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The Pacific Symposium on Biocomputing (PSB) 2019 is an international, T. E. Klein

multidisciplinary conference for the presentation and discussion of current

research in the theory and application of computational methods in problems
of biological significance. Presentations are rigorously peer reviewed and are
published in an archival proceedings volume. PSB 2019 will be held on January
3 —7,2019 in Kohala Coast, Hawaii. Tutorials and workshops will be offered

prior to the start of the conference.

PSB 2019 will bring together top researchers from the US, the Asian Pacific
nations, and around the world to exchange research results and address open
issues in all aspects of computational biology. It is a forum for the presentation
of work in databases, algorithms, interfaces, visualization, modeling, and other
computational methods, as applied to biological problems, with emphasis on
applications in data-rich areas of molecular biology.

The PSB has been designed to be responsive to the need for critical mass in
sub-disciplines within biocomputing. For that reason, it is the only meeting
whose sessions are defined dynamically each year in response to specific
proposals. PSB sessions are organized by leaders of research in biocomputing’s
“hot topics.” In this way, the meeting provides an early forum for serious
examination of emerging methods and approaches in this rapidly changing field.
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2019 marks the 24th Pacific Symposium on Biocomputing (PSB). The world is in a tizzy about big data, data
science and Al (especially deep learning). Machine learning is everywhere and many of the tools and approaches that
have been discussed at PSB for the last 24 years are becoming mainstream. This is in some ways gratifying and other
ways worrisome, as the hype of these technologies is staggering. The PSB community, however, continues to
innovate in the application of these ideas to critical problems in biology and medicine. More importantly, through peer
review the PSB community has maintained a realistic understanding of the capabilities of emerging technologies. It is
our duty to continue applying appropriate pressure on ourselves to test the real-world utility of these techniques, figure
out how to optimize their use for problems in biology and medicine, and ensure that we contribute to a scholarly
literature that realistically portrays the power and the limitations of emerging technologies. The focus of PSB on
emerging scientific questions and methodologies is a clear strength of the conference, and one that we must protect
and preserve.

PSB depends on the community to define emerging areas in biomedical computation. Its sessions are usually
conceived at the previous PSB meeting as people discuss trends and opportunities for new science. The typical
program includes sessions that evolve over two to three years as well as entirely new sessions. This year we
revisit topics such as precision medicine, pattern recognition, while nurturing emerging interest in single cell
analysis, privacy/ethics and other topics.

In addition to being published by World Scientific and indexed in PubMED, the proceedings from all PSB
meetings are available online at http://psb.stanford.edu/psb-online/. PSB has 1125 papers listed in PubMED (as
of today). These papers are routinely cited in archival journal articles and often represent important early
contributions in new subfields—many times before there is an established literature in more traditional journals; for
this reason, many papers have garnered hundreds of citations. The Twitter handle PSB 2019 is
@PacSymBiocomp and the hashtag this year will be #psb19.

The efforts of a dedicated group of session organizers have produced an outstanding program. The sessions of
PSB 2019 and their hard-working organizers are as follows:

Pattern recognition in biomedical data: challenges in putting big data to work
Shefali S. Verma, Dokyoon Kim, Anurag Verma, Christian Darabos

Precision medicine: improving health through high-resolution analysis of personal data
Steven Brenner, Martha Bulyk, Dana Crawford, Jill Mesirov, Alexander Morgan, Predrag Radivojac

Single cell analysis--what is in the future?
Lana Garmire, Guo-cheng Yuan, Rong Fan, Gene Yeo, John Quackenbush

When biology gets personal: hidden challenges of privacy and ethics in biological big data
Gamze Gursoy, Arif Harmanci, Haixu Tang, Erman Ayday, Steven E. Brenner

We are also pleased to present four workshops in which investigators with a common interest come together to
exchange results and new ideas in a format that is more informal than the peer-reviewed sessions. For this year,
the workshops and their organizers are:

Merging heterogeneous data to enable knowledge discovery
Martin G. Seneviratne, Tina Hernandez-Boussard, Michael Kahn

Reading between the genes: interpreting noncoding DNA in high throughput
Joanne Berghout, Yves A. Lussier, Francesca Vitali, Martha L. Bulyk, Maricel G. Kann, Jason H. Moore



Text mining and machine learning for precision medicine
Graciela Gonzalez, Hongfang Liu, Zhiyong Lu, Robert Leaman

Translational informatics of population health: how large biomolecular and clinical datasets unite
Yves A. Lussier, Atul Butte, Rong Chen, Haiquan Li, Jason H. Moore

The PSB 2019 keynote speakers are Russ Altman (Science keynote) and Lawrence Hunter (Ethical, Legal and
Social Implications keynote).

Tiffany Murray has managed the peer review process and assembly of the proceedings since 2003, and also plays a
key role in many aspects of the meeting. We are grateful for the support of the Cleveland Institute for
Computational Biology, Second Genome, Icahn Institute for Data Science and Genomic Technology, Cipherome, and
DNANexus for their support of PSB 2019. We also thank the National Institutes of Health! and the International
Society for Computational Biology (ISCB) for travel grant support. The research parasite and symbiont awards benefit
by support from: GigaScience, Lifebit, Communications Biology, and the Gordon and Betty Moore Foundation.

We are particularly grateful to the onsite PSB staff Al Conde, Paul Murray, Ryan Whaley, Mark Woon, BJ
Morrison-McKay, Cynthia Paulazzo, Jackson Miller, Kasey Miller, Heather Sanchez, and Nicholas Murray for
their assistance. We also acknowledge the many busy researchers who reviewed the submitted manuscripts on a
very tight schedule. The partial list following this preface does not include many who wished to remain
anonymous, and of course we apologize to any who may have been left out by mistake.

We look forward to a great meeting once again. Aloha!

Pacific Symposium on Biocomputing Co-Chairs,
October 13, 2018

Russ B. Altman
Departments of Bioengineering, Genetics, Medicine & Biomedical Data Science, Stanford University

A. Keith Dunker
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine

Lawrence Hunter
Department of Pharmacology, University of Colorado Health Sciences Center

Marylyn D. Ritchie
Department of Genetics and Institute for Biomedical Informatics, University of Pennsylvania

Teri E. Klein
Departments of Biomedical Data Science & Medicine, Stanford University

! Funding for this conference was made possible (in part) by Grant # 5 R13 LM006766 — 21 from the National Library of Medicine. The
views expressed in written conference materials or publications, and by speakers and moderators, does not necessarily reflect the official
policies of the Department of Health and Human Services; nor does mention by trade names, commercial practices, or organizations imply

endorsement by the U.S. Government.
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Session Introduction

Pattern Recognition in Biomedical Data: Challenges in putting big data to work

Shefali Setia Verma
University of Pennsylvania

Philadelphia, PA 19104

Anurag Verma

University of Pennsylvania

Philadelphia, PA 19104

Dokyoon Kim
Geisinger
100 North Academy Avenue
Danville, PA 17822

Christian Darabos
Research Computing Services, Dartmouth College,
HB 6129
Hanover, NH 03755

Introduction

Technological advances are leading to an exponential increase in the size of biomedical
data. Demand is high for novel computational techniques that can cope with these large datasets
and have the potential to support translational research. Methods to analyze biomedical data in
order to handle its complexities require sophisticated algorithms for pattern recognition and to
handle complexities such as sparesenss and noisiness in these datasets. The availability of high
throughput techniques in generating highly resourceful multi-omic biomedical data (genomic,
transcriptomic and epigenomic to name a few) gave rise to a whole new set of challenges in
identifying patterns. Modern statistical, machine learning, and even artificial intelligence (Al)
methods can be used to integrate multiple resources to understand complex phenotypic traits.
However, most of these methods pose multiple challenges either in fitting models or in

analyzing the resulting models, whether using multiple species or multi-omic datasets for the
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same species. This session focuses on innovative ways to address the challenges arising from
the quality and quantity of data and also integrating biomedical data from various sources to
identify patterns in biomedical datasets[1-3].

While cloud computing aids in analysis performance by improving computing time and
storage, it is limited to the software package and there is considerable room for improvement
in the cloud-based big-data analysis. Our session also aims at discussing the optimization of
tool development for large scale datasets and challenges that are associated with the
computational cost as well as resources for pattern recognition. Manuscripts listed in this

session can be classified into following 4 categories:

1. Identifying patterns in EHR data:
Electronic Health Records (EHRs) is a collection of longitudinal health information
from an individual’s point of care. It includes diagnosis, procedure, laboratory
measurement, medication, imaging, and clinical note. Many retrospective case-control
studies have already demonstrated meaningful use of EHR data and its potential to
improve understanding of disease risk and prevalence in the general populatio[4—7].
However, the data within EHR has not been utilized to its full extent due to several
challenges, such as missing data, institutional biases in coding practice, and high

throughput electronic phenotyping.

In the manuscript titled “Learning Contextual Hierarchical Structure of Medical
Concepts to Clarify Phenotypes”, Beaulieu-Jones et al present an innovative
application of Pointcaré embeddings to model data-driven hierarchy of ICD-9
diagnosis codes. The Pointcaré embeddings approach uses hyperbolic space to learn
the embedding from a vector of nodes in a network graph as opposed to traditional
Euclidean space-based methods such as Word2Vec[8]or GloVe[9] Since it is shown
that the hyperbolic space is more appropriate for hierarchical information[10], so its
application of ICD-9 codes shows potential in improving phenotype definitions while

keeping the global structure and hierarchy of ICD-9 codes.

Similarly, as the new methods are showing improvement in electronic phenotyping in
EHR data, it is also important to identify patient cohort for a disease more accurately.

In manuscript titled “The Effectiveness of Multitask Learning for Phenotyping with
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Electronic Health Records Data”, Ding et al investigated the effectiveness of a
supervised approach called Multitask Learning (MTL) to define phenotypes using
EHR data. Authors demonstrated that MTL approach performed better for complex
phenotype definition whereas traditional supervised approaches such as linear models

can be preferable for simple phenotype definitions.

Integrating EHR data from various health providers across the country has great
potential to predict disease risk across the large population. However, there are
various disparities across different health providers such as clinical care bias,
population differences, ethical, and privacy policies. In the manuscript “ODAL. A
one-shot distributed algorithm to perform logistic regressions on electronic health
records data from multiple clinical sites”, Duan et al propose an algorithmic approach
to integrate EHR data from multiple health providers in an efficient way, and
preserving privacy. They propose a use of a common data model developed by
Observational Health Data Sciences and Informatics (ODSHI) and further perform
statistical analysis in a distributed manner across multiple sites. Authors address a key
issue of data sharing using ODAL by performing large-scale association analysis

without explicitly sharing of sensitive data.

Machine/Deep Learning approaches:

The current explosion of biomedical big data, including imaging, genomic, and EHR,
provide a great opportunity to improve understanding of the genetic architecture of
complex diseases and ultimately to improve health care. With the explosion of the
biomedical big data, machine learning and deep learning techniques are becoming an
integral component of evaluating biomedical data. In particular, deep learning has
been extensively used in the field of biomedical informatics, such as healthcare and

genomic data analyses as well as text mining.

In the context of healthcare data analysis, the accurate detection of premature
ventricular contractions (PVC) in patients is an important task in cardiac care for
some patients. Gordon et al developed a novel PVC detection algorithm based around
a convolutional autoencoder to address the weaknesses, such as the need to use
difficult to extract morphological features, domain-specific features, or large number

of estimated parameters, and validated their method using the MIT-BIH arrhythmia
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database. Although many deep learning methods have been shown with great
successes in biomedical informatics, the “black-box” nature of deep learning and the
high-reliability requirement of biomedical applications have created new challenges
regarding the existence of confounding factors. In the manuscript titled “Removing
Confounding Factors Associated Weights in Deep Neural Networks Improves the
Prediction Accuracy for Healthcare Applications”, Wang et al present an efficient
method that can remove the influences of confounding factors, such as age or gender,

to improve the across-cohort prediction accuracy of deep neural networks.

Deep learning is also applied to many genomic data analyses. Protein domain
boundary prediction is usually an early step to understand protein function and
structure. Most of the current computational domain boundary prediction methods
suffer from low accuracy and limitation in handling multi-domain types, or even
cannot be applied on certain targets, such as proteins with the discontinuous domain.
Jiang et al developed an ab-initio protein domain predictor using a stacked
bidirectional Long Short-Term Memory Units (LSTM) model in deep learning.
Additionally, a deep residual network (deep ResNet) is a type of specialized neural
network that helps to handle more sophisticated deep learning tasks and models. Liu
et al describe the use of a deep ResNet-based model that fuses flanking DNA
sequence information with additional SNP annotation information for identifying
functional noncoding SNPs in trait-associated regions. As another interesting study,
steganography serves to conceal the existence and content of messages in the media
using various techniques. Recent advances in next-generation sequencing
technologies have facilitated the use of deoxyribonucleic acid (DNA) as a novel
covert channel in steganography. Bae et al propose a general sequence learning-based
DNA steganalysis framework using deep recurrent neural networks (RNNs). The
proposed approach learns the intrinsic distribution of coding and non-coding
sequences and detects hidden messages by exploiting distribution variations after

hiding these messages.

In addition to many applications, deep learning technique is widely used in text
mining. Phylogeography research involving virus spread and tree reconstruction relies
on accurate geographic locations of infected hosts. Insufficient level of geographic

information in nucleotide sequence repositories such as GenBank motivates the use of
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natural language processing methods for extracting geographic location names
(toponyms) in the scientific article associated with the sequence and disambiguating
the locations to their coordinates. Magge et al present an extensive study of multiple
recurrent neural network architectures for the task of extracting geographic locations
and their effective contribution to the disambiguation task using population heuristics.
Additionally, in the manuscript titled “Automatic Human-like Mining and
Constructing Reliable Genetic Association Database with Deep Reinforcement
Learning”, Wang et al aim to improve the reliability of biomedical text-mining by
training the system to directly simulate the human behaviors, such as querying the
PubMed, selecting articles from queried results, and reading selected articles for
knowledge. They take advantage of the efficiency of biomedical text-mining, the
flexibility of deep reinforcement learning, and the massive amount of knowledge
collected in UMLS into an integrative artificial intelligent reader that can
automatically identify the authentic articles and effectively acquire the knowledge
conveyed in the articles.

Although classification has been extensively studied over the past decades, there
remain understudied problems when the training data violate the main statistical
assumptions relied upon for accurate learning and model characterization. This
particularly holds true in the open world setting where observations of a phenomenon
generally guarantee its presence, but the absence of such evidence cannot be
interpreted as the evidence of its absence. Learning from such data is often referred to
as positive-unlabeled learning, a form of semi-supervised learning where all labeled
data belong to one (say, positive) class. To improve the best practices in the field,
Ramola et al study the quality of estimated performance accuracy in positive-

unlabeled learning in the biomedical domain.

3. Identifying patterns in omic data sets:
Complex traits are often heterogeneous in nature, which means that they are likely not
only explained by one data type (for example genomic variations). Thus, integrative
methods in combining data from various sources (on same or different samples) is
demanding. Graim et al present a new method for integrating multiple data types to
predict cancer-drug sensitivity. The proposed method PLATYPUS (Progressive
LAbel Training bY Predicting Unlabeled Samples) combines prior knowledge with

raw input data to make predictions in testing dataset. This method when compared to
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ensemble approach on using single dataset yields better prediction even in samples
where missingness is observed. Marty et al represent an integrative approach for
utilizing exome and transcriptome to study the highly heterogeneous Killer
Immunoglobulin-like receptor (KIR) region that is known to be associated with
cancer phenotypes. Lastly, Pyman et al use deep learning methods to classify 26 types

of cancer cells from normal tissue cell by analyzing microRNA dataset.

Understanding gene function is an important aspect of interpretation of findings.
Rapid advancements have been made in sequencing microbial genome. Li ef al
present a Bayesian approach to analyze transposon mutagenesis with next generation
sequencing (TnSeq) data. Anand et al represent a method to link non-coding variants

to gene functions by using CHIP-Seq data for interpreting association study signals.

Publicly available open source large datasets also provide unique opportunities for
pattern recognition. Leveraging these resources are highly important. Tsui et al
utilized datasets from Sequence Read Archive (SRA) and designed a pipeline to
extract allele counts from variety of datasets, such as RNA seq, whole exome

sequencing and whole genome sequencing.

Computational challenges:

The data-intensive nature of the computational problem in the field of biomedical
informatics also warrants the development of software approaches to efficiently use the
existing institutional computer infrastructure as well as cloud computing. Additionally,
the tools and workflows are changing at a rapid pace as new data types are being
generated from new techniques in biology such as sequencing, gene expression data,
among others. This raises two key issues: assessment of new software workflows and
their reproducibility. There is community effort like Dialogue for Reverse Engineering
Assessments and Methods (DREAM) Challenges to compare and benchmark new tools
and workflows. In the manuscript “4 Workflow-based Approach to Benchmark
Challenges Enhances Reusability, and Reproducibility”, Srivastava et al present an
approach to improve the reproducibility and interpretability associated with
bioinformatics benchmark challenges. To achieve this, the authors used the WINGS
system as the model and modified it to allow each step of the submitted algorithms to

be analysed.



Pacific Symposium on Biocomputing 2019

References

1.

10.

Bourne, P. E.; Bonazzi, V.; Dunn, M.; Green, E. D.; Guyer, M.; Komatsoulis, G.;
Larkin, J.; Russell, B. The NIH Big Data to Knowledge (BD2K) initiative. J Am Med
Inform Assoc 2015, 22, 1114, doi:10.1093/jamia/ocv136.

Ritchie, M. D.; Holzinger, E. R.; Li, R.; Pendergrass, S. A.; Kim, D. Methods of
integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet. 20185, 16,
85-97, doi:10.1038/nrg3868.

Pasaniuc, B.; Price, A. L. Dissecting the genetics of complex traits using summary
association statistics. Nat. Rev. Genet. 2017, 18, 117-127, d0i:10.1038/nrg.2016.142.
Verma, A.; Verma, S. S.; Pendergrass, S. A.; Crawford, D. C.; Crosslin, D. R.;
Kuivaniemi, H.; Bush, W. S.; Bradford, Y.; Kullo, L.; Bielinski, S. J.; Li, R.; Denny, J.
C.; Peissig, P.; Hebbring, S.; De Andrade, M.; Ritchie, M. D.; Tromp, G. eMERGE
Phenome-Wide Association Study (PheWAS) identifies clinical associations and
pleiotropy for stop-gain variants. BMC Medical Genomics 2016, 9, 32,
doi:10.1186/s12920-016-0191-8.

Verma, S. S.; Lucas, A. M.; Lavage, D. R.; Leader, J. B.; Metpally, R.; Krishnamurthy,
S.; Dewey, F.; Borecki, I.; Lopez, A.; Overton, J.; Penn, J.; Reid, J.; Pendergrass, S. A.;
Breitwieser, G.; Ritchie, M. D. IDENTIFYING GENETIC ASSOCIATIONS WITH
VARIABILITY IN METABOLIC HEALTH AND BLOOD COUNT LABORATORY
VALUES: DIVING INTO THE QUANTITATIVE TRAITS BY LEVERAGING
LONGITUDINAL DATA FROM AN EHR. Pac Symp Biocomput 2016, 22, 533—-544.
Hoffmann, T. J.; Ehret, G. B.; Nandakumar, P.; Ranatunga, D.; Schaefer, C.; Kwok, P.-
Y .; Iribarren, C.; Chakravarti, A.; Risch, N. Genome-wide association analyses using
electronic health records identify new loci influencing blood pressure variation. Nat
Genet 2017, 49, 54-64, doi:10.1038/ng.3715.

Singh, A.; Nadkarni, G.; Gottesman, O.; Ellis, S. B.; Bottinger, E. P.; Guttag, J. V.
Incorporating temporal EHR data in predictive models for risk stratification of renal
function deterioration. J Biomed Inform 2015, 53, 220-228,
doi:10.1016/].jb1.2014.11.005.

Mikolov, T. Efficient Estimation of Word Representations in Vector Space.,
doi:arXiv:1301.3781.

Pennington, J.; Socher, R.; Manning, C. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP); Association for Computational Linguistics:
Doha, Qatar, 2014; pp. 1532—-1543.

Krioukov, D.; Papadopoulos, F.; Kitsak, M.; Vahdat, A.; Boguiia, M. Hyperbolic
geometry of complex networks. Physical Review E 2010, 82,
doi:10.1103/PhysRevE.82.036106.



Pacific Symposium on Biocomputing 2019

Learning Contextual Hierarchical Structure of Medical Concepts with Poincairé
Embeddings to Clarify Phenotypes

Brett K. Beaulieu-Jones, Isaac S. Kohane and Andrew L. Beam!

Department of Biomedical Informatics, Harvard Medical School,
Boston, MA 02115, USA
Y E-mail: Andrew Beam@hms.harvard. edu
dbmi.hms.harvard.edu

Biomedical association studies are increasingly done using clinical concepts, and in particu-
lar diagnostic codes from clinical data repositories as phenotypes. Clinical concepts can be
represented in a meaningful, vector space using word embedding models. These embeddings
allow for comparison between clinical concepts or for straightforward input to machine learn-
ing models. Using traditional approaches, good representations require high dimensionality,
making downstream tasks such as visualization more difficult. We applied Poincaré embed-
dings in a 2-dimensional hyperbolic space to a large-scale administrative claims database
and show performance comparable to 100-dimensional embeddings in a euclidean space. We
then examine disease relationships under different disease contexts to better understand
potential phenotypes.

Keywords: Clinical Concept Embeddings, Poincaré, Contextual Disease Relationships,
Context-dependent Phenotypes, Deep Learning.

1. Introduction

Word embeddings! are a popular way to represent natural language and have seen wide use
in machine learning applied to document classification,”? machine translation,”’ sentiment
analysis,? and question answering.3* Clinical concept embeddings extend this approach to
model healthcare events,”® and have been particularly useful modeling longitudinal clinical
data.”? ! Traditional approaches such as word2vec! and GloVe!? embed entities within a
Euclidean space.

