. The authors also discuss inclusion of genetic variants in the machine learning 

models as well as further longitudinal work with the phenotype. 

In neurodegeneration, knowledge on etiologies and underlying mechanisms is still sparse, 

resulting in late diagnosis and a lack of effective therapies. Until longitudinal studies deliver 

sufficient data, mining and integrating complementary clinical routine data appears promising. In 

Longitudinal visualization of heterogeneous data from neurodegenerative patients for clinical 

hypothesis generation, Sebastian Schaaf, Mischa Uebachs, Vyara Tonkova, Kilian Krockauer, 

Lisa Langnickel, Philipp Koppen and Juliane Fluck identify a variety of data sources and create 

an extraction strategy involving text mining, collecting diagnoses, cognitive test scores, biomarker 

lab measurements as well as medications. The integration into their longitudinal clinical data model 

allows a semantic access to normalized data from both routine and study contexts, using standards 

like FHIR, OMOP and adequate public terminologies. Besides programmatic access, they set up an 

interactive visualization interface, providing views on aggregated data for exploratory settings, but 

also a custom longitudinal patient viewer, depicting events and measurements for individuals on a 

timeline. Beyond supporting principal data exchange and review, they regard the recent 

developments to be crucial for efficient hypotheses generation, stratification and recruitment. 

In MultiPLIER: a transfer learning framework reveals systemic features of rare autoimmune 

disease, Jaclyn Taroni, Peter Grayson, Qiwen Hu, Sean Eddy, Matthias Kretzler, Peter 

Merkel, and Casey Greene present a feature-representation-transfer approach, MultiPLIER, which 

consists of training Pathway Level Information ExtractoR (PLIER) models on large compendia 

comprised of multiple experiments, tissues, and biological conditions and transferring this 

information to small rare disease datasets. They demonstrate that MultiPLIER better describes 

biological processes related to more active or severe disease in a rare autoimmune disorder than 

models trained on individual datasets. 

Yuping Zhang, Zhengqing Ouyang, and Hongyu Zhao in A statistical framework for data 

integration through graphical models with application to cancer genomics, building on a previous 

study11, present the problem of discovering regulatory relationships among heterogeneous genomic 

variables from biological conditions with potentially shared regulatory mechanisms. The genomic 

variables can be genetic variants, epigenetic states, and gene expression profiles, etc. The 

heterogeneous genomic variable types may be binary, categorical, or continuous. The biological 

conditions can be different tissue types or disease types, etc. They may have both shared and tissue- 

or disease-specific regulations. The authors develop a new general network estimation framework, 

named DIG, to jointly learn conditional independence among a set of heterogeneous types of 

variables across a set of distinct but related conditions. They illustrate the method by integrating 

mutations and copy number variations, and apply it to COAD and BRCA using TCGA data. Their 

study identify both common and distinct network modules in COAD and BRCA, which shows that 

the modules are biologically meaningful.  
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This paper summarizes the workshop content on how the integration of large biomolecular and 
clinical datasets can enhance the field of population health via translational informatics. Large 
volumes of data present diverse challenges for existing informatics technology, in terms of 
computational efficiency, modeling effectiveness, statistical computing, discovery algorithms, 
and heterogeneous data integration. While accumulating large ‘omics measurements on subjects 
linked with their electronic record remains a challenge, this workshop focuses on non-trivial 
linkages between large clinical and biomolecular datasets. For example, exposures and clinical 
datasets can relate through zip codes, while comorbidities and shared molecular mechanisms can 
relate diseases. Workshop presenters will discuss various methods developed in their respective 
labs/organizations to overcome the difficulties of combining together such large complex datasets 
and knowledge to enable the translation to clinical practice for improving health outcomes.      

Keywords: Translational informatics, biomolecular, clinical, population health, big data, workshop 

 
1.  Introduction, Background, and Motivation 

The field of population health is rapidly moving to the forefront of research, with the 
advancement of biotechnologies and growth of international collaborations enabling the vast 
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accumulation of population health data. The availability of such data crossing multiple 
dimensions, from electronic health records, lifestyles, environmental factors, genetics, to 
genomics, is promising for further advancing the field via translational bioinformatics. A 
growing trend is the integrative data collection that encompasses all aspects (both genetic and 
non-genetic factors) of the same participants, exemplified by eMERGE1, UK Biobank2, and All of 
US program3, among many others in specific domain and specialties.4, 5 
 