However, recent work by Nickel and Kiela on Poincaré embeddings'? claims to provide bet-
ter embedding representations of hierarchically structured data using a hyperbolic embedding
space within the Poincaré ball. This n-dimensional hyperbolic space has a significantly higher
capacity than the Euclidean space, which allows it to effectively embed structured trees while
preserving distance relationships.' 17 Moreover, this space allows for embedding of hierarchi-
cal, tree-like structures, as Nickel and Kiela!? observed high fidelity embeddings of ontologies.
This has an obvious relevance to medical concepts, given many have an inherent tree structure
(e.g. disease nosology) that should be recapitulated in the embedding space.

When clinicians consider a disease, they examine the disease in the context of the patient’s

(© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0
License.
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overall environment.'® For example, renal failure caused by poor blood flow to the kidneys
as a result of long-term hypertension would be considered differently from renal failure as
the result of a specific infection or immune system disorder like Lupus.'® Accurate and precise
phenotyping is critical to modern clinical studies using the electronic healthcare record (EHR)
and other ~omic’ associations studies (e.g. genomic, transcriptomic, metabolomic). Misclassi-
fied phenotypes have a severe effect on tests of association and require increased sample sizes
to maintain constant power.?0 22 Increases in genetic testing and the availability of clinical
data repositories (Electronic Health Record, Administrative Claims, large-scale Cohort) have
enabled PheWAS association studies to be performed without the need to target and recruit
specific populations for each individual study.?3 25 It is important to develop methods that
enable researchers to consider a specific disease or phenotype in the context of the overall
patient and environment.

We applied Poincaré embeddings to a large-scale administrative claims database to exam-
ine how the relationships of different conditions changed in distinct contexts. Our hypothesis
was that the increased representational capacity offered by Poincaré embeddings and their
ability to naturally model hierarchical data would result in improved embeddings for clinical
concepts. We first demonstrate this by showing they can accurately reconstruct the ICD-9
hierarchy on synthetic data. Next we show that they find an improved representation on real
data relative to traditional embedding approaches at the same number of dimensions. We
conclude with a disease-specific embedding hierarchy within an obese population. Our results
could provide a better representation of disease and allow for more accurate machine learning
models as well as the fine-tuning of targeted phenotypes for association studies.

2. Methods

To examine the effectiveness of Poincaré embeddings for clinical concept embedding, we: 1.)
trained Poincaré embeddings on the ICD-9 hierarchy as validation of parent-child tuples, 2a.)
selected and preprocessed chronological member sequences of each diagnosis experienced for
a specified cohort (e.g. obese vs. no metabolic disorders diagnosed), 2b.) Learned distributed
vector representations for the real data by training a Poincaré embedding model in a two-
dimensional space. 3.) Visualized the Poincaré embeddings in a two dimensional space. 4a.)
Constructed a distance matrix within the hyperbolic space. 4b.) Analyzed the distance matrix
to measure how effectively the embeddings represent clinical groupings (e.g. ICD9 Chapter,
Sub-chapter and major codes).

2.1. Source Code

The source code used for the analyses in this work are freely available on Github
(https://github.com/brettbj/poincareembeddings) under a permissive open source license.
The optimized C++ Poincare Embedding implementation by Tatsuya Shirakawa is available
under the MIT license (https://github.com/TatsuyaShirakawa/poincare-embedding).
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2.2. Data Source

These analyses were performed using de-identified insurance administration data including
diagnostic billing codes from January 1, 2008 until February 29, 2016 for more than 63 million
members. The database does not include any socioeconomic, race or ethnicity data. The
Institutional Review Board at Harvard Medical School waived the requirement for approval
as it deemed analyses of the de-identified dataset to be non-human subjects research.

The data to rebuild the reference ICD9 hierarchy tree is available in the GitHub repository
(https:/github.com/brettbj/poincareembeddings/data/icd9.tsv).

2.3. Data Selection and Preprocessing
2.3.1. Reference ICD9 Example

We first benchmarked against a known hierarchy, the ICD9 2015-Clinical Modification code
ontology. To do this we extracted the ICD9 codes into four levels: 1.) Chapters (e.g. codes 390-
459: Diseases of the circulatory system), 2.) Sub-chapters (e.g. codes 401-405: Hypertensive
disease), 3.) Major Codes (e.g. code 401: Essential hypertension), and 4.) Detail level codes
(e.g. code 401.0: Hypertension, malignant). We assigned relationships between each detail
level code and the chapter, sub-chapter and major code it belonged to, each major code to
the appropriate sub-chapter and chapter, and each sub-chapter to the chapter it belonged to.

2.3.2. Real Member Analyses

We performed cohort analyses by defining different study groups. First we included ten million
randomly selected members (without replacement) who were enrolled for at least two years
from the database of 63 million members. Next we separated two groups based on obesity
diagnoses: 1.) ten million members who do not have a diagnosis for metabolic disorders with
ICD9 codes between 270 and 279 2.) 3.38 million members who were diagnosed with obesity
ICDY codes (278.00 and 278.01).

Poincaré embeddings learn distributed vector representations from hierarchical data (e.g.
a directed graph or tree). The input to the model is a list of tuples of the form < A, B >, which
indicates that A and B have some form of unspecified relationship (e.g. parent of, co-occurs
with, etc). In our case, the list of relationships specify that two diagnoses occurred sequentially,
within a one year period, and had to occur more than ten total times and in more than 2%
of all diagnoses.

2.4. Poincaré Embeddings

The key way in which Poincaré embeddings differ from traditional approaches is the distance
metric which is used to compare the embeddings for two concepts. This distance metric is
given in equation 1:

(w2 — $1)2 + (y2 — yl)z) (1)
29192
Equation 1 shows the distance between two points in the Poincaré ball hyperbolic space.

dist((x1,11), (x2,12)) = arccosh(1 +

10
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Training a Poincaré embedding model occurs by maximizing the distance (Equation 1)
between unconnected nodes or diagnoses while minimizing the distance between highly con-
nected nodes. This is done using a stochastic Riemannian optimization method, specifically
stochastic gradient descent on riemmanian manifolds as seen in Bonnabel.?

2.5. Processing and Evaluating Embeddings

Once each concept is embedded into a two dimensional space, it is possible to calculate the
pair-wise distance between all concepts using Equation 1. To assess how well the embeddings
captured the ICD hierarchy on real data, we compared the average distances between concepts
in the same ICD9 major code, sub-chapter and chapter against the distances of all other
concepts. We then compared the capacity of a two-dimensional Poincairé space with varying
size euclidean spaces. To do this, we repeated distance calculations with the clinical concept
embeddings trained in a euclidean space on more than 63 million members in 2, 10 and 100
dimensions from Beam et al.> To normalize the distance comparisons between hyperbolic and
euclidean spaces, we compared the ratio of distances between ICD codes within the same
major, sub-chapter and chapter and the other ICD codes outside of the major, sub-chapter,
and chapter.

3. Results
3.1. ICD9 Hierarchy Evaluation

To evaluate the method with a known ground truth, we embedded the ICD9 hierarchy and
then reconstructed it as a tree. Because there are no counts included, stochasticity for all
relationships at the same level (Chapter, Sub-chapter, Major, Detail) was expected. Figure
1 shows the reconstructed tree of the predefined ICD9 tree. This served as evidence that
Poincairé embeddings can effectively embed a clean ICD9 hierarchy.

3.2. Poincaré Embeddings on 10 M:illion Members

We then trained Poincaré embeddings in a two-dimensional space for 10 million randomly
selected members (Table 1).

Table 1 Member Demographics of the Training Data

Demographics
Male 40.4%
Female 59.6%
Age (2016) 48.66 (22.68)

ICD9 Diagnoses | 22.38 (28.70)

Figure 2A shows the ICD9 concepts (labeled by chapter) embedded in a two-dimensional
space. While there were over 223 million total diagnoses, the majority of concepts had less
than 100 distinct relations (Figure 2B) and the number of distinct relations was correlated
with the distance from the origin (R? = 0.61) (Figure 2C).

11
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Fig. 1. ICD Example All codes

Figure 2 shows that the ICD hierarchy is correctly reconstructed using by the Poincaré
embeddings in two dimensions. The distances between ICD codes in the same major, sub-
chapter and chapter are smaller than the distances across different major codes, sub-chapters
and chapters (Table 2). This shows that Poincaré embeddings are representing the data in a
way that has similarities with the human-defined ICD9 hierarchy.

12
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A. 10 Million Members

| Chapter
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Fig. 2. A.) ICD9 Diagnoses Codes Embedded in a two-dimensional space. B.) Examination of the
number of distinct relations for each ICD9 code. C.) Examination of the Correlation between the
number of distinct relations and hyperbolic distance.
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Table 2. Hyperbolic Distance comparison within Major, Sub-chapter and Chapter
Category ‘ In Category ‘ Outside of Category

Major 3.87 (1.71) | 5.89 (1.92)
Sub-chapter | 4.47 (1.73) | 5.89 (1.92)
Chapter | 4.91 (1.81) | 5.91 (1.94)

3.3. Comparison with Fuclidean Embeddings

To evaluate Poincaré embeddings against traditional euclidean embeddings, we compared the
2-dimensional Poincaré embeddings with 2, 10 and 100 dimension embeddings. The Poincaré
embeddings were trained on 10 million randomly selected members. Running the preprocessing
pipeline required 42 minutes on 16 cores but training the embeddings required only 49 seconds
on 16 cores. All euclidean embeddings were trained on more than 63 million members. Table
3 shows the ratios of the mean distances of ICD codes in the same category over ICD codes
in all other categories. We show the ratio to allow for comparison between Poincaré and
Euclidean distances. As the dimensionality of the euclidean embeddings increased, the ratio
of distance in-group vs. out of group decreased, indicating that the higher capacity enabled a
better representation. The 2-dimensional Poincaré embeddings compared most closely to the
100-dimensional euclidean embeddings.

Table 3 Distance (ratio) comparison between Poincaré (2-dimensional) and Euclidean (2, 10,
& 100-dimensional) within Major, Sub-chapter and Chapter.
Category ‘ Poincaire (2d) ‘ Euclidean (2d) ‘ Euclidean (10d) ‘ Euclidean (100d)

Major 0.657 0.758 0.668 0.649
Sub-chapter | 0.759 0.863 0.794 0.774
Chapter 0.831 0.894 0.856 0.830

3.4. Cohort Specific Embeddings

Finally, we trained two separate Poincaré embeddings on patients with either: 1.) no
prior diagnoses from the sub-chapter of metabolic disorders between ICD code 270 and
279 (N=10,000,000) and 2.) members diagnosed with obesity (ICD codes 278.00, 278.01,
N=3,377,267) to first visualize the differences in the context of type 2 diabetes mellitus (Figure
3). Because the Poincaré embedding model was trained in 2-dimensions this was done without
any further dimensionality reduction step.

We then examined the diseases in the closest quartile of either cohort to determine which
showed the greatest movement from type 2 diabetes (Table 4). Of note, 22 of the top 50 were
pain related and there are numerous links in the literature between both obesity (particularly
joint and fibromyalgia?5-27) and type 2 diabetes (particularly neuropathy?®) with pain.

4. Discussion and Conclusion

Machine learning has great potential to improve the delivery of healthcare to patients, but
many methodological challenges remain before this potential can be realized.??2° In this work,

14
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No Metabolic Disorder Sub-chapter Diagnoses Received Diagnosis for Obesity

Colorbar Colorbar
780-799 780-799
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740-759 740-759
710-739 710-739
680-709 680-709
630-679 630-679

580-629 580-629
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390-459 390-459
320-389 320-389
290-319 290-319
280-289 280-289

240-279 240-279

140-239 140-239

001-139 001-139

Fig. 3. A.) Poincaré Embeddings trained on 10M members with no metabolic disorder diagnoses
(centered on type 2 diabetes). B.) Poincaré Embeddings trained on 3.38M members diagnosed with
obesity (centered on type 2 diabetes).

Table 4. ICD9 Codes with the largest changes in distance from Type 2 Diabetes (250.00).

ICD Description
1 | 553.21 | Incisional hernia
2 | 786.09 | Other Respiratory Abnormalities
3 1599.0 | Urinary tract infection
4 | 285.9 | Anemia
5 | 571 Chronic Liver Disease
6 | 583.6 | Nephritis
7 | 724.5 | Backache, unspecified
8 | 710.5 | Eosinophilia myalgia syndrome
9 | 796.2 | Elevated blood pressure w/o hypertension
10 | 719.46 | Pain in Leg

we showed the increased capacity and hierarchical positioning of Poincaré embedding models
can be useful to learn representations of disease diagnosis codes. Two-dimensional Poincaré
embeddings were on par with 100-dimension euclidean embeddings when compared to the
human-defined ICD hierarchy. Importantly the extra capacity of Poincaré embeddings may
directly allow for visualization in a two-dimensional space, while traditional euclidean embed-
ding techniques require an additional dimensionality reduction step (PCA, t-SNE, UMAP).
Many of these techniques are non-deterministic and may not preserve global structure.

An important limitation of our current method is that the pre-processing step constructs
binary relations between concepts whenever they occur with a specified threshold (more than
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10 occurrences and 2% of cases). It is likely that additional information could be learned by
encoding the actual frequency between concepts. In addition, it could be useful to evaluate
additional distance matrices that have worked well for hierarchical problems in other domains,
such as pg-gram and Edit distance.?!

There are significant opportunities to expand on and apply these techniques to biomedical
domains in order to examine and consider phenotypic context when performing associations.
We are especially interested in the ability to contextualize a phenotype for association studies
by considering the way ICD code relationships change given comorbidities. For example, start
by measuring the way Poincaré embeddings change given a comorbidity (e.g. type 2 diabetes
given metabolic disorder). If there are significant changes, it may be helpful to design asso-
ciation studies to separate endpoints, for example diabetes with no prior metabolic disorders
and diabetes with prior metabolic disorders. In this case, the disease etiology may be distinct,
and therefore we would expect the potential for different genetic drivers.
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Electronic phenotyping is the task of ascertaining whether an individual has a medical
condition of interest by analyzing their medical record and is foundational in clinical in-
formatics. Increasingly, electronic phenotyping is performed via supervised learning. We
investigate the effectiveness of multitask learning for phenotyping using electronic health
records (EHR) data. Multitask learning aims to improve model performance on a target
task by jointly learning additional auxiliary tasks and has been used in disparate areas of
machine learning. However, its utility when applied to EHR data has not been established,
and prior work suggests that its benefits are inconsistent. We present experiments that
elucidate when multitask learning with neural nets improves performance for phenotyping
using EHR data relative to neural nets trained for a single phenotype and to well-tuned
baselines. We find that multitask neural nets consistently outperform single-task neural nets
for rare phenotypes but underperform for relatively more common phenotypes. The effect
size increases as more auxiliary tasks are added. Moreover, multitask learning reduces the
sensitivity of neural nets to hyperparameter settings for rare phenotypes. Last, we quantify
phenotype complexity and find that neural nets trained with or without multitask learning
do not improve on simple baselines unless the phenotypes are sufficiently complex.

Keywords: Electronic Health Records; Electronic phenotyping algorithms; Deep learning;
Multi-task learning.

1. Introduction

The goal of electronic phenotyping is to identify patients with (or without) a specific disease
or medical condition using their electronic medical records. Identifying sets of such patients
(i.e. a patient cohort) is the first step in a wide range of applications such as comparative
effectiveness studies,’? clinical decision support,>?* and translational research.’ Increasingly,
such phenotyping is done via supervised machine learning methods.68

Multitask learning (MTL) is a widely used technique in machine learning that seeks to im-
prove performance on a target task by jointly modeling the target task and additional auziliary
tasks.® MTL has been used to good effect in a wide variety of domains including computer vi-
sion,'® natural language processing,'!? speech recognition,'® and even drug development.'4!®
However, its effectiveness using EHR data is less well established, with prior work providing
contradictory evidence regarding its utility.'617

In this work, we investigate the effectiveness of MTL for phenotyping using EHR. Our pre-

(© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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Fig. 1. The architecture of a multitask neural net for electronic phenotyping is shown on the right:
the target task (shown in yellow) and the auxiliary tasks (shown in blue) share hidden layers and
have distinct output layers; for comparison, we show the corresponding single-task neural net on the
left with a single output layer for the target phenotype.

liminary studies recapitulated the inconsistent benefits found in prior work.'6:'7 We thus aimed
to elucidate the properties of the phenotypes for which MTL helps versus harms performance.

In this paper, we present a systematic exploration of the factors that determine whether
or not MTL improves the performance of neural nets for phenotyping with EHR data. Our
experiments suggest the following conclusions:

e MTL helps performance for low prevalence (i.e. rare) phenotypes, but harms perfor-
mance for relatively high prevalence phenotypes. Consistent with some prior work, there
is a dose-response relationship with the number of auxiliary tasks, with the magnitude
of the benefit or harm generally increasing as auxiliary tasks are added.

e MTL reduces the sensitivity of neural nets to hyperparameter settings. This is of prac-
tical importance when one has a limited computational budget for model development.

e Neural nets trained with or without MTL do not improve on simple baselines unless
phenotypes are sufficiently complex. However, learning more complex models can be
problematic with complex but low prevalence phenotypes. We explore this phenomenon
by quantifying phenotype complexity using information theoretic metrics.

2. Background
2.1. Multitask nets

Multitask Learning MTL seeks to improve performance on a given target task by jointly
learning additional auxiliary tasks. For instance, if the target task is whether or not a patient
has type 2 diabetes, one might jointly learn auxiliary tasks such as whether or not the patient
has other diseases such as congestive heart failure or emphysema. MTL is most frequently
embodied as a neural net in which the earliest layers of the network are shared among the
target and auxiliary tasks, with separate outputs for each task (see Figure 1). MTL was
originally proposed to improve performance on risk stratification of pneumonia patients by
leveraging information in lab values as auxiliary tasks.? It has since been used extensively
for health care problems such as predicting illness severity'® and mortality,!” and disease risk
and progression.'? 23 However, the reported benefits of MTL are inconsistent across problems.
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Fig. 2. Rule-based definitions for Type 2 Diabetes Mellitus from PheKB.3*

For example, Che et. al showed that MTL improved performance on identifying physiological
markers in clinical time series data,'® while Nori et. al concluded that MTL failed to improve
performance on predicting mortality in an acute care setting.!” Our aim in this study is to
clarify when one might expect MTL to help performance on problems using EHR data. We
focus specifically on the foundational problem of phenotyping, which we discuss next.

Electronic Phenotyping In this study, phenotyping is simply identifying whether or not a
patient has a given disease or disorder. The gold standard for phenotyping remains manual
chart review by trained clinicians, which is time-consuming and expensive.?* 26

This has spurred work on electronic phenotyping, which aims to solve the same problem
using automated means and EHR data as input. The earliest electronic phenotyping algorithms
were rule-based decision criteria created by domain experts.?42® Figure 2 shows an example
of a rule-based algorithm for type 2 diabetes mellitus. In this approach, identifying patients
with the phenotype can be automated once the algorithm is specified, but the latter process
is still time consuming and expensive.

More recent work has focused on using statistical learning®2933 to automate the process
of specifying the algorithm itself using the methods of machine learning (i.e. models such as
logistic regression, random forests, and neural nets). MTL is a particular method for doing
this better. Our goal in this work is not to maximize performance for some phenotype but
rather to gain insight into when MTL helps versus harms in this approach to phenotyping.

3. Methods
3.1. Dataset Construction and Design

Dataset Our data comprises de-identified patient data spanning 2010 through 2016 for
1,221,401 patients from the Stanford Translational Research Integrated Database Environ-
ment (STRIDE) database.®® Each patient’s data includes timestamped diagnosis (ICD-9),
procedure (CPT), drug (RxNorm) codes, along with demographic information (age, gender,
race, and ethnicity). We use a simple multi-hot feature representation whereby each ICD-9,
CPT, and RxNorm code is mapped to a binary indicator variable for whether the code occurs
in the patient’s medical history. We similarly encode gender, race, ethnicity, and each integer
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value of age. This process results in a sparse representation of 29,102 features.

Target Task Phenotypes Phenotyping with statistical classifiers is typically framed as a
binary classification task, which requires data labeled with whether or not the patient has
the phenotype. For this study, we derive the phenotypes using rule-based definitions from
PheKB,3¢ a compendium of phenotype definitions developed to support genome-wide associ-
ation studies. We focus on 4 phenotypes, chosen to span a range of prevalences. They are:
type 2 diabetes mellitus (T2DM), atrial fibrillation (AF), abdominal aneurysm (AA), and an-
gioedema (AE). The respective prevalences of these phenotypes in our data are 2.95%?, 2.89%,
0.12%, and 0.08%. We use these rule-based definitions to derive the phenotypes because they
are easy to implement, scalable and transparent — later we describe how we take advantage of
the rule-based definitions to gain insight into the effectiveness of MTL relative to baselines.

Auxiliary Tasks Our auxiliary tasks are to classify phecodes, manually curated groupings
of ICD-9 codes originally used to facilitate phenome-wide association studies.?” We randomly
select phecodes with prevalence between 0.08% and 2.95%, i.e. the lowest and the highest
target phenotype prevalences, as auxiliary tasks. We conduct binary classification on each
phecode and experiment with 5, 10, and 20 randomly selected phecodes as auxiliary tasks.

3.2. Experimental Design

We aim to investigate whether and under what circumstances MTL improves performance
upon baselines. Recent work suggests that we need to be careful in order to draw robust con-
clusions on the relative merits of machine learning, especially neural net based methods.38 4!

First, one typically randomly partitions data into training, validation and test sets. We fit
models to the training set, select or tune models using the validation set, and estimate perfor-
mance on new data using the test set. All three steps use finite samples and are thus subject
to noise due to sampling. This is especially true when data exhibit extreme class imbalance, as
is the case with our phenotypes. Second, the performance of even simple feed-forward neural
nets is known to be sensitive to hyperparameters such as the number of hidden layers and their
sizes. Finally, fitting neural nets is inherently stochastic due to random initialization of model
parameters and training by some variation of stochastic gradient descent. This, combined with
the highly non-convex nature of neural nets, implies that different training runs of a neural net
with fixed hyperparameters and dataset splits can still result in widely varying performance.*?

We thus designed our experiments to mitigate noise due to these factors. First, for each
phenotype, we perform ten random splits of the data into training (80%), validation (10%),
and test sets (10%). We use stratified sampling to fix the prevalence of the targets to the overall
sample prevalence in each of the training, validation and test sets. Second, for each of these
splits, we perform a grid search over these hyperparameters for the MTNN and STNN models:
we vary the number of hidden layers (1 or 2), their size (128, 256, 512, 1024, and 2048), and the
initial learning rate for the algorithm (le-4 and 5e-5). Moreover, we performed experiments

2The prevalence is low compared to the population prevalence of approximately 9% because the
rule-based definitions from PheKB are tuned for high precision at the cost of lower recall.
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varying the number of auxiliary tasks (in the form of 5, 10, and 20 nested, randomly selected
phecodes) for MTNNs by conducting the above grid search for each scenario. For each split,
we also fit an L1 regularized logistic regression model, tuned on the validation set. We use
the area under the Precision-Recall curve (AUPRC) as our evaluation metric since it can be
more informative than the area under the receiver operator characteristic curve (AUROC) in
problems with extreme class imbalance.*3

Phenotype Complexity Our experiments suggested that the complexity of the phenotype
is important in whether MTNNs and STNNs outperform well-tuned logistic regression. We
quantified the phenotype complexity with regard to a subset of the features upon which the
classifiers are builtP. If we had access to an oracle that told us which features of the patient
representation are important in determining a patient’s phenotype, we could characterize the
complexity of the phenotype with regard to the observed combinations of these features in the
positive cases. We could also compare the distributions of the positive and negative cases to ex-
amine how difficult it is to discriminate positive and negative cases given the relevant features.

Our phenotypes are derived from the rule-based definitions, which we use as such an oracle:
for each phenotype, we extract the features involved in its rule-based definitions (the oracle
features) and count occurrences of each distinct combination of these features observed in
the positive and negative cases. Each unique combination is represented as a binary string
with each digit indicating the presence or absence of an oracle feature. Since some of the
phenotype definitions involve very many combinations, we hash the combinations into a lower-
dimensional space, i.e. a fixed number buckets. Specifically, we use a hash function to map
the combinations (the variable-length binary strings) to a fixed number of hash codes (the
buckets). We obtain the counts in each bucket for the positive and negative cases and analyze
the resulting histograms using two information theoretic metrics.

Let x; be the vector of oracle features for bucket i. We summarize the phenotype complexity
of positive cases by treating the histogram as a discrete probability distribution and calculate
its information entropy,** defined as:

H(X) = Ex-p [log(x Zp (x) log(xi),

where n is the number of buckets. This metric summarizes the diversity of positive cases with
respect to the oracle features and is higher for more complex phenotypes.

We compare the distributions of the positive and negative cases using the Kullback-Leibler
(KL) divergence.*> For discrete probability distributions P+ and P~, the KL divergence from
P~ to Pt is defined as:

X.
Dy (PT | P7) ZP+ (x;) P+ ;

where n is the number of buckets®. P*(x;) and P~ (x;) are the normalized frequencies of bucket

PThere is no direct way to quantify the complexity of the rule-based definitions shown in Figure 2.
KL divergence does not admit zero probabilities so we use Laplace smoothing on the distributions
to deal with combinations that do not have mutual support.
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i for cases and controls respectively. KL divergence measures the dissimilarity between the
case and control distributions and is lower for the phenotypes that are harder to discriminate.?

Neural Net Details All neural nets used ReLU activations?® for the hidden layers and
Xavier initialization?” and were trained using Adam?®® with standard parameters (8, = 0.9
and By = 0.99) for 6 epochs®. We controlled overfitting with batch normalization and early
stopping on the validation set.

4. Experiments and Results

In this section, we present results that provide insight into the following questions:

e When does MTL improve performance relative to single-task models for phenotyping?

e How do the effects of MTL change with the number of phecodes as auxiliary tasks?

e How do the neural net methods compare with strong baseline methods, and what are
the characteristics of the tasks for which they provide some benefit?

4.1. When Does Multitask Learning Improve Performance?

We investigate the performance of MTNNs over a range of hyperparameter settings and over
multiple random splits of the data. MTNN performance is compared to the performance
of STNNs over the same hyperparameter settings and data splits. Figure 3 shows the op-
timal MTNN and STNN performance achieved on each split for the four phenotypes. We
find that MTNNs consistently outperform STNNs for the low prevalence phenotypes, i.e. an-
gioedema and abdominal aneurysm. In contrast, MTL harms performance for the relatively
high-prevalence phenotypes, i.e. T2DM and atrial fibrillation. The left plot in Figure 4 shows
the pairwise differences between MTNN and STNN optimal performance across the splits.

Moreover, the performance of STNNs is very sensitive to hyperparameter settings for the
low prevalence phenotypes, as illustrated by the large spread in AUPRC values (see Figure
3). In contrast, MTNNs are more robust to hyperparameter settings for these phenotypes. In
practice, tuning neural nets is time-consuming and finding an ideal model demands extensive
computation. MTL may increase our chance of finding a reasonable model, which is of practical
value when one has a limited computational budget on model space exploration.

4.2. Relationship Between Performance and Number of Tasks

We investigate how MTL is influenced by the number of auxiliary tasks as defined in the
form of phecodes. We trained MTNNs with nested sets of 5, 10, and 20 randomly selected
phecodes (i.e. the 5-phecode set is a subset of the 10-phecode set, and so on), and reported the
performance with the optimal hyperparameter setting for each split. The right plot in Figure
4 shows pairwise differences in AUPRC values between MTNNs and STNNs. For the low
prevalence phenotypes, more phecodes increases performance gains. Similarly, more phecodes

dPlease refer to https://arxiv.org/abs/1808.03331 for a more detailed description of our method.
*We found 6 epochs was sufficient for all models to converge.
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Fig. 3. MTNN and STNN performance for Angioedema, Abdominal Aneurysm, Atrial Fibrillation,
and Type 2 Diabetes Mellitus with various hyperparameter settings across the ten splits; the best case
MTNN and STNN performance is emphasized by the solid dots: the blue and red dots correspond
to MTNNs and STNNSs respectively.
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Fig. 4. The left plot shows the pairwise differences in AUPRC values of the optimal MTNNs and
STNNs for Angioedema, Abdominal Aneurysm, Atrial Fibrillation, and Type 2 Diabetes Mellitus
across the ten splits. The right plot shows the pairwise differences in AUPRC values of the optimal
STNNs and MTNNs with different number of phecodes as auxillary tasks.

for high prevalence phenotypes leads to more severe negative effects, though the scale of the
negative effects is smaller than the positive effects for low prevalence phenotypes!.

fThis dose-response relationship with the number of auxiliary tasks recapitulates the findings of
Ramsundar et al,'* but we find the relationship holds for both the benefit and harm of MTL.
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Fig. 5. MTNN, STNN, and LR optimal performance for Angioedema, Abdominal Aneurysm, Atrial
Fibrillation, and Type 2 Diabetes Mellitus across splits: the blue squares, the red triangles, and the
green dots correspond to MTNN, STNN, and LR respectively.

4.3. Comparison with Logistic Regression Baseline

In discussing the merits of MTL, it is important to also compare the performance against
simpler baseline methods in addition to single-task neural nets. We compare the performance
of the neural nets with L1 regularized logistic regression (LR), a consistently strong baseline for
EHR data®%0 (see Figure 5). LR is consistently outperformed by the neural nets for abdominal
aneurysm and type 2 diabetes mellitus, which are low and high prevalence respectively. For
angioedema, a low prevalence phenotype, performance relative to LR is inconsistent across the
splits, although MTNNs consistently beat STNNs. And for atrial fibrillation, a high prevalence
phenotype, MTNNs and STNNs provide little or no benefit over LR. Prevalence alone is
insufficient to account for the relative performance between both MTNN and STNN and LR.

4.4. Interaction between Phenotype Prevalence and Complexity

Our comparison of MTNNs and STNNs versus LR suggests that phenotype prevalence alone
cannot explain when neural nets outperform simpler linear models. We hypothesized that phe-
notype complexity also plays a role since neural nets with or without MTL can automatically
model non-linearities and interactions, while LR must have non-linearities and interactions
explicitly encoded in features. We leveraged the rule-based phenotype definitions to explore
this hypothesis and found evidence of an interaction between phenotype prevalence and com-
plexity.

Phenotype Complexity For each phenotype, we generated histograms of the observed com-
binations of the oracle features for the positive and negative cases (see Figure 6) and calculated
the information entropy of the positive cases and the KL divergence between the positive and
negative cases (see Table 1) as described in Methods 3.2.

We find that atrial fibrillation, a high-prevalence phenotype, has low entropy and high KL
divergence. With respect to the oracle features, all the positive cases are similar to each other,
while the positive and negative cases are very dissimilar to each other. A relatively simple
model should be able to capture this, explaining the observation that LR achieves comparable
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Fig. 6. Distributions of the combinations of the oracle features involved in the rule-based definitions
for Angioedema, Abdominal Aneurysm, Atrial Fibrillation, and Type 2 Diabetes Mellitus. The yellow
and blue bars correspond to the positive and negative cases respectively. The x-axes represent the
buckets of unique combinations of the oracle features: in our study, we use 32 buckets. Note that the
choice of 32 buckets was arbitrary and not tuned in any way.

Table 1. Phenotype Complexity

Phenotype Prevalence Entropy KL Divergence
Angioedema 0.08 % 3.233 0.930
Abdominal Aneurysm 0.12% 1.396 2.414
Atrial Fibrillation 2.89% 0.709 5.383
Type 2 Diabetes Mellitus 2.95 % 3.012 3.806

performance to MTNNs and STNNs for this phenotype.

Abdominal aneurysm, a low prevalence phenotype, and T2DM, a high prevalence pheno-
type, have higher information entropy and lower KL divergence values than atrial fibrillation.
Thus, the positive cases are more diverse and discrimination is more difficult than atrial fib-
rillation with respect to each phenotype’s oracle features. For these phenotypes, both MTNNs
and STNNs outperform LR — we benefit from more expressive models. However, whether
MTNNSs beat STNNs depends on prevalence.

Finally, angioedema has the highest entropy and lowest KL divergence — it is both the most
complex and hardest to discriminate of the four phenotypes. Complex phenotypes should
benefit from more expressive models. However, we observe that while MTNNs consistently
outperform STNNs, their performance relative to LR is inconsistent across splits. One possible
explanation for this behavior is that relative performance is sensitive to the assignment of
patients to training, validation and test sets: with such diverse cases and common support
with respect to the oracle features, it is much more likely for the test set to contain patients
unlike any seen in the training set.

5. Limitations

We have set out to investigate MTL and its effectiveness for electronic phenotyping. However,
our work has important limitations. First, we randomly select phecodes for auxiliary tasks,
but it has been argued that auxiliary tasks should be directly related to the target task.’! It
is possible that better auxiliary tasks would improve the benefit of MTL. Specifically, more
related phecodes might mitigate or eliminate the performance degradation observed for the
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high-prevalence phenotypes or inconsistent relative performance between MTNN and LR for
angioedema. However, the notion of task relatedness is underspecified so it is problematic to
compute in order to select auxiliary tasks. Indeed, in preliminary work we explored various
formulations of relatedness to select auxiliary tasks but found that none performed better than
random selection. One could ask domain experts to manually construct or pick auxiliary tasks
for specific phenotypes, but this is beyond the scope of this work. Moreover, it has also been
shown that the task relatedness is unnecessary for MTL to provide benefits.??> However, we
acknowledge that it is an interesting line of inquiry for future work to further explore how to
improve multitask learning for electronic phenotyping. Second, to address the unavailability
of large-scale ground truth phenotypes, we use rule-based definitions because they are trans-
parent and available, but we recognize that the phenomenon we observe may be artifacts of
the rule-based definitions. We also acknowledge the possibility that the observed phenomenon
might not generalize to other phenotypes; we focused on four phenotypes to conduct an in-
depth examination, sacrificing breadth. Finally, the rule-based phenotype definitions contain
predicates encoding temporal relationships, e.g., a drug code followed by a diagnosis code.
Our simple multi-hot feature representation does not encode temporal information. As a re-
sult, there is an upper bound on the performance of any statistical classifier using this feature
representation.

6. Conclusion

We have investigated the effectiveness of multitask learning on electronic phenotyping with
EHR data, aiming to elucidate the properties of situations for which MTL improves or harms
performance. We trained multitask neural networks to classify a target phenotype jointly with
auxiliary tasks drawn from phecodes. We found that MTL provided consistent performance
improvements over single-task neural networks on extremely rare phenotypes. However, for
relatively higher prevalence phenotypes, MTL actually reduced performance. In both cases,
the effect scaled with the number of auxiliary tasks as defined in the form of phecodes. More-
over, we found that MTL improved the robustness of neural networks to hyperparameter
settings for the extremely rare phenotypes, which is of practical value in situations when one
has a limited computational budget for model exploration. Finally, we analyzed phenotype
complexity to shed light on the relative performance of both MTNN and STNN versus well-
tuned L1 regularized logistic regression baselines and found evidence of an interaction between
phenotype prevalence and complexity. We showed that simple linear models are sufficient for
non-complex phenotyping tasks. More expressive models can substantially improve perfor-
mance for more complex phenotypes, but only if the data support learning them well, which
may be problematic for rare phenotypes.
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Electronic Health Records (EHR) contain extensive information on various health outcomes and
risk factors, and therefore have been broadly used in healthcare research. Integrating EHR data
from multiple clinical sites can accelerate knowledge discovery and risk prediction by providing a
larger sample size in a more general population which potentially reduces clinical bias and
improves estimation and prediction accuracy. To overcome the barrier of patient-level data sharing,
distributed algorithms are developed to conduct statistical analyses across multiple sites through
sharing only aggregated information. The current distributed algorithm often requires iterative
information evaluation and transferring across sites, which can potentially lead to a high
communication cost in practical settings. In this study, we propose a privacy-preserving and
communication-efficient distributed algorithm for logistic regression without requiring iterative
communications across sites. Our simulation study showed our algorithm reached comparative
accuracy comparing to the oracle estimator where data are pooled together. We applied our
algorithm to an EHR data from the University of Pennsylvania health system to evaluate the risks
of fetal loss due to various medication exposures.

Keywords: birth outcomes; distributed computing; meta-analysis; multi-site analysis; pregnancy;
prenatal; surrogate likelihood.

1. Introduction

1.1. Integrate evidence from multiple clinical sites

Electronic Health Records (EHR) contain information collected routinely as a part of clinical care.
These data include diagnoses, medications, procedures, imaging and clinical notes. Since 2009,
the use of EHR has grown tremendously across the nation. This allows for meaningful use of data
recorded there [1, 2]. Institutional data integration is a major trend in EHR-based research [3, 4].
Integrating data from different institutions or clinical sites allows us to obtain more meaningful
sample size and potentially accelerates knowledge discoveries in a more general population. In

" This work is supported in part by the University of Pennsylvania, and National Institutes of Health grants AI1116794,
DK112217, ES013508, HL134015, LM010098, LM011360, LM012601, TR001263, 1R01LM012607,
1R01AI130460, and the Commonwealth Universal Research Enhancement Program grant from the Pennsylvania
Department of Health.
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particular, for studying relatively rare events or conditions, such as complications from invasive
procedures, adverse events associated with new medications, association of disease with a rare
gene variant, and many others, integrating EHR data from different clinical sites is critical for
obtaining more accurate, generalizable and reproducible results [5S]. Moreover, because of the
healthcare process biases endemic in EHR, it is necessary to validate findings across multiple
sites. This allows for assessment of clinical practice bias (e.g., one drug is prescribed more
frequently at a particular hospital), race/ethnic disparities in populations that results in differences
in the exposure and/or the outcome at a given site and other types of biases that may be due to the
specific research database housed at a given institution [6].

To address these issues, the Observational Health Data Sciences and Informatics (OHDSI)
consortium was formed (https://ohdsi.org/) for the primary purpose of developing open source
tools that would be shareable across multiple sites. They also developed a Common Data Model
[7] to enable each site to map their local data to a common shareable framework. This allows for a
single script to be run across multiple sites without alteration. This simultaneously minimizes the
probability of a database translation error (when a script is translated from one database structure
to another to extract the same type of result) while speeding up the time to results.

Many studies have been conducted that have successfully utilized the OHDSI consortium,
including a treatment pathways study [8], a birth season — disease risk study [9, 10] and several
pharmacovigilance studies [11]. Using multiple sites allows researchers to study geographic
variation [8, 10], which can be caused by regional changes in pollution and other exposures [10].

1.2. Distributed Computing

One barrier of institutional data sharing is regularity and government challenge on privacy
protection [12]. In general, patient-level information with regards to important outcomes such as
presence/absence of a medical condition or important confounders such as comorbidities,
race/ethnicity, and age are not possible to share across institutions. As a consequence, current
multi-site studies that rely on consortia, such as the OHDSI consortium [8, 10] or the eMERGE
network (Electronic Medical Records and Genomics), can only utilize summary statistics that are
shared across institutions. This necessitates the use of meta-analysis methods to aggregate signals
from across the network [10].

As of 2018, the OHDSI consortium runs each script locally at a given institution and returns
results, typically summary statistics (p-values, effect estimates) to the primary investigator for a
given protocol. The Shared Health Research Information Network (SHRINE) has constructed a
federated query network whereby analyses are run through the network and results are returned to
the investigator [13]. If patient-level information were shareable in a privacy-preserving manner, it
would enable more sophisticated patient-level statistical modeling and analyses [14].

Distributed Computing is a strategy where a computational goal is achieved by distributively
computing its components from multiple sites. With data from multiple clinical sites, statistical
analyses can be performed distributively without sharing patient-level information. For example,
motivated by the pSCANNER project (patient-centered Scalable National Network for
Effectiveness Research), a distributed algorithm for conducting logistic regression, termed as
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GLORE (Grid Binary LOgistic Regression), was developed and deployed to pSCANNER
consortium [12, 15]. Another example was the WebDISCO (a web service for distributed Cox
model learning) method for fitting the Cox proportional hazard model [16] on EHR data from
multiple clinical sites without sharing individual patient-level data [17]. These methods proved the
utility and plausibility of a distributed privacy-preserving computing approach for obtaining
results from multiple sites while still adjusting for patient-level covariates [15].

Despite their usefulness and promise, as acknowledged by the investigators, the
aforementioned methods [12, 17] require iteratively transferring information across sites, which is
time-consuming and labor-intensive in practice. Such practical limitation could be one of the
barriers to adapt distributed algorithms in research consortia. This limitation motivated researchers
to develop non-iterative distributed algorithms [18, 19]. A recently published paper by Jordan et
al. proposed an innovative one-shot distributive computing framework, where the main idea is to
construct a surrogate likelihood function through the use of patient-level data from a local site and
aggregated information from other sites [20]. This idea was also proposed in distributed analysis
for high-dimensional regression with sparsity [21]. In this study, we exercise the surrogate
likelihood idea in logistic regression and develop a One-shot Distributed Algorithm to perform
Logistic regressions (termed as ODAL). A major advantage of the proposed method, inherited
from the merits of the surrogate likelihood [20], is that it only requires synthesizing summary
statistics from multiple clinical sites once. Compared to algorithms that require iterative
communication across sites, it is more practical to be deployed in research consortia.

2. Material and Method

In this section, we first present our motivating problem, then introduce our proposed method, and
describe the design of simulation studies for evaluating the performance of our method.

2.1. Clinical Cohort and Motivating Problem
We extract females treated at one of the hospitals and/or clinics that comprise the University of

Table 1. Demographics of Pregnancies Treated at UPenn Health System

Demographics Normal Pregnancy (N=30,810)  Fetal Loss (M=4,763) P-value
Race

White * 13911 (45.2%) 2291 (48.1%)

African American 12918 (41.9%) 1871 (39.3%)

Other 1916 (6.2%) 274 (5.8%)

Asian 2065 (6.7%) 327 (6.9%)
Age 29.40 32.15 <0.001
Weight (pounds) 126.26 11543 <0.001
Body Mass Index 19.06 16.61 <0.001

* For race, we only used a binary variable for white versus non-white

Pennsylvania health system (abbreviated as UPenn). UPenn clinics are located in the entire
Philadelphia Metropolitan area, which includes Delaware and Southern New Jersey. A pregnancy
is defined as ‘normal’ if the woman was coded with any of the Z34 ICD-10 codes or a V22 ICD-9
code. A pregnancy is labeled as ending in fetal loss if any ICD-9 code is used within 630 through
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639 or O00-008 in the ICD-10 system. A similar fetal loss definition was used previously [22].
We only include patients who were prescribed or listed as taking at least 1 of the top 100
prescribed medications within 1 year prior to the first diagnosis of either a fetal loss or a normal
pregnancy. The demographics of our cohorts are given in Table 1. P-values for differences
between the fetal loss cohort and the normal pregnancy cohort are determined using a t-test. The
variable race is dichotomized as white versus non-white in our models. The weight and BMI
variables are averages across an individual’s entire medical record. The statistics reported in Table
1 are excluding those with 0 weight or 0 BMI (i.e., indicating that no entries are available for those
parameters). However, because the average weight and BMI is computed across the individual’s
entire record the value is smaller for those with longer records containing null entries.

Our proof-of-concept study involves predicting pregnancy outcome: fetal loss versus normal
pregnancy. We include 4 relevant demographic covariates: age, race, Body Mass Index (BMI),
and weight. We include our ‘exposure’ term of interest — namely the medication exposure. We ran
our algorithm for each of the top 100 medications (ranked by drug prevalence) prescribed within 1
year prior to the pregnancy outcome while adjusting for the 4 demographic confounders. For
purposes of this study, we randomly assign each pregnancy id to one of ten clinic IDs to ensure
that an equal proportion of data is assigned to each of the ten clinics (approximately 3,557
pregnancies per clinic).