However, large volumes of data present diverse challenges for existing informatics technology, 
in terms of computational efficiency, modeling effectiveness, statistical computing, discovery 
algorithms, and heterogeneous data integration. These new demands also call for bridging the 
gap between disciplines among statistical genetics, health informatics, and bioinformatics. 
Successful endeavors in these areas will dramatically enhance the understanding of the 
genetic/epigenetic mechanisms of complex diseases and their interplay with the environment and 
lifestyles as well as foster the translation of these findings to clinical practice to improve health 
outcomes.6, 7 
 
In this era of Big Data science, the number of opportunities to study large-scale molecular and 
population datasets together is flourishing. The developers of PheWAS8 were among the pioneers 
to transform heterogeneous and sparsely-annotated clinical data for systematic analysis with 
densely-annotated SNP arrays. Combining this knowledge with publicly-available data from 
sources, such as UK Biobank2 that offers health information on over 500,000 participants, not 
only promotes Big Data analytics, but also demonstrates the feasibility of such studies. 
 
This paper summarizes how the integration of large datasets, such as biomolecular and clinical 
data, can advance the field of population health via translational informatics as well as focuses 
on current approaches to overcome the challenges of combining these complex data.    
 
2. Workshop Presenters 

The three-hour workshop is organized in the form of six presentations, including two keynote 
speakers, followed by a discussion session, which will be moderated by Dr. Yves A. Lussier.  
 
Keynote speakers are: 

• Atul Butte, MD, PhD (Priscilla Chan and Mark Zuckerberg Distinguished Professor, 
University of California, San Francisco) 

• Jason H. Moore, PhD, FACMI (Edward Rose Professor of Informatics, University of 
Pennsylvania) 

 
Additional speakers include: 

• Francesca Vitali, PhD (Research Assistant Professor, The University of Arizona) 
• Lara M. Mangravite, PhD (President, Sage Bionetworks) 
• Serghei Mangul, PhD (QCB Postdoctoral Fellow, University of California, Los Angeles) 
• Marina Sirota, PhD (Assistant Professor, University of California, San Francisco) 
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3. Presenters’ Abstracts 

Translating a trillion points of data into therapies, diagnostics, and new precision medicine 
Atul Butte, MD, PhD (University of California, San Francisco) 
There is an urgent need to take what we have learned in our new “genome era” and use it to 
create a new system of precision medicine, delivering the best preventative or therapeutic 
intervention at the right time, for the right patients. Dr. Butte's lab at the University of California, 
San Francisco builds and applies tools that convert trillions of points of molecular, clinical, and 
epidemiological data -- measured by researchers and clinicians over the past decade and now 
commonly termed “big data” -- into diagnostics, therapeutics, and new insights into disease. 
Several of these methods or findings have been spun out into new biotechnology companies. Dr. 
Butte, a computer scientist and pediatrician, will highlight his lab’s recent work, including the 
use of publicly-available molecular measurements to find new uses for drugs including new 
therapies for autoimmune diseases and cancer, discovering new druggable targets in disease, the 
evaluation of patients and populations presenting with whole genomes sequenced, integrating 
and reusing the clinical and genomic data that result from clinical trials, discovering new 
diagnostics include blood tests for complications during pregnancy, and how the next generation 
of biotech companies might even start in your garage. 
 
Enabling translational bioinformatics with accessible artificial intelligence 
Jason H. Moore, PhD (University of Pennsylvania) 
Artificial intelligence (AI) is a rapidly maturing technology that has the potential to accelerate 
translational bioinformatics and precision medicine using both basic science and clinical data. 
While AI has become widespread, many commercial AI systems are not yet accessible to 
individual researchers nor the general public due to the deep knowledge of the systems required 
to use them. We believe that AI has matured to the point where it should be an accessible 
technology for everyone. We present an ongoing project whose goal is to deliver an open-source, 
user-friendly AI system that is specialized for machine learning analysis of complex data in the 
biomedical and health care domains. 
 
Novel and emerging data fusion strategies for integrating health and biomolecular data 
Francesca Vitali, PhD (The University of Arizona) 
Over the last few years, biomedical research and clinical practice have experienced incredible 
growth in terms of both the amount and variety of data being collected and leveraged for 
different types of analysis. This represents a great opportunity to increase our knowledge about 
many biological mechanisms as well as improve the medical process. However, not all big data 
is created equal, complicating the integration and analysis of such large datasets. For example, 
clinical record data is highly heterogeneous, sparsely annotated, and contains several 
measurement types and unstructured text fields comprised of ambiguous statements as well as 
varying levels of certainty, whereas genomic and imaging data are crisp, homogeneous, densely 
annotated data with a low cardinality of distinct variables. Nowadays, the development of novel 
methodologies capable of integrating population health data with biomolecular data is crucial, 
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not only for enabling translational and clinical research, but for developing more effective patient 
care. However, integrating these data are particularly challenging when the molecular 
measurements are not conducted on individual subjects. In order to take full advantage of the 
wide spectrum of biomedical data available, advanced data integration tools need to be 
developed. In this context, we will discuss novel and emerging data fusion strategies for 
integrating health and biomolecular data to develop new research hypotheses and conduct 
predictive and data interpolation operations. These methods include approaches that (i) take into 
account comprehensive drug-exposure histories of individuals derived from healthcare data, 
while also including genetic, environmental, and lifestyle variabilities for each individual; (ii) 
integrate electronic medical records with biobank data to identify new disease pathways; (iii) 
combine multi-omic profiling with clinical factors from large cohorts; and (iv) perform crisp 
integration of bimolecular data whilst leveraging population measurements (e.g., counties, 
medication, diseases).  
 
Open practices to advance biomedicine through data-intensive science 
Lara M Mangravite, PhD (Sage Bionetworks)  
Open science practices in bio-computing have been promoted over the past 10 years under the 
premise that these approaches can improve confidence and, therefore, speed advancement of 
biomedical hypotheses stemming from computational research. In that time, we have observed 
wide adoption of open practices including those focused on open data, open commons(es), open 
source software, and open access publishing. Although many of these efforts help to establish 
confidence in research observations amongst computationally-savvy researchers, they often fail 
to support the wider acceptance necessary to inform trajectories of biological inquiry and/or to 
promote adoption for use in clinical care. Here, we discuss complementary mechanisms to 
further support the advancement of biocomputational hypotheses, including those developed 
using emerging digital health technologies, through the transfer and translation of knowledge 
across research domains.   
 
Seeing Beyond the Target: Constructing germline research cohorts from clinical tumor 
sequencing 
Serghei Mangul, PhD (University of California, Los Angeles)  
Tens of thousands of cancer patients have had their tumors sequenced to identify clinically 
actionable mutations. In addition to saving lives, this activity has produced valuable research 
data sets leading to significant discoveries in basic and translational domains. However, the 
targeted nature of clinical tumor sequencing has a limited research scope, especially with respect 
to germline genetics. In this work, we address this problem by developing a software platform 
(SBT: Seeing Beyond the Target) that mines discarded tumor sequences to produce rich research 
level data including genome-wide germline genotypes, T and B cell receptor sequences, rDNA 
and mtDNA copy number, and HLA types. These features have been demonstrated as potential 
prognostic indicators in research studies, and our methods now make them available in large-
scale clinical cohorts. We validate the accuracy of our tool, by comparison, to deeply sequenced 
cohorts and show its utility through replication of known genetic associations. We provide a free 
downloadable cloud implementation and demonstrate its efficiency by constructing the largest 
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germline-somatic cohort produced to date (n>20,000), more than doubling the size of The 
Cancer Genome Atlas. We believe that SBT will greatly increase the research potential of 
clinical tumor data sets and provide a bridge between the germline and somatic research 
communities. SBT is freely available at https://github.com/smangul1/seeing.beyond.target/wiki 
 
Leveraging population level molecular, environmental and clinical data to study adverse 
pregnancy outcomes 
Marina Sirota, PhD (University of California, San Francisco) 
Given the wealth and availability of genomic, clinical and environmental exposure data, 
computational integrative methods provide a powerful opportunity to identify population-
specific determinants of disease. In this talk, I will discuss our efforts to develop computational 
methods and integrate large-scale genomic, transcriptomic and environmental exposure datasets 
to elucidate factors that affect preterm birth (PTB). Preterm birth, or the delivery of an infant 
prior to 37 weeks of gestation, is a major health concern. Infants born prematurely, comprising of 
about 12% of the US newborns, have elevated risks of neonatal mortality and a wide array of 
health problems. In our work, we leverage the rich multi-omic, clinical and environmental 
variation data to advance our understanding of biology of preterm birth as it relates to all 
populations. Our findings further inform precise population-specific diagnostic and therapeutic 
strategies bringing us closer to applying precision medicine to this important biomedical 
problem. 
 
4. Conclusion 

This workshop will highlight a number of methods, strategies, and tools currently being 
developed for integrating population health data with biomolecular data to mitigate the diverse 
challenges of existing informatics technology. The ability to combine these big data across 
various domains to conduct meaningful and interpretable analysis is critical for improving 
overall population health outcomes. 
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