2.2. Algorithm

In this subsection, we introduce the distributed algorithm ODAL. First, we introduce the needed
notations. We denote Y to be a binary outcome and z to be a (p — 1)-dimensional vector, which
contains the exposure of interest and potential confounders to be adjusted in a regression model.
Let x = (1, z). Suppose we have N observations from K different sites. Without loss of generality,
we assume that each site contains n observations, noting that the algorithm also applies to sites
with unequal sample sizes. Let (x;j,Y;;) denotes the i-th observation in the j-th site. Under the
assumption of a logistic regression model, the log likelihood function for the combined data can
be written as

1
L(B) =+ Xy XitalVijxiB — log{(1 + exp(x;8)}],
where f is a p-diemsional vector including the regression intercept and coefficients. Since the
individual patient-level information is not allowed to be transferred across sites, we cannot obtain
L(B) directly. To tackle this challenge, we apply Taylor expansion on the log likelihood function
(1) around an initial value {3, and obtain
— — — o 1 . — — ®]
L(B) = L(B) + VL(B)(B = B) + X, 7'L(B) (B = B) .
Suppose we have full access to the data stored in a local site (without loss of generality, assume it
is the site 1). The log-likelihood at the local site can be written as

1
Li(B) = ~ X1 [YuxiiB — log{(1 + exp(x{1)}]- 2
Similarly, we can expand the local log likelihood function L, (8) around an initial value S,

L(B) = Li(B) +VLu(B)(B — ) + 2, VLi(B) (8 - £)®.
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Using the idea from Jordan et al. [20], higher order terms of the local likelihood L, (f) in (2) can
be used to approximate the higher order terms of the combined likelihood L(f) in (1), resulting in
the following surrogate likelihood function after dropping some constant terms,

LB) = Li(B) + {2y VLi(B) — VL1(B)} B, 3)
where VL, (B) = ~ X1y [Yy, — exp(xfiB) /{1 — exp (eI} -

B

o E-E
VL, (B) VLs(B) VLg(B)

L

> L) | > B

Figure 1. Schematic illustration of ODAL. Using data from the local site (i.e., site 1), the local estimator f is
calculated and transferred to other sites. The intermediate term VL; (,67 ) is then evaluated at each site j (j=2, ..., K) and
transferred back to the local site. Combined with VL, (ﬁ) and L, (B), we construct the surrogate function L(B) in the
local site and obtain the ODAL estimator § by maximizing L(B).

There are several notable features of the above surrogate likelihood. First, the terms L, (f) and
VLl(E) can be calculated using data from the local site. Secondly, the term VLk(,E) can be
computed from site k and transferred to the local site. Note that each VL k(ﬁ ) is with dimension p
and contains only aggregated information. Therefore, the information transferring maintains low
communication cost and is privacy preserving. The ODAL estimator is then obtained locally by
minimizing the surrogate likelihood function in equation (3), i.e.

f = arg mé;\xZ(,B).

Regarding the initial value 3, a nature choice of f is the maximum likelihood estimator of the
local likelihood L, (). A detailed algorithm is outlined below.

Algorithm: ODAL

1. Initial value: obtain § = argmax L () using data in the local site (i.e., site 1), where Ly () is the log
B

likelihood of logistic regression defined in equation (2)
Initial communication: transfer f to the other sites (i.e., sites 2, 3, ..., K)
Forj =2to K,
do  compute VL; (ﬁ), where L;(f) is defined similarly as in equation (2)
transfer VL; ([)7) to the local site
end
Compute the surrogate likelihood L(8) defined in equation (3)

NAawvm kW
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8. Obtain § = argmax L(B)
B

9. return f

2.3. Simulation Design

To evaluate the empirical performance of the ODAL method, we consider a setting where a binary
outcome is associated with two continuous risk factors and two binary risk factors. We generate
the two continuous variables from a standard normal distribution N(0,1) and a uniform
distribution U(0,1) respectively. The two binary variables are generated from Bernoulli
distributions with probability 0.1 and 0.5 respectively. Slightly different from the previous
notation, we let x denote the vector of all the risk factors. The outcome Y is generated from

Bernoulli distribution, with the conditional probability satisfying the logistic regression model,

logit(Pr(Y = 1|x)) = a + xTB,

where logit(p) = log {p/(1 —p)}, B is the vector of coefficients and a is the regression

intercept.
To mimic a distributed research network, we generate a total number of N subjects and
randomly divide them into K sub-datasets. The local dataset is set to be the first sub-dataset and
the number of subjects of the local dataset is n. We design the simulation study to investigate the
relative accuracy of the ODAL compared to the following two methods:
(1) the pooled estimator: the individual patient-level data pooled from all clinical sites are
used, which can serve as a gold standard for the best possible accuracy; i.e., the
estimate that maximizes the log likelihood in equation (1);

(i1) (i1) the local estimator: only individual patient-level data from the local site are used;
i.e., the estimate that maximizes the log likelihood in equation (2).

We use mean square error (MSE) to summarize the performance of the three estimators and

consider the following four scenarios:

A. We randomly generate data for N patients, and evenly divide them into 10 sites. We increase
N from 1000 to 10000. This reflects a setting where a network, such as PEDSnet (the National
Pediatric Learning Health System), contains a fixed number of pediatric hospitals, but the
number of patients increases over time and is updated quarterly [23].

B. We randomly generate data from K sites each has 1000 patients, and increase K from 2 to 100.
This is a setting where a consortium involves a growing number of clinical sites, and the
number of patients per site is relatively stable. For example, the Hospital Compare dataset
(https://www.medicare.gov/hospitalcompare/search.html) contains results from Meaningful
Use measures (e.g., 30-day readmissions) for increasing number of hospitals reporting those
measures, however the average hospital size remained relatively constant.

C. We randomly generate data for 10000 patients, and evenly divide them into K sites. We
increase K from 2 to 100. This setting is included to investigate the relative performance of the
ODAL for a small versus large number of clinical sites, while holding the total number of
patients fixed. Depending on how the data are stored in each hospital, the investigators may
choose to perform a distributive analysis on the hospital-level or on the clinic-level.
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D. We randomly generate data for 10000 patients divide them into 10 sites. The local site has
sample size n, and other 9 sites evenly split the rest of data. We increase n from 100 to 9100.
This setting is to investigate the performance of the ODAL when the relative size of the local
site, compared to the total number of patients, increases from a small percentage to a large
proportion. For example, OHDSI contains many sites of varying sizes from 0.5 million
patients to hundreds of millions of patients. Depending on where an investigator is located, the
‘local’ dataset will vary with regards to the proportion of the dataset as a whole.
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Figure 2. Mean square errors (MSE) of ODAL, the pooled and the local estimators under settings A, B, C and D. In
setting A (upper left panel), we evenly divide N subjects in to 10 sub-datasets, and increase N from 1000 to 10000. In
setting B (upper right panel), each site contains 1000 subjects and the number of sites K is then increased from 2 to
100. In setting C (lower left panel), we generate 10000 subjects, and evenly divide them into K sub-datasets, where K
increases from 2 to 100. In setting D (lower right panel), we generate 10000 subjects, and divide them into 10 sub-
datasets, where the local dataset has n subjects and the other 9 sub-datasets has the equal number of subjects. We
increase n from 100 to 9900.

3. Results

3.1. Simulation Results

Figure 2 presents the mean square errors of the ODAL, the pooled and the local estimators under
four different scenarios. Overall, it shows that in all considered scenarios, the ODAL provides
estimates with comparable accuracy as the best possible pooled estimates. In Setting A, where
number of sites is fixed and each site has relatively the same number of subjects, ODAL can reach
almost the same accuracy as the pooled estimator when total sample size is relatively large. When
total sample size is limited, ODAL can still provide much more accurate estimation than the local
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estimator (MSE of the local estimator is 15 times higher than MSE of ODAL when N = 1000).
This suggests that by borrowing simple gradient information VL, (B) from other sites, ODAL
gained substantial statistical efficiency compared to the estimate using the data at the local site
alone. Setting B shows that by borrowing information from more sites, the accuracy of estimation
increases. In addition, the ODAL and the pooled estimators provide estimates with negligible
difference in accuracy.

Setting C shows that by dividing a fixed number of subjects into increasing number of sites, as
expected, the performance of the pooled estimator stays the same. ODAL performs as good as the
pooled estimator when the number of sites is relatively small. With increasing number of sites,
ODAL has slightly increased amount of error, but is much more accurate compared to the local
estimator (MSE of the local estimator is 13 times of the MSE of the ODAL estimate when K =
100). The results from Setting C suggest that ODAL can guarantee reasonable accuracy even
when the number of sites are moderately large. Such investigation also provides quantitative
guidance on choosing between performing the distributed analysis at the clinic level (relatively
large number of sites) or the hospital level (relatively small number of sites). Setting D considers
the influence of number of subjects contained in the local sites on the accuracy of each methods.
As expected, the local estimator performs worse with smaller number of subjects in the local site.
The change of local sample size does not influence the performance of the pooled estimator since
the total sample size is fixed. Compared to the pooled estimator, the ODAL performs almost the
same where the ratio of MSE decreases from 1.22 to 1.00 with the increase of local sample size.
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Figure 3: Odds ratio estimates from the ODAL method (red triangles) and the pooled data (blue circles) for 100
medications and their associations with fetal loss. The 100 medications from left to right are sorted by their prevalence
in the population.
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The distributed algorithm GLORE, which leads to exactly the same estimate as the pooled
estimator, requires cross-site iterations until a convergence is reached. In our simulation, the
number of iterations to obtain the pooled estimates ranges from 6 to 10 using the glm() function in
R 3.4.1. In the case with more covariates involved, it may require larger number of iterations to
achieve convergence, which creates a substantial burden in communication across clinical sites.

3.2. Fetal Loss Prediction via ODAL

We apply ODAL to the EHR data described in Section 2.1 to evaluate the risks of fetal loss due to
various medication exposures. We include the top 100 medications prescribed within 1 year prior
to a normal pregnancy or fetal loss outcome. We randomly assign each of our pregnancies to 1 of
10 clinics to test the performance of ODAL. We include one medication at a time adjusting for
maternal age, race/ethnicity (collapsed to a binary variable of White versus non-White), weight
and BMI. Figure 3 compares the estimates from ODAL to the pooled estimator. The average
relative difference in the odds ratios between ODAL and the pooled estimator is 0.0046 across all
100 medications. This indicates that the result from ODAL is very close to the result that would be
achieved if all individual-level data are pooled together for the analysis.
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Figure 4: Odds ratio estimates from ODAL and the pooled estimator for the top 10 medications positively associated
(left panel) and negatively associated (right panel) with fetal loss. On the left panel, the ten medications are
misoprostol, acetaminophen codeine, doxycycline hyclate, oxycodone acetaminophen, ibuprofen, levonorgestrel,
medroxyprogesterone acetate, etonogestrel ethinyl estradiol, hydrochlorothiazide and norelgestromin eth estradiol. On
the right panel, the ten acronyms are referring to prenatal vitamins (without vit. A) with DHA, iron, folic acid and
docusate sodium; Prenatal vitamins with Iron fumarate, Folic Acid; Prenatal vitamin with Folic Acid and DHA; DHA;
Prenatal vitamins with Iron, Sulfate, and Folic Acid; Prenatal vitamin (without vit. A) with DHA, Folic Acid, Extra
Iron and Docusate sodium; Prenatal vitamins; Prenatal multi-vitamin with Folic Acid and minimum Iron; Prenatal
vitamins with Iron, Docusate sodium, and Folic Acid; Metoclopramide hcl. The letter on each medication shows the
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FDA assigned pregnancy category, where A, B and C means of no or unknown risk, D and X means of risk. N means
the medication is not assigned a category. Detailed interpretations can be found at
https://chemm.nlm.nih.gov/pregnancycategories.htm.

Figure 4 presents the top 10 medications that are positively associated (left panel) and bottom
10 medications that are negatively associated (right panel) with fetal loss. To compare our findings
with existing knowledge in the literature, we use information on the pregnancy safety of the drug
using the Food and Drug Administration (FDA)’s A-X category system. This information is
readily obtainable from drugs.com, a freely available online resource, for drugs and their various
therapeutic uses and effects (https://www.drugs.com/). Each drug’s FDA category is shown above
in Figure 4. Drugs in category A are drugs where no fetal risk has been observed in controlled
human studies, category B drugs are drugs with no evidence of fetal risk in animal models but
well-controlled human studies are lacking, category C drugs are drugs where fetal risk has been
shown in animal models but the effects are unknown in humans while category D and X are drugs
with known evidence of some fetal risk in humans and animals [24]. Of the top 10 drugs
associated with fetal loss Figure 4, six are either category D or X with known evidence of fetal
risk in the literature. Three drugs are category C pain relievers, two are drug combos of Tylenol
(acetaminophen) with an opioid (codeine or oxycodone) while ibuprofen is an over-the-counter
pain reliever. The only category A or B drug in the top 10 is hydrochlorothiazide (a diuretic that
treats hypertension), a category B drug. However, hydrochlorothiazide is considered a category D
drug, and contra-indicated in pregnancy, is used to treat pregnancy-related hypertension.
Therefore, there is likely a dosage that is fetal toxic. In the ten medications that are negatively
associated with fetal loss, we identify 8 types of prenatal vitamins with folic acid,
docosahexaenoic acid (DHA) and metoclopramide hcl. These findings are consistent with the
literature on the importance of prenatal vitamins to prevent early term miscarriages and fetal loss.
For example, it has been suggested by many studies that folic acid has positive impacts on
preventing early pregnancy loss [25]. In summary, the ODAL method leads to estimates that are
highly consistent with the pooled estimates, and the identified associations are also consistent with
our current understanding of these medications.

4. Discussion

The integration of EHR data from multiple healthcare databases increases statistical sample size
and heterogeneity of exposure, as well as reduces clinical bias and improves the power of
statistical analyses. The rise of large healthcare networks, such as ODHSI, pPSCANNER, SHRINE
and PEDSnet provide platforms for data integration and evidence synthesis [23]. To avoid sharing
individual-level information, distributed algorithms have been developed which can conduct
population-level analyses in a privacy-preserving manner. In this paper, we propose a novel
privacy-preserving and communication-efficient distributed algorithm to study binary outcomes
with a set of risk factors using logistic regression. As demonstrated by our simulation study and
the application to fetal loss data analysis, our algorithm provides a close approximation to the
pooled estimator where all patient-level information is pooled together.

The communication efficiency of our algorithm comes from two aspects. First, in contrast to
the existing iterative algorithms such as GLORE and WebDISCO, our algorithm does not require
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iterative communication across sites. This is crucial especially in the healthcare field where data
and information exchange often require large amount of administrative work and technical
support. On the other hand, the intermediate result that need to be transferred in the ODAL
method is only the first gradient of the likelihood function evaluated at an initial value, which is a
vector with dimension equal to the number of parameters p. In contrast, for algorithms such as
GLORE [12], in each iteration, the value of the second gradient of the likelihood function need to
be transferred, which is a pXp matrix. When studying a large amount of risk factors, for example
large number of potential confounders or genetic variations, the dimension of the matrices can be
big which might cause high communication cost for transferring the data.

On the other hand, ODAL requires access of individual patient-level data for one clinical site,
in order to construct the surrogate likelihood function. In situations where individual patient-level
data are inaccessible in any site, GLORE is preferred.

The OHDSI consortium consists of many partner institutions where patient-level data sharing
is not permissible as this often conflicts with regional legislation. In this instance an individual
researcher may have patient-level data available at their given site, but then would deploy their
algorithms at other sites without having access to the patient-level data. For these situations
ODAL is ideal because aggregated information from other sites is only borrowed once without
having access to the patient-level data in those countries and regions where that is impermissible.

Deploying ODAL within OHDSI and other large consortia would enable us to further validate
our findings with regards to medications taken within 1-year prior to normal pregnancy or fetal
loss diagnoses. Validation of these results and also larger scale assessment of medications that
potentially increase the risk of fetal loss is still much needed. Algorithms have been developed to
assess the fetal effect of category C medications [22], but these can often be limited by
confounding and other local institution-specific biases. Use of ODAL across a large international
consortium such as OHDSI would propel adequate assessment of each drug’s fetal toxicity even
for those where the effects remain unknown (i.e., category C medications).

In the future, we are planning to extend our method to other types of outcomes, such as
continuous, categorical, and time-to-event data. Furthermore, we are developing open-source
software packages for directly implementing ODAL on distributed networks. We believe that our
algorithm can be a good complement to the existing distributed algorithms.
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The accurate detection of premature ventricular contractions (PVCs) in patients is an im-
portant task in cardiac care for some patients. In some cases, the usefulness to physicians in
detecting PVCs stems from their long-term correlations with dangerous heart conditions. In
other cases their potential as a precursor to serious cardiac events may make their detection
a useful early warning mechanism. In many of these applications, the long-term nature of
the monitoring required and the infrequency of PVCs make manual observation for PVCs
impractical. Existing methods of automated PVC detection suffer from drawbacks such as
the need to use difficult to extract morphological features, domain-specific features, or large
numbers of estimated parameters. In particular, systems using large numbers of trained
parameters have the potential to require large amounts of training data and computation
and may have issues generalizing due to their potential to overfit. To address some of these
drawbacks, we developed a novel PVC detection algorithm based around a convolutional
autoencoder to address these weaknesses and validated our method using the MIT-BIH
arrhythmia database.

Keywords: Electrocardiogram; Premature Ventricular Contraction (PVC) Detection; Au-
toencoder.

1. Introduction

Electrocardiograms (ECGs) are a useful and noninvasive diagnostic and monitoring tool in
cardiac care.! One significant application of ECGs in cardiology is their use in the monitoring
and treatment of arrhythmias. Premature Ventricular Contractions (PVCs) are a common
arrhythmic beat type that occurs commonly in many patients, including individuals with
good cardiac health.? However, when they occur in large numbers or with high frequency in
patients with other risk factors, PVCs can be associated with serious cardiac problems and
may precede heart attacks or sudden cardiac death in rare cases.? As a result, the automated
detection of PVCs in ECG records would allow information about their long-term frequency to
be tracked over time, providing a new means to track the trends in a patient’s cardiac health
as well as potentially providing an early warning of events requiring swift medical attention.

There are several main categories of approaches to feature extraction for the automated
detection of PVCs: 1) morphological and timing features extracted from the ECG signal®®

(© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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and 2) time-frequency features such as wavelet transforms of the ECG signal.%" In addition
to these two main approaches to PVC detection, there are methods utilizing other approaches
to the connected problems of feature extraction and beat classification,® Markov models,
independent component analysis,” and autoencoders.'?

Geddes and Warner? used R-R interarrival time, QRS complex duration, and signal slope
during several sections of the QRS complex as features in their detection system. They made
classification decisions based on a manually constructed decision tree. This allowed for compu-
tationally simple evaluation of a QRS complex but sacrificed adaptibility and required heuristic
tuning and domain specific knowledge of the PVC detection problem to adjust the classifier.
Trahanias et al.* used a number of structural descriptors to create a syntactic description
of the QRS complex. After this syntactic description was created, they used a normalized
distance metric to form classes of QRS complexes, which were found to correspond to some
clinically significant classes of heartbeats. However, this method did not lead to a direct and
useful classification of the QRS complex. Zadeh et al.? used a total of 10 morphological features
and 3 timing features extracted from the signal of a detected QRS complex. They compared
several kinds of classifiers including MLP neural networks, RBF neural networks, probabilistic
neural networks, and support vector machines. In addition to detecting PVCs, they used their
classification system to identify non-PVC arrhythmias.

In all of these approaches, significant domain knowledge was used to determine feature sets
and detection accuracy was dependent on the classification of different parts of the QRS com-
plex for segmentation and measurement. It is desirable to avoid these issues by using a more
general and robust method of feature extraction. Ham and Han® used two estimated linear
prediction coefficients in combination with the mean squared value of the signal as features
for classification. They used a fuzzy ARTMAP neural network to perform the classification.
Lim” used a discrete wavelet transform with the Haar wavelet to generate a feature vector
and used a fuzzy neural network for classification. While these approaches still require manual
feature selection, the specific features extracted are less domain specific and do not require
segmentation of the QRS complex to calculate.

One approach to avoid the challenges associated with engineering a problem-specific fea-
ture set is to use feature learning approaches such as independent component analysis or
autoencoders to extract a feature set that is able to describe much of the information content
of a signal in a low-dimensional latent space.!'’ Yu and Chou® used independent component
analysis to identify and extract a set of features, which were combined with QRS complex
timing information to create the full feature set passed to their neural network classifier. Yang
et al.’0 used a sparse autoencoder (SAE) to generate a feature vector for classification. This
resulted in a large number of estimated network weights, which increased the computation
and data required to train the network and increased the potential for overfitting.

The primary aims of this study are to develop a system for the detection of PVCs in ECG
data that does not rely on manually selected features and has fewer parameters to be estimated
than existing SAE methods. These improvements will reduce the possibility of overfitting and
improve the generalization of the detection system. For this purpose, we used an autoencoder
architecture based on convolutional layers to extract and select features for use in classifying
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beats. Our architecture is differentiated from existing convolutional autoencoders (CAEs)!?
by its multi-stage encoding process, which allows it to encode information about the frequency
content of a signal at different points in time.

2. Methods
2.1. Data Set and Implementation

We used ECG records from the MIT-BIH arrhythmia database annotated with beat locations
and types.'? This database consists of 48 30-minute 2 channel ECG records sampled at 360 Hz.
Only channel 1 of the ECG was used for PVC detection because in the MIT-BIH arrhythmia
database this signal is a modified limb lead II, which has clearer signals for non-ectopic beats
than the modified lead V1 available on channel 2. As much of the information content of
a QRS complex is centered on the R peak, the ECG signals obtained from the database
were segmented based on the annotated R peaks, with 89 samples before and 160 samples
after each annotated R peak extracted for feature calculation. In application outside the
MIT-BIH database, this means we assume the QRS complexes are reliably detected before
being passed to our detection system. We then removed the mean from each segmented QRS
complex to reduce the impact of baseline drift, variations in instrumentation, and differences
across patients. The PVC detection system was implemented in Python using the Keras,*
TensorFlow,!® and scikit-learn'® libraries.

2.2. Proposed PVC Detection Method

A convolutional autoencoder (CAE)!? was used to extract and select features for classification
automatically and in an unsupervised manner from ECG data annotated with beat locations.
This reduced the need for domain-specific knowledge as compared to manual feature selection.
Compared to a SAE, a CAE reduces the number of weights that need to be trained, increases
the robustness of the features extracted when the window alignment of the beats being pro-
cessed is variable, and takes advantage of the structure of the ECG signal in its architecture.
We used a Random Forest Classifier to perform the final PVC detection due to its resistance
to overfitting and its performance with the indistinct groupings of PVC and non-PVC beats.
Our system architectures for training the CAE and Random Forest Classifier are shown in
Figure 1, while our classification architecture is shown in Figure 2. Examples of normal beats
and PVCs are given in Figure 3

2.2.1. Feature Extraction

An autoencoder is a neural network that encodes its input to a latent space representation
attempts to decode this representation to recover the inputs.'” In a CAE, the layers responsible
for encoding and decoding the latent space are convolutional, using shared weights to kernels
to extract features from their input. After the network has been trained, the encoding layers
alone can be used to reduce the dimensionality of the input data for further processing.

In the proposed PVC detection method, two convolutional layers with linear activations
were used to encode the input to the CAE. The first of these layers generated n kernels of
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order m to extract different features from the input. A stride length of k& was used in this
layer to downsample the input, reducing its dimensionality. The second convolutional layer
generated a single kernel to compute a linear combination of the outputs of the previous
layers kernels at each point. This second layer serves as a feature selection stage. As a result,
each feature in the latent space representation of the input corresponds to a combination of
all features extracted in the first layer from a continuous subset of the input. This provides
information on the frequency components of the ECG signal most important for creating an
accurate reconstruction of the original signal as well as some degree of temporal localization
within the signal. This allows the encoded representation to contain distinct information about
various stages in the progression of the QRS complex without the need to explicitly define
and detect these stage, simplifying the PVC detection process in comparison to methods using
morphological features of the QRS complex.
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We used transposed convolutional layers to decode the latent space representation gen-
erated by the encoder. These layers have the same connectivity and dimensionality as the
encoding layers but are reversed. This results in an output matching the dimensionality of
the input to the CAE and allows us to train the network to replicate its inputs. In operation,
only the encoding side of the network was used to generate the features used in classification.
The resulting network architecture is shown in Figure 4.
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L p ‘ Convolutional Encoded Feature Input
aye Outputs Representation Channels
First Stage Final
Convolution Transposed

onvolution

Convolution Tl’anSpos_ed
Across Convolution

Channels Across
Channels
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Fig. 4. Convolutional Autoencoder Architecture

For this application, the length of signal extracted around each beat even was 250 samples,
with 89 samples before the annotation and 160 samples after the annotation. These values were
selected because they were found to provide generally acceptable classification performance
and allowed for a more direct comparison with the PVC detection system described by Yang
et al.' An n value of 25 provided a sufficient number of base features for the following layer to
perform feature selection on. An m value of 20 provided sufficiently complex filters to extract
a wide range of characteristics from the signal. A k value of 10 allowed the final feature vector
to be of dimension 25. This was found to provide sufficient segmentation of the input signal in
time while also being of low enough dimensionality to allow for adequate classifier performance.
The CAE was trained using an ADAM optimizer as described by Kingma and Ba'® with a
learning rate of 0.01 and a mean squared error loss function: MSE = 1 3% (V; — Y;)?, where
Y is the input to the autoencoder and Y is the output of the autoencoder.
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2.2.2. Classification

We used a Random Forest Classifier as described by Breiman.!® The random forest used
in this detection system consisted of 10 decision trees with Gini impurity as their splitting
criterion. Gini impurity is the probability that a randomly selected element in a set would
be mislabeled if labeled at random.!® For J classes with probability of selection p, the Gini
impurity of a set is given by Ig =1— Z;]:l p7. The features used to split each node of the tree
were randomly determined. The classifier also used bagging to avoid overfitting, using a set
of training examples of the same size as the full dataset sampled without replacement as the
training dataset for each random tree. The Random Forest Classifier was chosen due to its
low number of parameters, its resistance to overfitting, and its ability to handle fuzzy group
boundaries in comparison to support vector methods, neural networks, and other common
classifiers.

3. Results

We evaluated our method with 3 tests. First, we tested its performance when provided with
ample training data including samples from each record. Next, we added a randomized error
to the R peak location used in segmentation to simulate inaccurate QRS detection. Finally,
we provided our system with training data that included no beats from the records used
for testing to evaluate its ability to generalize to new patients. Each of these tests was also
performed using a SAE to provide context to the performance of the CAE. In addition to
the testing we performed, we examined the number of estimated weights and the number of
training epochs necessary for convergence in both the CAE and SAE architectures.

3.1. Full Database Evaluation

We evaluated the classification system using the MIT-BIH arrhythmia database. Half of the
beats from each record were selected as training data and the remainder were used as testing
data. This resulted in a training set consisting of 54,695 beats with 3,495 PVCs and a testing
set consisting of 54,675 beats with 3,633 PVCs. The results of this testing are shown in
Table 8 with information for each record. A SAE similar to one described by Yang et al.'?
was constructed, with the sparsity imposed by L1 regularization instead of the Kullback-
Leibler divergence derived regularization described, to compare the feature extraction provided
by the CAE to that provided by an existing alternative architecture. A comparison of the
performance of these two architectures is provided in table Table 1 and Table 2. This evaluation
demonstrates that the CAE provides similar performance to the SAE when ample training
data is available, with a difference in overall accuracy of 0.2%. However, the PVC sensitivity
of the CAE is 4.88% higher than that of the SAE, meaning that fewer PVCs are missed by
the CAE. This is desirable given the relative rarity of PVCs, although the importance of
sensitivity and specificity will need to be evaluated for individual applications.

3.2. Twmang Disturbance FEvaluation

As QRS detection is necessary to the identification and segmentation of potential PVCs for
processing by a PVC detection system, this property makes resistance to small shifts in the
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Table 1. MIT-BIH Full Database Comparative Evaluation

Architecture | Correct PVC Sensitivity PVC Specificity

CAE 98.43 85.64 98.90
SAE 98.23 80.76 99.07

Table 2. Full Database CAE and SAE Confusion Matrices

CAE SAE
True Normal True PVC | True Normal True PVC

Detected Normal

Detected PVC 559 3334 477 3144

50483 299 50565 489

precise placement of the annotation within the beat desirable. We evaluated this robustness
by applying a random shift of up to 36 samples to each beat, corresponding to a detection
error of up to 100 milliseconds. The results of this testing on the CAE are shown in Table 9
with information for each record, while a comparison of the performance of the CAE and SAE
architectures under these conditions is presented in Table 3 and Table 4. This shows that the
CAE suffers a 0.83% reduction in PVC sensitivity as a result of this shifting, while the SAE
suffers a 4.26% reduction in PVC sensitivity. This results in a total sensitivity improvement
for the CAE of 8.43% relative to the SAE under these conditions.

Table 3. MIT-BIH Full Database Disturbed

Architecture | Correct PVC Sensitivity PVC Specificity

CAE 97.60 84.93 98.42
SAE 97.17 76.50 97.66

Table 4. Full Database CAE and SAE Disturbed Confusion Matrices

CAE SAE
True Normal True PVC | True Normal True PVC

Detected Normal
Detected PVC

50542 810 50708 1217
501 2823 335 2416

3.3. Cross-Patient Training Evaluation

In an applied setting, it may not always be practical to obtain annotated training data from
a patient to train any monitoring system. As a result, system performance when trained only
using data obtained from other individuals is potentially important to the practical utility
of any PVC detection method. We evaluated this performance metric by training both PVC

48



Pacific Symposium on Biocomputing 2019

detection systems using all beats in two ECG records and testing on all beats in four ECG
records. All such combinations of records 116, 208, 210, 221, 228, and 233 in the MIT-BIH
database were used to evaluate model generalization. We chose this subset of the MIT-BIH
database because testing all combinations of records in the entire dataset is impractical and
because it was selected as representative of the database by Ham and Han.® The averages of
these results are given in Table 5, while Table 6 provides confusion matrices of the aggregated
results. These show that the CAE provides 1.01% higher overall accuracy and 4.71% higher
PVC sensitivity than the SAE. This meets our expectation that a reduced number of trained
weights in the autoencoder would improve performance with reduced amounts of training data
as well as improve the ability of the detection system to generalize to new data.

Table 5. MIT-BIH Restricted Training Cross-Validation

Architecture | Correct PVC Sensitivity PVC Specificity

CAE 87.80 86.56 88.09
SAE 86.79 81.85 87.91

Table 6. Cross-Validation CAE and SAE Confusion Matrices

CAE SAE
True Normal True PVC | True Normal True PVC

Detected Normal

Detected PVC 15109 24956 15331 23596

111721 3874 111499 5234

3.4. Estimated Parameters and Convergence

Our convolutional autoencoder architecture used 83.43% fewer network weights due to the
weight sharing inherent in convolutional networks. For the 54695 example training set used
in 3.1 and 3.2, this resulted in a decrease in the number of training epochs necessary for
convergence from 5 to 1.

Table 7. Network Weights

Architecture | Estimated Weights

CAE 1702
SAE 10270
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Table 8. MIT-BIH Full Database CAE Performance

Record Beats Normal PVC Correct Sensitivity Specificity

100 1135 1134 1 100.000 100.000 100.000
101 931 931 0 100.000 — 100.000
102 1092 1090 2 100.000 100.000 100.000
103 1040 1040 0 99.904 — 99.904
104 1113 1112 1 100.000 100.000 100.000
105 1285 1272 13 95.642 46.154 96.148
106 1012 673 339 96.542 89.676 100.000
107 1067 1020 47 99.438 87.234 100.000
108 880 873 7 99.432 28.571 100.000
109 1264 1242 22 81.487 77.273 81.562
111 1061 1061 0 99.811 — 99.811
112 1268 1268 0 100.000 — 100.000
113 896 896 0 100.000 — 100.000
114 938 936 2 100.000 100.000 100.000
115 975 975 0 100.000 — 100.000
116 1204 1158 46 99.917 97.826 100.000
117 766 766 0 100.000 — 100.000
118 1138 1130 8 99.385 25.000 99.912
119 992 747 245  100.000 100.000 100.000
121 930 929 1 99.785 0.000 99.892
122 1236 1236 0 100.000 — 100.000
123 758 756 2 100.000 100.000 100.000
124 808 789 19 98.886 52.632 100.000
200 1299 817 482  97.614 93.568 100.000
201 980 860 120 99.388 95.833 99.884
202 1066 1064 2 99.812 50.000 99.906
203 1489 1283 206 97.851 90.777 98.987
205 1326 1280 46 99.623 89.130 100.000
207 929 925 4 87.836 100.000 87.784
208 1476 1024 452 97.900 98.894 97.461
209 1501 1501 0 100.000 — 100.000
210 1323 1212 111 97.279 68.468 99.917
212 1372 1372 0 100.000 — 100.000
213 1624 1517 107 98.153 93.458 98.484
214 1129 1006 123 97.874 81.301 99.901
215 1680 1598 82 98.452 68.293 100.000
217 1103 1037 66 99.547 95.455 99.807
219 1076 1044 32 99.257 75.000 100.000
220 1022 1022 0 100.000 — 100.000
221 1212 1051 161 99.917 99.379 100.000
222 1240 1240 0 100.000 — 100.000
223 1301 985 316 96.772 88.291 99.492
228 1025 877 148 98.829 91.892 100.000
230 1127 1126 1 99.379 100.000 99.378
231 784 784 0 100.000 — 100.000
232 889 889 0 100.000 — 100.000
233 1538 1122 416 98.635 96.154 99.554
234 1375 1372 3 99.709 0.000 99.927

Total 54675 51042 3633  98.548 91.412 99.056
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Table 9. MIT-BIH Full Database CAE Disturbed Performance

Record Beats Normal PVC Correct Sensitivity Specificity

100 1135 1134 1 99.912 0.000 100.000
101 931 931 0 100.000 — 100.000
102 1092 1090 2 99.817 50.000 99.908
103 1040 1040 0 100.000 — 100.000
104 1113 1112 1 100.000 100.000 100.000
105 1285 1272 13 93.541 23.077 94.261
106 1012 673 339  89.526 68.732 100.000
107 1067 1020 47 99.157 80.851 100.000
108 880 873 7 99.091 28.571 99.656
109 1264 1242 22 78.006 45.455 78.583
111 1061 1061 0 100.000 — 100.000
112 1268 1268 0 100.000 — 100.000
113 896 896 0 100.000 — 100.000
114 938 936 2 100.000 100.000 100.000
115 975 975 0 100.000 — 100.000
116 1204 1158 46 99.917 97.826 100.000
117 766 766 0 100.000 — 100.000
118 1138 1130 8 99.297 25.000 99.823
119 992 747 245 99.899 99.592 100.000
121 930 929 1 99.785 0.000 99.892
122 1236 1236 0 100.000 — 100.000
123 758 756 2 100.000 100.000 100.000
124 808 789 19 98.020 15.789 100.000
200 1299 817 482 95.766 88.589 100.000
201 980 860 120 97.449 79.167 100.000
202 1066 1064 2 99.906 50.000 100.000
203 1489 1283 206 95.433 76.214 98.519
205 1327 1281 46 99.171 76.087 100.000
207 929 925 4 95.048 100.000 95.027
208 1476 1024 452 96.206 95.354 96.582
209 1501 1501 0 100.000 — 100.000
210 1323 1212 111 93.878 28.829 99.835
212 1372 1372 0 99.927 — 99.927
213 1624 1517 107 97.845 85.047 98.748
214 1129 1006 123 93.711 47.154 99.404
215 1680 1598 82 96.845 35.366 100.000
217 1103 1037 66 98.368 84.848 99.229
219 1076 1044 32 98.792 84.375 99.234
220 1022 1022 0 100.000 — 100.000
221 1212 1051 161 99.752 98.137 100.000
222 1240 1240 0 99.919 — 99.919
223 1301 985 316 87.855 50.949 99.695
228 1025 877 148 97.268 81.081 100.000
230 1127 1126 1 99.734 100.000 99.734
231 784 784 0 100.000 — 100.000
232 889 889 0 100.000 — 100.000
233 1538 1122 416 95.904 85.817 99.643
234 1375 1372 3 99.782 33.333 99.927

Total 54676 51043 3633  97.608 77.814 99.017
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4. Discussion

We developed a system for the detection of PVCs in ECG data annotated with beat locations
using a CAE. This provided comparable performance to a SAE architecture for the task
with reduced training time due to its reduced number of parameters. The CAE provided
improvements in the resilience of the PVC detection system to beat detection timing variance
and improved detection performance when trained using ECG records from different patients.

Some limitations of this approach to PVC detection include the computational complexity
of representation learning methods as compared to manual feature engineering and the lack
of direct and unambiguous physical or medical significance for the features extracted by the
system. There is also no guarantee that homologous features will be generated by training on
different ECG data, which precludes the possibility of retraining the convolutional autoencoder
without also retraining the final classifier.

The relatively low number of parameters in our model make it well suited to implementa-
tion on the limited hardware available in an applied setting while not relying on potentially
unreliable QRS segmentation or features that are difficult to measure or compute in real
time. In addition to its advantage in computational expense, the improvement provided by
our autoencoder architecture in cross-patient generalization is of significant importance in
the application of a PVC detection system to real patients, where it may be impractical or
impossible to obtain a sufficient amount of expert-annotated training data.

Based on the performance of this system, we envision the extension of our CAE architecture
to facilitate the detection of other arrhythmias in ECG data. Another potential avenue for
future work with this autoencoder architecture is to take advantage of its small number of
trained parameters to allow the model to be retrained on the spot based on a subset of available
annotated ECG records most similar to a sample of the ECG data from the current patient.
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The proliferation of healthcare data has brought the opportunities of applying data-driven
approaches, such as machine learning methods, to assist diagnosis. Recently, many deep
learning methods have been shown with impressive successes in predicting disease sta-
tus with raw input data. However, the “black-box” nature of deep learning and the high-
reliability requirement of biomedical applications have created new challenges regarding the
existence of confounding factors. In this paper, with a brief argument that inappropriate
handling of confounding factors will lead to models’ sub-optimal performance in real-world
applications, we present an efficient method that can remove the influences of confounding
factors such as age or gender to improve the across-cohort prediction accuracy of neural
networks. One distinct advantage of our method is that it only requires minimal changes of
the baseline model’s architecture so that it can be plugged into most of the existing neu-
ral networks. We conduct experiments across CT-scan, MRA, and EEG brain wave with
convolutional neural networks and LSTM to verify the efficiency of our method.

Keywords: neural networks, healthcare, confounding factor correction

1. Introduction

The increasing amount of data has led healthcare to a new era where the diagnosis can be made
directly from raw data such as CT-scan or MRI with data-driven approaches. Machine learning
methods, especially deep learning methods, have achieved significant successes in biomedical
and healthcare applications, such as classifying lung nodule,! breast lesions,? or brain lesions?
from CT-scans, segmentation of brain regions with MRI,*® or emotion classification with EEG
data.b”

However, different from how deep learning has revolutionized many other applications, the
“black-box” nature of deep learning and the high-reliability requirement of healthcare indus-
try have created new challenges.® One of these challenges is about removing the false signals
extracted by deep learning methods due to the existence of confounding factors. Acknowledg-
ing the recognition mistakes made by neural networks? ' and empirical evidence that deep
neural networks can learn signals from confounding factors,'? it is likely that a well-trained
deep learning model will exhibit limited predictive performance on external data sets despite
its high predictive power on lab collected data sets. The hazard of inappropriate control of

(© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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Fig. 1: An illustration of the empirical contribution of this paper. From left to right, 1)
lung adenocarcinoma prediction from CT-scan with CNN, where contrast material is the
confounding factor, 2) heart right ventricle segmentation from CT-scan with U-net, where
subject identification is the confounding factor, 3) students’ confusion status prediction from
EEG signals with Bidirectional LSTM, where the students’ demographic information is the
confounding factor, 4) brain tumor prediction from CT-scan/MRA with CNN, where gender
associated information is the confounding factor.

confounding factors in healthcare-related science has been discussed extensively,'3 15 but these
discussions are mainly in the scope of causal analyses or association studies.

In addition to a very recent result showing that confounding factors can adversely affect
the predictive performance of neural network models,'® we offer a straightforward example
as another motivation: a neural network predictive model for Hodgkin lymphoma diagnosis
is trained on a data set collected from young volunteers with high predictive performance,
but when the model is applied to the entire society, it may report more false positives than
expected. One of the reason could be that the gender ratio reverses toward adolescence in
Hodgkin lymphoma,!” and a model trained over data collected from young volunteers is very
likely to learn a different gender bias than what is expected in a data collected different
age groups. In fact, even if the gender ratio does not change along the aging process, it is
still inappropriate for a model to predict based on features related to gender because these
features are not directly associated with disease status. As another example, skin cancer!® and
colorectal cancer' are also observed with gender bias, and it is already observed that there is a
higher false negative rate in colorectal cancer diagnosis for women'® with traditional methods.
Confounding factors do not just exist in the forms of gender. Also, it is observed that other
factors, such as age,?° or demographic information,?! will affect the model’s performance if not
handled appropriately. Considering that the generalization theory of neural networks is still
an open research topic and people are unsure of how neural networks predict, it is particularly
important to design methods to handle the influence of these confounding factors explicitly.

In this paper, inspired by previous de-confounding techniques applied to deep learning
models,'? we propose a Confounder Filtering (CF) method. A distinct advantage of our method
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is that CF directly builds upon the original confounded neural network with a minimal change
that replaces the original top layer with a layer that predicts the confounding factors. Further,
we apply our methods to a broad spectrum of related tasks, such as:

e improved lung adenocarcinoma prediction with convolutional neural networks (CNN)
by removing contrast material as confounding factors.

e improved heart right ventricle segmentation with U-net by removing subject identifi-
cations as confounding factors.

e improved students’ confusion status prediction with Bidirectional LSTM by removing
students’ demographic information as confounding factors.

e improved brain tumor prediction with CNN by removing gender associated information
as confounding factors.

We have observed consistent improvements in predictive performance by removing the con-
founding factors. These four empirical contributions have been conveniently summarized in
Figure 1, which illustrates the experiments we perform in this paper, including the predictive
task, the model we use, the data, and the confounding factors.

The remainder of this paper is organized as follows. In Section 2, we first briefly discuss
the related work of this paper, mainly in the methodological perspective. In Section 3, we
formally introduce our method, namely Confounder Filtering. Then in Section 4, we apply
our method to a wide spectrum of experiments to show the effectiveness of our method and
report relevant analysis. Finally, we conclude this paper with discussion of limitations and
future directions in Section 5.

2. Related Work

The recent boom of deep learning techniques has allowed a large number of neural network
methods developed for healthcare applications rapidly. Readers can refer to comprehensive
reviews on how the deep learning can be applied to healthcare and biomedical areas.®?2?24
In this section, we will mainly discuss the related work of our paper in the methodological
perspective.

To the best of our knowledge, there are not many deep learning works that control the
effects of confounding factors explicitly. Wang et al presented a two-phase algorithm named
Select-Additive Learning.'? In the first phase, the model uses information of confounding
factors to select which components of the representation learned by neural networks are as-
sociated with confounding factors, and then in the addition phase, the algorithm forces the
neural networks to discard these components by adding noises. Zhong et al also discussed how
confounding factors affect the predictive performance of neural networks. They presented an
augment training framework that requires little additional computational costs.?® The idea is
to add another neural classifier that predicts confounding factors while predicting original la-
bels, and gradient descent optimizes both of these classifiers. The general additional structure
is very similar to the Confounding Filtering method that we are going to present, but our
method trains the network in differently so that we can differentiate the weights associated
with confounding factors and filter them out explicitly.
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In a broader view, correcting confounding factors is related to reducing the representations
learned by neural networks through some components of the raw data that are not related to
the predictive task. In this perspective, there is a significant amount of neural network methods
that can be considered as related work, covering the fields such as domain adaptation,?®
transfer learning,?”?® and domain generalization.? Readers can refer to the survey papers
cited and the references therein if interested. Within the scope of this paper, we do not
discuss with these methods for two reasons: 1) these methods are not designed for correcting
confounding factors explicitly, therefore they may or may not be applicable in this specific
situation, 2) even if our CF method behave similar to, or slightly shy of the performance of
these methods, there is still a distinct advantage: CF is simple enough to be plugged into any
neural networks with almost no changes of the architecture.

3. Confounder Filtering (CF) Method

In this section, we will formally introduce the Confounder Filtering (CF) method. CF method’s
goal is to reduce the effects of confounders, therefore improves the generalizability of deep
neural networks. We first offer an intuitive overview of the main idea of CF, then we formalize
our method, which is followed by a discussion of the availability of the implementation.

3.1. Overview

CF method is aimed to remove the effects of confounding factors by removing the weights that
are associated with them. Therefore, the core step is to identify such weights. We first train a
model, namely G, conventionally for the predictive task. Then we replace the top model layer
with another classifier that predicts the labels of confounding factors, and we continue to train
the model. During this training phase, we keep track of the updates of weights. Finally, we
filter out all the weights that are frequently updated during this training phase out of G by
replacing these weights with zeros, leading to a new confounder-free model. This process is
illustrated in Fig. 2.

3.2. Method

We continue to formalize our method. For the convenience of discussion, we split a deep neural
network architecture into two components: representation learner component and classification
component, denoted by g(-;0) and f(-; ¢) respectively, where 6 and ¢ stand for the correspond-
ing parameters. Therefore, the complete neural network classifier is denoted as f(g(;80);¢).
Given data < y,X >, the classical training process of the neural network is achieved via
solving the following equation:

0,6 = ar%rdr)nn c(y, f(g9(X;0);9)) (1)

where ¢(+, -) stands for the cost function, with famous examples such as mean-squared-error
loss or cross-entropy loss.

Ideally, to effectively remove the effects of confounding factors, a method needs the labels
of the confounding factors. In other words, we need data in the form of < X, y,s >, where s
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Fig. 2: This figure shows the overview of the CF method. From left to right: 1) Train the
neural network conventionally. 2) Train the neural network to predict confounding factors
(e.g. gender information) and inspect the changes of weights each iteration to locate the ones
with largest changes. 3) Remove the located weights, then the model is ready for confounder-
free prediction.

stands for the label of the confounding factors (e.g. age, gender, physical factors of medical
devices etc.). This is also required by similar previous work.'??> However, our method does
not require full correspondence between X, y, and s. For example, later in our experiment, we
will show that with two independently collected data sets < Xi,y1 > and < Xa,s9 >(i.e. we
only have correspondence between X; and y;, and between X, and s9, but not between y; and
s2), we are able to correct the confounding factors between X; and y; with help of X5 and s;.
For simplicity, we still present our method with < X, y,s >.

After we train the neural network following the conventional manner as showed in Equa-
tion 1 with < X,y > and get # and ¢, we continue to identify the weights associating with
confounding factors through tuning the classification component via < X, s >. Formally, we
solve the following problem:

~ A~

¢ = arg;nin c(s, f(9(X;0);9))

During the optimization, our method inspects how the gradient of the cost function with
respect to < X, s > updates the previous trained weights (i.e. ¢) with < X,y >. For the ith
value of ¢ (denoted as ¢;), we calculate the frequency of updating it during the entire training
process (denoted as ;). Formally, we have:

1 n
Ti =~ ) |80l
t=1

where n is the number of total steps, ¢ stands for the index of step.
Further, we construct a masking matrix/tensor M of the same shape as ¢, and M; is
constructed according to ;. For example, common choices could be either through a Bernoulli
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sampling
Mi = Ber(m)

or a straightforward thresholding procedure:

M, = 0, m>rt ‘
1, otherwise
In the following experiment, we choose to use the thresholding procedure with 7, whose
value lies between top 20% and top 25% of m;’s values.

Finally, we have ¢/ = ¢® M, where ® stands for element-wise product, and the final trained
neural network after confounding factor associated weights filtered out is as following:

Flg(X;0);¢')

which is ready for confounder-free prediction.

3.3. Awailability

The implementation of our method in TensorFlow is available online* with a simple example
that trains a CNN for Cifar10 dataset, onto which we add some image patterns as confounding
factors. Users can follow the online instruction to apply CF to their own customized neural
networks.

4. Experiments

In this section, we will verify the performance of our CF method on four different tasks by
adding CF towards the current baseline models. For each task, we will first introduce the data
set, and then introduce the methods we compare and the results. After discussions of these
four tasks, we will introduce some analyses of the model behaviors to further validate the
performance of our method.

4.1. lung adenocarcinoma prediction
4.1.1. Data

We construct a data set to test the model performance in classifying adenocarcinomas and
healthy lungs from CT-scans. Our experimental data set is a composition of three data sets:

e Data Set 1: The CT-images from healthy people are collected from ELCAP Public
Lung Image Database”. The CT scans have obtained in a single breath hold with a
1.25 mm slice thickness that consists of 1310 DICOM images from 25 persons.

e Data Set 2: The CT-scans of diseased lungs are collected from 69 different patients
by Grove et al.?® These scans are diagnostic contrast-enhanced CT scans, being done
at diagnosis and prior to surgery and slice thickness at variable from 3 to 6 mm.

2https://github.com/HaohanWang/CF
Phttp:/ /www.via.cornell.edu/lungdb.html
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e Data Set 3: Since these two data sets are collected differently, and one of them is
a collection of contrast-enhanced CT scans. The contrast material will likely serve as
the confounding factor in prediction. To correct the confounding factor. We noticed a
processed version® of Data Set 2, which consists of explicit labels of contrast infor-
mation. The data set contains 475 series from 69 different patients selected 50% with
contrast and 50% without contrast.

Therefore, we use the 1290 healthy images
from 20 persons in Data Set 1 and 1214 dis-
eased lung images from 61 patients in Data Set
2 as the training set, and the rest from these two
data sets as the testing set. We use the images
from Data Set 3 with corresponding contrast
labels to correct confounding factors.
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ficiently train these baseline models with ap- Fig. 3: Prediction accuracy of CNN in
propriate learning rate until the training accu-  comparison with CF-CNN

racy converges, and then use our CF method

to correct the confounding factors. We test the

prediction accuracy of both vanilla CNNs and

CF-improved CNNs. Fig. 3 shows the results. We can see that CF can consistently improve
the predictive results over a variety of different CNNs.

VGG16 | VGG19

CifarNet | LeNet

4.1.2. Results

AlexNet

4.2. Segmentation on right ventricle(RV) of Heart
4.2.1. Data

The data set3> contains 243 physician-segmented CT images (216x256 pixels) from 16 patients.
Data augmentation techniques, such as random rotations, translations, zooms, shears and
elastic deformations (locally stretch and compress the image), are used to increase the number
of samples. More information regarding the data set, including how the training/testing data
sets are split, can be found onlined.

4.2.2. Results

The main baseline in this experiment is U-net, which is a convolutional network architecture for
fast and precise segmentation of images. Previous experiments show that U-net can behave well

“https://www.kaggle.com/kmader/siim-medical-images/home
dhttps://blog.insightdatascience.com /heart-disease-diagnosis-with-deep-learning-c2d92c¢27¢730
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even with a small dataset.?0 We first test U-net following previous setting®® and interestingly,
we achieve a higher accuracy that what was reported. Vanilla U-net achieves an accuracy of
0.9477. Then, we use CF method to remove the subject identities as confounding factors and
improve the accuracy from 0.9477 to 0.9565.

4.3. Students’ confusion status prediction
4.3.1. Data

The data set3” contains EEG brainwave data from 10 college students while they watch MOOC
video clips®. The EEG data is collected rom MindSet equipment wore by college students
when watch ten video clips, five out of which are confusing ones. The students’ identities are
considered as confounding factors in this experiment.

Following previous work,?® we normalize the
training data in a feature-wise fashion (i.e.,
each feature representation is normalized to
have a mean of 0 and standard deviation of 1

Table 1: Comparison with average accu-
racy for 5-fold cross validation3®

across each batch of samples). The batch size is Methods Accuracy (%)

set to 20. SVM 67.2
KNN 51.9

4.3.2. Results CNN 64.0
DBN 52.7

We use the state-of-the-art method applied to RNN-LSTM 69.0

this data set,?® namely a Bidirectional LSTM, BiLSTM 73 3

as the baseline method to compare with. The CF-BiLSTM 75 0

model is configured as following: the LSTM
layer has 50 units, with tanh as activation func-
tion. The output is connected to a fully con-
nected layer with a sigmoid activation. We com-
pare five-fold-cross-validated results from CF-improved Bidirectional LSTM with results re-
ported previously.?® The results are shown in Table 1. As we can see, CF method helps improve
the predictive performance once plugged in.

4.4. Brain tumor prediction
4.4.1. Data

We construct another data set for the last experiment of this paper. We test our method in
predicting brain tumors with MRA scans of healthy brainf and CT-scans with tumor brain.?’
The healthy data set consists of images of the brain from 100 healthy subjects, in which 20
patients were scanned per decade and each group are equally divided by sex. The tumor data
set is collected with 120 patients. The gender information is regarded as confounding factors
in this experiment.

°https://www.kaggle.com/wanghaohan/confused-eeg/home
fhttp://insight-journal.org/midas/community /view /21
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4.4.2. Results

Similar to the lung adenocarcinoma prediction
experiment, we compare with the set of popular
CNNs. The results are shown in Fig. 4. As we
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To further understand the process of CF in  Fig 4: Prediction accuracy of CNN in
identifying the weights that are associated with  comparison with CF-CNN

the confounding factors. We inspect how the

weights are updated during the training pro-

cess and visualize which part of the input data

is related to confounding factors.

Fig. 5(a) visualizes the weights during each
epoch. The figure splits into two panels, and the left panel is for lung adenocarcinoma predic-
tion experiment, and the right panel is for brain tumor prediction experiment. The figure only
shows eight weights of the top layer (in a 4 x 2 rectangle), and visualizes how the weights in
the layer change as the training epoch increases. This figure visualizes 96 epochs for lung ade-
nocarcinoma prediction and brain tumor prediction each. The blue dots visualize the weights
when the model is trained during the first phase, and the green dots visualize the weights
when the model is trained in the second phase for prediction confounding factors. The darker
each dot is, the more frequent it gets updated in that epoch. As we can see, for the same 4 x 2
layer, the frequencies of the weights get updated are different between the training during
the first phase and training during the second phase. This differences of updating frequencies
verify the primary assumption of our method, that the weights associated with the task and
the weights associated with the confounding factors are different. Therefore, we can remove
the effects of confounding factors by removing the weights associated with them.

Further, we try to investigate which parts of the input data are corresponding to the
confounding factors. With the help of Deep Feature Selection*® method, we select the pixels
of the image that are associated with the confounding factors. Fig 5 visualizes these pixels
with yellow dots. From left to right, these four images are examples for healthy lung, diseased
lung, healthy brain, tumorous brain respectively. Interestingly, we do not see clear patterns
on the images that are related to the confounding factors. This observation further verify the
importance of our CF method because these results indicate that it is barely possible to first
exclude the information from raw images by conventional methods since these yellow dots do
not form into any clear pattern.
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Fig. 5: (a) Display of trained weights and (b) the visualization of confounding factors.

5. Conclusion

In this paper, we proposed a straightforward method, named Confounder Filtering, which aims
to reduce the effects of confounders and improve the generalizability of deep neural networks,
to achieve a confounding-factor-free predictive model for healthcare applications. One distinct
advantage of our method is that we only require minimal changes to the existing network
model to adopt our method. There are still limitations of our method: despite our method
only requires a minimal changes of the network architecture, it needs a repeated training
process (the second phase training with confounding factors). Another limitation is that our
method still requires the switching of the top classification layer from a label predictor to
a confounder predictor, which may lose the one-to-one correspondence of weights at the top
layer. In the future, in the methodological perspective, we look forward to further improving
the training process of our method. On the practical side, as we have released our code,
we hope to help the community to increase the performance of other predictive models for
healthcare application by removing the confounding factors.
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DeepDom: Predicting protein domain boundary from sequence alone using stacked
bidirectional LSTM

Yuexu Jiang, Duolin Wang, Dong Xu
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Missouri, Columbia, Missouri 65211, USA
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Protein domain boundary prediction is usually an early step to understand protein function and
structure. Most of the current computational domain boundary prediction methods suffer from low
accuracy and limitation in handling multi-domain types, or even cannot be applied on certain targets
such as proteins with discontinuous domain. We developed an ab-initio protein domain predictor
using a stacked bidirectional LSTM model in deep learning. Our model is trained by a large amount
of protein sequences without using feature engineering such as sequence profiles. Hence, the
predictions using our method is much faster than others, and the trained model can be applied to
any type of target proteins without constraint. We evaluated DeepDom by a 10-fold cross validation
and also by applying it on targets in different categories from CASP 8 and CASP 9. The comparison
with other methods has shown that DeepDom outperforms most of the current ab-initio methods
and even achieves better results than the top-level template-based method in certain cases. The code
of DeepDom and the test data we used in CASP 8, 9 can be accessed through GitHub at
https://github.com/yuexujiang/DeepDom.

Keywords: protein domain; domain boundary prediction; deep learning; LSTM.

1. Introduction

Protein domains are conserved parts on protein sequences and structures that can evolve, function,
and exist independently of the rest of the protein chain. While some proteins have only one
domain, many proteins contain more than one domain. Molecular evolution uses domains as
building blocks and these may be recombined in different arrangements to create proteins with
different functions[1]. Thus, accurate identification of protein domains is crucial to understanding
protein function and evolutionary mechanisms. Currently, the most reliable characterization of
protein domain is through experimental methods. However, due to the large amount of data being
generated by high-throughput technologies nowadays, it is impossible to manually identify
domains for these proteins, not to mention that the experimental methods are time consuming and
costly. Thus, computational domain prediction methods are in highly demand.

A variety of computational methods for protein domain prediction have been developed, and
they can be roughly categorized as either template-based methods or ab-initio methods. The
principle of most template-based methods is to find homologous sequences that have known
domain information by sequence alignments and then map the domain information from these
sequences to the query protein sequence. The methods belonging to this category are Pfam[2],
CHOPI3], FIEFDOM[4], and ThreaDom|[5]. A variation of template-based methods is to use 3D
structural models to assist protein domain prediction, e.g. SnapDRAGON][6] and RosettaDom|[7].
These methods first construct a tertiary structure model of the target using structural templates.

© 2018 Yuexu Jiang, Duolin Wang, Dong Xu. Open Access chapter published by World Scientific Publishing
Company and distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0

License.
66


https://en.wikipedia.org/wiki/Tertiary_structure
https://en.wikipedia.org/wiki/Biological_evolution
https://en.wikipedia.org/wiki/Molecular_evolution
https://en.wikipedia.org/wiki/Protein

Pacific Symposium on Biocomputing 2019

Domains are then assigned by domain parser tools from the constructed 3D model. The template-
based methods can have a high prediction accuracy when close templates are found; however, their
prediction performance may drop dramatically if there is no highly similar sequence in domain
databases.

Ab-initio methods are more widely used than template-based methods, since these template-
free methods can be applied to any protein. They are mainly statistical and machine learning
algorithms that train models using the known protein domain boundary information stored in
databases such as CATH[8] and SCOP[9]. Some of the representative methods in this category are
PPRODO[10], DOMPro[11], PRODOM[12], DomCut[13], ADDA[14], DomNet[15], DROP[16],
DOBOJ[17], and EVEREST][18]. Compared with the template-based approaches, the prediction
accuracy of the ab-initio methods is low. This is mainly because these methods suffer from the
weak domain boundary information in sequence, even after a deliberate but tedious process of
feature extraction.

Deep learning is currently the most attractive area in machine learning. Among the various
architectures of deep learning, Long Short Term Memory (LSTM)[19] has been successfully
applied to problems such as speech recognition, language modeling, translation, image
captioning[20-22]. Essential to these successes is its chain-like structure that can capture the
sequential information, and its repeating module designed to avoid the vanishing gradient problem
that the original Recurrent Neural Network (RNN) suffers[23]. Here, we consider protein
sequences as strings of information just like language. Thus, in this paper we propose a new ab-
initio protein domain boundary prediction method using LSTM. We assume that the signal pattern
from a domain boundary region is different from the signals generated from other regions. So, we
made each LSTM layer in our deep learning architecture bidirectional to capture the sequential
information not just from the N-terminal side of the domain boundary region but also from the C-
terminal side. Then we stack multiple such layers together to fit a high-order non-linear function
in order to predict the complex domain boundary signal pattern. Instead of paying much effort in
feature engineering on a small dataset, which is what traditional machine learning methods do, we
train our LSTM model on a big dataset to learn data representations automatically. To the best of
our knowledge, this is the first deep learning method applied on the protein domain boundary
prediction problem.

2. METHODS

2.1  Data Set Preparation

We collected 456,128 proteins with domain boundary annotations in the CATH database (version
4.2). All the sequences of corresponding proteins were downloaded from the Uniprot database[24].
Then we used CD-HIT[25] to cluster similar proteins into clusters that meet our pre-defined
similarity threshold (40%). The representative sequence in each cluster was extracted to form a
non-redundant dataset in which every pair of proteins has sequence identity less than 40%[26].
This threshold instead of a lower number makes sure enough data were remained for deep learning.
We further excluded proteins with sequence length less than 40 residues, since it needs at least 40
residues for a domain boundary signal to be significant according to Ref. [17]. The final dataset
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contains 57,887 proteins. We used 10-fold cross validation to evaluate our model. In each fold,
90% proteins were used to train a model, the remaining 10% proteins were used for testing.

2.2 Input Encoding

Before using our data to train the model, we need to understand the distribution of the data. Figure
1 shows some statistics of our data, which let us believe that encoding the entire sequence for each
protein was probably not a good idea. The first reason is that it introduces bias. When there is only
one domain on a protein, the boundaries of the only domain are always near the protein’s two
termini. As shown in Figure 1(A), proteins with one domain represent the majority of the data, and
this would make our model over-memorize this pattern and favor the prediction as one domain,
which results in poor performance for multi-domain cases. The second reason is as illustrated in
Figure 1(B), that proteins with different number of domains have different length distributions.
When encoding the entire protein sequence using a dynamic length, we cannot train the model in
batch, which is much faster to handle big data set. So, we decided to use a sliding window strategy
independent of the protein length to encode an input sequence into equal-length fragments. And
we use symbol “-” for padding when the last fragment is shorter than window size. After
experiments, we determined the best combination of window size and stride is 200 residues and
80 residues.

Next, we need to encode each residue in every fragment. According to the work of
Venkatarajan and Braun[27], a comprehensive list of 237 physical-chemical properties for each
amino acid was compiled from the public databases. Their study showed that the number of
properties could be reduced while retaining approximately the same distribution of amino acids in
the feature space. Particularly, the correlation coefficient between the original and regenerated
distances is more than 99% when using the first five eigenvectors. Thus, we used five numerical
descriptors to represent each amino acid for computational efficiency while maintaining almost all
the information at the same time. We also added the sixth encoding dimension as the padding
indicator. For all the 20 types of amino acids, their sixth code is zero. The symbol “-”, as the sixth
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Figure 1. (A) The distribution of proteins with different numbers of domains. (B) The
distribution of protein sequence lengths in different categories.
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code with value 1, indicates a padding residue, and its first five codes are all zeros. Thus, for each
input fragment, its coding dimension is 200 by 6.

For model training, we also need to encode the label for each residue. We derive the protein
domain boundary annotation from the CATH database, and follow the convention that considers
a residue as positive if it is within +20 residues of the true boundary. Thus, the coding dimension
for output labels is 200 by 3. The three values represent the probability of a residue being a positive
(within the true boundary), negative (outside the true boundary), and padding residue, respectively.

2.3 Model Architecture

Our deep learning architecture is shown in Figure 2. The bidirectional design in each middle layer
captures the information from residues before and after a protein domain boundary. We stacked
four such layers to capture the high order non-linear features that can detect complex boundary
patterns or weak signals. Each neuron in the hidden layers is an LSTM unit.

The key to LSTM is the cell state C that runs through the entire chain. An LSTM unit has the
ability to remove or add information to the cell state by a regulation structure called gate. Firstly,
an LSTM unit uses its “forget gate” to decide what information to discard from the cell state. It
takes the output h;_; from the previous unit and the current input x, as the input of a sigmoid
function to produce a number between 0 and 1 for each number in the cell state. A 1 means
completely keeping the value while a 0 means completely removing it. The formulas for the forget
gate is shown as Eq. (1).

cee B I &= B .ee200X3
T T ‘ forget gate
eee O o ) ® °*¢0200X3 it o
/\ /‘*\ /‘\ ‘\ /
\ \ \ \
\ . \ \ \
o0 o oo o
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Figure 2. The stacked bidirectional LSTM model. Green boxes represents the input layer. Red boxes
represents the output layer. Each box represents a residue. Blue dots form the bi-directional hidden
layers. Signals from left to right are represented by solid arcs, while dashed arcs represent signals
from the reverse direction. Each dot represents an LSTM unit. A magnified LSTM unit is shown. Its
different gates are highlighted with different colors. At the end of the model, a Softmax layer is
added to scale the output value with a sum of 1 so that they can be interpreted as probabilities.
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fe = U(Wf “[he—q, xe] + bf) 1)

where Wr and by are the weight matrix and bias for the forget gate layer. Next, a tanh layer creates
a new candidate input vector. It will be performed a pointwise product with a sigmoid layer called
the “input gate” to decide which values to add to the cell state. The formula for candidate input
creation and the input gate are shown as Eq. (2) and Eq. (3), respectively.

Ce = tanh(W - [Re_q, X¢] + b¢) 2)

ip = o(W; - [he—q, x¢] + by) 3)

where W, and W; are weight matrix for the tanh layer and the input gate layer, respectively. b,

and b; are bias for the tanh layer and the input gate layer, respectively. Then the LSTM unit can
update the old cell state C;_; into the new cell state C; by Eq. (4).

Ce=fe* Comq +ip ¥ 4)

Finally, the cell state goes through a tanh layer to scale the values between -1 and 1. The scaled
cell state will be filtered by a sigmoid layer called “output gate” to decide which values to output.
The formulas for output gate definition and the current output are shown as Eqg. (5) and Eq. (6),
respectively.

0 = G(Wo[ht—l' xt] + bo) (5)

h; = o, * tanh(C,) (6)

The ability of avoiding vanishing gradient is mainly owing to the design of forget gate in
LSTM. Thus, if a protein domain boundary prediction depends on some signals from remote

residues, our model can be trained to set those forget gates’ values as 1 on informative positions
and let the far, weak but informative signal propagate far without significant loss.

2.4 Evaluation criteria

We used prediction precision, recall and Matthew’s correlation coefficient (MCC) to evaluate our
method and compare with others’. The definitions of precision, recall, MCC are listed in Eq. (7),
Eq. (8) and Eq. (9), respectively:

TP

Precision = (7)
TP+FP
Recall = —— (8)
TP+FN
MCC - (TPXTN)—(FPXFN) ©)

J(TP+FP)(TP+FN)(FP+TN)(TN+FN)

where TP, FP, TN, FN are true positive, false positive, true negative and false negative prediction,
respectively. When a residue has a predicted probability of being within a domain boundary region
higher than a cutoff, we checked its surrounding +20 residues to see if there is a recorded domain
boundary in the CATH database for the protein. If yes, then we have a true positive, otherwise it
is a false positive. On the contrary, when there is a residue our model predicted it being outside of
domain boundary regions, we checked its surrounding +20 residues to see if there is a recorded
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Table 1. Prediction performance in different experiment designs

Window size 80 100 200
Stride 20 40 80 20 40 80 20 40 80
Experiment 1D 1 2 3 4 5 6 7 8 9

Precision_d1 0.572 0.625 0.626 0.609 0.622 0.588 0.465 0.547 0.618
Recall_d1 0.493 0.498 0.447 0.486 0.513 0.529 0.602 0.582 0.584
MCC_d1 0.442 0.478 0.450 0.462 0.485 0.472 0.415 0471 0.520

Precision_d2 0.608 0.655 0.650 0.652 0.653 0.623 0.496 0.576 0.654
Recall_d2 0.361 0.338 0.291 0.346 0.366 0.365 0.473 0.443 0.426
MCC_d2 0.361 0.374 0.341 0.377 0.391 0.372 0.341 0.386 0.426

Precision_d3+ | 0.639 0.670 0.661 0.675 0.668 0.629 0.543 0.598 0.669
Recall_d3+ 0.357 0.297 0.245 0.315 0.330 0.310 0.453 0.418 0.381
MCC_d3+ 0.360 0.340 0.301 0.354 0.360 0.326 0.343 0.367 0.391

Precision_ALL | 0.601 0.644 0.641 0.637 0.643 0.607 0.496 0.570 0.641

Recall_ALL 0.409 0.382 0.332 0.386 0.407 0.406 0.513 0.486 0.468

MCC_ALL 0.392 0.402 0.369 0.401 0.416 0.394 0.370 0.412 0.450

domain boundary in the CATH database for the protein. If yes, then we have a false negative;
otherwise it is a true negative.

3. RESULTS AND DISCUSSION

3.1  Parameter configuration experiments on test data

We have done a series of experiments with different window sizes and stride values to determine
the best combination of these two parameters. The prediction performance of each experiment
designis listed in Table 1. And we presented the results separately based on the number of domains
that a protein has. Each value is the result after the 10-fold cross validation. Note that in
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Figure 3. lllustration of the prediction precision, recall
and MCC as a function of the decision threshold when the
window size=200 and stride=80. The results are based on
a 10-fold cross validation.
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Experiment 3, we considered the situation that there is no overlap between windows. Under each
experiment design (one column) in Table 1, we only presented the result that had the highest MCC-
ALL at a certain threshold. We also conducted experiments using sliding window of 300 residues.
However, the improvement for MCC-ALL is not significant (around 0.01) compared with cases
when window size is 200 residues. So, we believe 200 is enough. As shown in Table 1, the highest
MCC-ALL, also the overall best prediction performance is achieved when the sliding window size
equals to 200 residues and the stride value equals to 80 residues. Figure 3 illustrates a plot of the
precision, recall and MCC as functions of the decision threshold when using the optimum window
size and stride value. The threshold at which the highest MCC-ALL reached is 0.42, and hence we
used this value as the default threshold.

3.2  Comparison with Other Domain Boundary Predictors

To perform a fair comparison with other methods on a benchmark dataset, we tested our method
on the proteins in the Critical Assessment of Techniques for Protein Structure Prediction (CASP).
The definitions of domain boundaries on target proteins are provided by the CASP protein domain
prediction contest sessions. Based on the categories those target proteins belong to, we conducted
several experiments accordingly. In each experiment, the proteins that have a 40% or higher
identity with any target protein were excluded from our training dataset.

3.2.1 Free modeling targets from CASP 9

Free modeling (FM) targets are proteins without any homologous templates. These targets are
often regarded as “hard cases”, since their predictions usually had poor performance. We selected
all the 22 FM targets in CASP 9 and applied different methods to predict their domain boundaries.
By comparing the results in the two categories in Table 2, we found most template-based methods
suffered a significant decrease in both precision and recall for FM targets. ThreaDom is currently
the top 1 templated-based method using multiple threading alignments to extract protein domain
boundary information. For FM targets, ThreaDom identifies multiple alignments or super-
secondary structure segments from weakly homologous templates, then a domain conservation
score profile extracts consensus information between the domain structure and alignment gaps.
This way, ThreaDom maintained a good precision for FM targets. Our ab-initio method DeepDom
achieved the overall best prediction results for FM targets, with the same precision as ThreaDom
but higher recall. All the results by different methods are listed in Table 2, where some of them
were generated from the tools provided and others were collected from Ref. [5] and Ref. [17],
since they used the same data.

3.2.2 Multi-domain targets from CASP 9

We also selected all the 14 multi-domain targets from CASP 9 with the constraint that every
domain on one protein must be continuous, since most other methods can only handle multi-
domain targets of this kind. For this category, template-based methods generally have better
results. ThreaDom achieved the overall best prediction performance. But DeepDom is still the best
among ab-initio methods and also competitive with the template-based methods, as shown in Table
2.
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Table 2. Comparison results from different methods on two
category targets in CASP 9 contest

Category Predictor CASP9 protein boundary prediction
Precision Recall
DeepDom 0.882 0.468
ThreaDom 0.882 0.455
Pfam 0.323 0.485
FM FIEFDom 0.231 0.182
DomPro 0.500 0.182
PPRODO 0.333 0.485
DROP 0.429 0.182
DeepDom 0.689 0.441
ThreaDom 0.764 0.534
Pfam 0.500 0.548
Multi-Domain FIEFDom 0.340 0.233
DomPro 0.500 0.140
PPRODO 0.500 0.520
DROP 0.679 0.260

3.2.3 Discontinuous domain target from CASP 8

Some protein domains consist of several separated segments. The prediction of such discontinuous
domain is still an unsolved problem. Most mentioned methods above have been explicitly designed
to handle domains without discontinuous segments, despite the fact that discontinuous domain is
important in protein structural determination and function annotations.

1.0

0.8

predicted probability

0.2

0.0

T T T T
0 80 160 222

residue position

Figure 4. An illustration of discontinuous domain boundary
prediction using target T0418 from CASP 8. The domain assignment
is (1-16|83-216) (17-82), where the first domain has two segments.
The defined domain boundaries are presented by vertical dash lines.
The threshold of our model is 0.42.
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To evaluate the ability of DeepDom in predicting discontinuous domain, we selected all the 18
targets that contain at least one discontinuous domain from CASP 8. The overall discontinuous
domain boundary prediction precision is 81.2%, the recall is 34.8%, and with MCC of 0.38.
However, currently we have not found a method to predict whether multiple segments belong to
the same domain. Figure 4 gives an illustration of one discontinuous domain protein prediction.

4. CONCLUSION

In this paper, we designed a novel computational method called “DeepDom” for protein domain
boundary prediction using deep learning. Our model does not need elaborated feature engineering.
Instead, it extracts information from a large amount of raw sequence data. The comparison showed
that DeepDom achieved better results than other ab-initio methods and is competitive with
template-based methods. As an ab-initio method, DeepDom has the advantage to outperform the
most successful template-based method when dealing with free modeling targets. Importantly, it
can run much faster than other methods, all of which use sequence profiles that are time consuming
to generate.

There is room for improvement of DeepDom. Ideally, a protein sequence should be encoded
“globally”, since breaking into fragments excludes the potential long distance dependency. By
doing several experiments with varying window sizes and strides, an interesting discovery is that
protein domain boundary prediction seems to depend on the signals from remote residues.
However, this still requires further experiments to prove and develop a new method to use the
information. The other limitation is that the prediction performance for template-available targets
is lower than the best template-based method. We will develop a hybrid method that can take
advantages of existing methods from both approaches (ab-initio and template-based). We also plan
to make the hybrid method available as a web server. Most of the existing domain prediction web
servers only allow users to submit one protein sequence a time. Since DeepDom avoids the time-
consuming sequence profile generation process, the users can predict for a list of proteins in a short
time.
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Res2s2aM: Deep residual network-based model for identifying functional
noncoding SNPs in trait-associated regions
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Noncoding single nucleotide polymorphisms (SNPs) and their target genes are important
components of the heritability of diseases and other polygenic traits. Identifying these SNPs
and target genes could potentially reveal new molecular mechanisms and advance precision
medicine. For polygenic traits, genome-wide association studies (GWAS) are preferred tools
for identifying trait-associated regions. However, identifying causal noncoding SNPs within
such regions is a difficult problem in computational biology. The DNA sequence context of
a noncoding SNP is well-established as an important source of information that is benefi-
cial for discriminating functional from nonfunctional noncoding SNPs. We describe the use
of a deep residual network (ResNet)-based model—entitled Res2s2aM—that fuses flanking
DNA sequence information with additional SNP annotation information to discriminate
functional from nonfunctional noncoding SNPs. On a ground-truth set of disease-associated
SNPs compiled from the Genome-wide Repository of Associations between SNPs and Phe-
notypes (GRASP) database, Res2s2aM improves the prediction accuracy of functional SNPs
significantly in comparison to models based only on sequence information as well as a leading
tool for post-GWAS noncoding SNP prioritization (RegulomeDB).

Keywords: Deep Residual Network; Noncoding DNA; Sequence Analysis; GWAS.

1. Introduction

Prioritizing functional trait-associated noncoding SNPs in the human genome remains a criti-
cal and challenging problem. From thousands of genome-wide association studies, over 21,751
trait-associated SNPs have been reported.! However, noncoding SNPs can also have significant
effects on trait variation including risks of certain diseases such as coronary artery disease or
certain cancers.? Causal noncoding SNPs are thought affecting trait variation through gene
regulatory mechanisms. Nevertheless, identifying such causal variants within trait-associated
regions that have been implicated by GWAS is a difficult computational problem?® because
the noncoding DNA sequence and epigenomic determinants of regulatory sites are incom-
pletely studied. While some genomic annotations are known to be informative for predicting
whether or not a noncoding SNP is functional,* many sequence determinants of functional
noncoding DNA are unknown and must be learned from training data. DNA sequence infor-
mation up to a kilobase from a noncoding SNP can be informative as to whether or not that
SNP is functional;® however, at that distance scale, the DNA sequence context of a SNP is

© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed under the terms of the
Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.
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high-dimensional, posing significant challenges for traditional computational methods.

In recent years, significant advancements have been made in machine learning methods
for handling high-dimensional datasets with complex interactions among features. Deep learn-
ing approaches are particularly powerful in this context because they enable the utilization
of large-scale, high-dimensional, unstructured data as a substrate for predictive models. In
machine-learning methods for image recognition, deep convolutional neural networks (CNNs)
have emerged as a fundamental building block for deep learning approaches, due to the CNN’s
ability to learn composite data representations and the contours of objects from pixel-level
data.® Recently, deep residual networks (ResNet)”® have been proposed which have the ad-
vantage of smoothing the information propagation and more representing power with deeper
network models. A key advantage of deep neural network models with differentiable activation
functions is that the backpropagation algorithm for computing the loss function gradient can
be used, which is compatible with computation on a graphical processing unit (GPU).

Deep learning methods have been used in computational biology in various contexts? in-
cluding biomedical imaging, data-driven diagnostics, and pharmacogenomics. In the area of
noncoding genome analysis, deep learning-based computational approaches have been used for
both functional SNP prioritization and identification of regulatory sequence patterns, among
which two approaches are notable: Basset!® is a deep neural network model for predicting
chromatin accessibility for cell-specific mutations using DNA sequences; and DeepSEA® is a
convolutional neural network based framework trained on chromatin-profiling data that di-
rectly learns regulatory patterns de novo from SNP-flanking sequences. In the context of post-
GWAS analysis to identify causal noncoding SNPs, the key computational problem relevant to
this work can be defined as: given a DNA sequence acquired around a specific trait-associated
noncoding SNP, and given a set of training (functional) SNPs, produce a score representing
the confidence that the trait-associated SNP is functional.

In this work, we collated a set of training noncoding SNPs (divided into “functional” and
“non-functional” classes) curated from GWAS studies, and obtained flanking genomic DNA se-
quences for the SNPs. We implemented 5 different neural network architectures for predicting
the SNP class labels based on their flanking DNA sequences and (optionally) additional SNP
annotation features from a database of noncoding SNP annotations (HaploReg): two CNN
models based on DeepSEA,®> a CNN model based on DeFine!! (with two sets of optimization
algorithms and loss functions), a new sequence-based deep residual network approach (which
we call Res2s2a) that we propose, and a hybrid network (which we call Res2s2aM) fusing
Res2s2a with HaploReg-derived SNP annotation features. We trained the neural network mod-
els using a stochastic gradient optimization method (Adam)!? and evaluated their performance
for discriminating functional from non-functional noncoding SNPs in hold-out examples. We
found that the deep residual network models (Res2s2a and Res2s2aM) outperformed the CNN-
based models, and that the hybrid model (Res2s2aM) outperformed the sequence-only model
(Res2s2a). This work is the first application of deep residual networks for noncoding SNP
prioritization of which we are aware, and it suggests that ResNet models can significantly
advance the state-of-the-art for computational methods for post-GWAS SNP prioritization.
All of the code for this work (including the new methods Res2s2a and Res2s2aM) is available
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on the open-source software repository GitHub (https://github.com/zheng-liu/res2s2am).

2. Background theory

CNNSs. In previous convolutional neural network based methods involving DNA sequences,
the models take one-hot-encoded DNA sequence as input and predict class-specific scores as
output. Through filtering kernels with variable weights, convolutional layers exploit spatial lo-
cality to develop discriminating signals at successively coarse-grained scales. The same filtering
kernel (i.e., with identical weights) is applied at each neuron position in the layer. Pooling
layers effect downsampling to reduce dimensionality issue and make abstracted representation
binned in certain sections. Nonlinear activation layers (e.g., ReLU) aim to add nonlinearity in
the model for larger and more flexible projecting space from sequences to labels. The convo-
lutional layers are organized in a general form shown in Figure 1. By successive convolution

ACAGIERA .. T [ [ [ 8 0O
A1l 1 1 ] :
cl |1 (L] : ov
1 O :
T 1 RelLU RelLU RelLU O @)
Pooling Pooling Pooling O prediction

Fig. 1. General CNN models architecture. One-hot-encoded sequence data (left) shown as a 4xL
matrix; ReLU denotes a network unit based on the rectifier function, (f(z) = max(0,z)); the ®
symbol denotes convolution; the pooling layer selects the stronger signals from previous layer; the
final rightmost arrow represents a prediction layer (e.g., softmax or logistic function).

operations, the network starts to learn the locality of data and produces advanced features
in intermediate layer filters.!® More layers bring larger parameter spaces and equivalently
more representing power towards the input signals. Unexpectedly, as indicated by He et al.,”
a degradation problem happens when deeper networks are built: the prediction performance
becomes saturated with increasing number of of hidden layers.

Residual nets. Deep residual network (ResNet)”® is an approach to address the saturating
problem in the meanwhile tapping the potential of deeper nets. The ResNet approach is based
on a feed-forward neural network with shortcut connections (based on the identity function
I(z) = z) between non-adjacent layers. At the end of a module (made up of two or more
layers), the mapped identical signal I(z) = z is added into the output of stacked module
layers. In the pipeline of ResNet, the model is established with multiple modules of hidden
layers as shown in Figure 2.

Instead of fitting the original input signal z into each layer module, ResNet fits the residual
signal H(x) — x based on the assumption that the residual signal is more likely to overcome
the local optimums in gradient-based optimization processes. In the training procedure, if
the optimal fitting to H(z) is the identity function H(z) = =z, the stacked module layers
are trying to fit an always-zero constant signal which is much easier than fitting an identity
mapping using the nonlinear layers in the module. More importantly, as a common problem,
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deeper nets tend to cause more vanishing gradient problem that small gradients multiplication
following chain rule leads to loss of information at the end. ResNet with an identity function
as a shortcut always possesses a 1.0 gradient component which largely stables the gradient
calculation in backpropagation. Formally, the module output is defined in Equation (1):

H(z)=f(zx)+=x
=Wy x ReLU(W1 -+ bl) + by + x, (1)

where Wy, Wa, by, and by are coefficients.

ResNet mounts shortcuts of identity functions besides the
stacked layer modules to make the weight matrix easier to
fit the signal primarily when the intended signal is = itself.
Even though adding extra coefficients to identity functions
Ii(z) = x as I;(x) = Mz seems to provide more flexibility to
shortcuts, it is nontrivial to notice that those coefficients in- f(x) ReLU
troduce more optimization difficulties.® Veit et al. explain the (weight layer, W, b,
ResNet effectiveness in an ensemble view that ResNet is a
collection of independent paths differing in length, and only
short paths are trained.'® Thus, compared to other CNN mod- f(x) + x <+>7
els, a ResNet architecture with identity skipping function is ReLU
adapted to GWAS SNP prioritization problem in this work.

[weight layer, Wj, bw]

RelLU

Fig. 2. A building block of
3. Dataset for training and testing Residual Network

To verify the model effectiveness, we assembled a dataset of

trait-associated noncoding DNA sequences together with con-

trol cases (noncoding SNPs in the same genomic loci as positive SNPs but for which there is
no trait association). In this section we describe the procedures used to build the dataset.

3.1. Source databases

In this work we used four source databases to obtain the information required to build a
feature matrix on a set of example SNPs. From the GRASP database!* we obtained a dataset
of 2.48 M SNPs (identified by dbSNP RefSNP IDs or “rsIDs”!%). GRASP was selected because
it is comprised of significant SNPs from a large number (1390) of GWAS studies with diverse
traits. We used the UCSC Genome Center knownGene database!® for chromosomal coordinate
information of SNPs in the GRCh37/hgl9 genome assembly. We used the UCSC Genome
Browser knownGene table of gene annotations to obtain chromosomal coordinates of genes,
transcripts, and exons (in the same genome assembly). We used the web tool HaploReg!”
for mapping between GRASP SNPs and neighboring SNPs that are in linkage disequilibrium
with the GRASP SNPs (“proxy SNPs”) and for obtaining functional annotations for SNPs
including consensus functional SNP scores that were assigned by the RegulomeDB project.!'®
We used the UCSC Genome Browser to obtain flanking genomic sequence (1 kbp window size)
for each SNP in our dataset.
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3.2. Dataset generation

Positive dataset generation. We annotated each SNP based on its location relative to
known gene annotations using all Ensembl transcripts,'® assigning the SNP to an annotation
category out of “pcexon (protein-coding exon)”, “intron”, “3’UTR”, “5’UTR”, “nonpcexon
(non-protein-coding exon)”, “intergenic”. Following a specific strand direction, If a SNP over-
lapped a protein-coding exon in any transcript, it was annotated as coding. If a SNP was
not marked as coding by the previous step but was found to overlap a UTR in any tran-
script, it was annotated with the corresponding UTR (3’ or 5). If a SNP was not annotated
as coding or UTR by the previous steps, but if that SNP was located in an intron for any
transcript, it was annotated as intronic. If a SNP in a transcript did not overlap with any
coding exon, it is assigned to “nonpcexon” category. Otherwise, the SNP was annotated as
intergenic. Next, we filtered to obtain a positive-example set of SNPs following criteria: (1)
SNPs residing in protein-coding exons were excluded. (2) Any SNP within 1 Mbp of a trait-
associated (P <5 x 107® in at least one record in GRASP) protein-coding SNP was excluded.
(3) Remaining noncoding SNPs meeting the significance criteria (P < 5 x 1078 in at least one
GWAS) that had the lowest P value within 1 Mbp were retained as positive examples. (4)
The rest noncoding SNPs with minimum P-value in the neighborhood of noncoding SNPs
are specified as positive cases. This procedure yielded a set of 128,944 positive examples of
noncoding SNPs.

Control case generation. Using HaploReg,'” we obtained SNPs that are in linkage
disequilibrium (within 250 kbp and with correlation coefficient r? > 0.8) with SNPs from
the positive set. Each positive SNP was expanded to SNPs from four population groups
(“AFR”, “AMR”, “ASN”, “EUR”) in the 1,000 Genome (1KG) Project®® and then combined.
In the set of resulting proxy SNPs, any SNPs that were listed in the GRASP database or
protein-coding were excluded, resulting in a set of 1,412,452 noncoding control SNPs that
were treated as negative examples. Additionally, we obtained annotation features about the
SNP set using HaploReg, including allele frequencies, conservation scores et al. Table 1 details
the biological features that we used in the Res2s2aM model. We obtained RegulomeDB scores
from RegulomeDB webservice directly used as a categorical feature in the Res2s2aM model
and also as a standalone predictor. We mapped the 15 RegulomeDB score categories (“la”,
“1b”, “Ic”, ... “B”7, “6”7, “7”) to [1.0, 2.0, ..., 15.0] for this purpose, assigning the value 16.0 to
missing RegulomeDB scores (note: a lower RegulomeDB score corresponds to greater evidence
for a noncoding SNP to be functional'®). This procedure yielded 1,541,396 SNPs in total with
a class ratio of about 1:10.9 (positive SNPs : control SNPs).

SNP annotation feature evaluation. In order to quantify the discriminating power
of individual SNP annotation features (from HaploReg) on our set of 1.5 million SNPs, we
computed empirical log-likelihood ratios (positive:control) of each of the SNP annotation
features (Fig. 3). This analysis showed that, consistent with the fact that it is comprised of
multiple types of independent evidence for functional noncoding SNPs, RegulomeDB (Fig. 3e)
is the strongest predictor among the SNP annotation features. Further, the analysis shows an
strong association between the reference allele frequency and the likelihood ratio, in each of
the 1KG population groups.
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Table 1. The SNP annotation features used in the hybrid Res2s2aM model

feature name  feature type feature description
AFR continuous RefAllele Freq in the African population (492 samples)
AMR continuous  RefAllele Freq in the Ad Mixed American population (362 samples)
ASN continuous RefAllele Freq in the Asian population (572 samples)
EUR continuous RefAllele Freq in the European population group (758 samples)
regscore_int  categorical RegulomeDB score encoded from 1.0 to 16.0
GERP _cons categorical GERP phylogenetic sequence conservation score?!
SiPhy_cons categorical SiPhy selective constraint score??
(a) Binned log-likelihood-ratio: AFR (b) Binned log-likelihood-ratio: AMR 0.3 (c) Binned log-likelihood-ratio: ASN
0.2
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Fig. 3. Estimated log likelihood ratio (LLR) of features. “Direction” means the location of the SNP
relative to the nearest gene (0 = within; 3 = downstream, 5 = upstream).

4. Methods

4.1. ResNet architecture in our model

Our model (Fig. 4) uses a 1 kbp sequence along each strand which is one-hot-encoded as a
4 x 1000 sparse matrix. The matrix is treated as a 4-channel input signal with each row as a
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single channel input. After both encoded strands are input into the model, a convolution step
based on 16 convolutional kernels (each of size 7x7) is performed on them with a stride of 2 bp.
The output of the previous layer is batch normalized,?> ReLU activated, and a max pooling
layer is applied to reduce dimension. Next, 4 groups of residual blocks are built with various
output channels, layers, and filter strides. Each residual block consists of 3 batch-normalized
convolutional layers with ReLU activation and the residual skipping shortcut connections. An
average pooling layer with kernel size to 4 bp is applied to the output of the residual block.
The output of average pooling layers from both strands are expanded into 1-D vectors and
combined into one single vector as the final output for both strands.

4.2. Tandem inputs of forward- and reverse-strand sequences

Genomic DNA is double-stranded, and thus, to make a consistent prediction with the same
SNP sequences along both strand directions, we incorporate input DNA sequences along both
“+7 and “-” strands (the latter being reverse-complemented) into our CNN- and ResNet-
based models. As it is demonstrated that reverse-complement parameter sharing contributes
to deep learning in genomics,?* the reverse-complement sequence segments are encoded in
our model (along with the forward-strand sequence) as input signals. In the training process,
each residual building block shares weights between both forward and reverse-complement
sequences.

4.3. Buallelic high-level network structure

A key potential issue with using neural networks to score genomic sequence flanking a SNP
is the need to account for the two alleles of the central SNP. Convolutional operations are
the critical components in convolutional neural network based models including ResNet. Most
existing models are trained merely on reference allele sequence flanking a specific variant
position. In this paper, we aim at the contrast between the reference allele and the alternative
allele and highlight the effect of the central SNPs. The architecture of the sequence learning
module in the Res2s2aM model is illustrated in Figure 4.

4.4. Incorporating HaploReg SNP annotation features

In previous studies, SNP annotation features have proved essential for identifying functional
noncoding SNPs.2> We trained the Res2s2aM model to learn feature embeddings jointly with
the encoded sequence. This method is inspired by natural language processing models where
words are mapped to a fixed dimension of vectors. We used a fully connected layer of 100
nodes as the embedding layer to represent both continuous and categorical features (Fig. 4,
dotted rectangle). The overall data fusion algorithm for Res2s2aM is defined in Algorithm 1.

4.5. Training of models

For parameter fitting in all models except “DeFine0,” we used Adam,'? a stochastic algo-

rithm for parameter optimization, with cross-entropy as the loss function. [For the “DeFine0”
model, following Wang et al.,!! we used stochastic gradient descent as optimization algorithm
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Fig. 4. Architecture of model Res2s2aM. In the Res2s2a model, the portion of the network shown
in the dotted rectangle (which is based on SNP annotation data from HaploReg) is not included.

and mean squared error with L2 regularization as loss function.] Model parameters were ini-
tialized before training. All parameters in convolutional layers were initialized by sampling
N(0,4/2.0/c), where ¢ equals the total number of output dimensions [DeFine0 and DeFine
initialized conv layers to A(0,1)]. All the batched norm layers were initialize their weights to
1.0 and biases to 0. We trained 40 epochs for each model and saved the model parameters
at the epoch with lowest validation-set loss. Also, we used an early stop mechanism during
training: training was terminated if the validation loss continuously increased for ten epochs.
As seen in Figure 6, the training loss of ResNet-based models (on the validation set) reached
a minimum in 10-15 epochs. Other models’ architectures are shown in Figure 5.
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Algorithm 1 Res2s2aM

1: procedure SEQAUGMENT(z) > Expansion of ref seq
2: r = > Ref seq: + strand
3 xy = a7 ! > Ref seq: - strand, reverse complement
4 zo = alt(z1) > Alt seq: + strand
5: Ty = 37! > Alt seq: - strand, reverse complement
6: procedure SEQLEARN(z1, x], T2, x)

7 Initialize Conv layers conv; and BatchNorm layers bn;, i € {1, 2}

8 T1, T1, T9, Ty = convi(zy), convy(z]), convsy(zz), convy(x,) > Filters sharing
9 T1, T1, To, Ty = bny(z1), bn(z]), bny(xz), bna(z,)

10: T1, T1, T9, To = maxpool; (r1), maxpool;(z]), maxpooly(zz), maxpooly(xz,)

11: a1, 27, T2, 5 = reluy(zy), relu; (z)), reluy(zs), relug(z,)

12: fori=1:n,do > Residual blocks
13: r1, T1, T2, T = ResBlock!(z1), ResBlock!(z;), ResBlock)(zz), ResBlocki(z;)
14: a1, 27, T2, T, = avgpool;(z1), avgpool; (), avgpools(z2), avgpooly(z,)

15: Trefs Talt = |1, T1)1d, |72, To)1d > Flatten and combine to 1-D vector
16: TA = Tpef - Talt > Train on difference of Ref and Alt seqs
17: procedure METAEMBED(Zctq)

18: Tmeta = fCmeta(Tmeta) > Metadata embedding
19: X = [-TAy xmeta]ld
20: X = fc(X)

return X

5. Results

We trained and evaluated six models: Res2s2aM, Res2s2a, DeFine0 (the DeFine network
model with the original optimization algorithm and objective function), DeFine (with Adam
optimization and cross-entropy loss), CNN_1s, and CNN_2s on 5 random data spliting assign-
ments. Additionally we compared the accuracy of the supervised models to an unsupervised
approach in which SNPs were ranked by their scores from the RegulomeDB tool. We found that
Res2s2aM significantly improves (Table. 2) over Res2s2a on testing-set area under the receiver
operating characteristic (AUROC) curve (from 0.74 to 0.76). By area under the precision-
versus-recall curve (AUPRC), Res2s2aM (0.21) also had higher performance than Res2s2a
(0.18). In addition to having superior accuracy, Res2s2a and Res2s2aM trained significantly
faster than the CNN-based models. Our model also has over 75% prediction accuracy to CVD,
gastrointestinal and blood-related diseases. Validation-set losses during training Res2s2a and
Res2s2aM terminate earlier than other models due to early stop mechanism (Fig. 6).

6. Conclusions and discussion

By introducing residual skipping connection and ResNet into functional noncoding SNP priori-
tization and multi-modal fusion of biological features with DNA sequence, Res2s2aM improves
the performance of noncoding functional SNP prioritization. Res2s2aM makes full use of both
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Fig. 6. Performance comparison of seven models: ResM = Res2s2aM , Res = Res2s2a, DF = DeFine,

DF0O = DeFine0, CNN2s = CNN_2s, CNN1s = CNN_1s, and RDB = RegulomeDB. Lines, boxes,
and marks denote median, interquartile range, and outliers, respectively.

unstructured sequence data and more biological features (continuous and categorical), leading
to an end-to-end deep neural network architecture. The experimental performance suggests
that (1) use of residual shortcut connections could potentially benefit the more general se-
quence based deep learning and (2) embedding biological features in an end-to-end fashion
could be helpful for utilizing more information sources while training deep models. By im-
proving prediction accuracy of the ground-truth SNPs using merely flanking sequences and
accessible biological features, prediction scores can be obtained for SNPs in a loci, which pri-
oritize functional noncoding SNPs following genotype-to-phenotype studies. However, from
what we observed, the Res2s2aM model has some disadvantages including: high memory re-
quirements, limitations in semi-supervised setting. We will adapt the ResNet-based model to
semi-supervised setting in our future work.

Table 2.

Validation-set performance (95% confidence interval and p-value vs. Res2s2aM)

method name

AUROC (95% CI) AUROC (p-value) AUPRC (95% CI) AUPRC (p-value)

Res2s2aM
Res2s2a
cnn_2s
cnn_ls
DeFine
RegulomeDB

(0.7579, 0.7627)
(0.7432, 0.7491)
(0.7201, 0.7278)
(0.7240, 0.7269)
(0.7162, 0.7200)
(0.5692, 0.5726)

9.8 x 107°
9.2 x 1076
2.3x 1076
1.1 x 1076
6.7 x 10710

(0.2082, 0.2142)
(0.1809, 0.1848)
(0.1616, 0.1685)
(0.1654, 0.1677)
(0.1608, 0.1638)
(0.1220, 0.1253)

3.2x 1076
4.3 x 1076
3.3x 1076
8.0 x 1077
1.1x 1078
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Recent advances in next-generation sequencing technologies have facilitated the use of
deoxyribonucleic acid (DNA) as a novel covert channels in steganography. There are vari-
ous methods that exist in other domains to detect hidden messages in conventional covert
channels. However, they have not been applied to DNA steganography. The current most
common detection approaches, namely frequency analysis-based methods, often overlook
important signals when directly applied to DNA steganography because those methods de-
pend on the distribution of the number of sequence characters. To address this limitation,
we propose a general sequence learning-based DNA steganalysis framework. The proposed
approach learns the intrinsic distribution of coding and non-coding sequences and detects
hidden messages by exploiting distribution variations after hiding these messages. Using
deep recurrent neural networks (RNNs), our framework identifies the distribution varia-
tions by using the classification score to predict whether a sequence is to be a coding or
non-coding sequence. We compare our proposed method to various existing methods and
biological sequence analysis methods implemented on top of our framework. According to
our experimental results, our approach delivers a robust detection performance compared
to other tools.

Keywords: Deep recurrent neural network, DNA steganography, DNA steganalysis, DNA
watermarking

1. Introduction

Steganography serves to conceal the existence and content of messages in media using vari-
ous techniques, including changing the pixels in an image!. Generally, steganography is used
to achieve two main goals. On the one hand, it is used as digital watermarking to protect
intellectual property. On the other hand, it is used as a covert approach to communicating
without the possibility of detection by unintended observers. In contrast, steganalysis is the
study of detecting hidden messages. Steganalysis also has two main goals, which are detection
and decryption of hidden messages'?2.

Among the various media employed to hide information, deoxyribonucleic acid (DNA) is
appealing owing to its chemical stability and, thus is a suitable candidates as a carrier of

(© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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concealed information. As a storage medium, DNA has the capacity to store large amounts
of data that exceed the capacity of current storage media®. For instance, a gram of DNA
contains approximately 102! DNA bases (108 terabytes), which indicates that only a few grams
of DNA can store all information available*. In addition, with the advent of next-generation
sequencing, individual genotyping has become affordable®, and DNA in turn has become an
appealing covert channels.

To hide information in a DNA sequence, steganography methods require that a reference
target sequence and a message to be hidden®. A naive example of a substitution-based method
for watermarking that exploits the preservation of amino acids is shown in Fig. 1 (see the
caption for details). The hiding space of this method is restricted to exon regions using a
complementary pair that does not interfere with protein translation. However, most DNA
steganography methods are designed without considering the hiding spaces, and they change
a sequence into a binary format utilizing well-known encryption techniques.

In this regard, Clelland et al.”, first proposed DNA steganography that utilized the mi-
crodot technique. Yachie et al.®, demonstrated that living organisms can be used as data
storage media by inserting artificial DNA into artificial genomes and using a substitution ci-
pher coding scheme. This technique is reproducible and successfully inserts four watermarks
into the cell of a living organism®. Several other encoding schemes have been proposed 1011,
The DNA-Crypt coding scheme 12 translates a message into 5-bit sequences, and the ASCII
coding scheme!? translates words into their ASCII representation, converts them from deci-
mals to binary, and then replaces 00 with adenine (A), 01 with cytosine (C), 10 with guanine
(G), and 11 with thymine (T).

With the recent advancements with respect to steganography methods, various steganalysis
studies have been conducted using traditional storage media. Detection techniques that are
based on statistical analysis, neural networks, and genetic algorithms'* have been developed
for common covert objects such as digital images, video, and audio. For example, Bennett!
exploits letter frequency, word frequency, grammar style, semantic continuity, and logical
methodologies. However, these conventional steganalysis methods have not been applied to
DNA steganography.

In this paper, we show that conventional steganalysis methods are not directly applica-
ble to DNA steganography. Currently, the most commonly employed detection schemes, i.e.,
a statistical hypothesis testing methods, are limited with respect to the number of input
queries in order to estimate distribution to perform statistical test!®. To overcome the limi-
tations of these existing methods, we propose a DNA steganalysis method based on learning
the internal structure of unmodified genome sequences (i.e., intron and exon modeling!®:17)
using deep recurrent neural networks (RNNs). The RNN-based classifier is used to identify
modified genome sequences. In addition, we enhance our proposed model using unsupervised
pre-training of a sequence-to-sequence autoencoder in order to overcome the restriction of
the robustness of detection performance. Finally, we compare our proposed method to var-
ious machine learning-based classifiers and biological sequence analysis methods that were
implemented on top of our framework.
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2. Background

We use the standard terminology of information hiding!® to provide a brief explanation of
the related background. For example, two hypothetical parties, (i.e., a sender and a receiver)
wish to exchange genetically modified organisms (GMOs) protected by patents. A third party
detects watermark sequence from the GMOs for unauthorized use. Both the sender and receiver
use the random oracle?® model, which posits existing steganography schemes, to embed their
watermark message, and the third party uses our proposed model to detect the watermarked
signal. A random oracle model posits the randomly chosen function H, which can be evaluated
only by querying the oracle that returns H(m) given input m.

2.1. Notations

The notations used in this paper are as follows: D = {Dy,---, D, } is a set of DNA sequences
of n species; D = {D1,---,Dy,} is a set of DNA sequences of n species and the hidden messages
are embedded for some species Di:m e {A,C,G,T} is the input sequence where ¢ is the length
of the input sequence; 7 € {A,C,G,T}¢ is the encrypted value of m where ¢ is the length of
the encrypted sequence; F is an encryption function, which takes input m and returns the
encrypted sequence E(m) — m; Mp, is a trained model that takes target species D; as training
input; ¥ is an averaged output score y; g is a probability output given by the trained model
Mp. () — § given input s, where € D;; A is a probabilistic polynomial-time adversary.
The adversary?! is an attacker that queries messages to the oracle model; € is the standard
deviation value of score y.

2.2. Hiding Messages

The hiding positions of a DNA sequence segment are limited compared to those of the covert
channel because the sequences are carried over after the translation and transcription processes
in the exon region. For example, assume that ACGGTTCCAATGC is a reference sequence, and
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01001100 is the message to be hidden. The reference sequence is then translated according
to any coding schemes. In this example, we apply the DNA-crypt coding scheme!?, which
converts the DNA sequence to binary replacing A with 00, C with 01, G with 10, and T with 11.
The reference sequence is then translated to 00011010111101010000111001 and divided into
key bits that are defined by the sender and receiver. Assume that the length of the key is 3,
the reference sequence can be expressed as 000, 110, 101, 111, 010, 100, 001, 110, 01, and the
message is concealed at the first position. The DNA sequence with the concealed messages
are then represented as 0000, 1110, 0101, 0111, 1010, 1100, 0001, 0110, 01. Finally, the sender
transmits the transformed DNA sequence of AATGCCCTGGTAACCG. The recipient can extract
the hidden message using the pre-defined key.

2.3. Determination of Message-Hiding Regions

Genomic sequence regions (i.e., exons and introns) are utilized depending on whether the task
is data storage or transport. Intron regions are suitable for transportation since they are not
transcribed and are removed by splicing?*2?3 during transcription. This property of introns
provides large sequence space for concealing data, creating potential covert channels. In con-
trast, data storage (watermarking) requires data to be resistant to degradation or truncation.
Exons are a suitable candidate for storage because underlying DNA sequence is conserved af-
ter the translation and transcription processes?*. These two components of internal structure
components in eukaryote genes are involved in DNA steganography as the payload (water-
marking) or carrier (covert channels). Fig. 2 shows the learned representations of introns and
exons which are calculated by softmax function. The softmax function reduces the outputs of
intron and exons to range between 0 and 1. The 2D projection position of introns and exons
will change if hidden messages are embedded without considering shared patterns between the
genetic components (e.g., complementary pair rules). Thus, the construction of a classification
model to enable a clear separation axis of these shared patterns is an important factor in the
detection of hidden messages.

3. Methods

Our proposed method uses RNNs? to detect hidden messages in DNA. Fig. 3 shows our
proposed steganalysis pipeline. The pipeline comprises of training and detection phases. In
the model training phase, the model learns the distribution of unmodified genome sequences
that distinguishes between introns and exons (see Section 3.2 for the model architecture). In
the detection phase, we obtain a prediction score exhibiting the distribution of introns and
exons. By exploiting the obtained prediction score, we formulate a detection principle. The
details of the detection principle are described in Section 3.1.

3.1. Proposed DNA Steganalysis Principle

The security of the random oracle is based on an experiment E involving an adversary A,
as well as A’s indistinguishability of the encryption. Assume that we have the random oracle
that acts like a current steganography scheme S with only a negligible success probability.
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Fig. 3. Flowchart of proposed DNA steganalysis pipeline.

The experiment E can be defined for any encryption scheme S over message space D and for
adversary A. We describe the proposed method to detect hidden messages using the random
oracle. For the FE, the random oracle chooses a random steganography scheme S. Scheme S
modifies or extends the process of mapping a sequence with length n input to a sequence with
length ¢ with a random sequence as the output. The process of mapping sequences can be
considered as a table that indicates for each possible input m the corresponding output value
m. With chosen scheme S, A chooses a pair of sequences mg,m; € D;. The random oracle
which posits the scheme S selects a bit b € {0,1} and sends encrypted message S(mp)—m to
the adversary. The adversary outputs a bit ¢'. Finally, the output of the E is defined as 1 if
b = b, and 0 otherwise. A succeeds in the F in the case of distinguishing m;. Our methodology
using F is described as follows:

(i) We construct Mp, (Fig. 3-A) that runs on a random oracle where selected species
D; € D. Note that a model M can be based on any classification model, but the key to
select a model is to reduce the standard deviation. Our proposed model M is described
in Section 3.2.

(ii) A computes y (Fig. 3-B4) using Mp,(m) given m € D;.

(iii) A computes the standard deviation € of y (Fig. 3-B).
(iv) A computes ¢ (Fig. 3-C3) using Mp, (1) given 1 € D;.
(v) m is successfully detected (Fig. 3-C4) if

7 — g > e (1)

This gives two independent scores y and ¢ from Mp,. The score y will have the same range of
the unmodified genome sequences whereas the score § will have a different range of modified
genome sequences. If the score difference between y and 4 is larger than the standard deviation
of the unmodified genome sequence distribution, it may be that the sequence has been forcibly
changed. Fig. 4 shows the histogram of the final score of y and ¢ returned from softmax of
the neural network. If the message is hidden, we can see that the final score from softmax of
the neural network differs over the range 3 +e. From Eq. (1) below, we show that detection is
possible using information theoretical proof based on entropy H (Ref.?5).
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viewed in color). (a) kernel density differences between two stego-free intron sequences (b) kernel
density differences between stego-free and 1% perturbed steged intron sequences. (c) kernel density
differences between stego-free and 5% perturbed steged intron sequences.

Lemma 1. A DNA steganography scheme is not secure if H(D) # H(D|D).

Proof. The mutual joint entropy H(D,D) = H(D) + H(D|D) is the union of both entropies
for distribution D and D. According to Gallager at el??, the mutual information of I(D; D) is
given as I(D; D) = H(D)— H(D|D). It is symmetric in D and D such that I(D; D) = 1(D; D),
and always non-negative. The conditional entropy between two distribution is 0 if and only if
the distributions are equal. Thus, the mutual information must be zero to define secure DNA
steganography schemes:

I(C;(D,D)) = H(C) - H(C|(D,D)) = 0. (2)

where C is message hiding space and it follows that:
H(C) = H(C|(D,D)). (3)
Eq. (2) indicates that the amount of entropy H(C) must not be decreased based on the
knowledge of D and D. It follows that the secure steganography scheme is obtained if and

only if:

ViEN,miED,mief):mi:mi. (4)
Note that for m; = m; it is not possible to distinguish between the original sequence and
the stego sequence. Considering that the representations of 7 are limited to {A,C,G,T}, it is
nearly impossible to satisfy the condition because current steganography schemes are all based
on the assumption of addition or substitution. Because C is independent of D, the amount of

information will increase over distribution D if hidden messages are inserted over distribution
D. We can conclude that the schemes are not secure under condition H(C) > H(C|(D,D)). [

3.2. Proposed Steganalysis RNN Model

The proposed model is based on sequence-to-sequence learning using an autoencoder and
stacked RNNs?®, where the model training consists of two main steps: 1) unsupervised pre-
training of sequence-to-sequence autoencoder for modeling an overcomplete case, and 2) super-
vised fine-tuning of stacked RNNs for modeling patterns between canonical and non-canonical
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Fig. 5. Overview of proposed RNN methodology.

splice sites (see Fig. 5). In the proposed model, we use a set of DNA sequences labeled as in-
trons and exons. These sequences are converted into a binary vector by orthogonal encoding?’.
It employs n.-bit one-hot encoding. For n. =4, {A,C,T,G} is encoded by

([1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0, 1]). (5)

For example, the sequence ATTT is encoded into a 4 x 4 dimensional binary vector
([1,0,0,0],[0,0,0,1],[0,0,0,1],[0,0,0,1]). The encoded sequence is a tuple of a four-dimensional
(4D) dense vector, and is connected to the first layer of an autoencoder, which is used for
the unsupervised pre-training of sequence-to-sequence learning. An autoencoder is an artifi-
cial neural network (ANN) that is used to learn meaningful encoding for a set of data in a
case involving unsupervised learning. An autoencoder consists of two components, namely an
encoder and decoder.

The encoder RNN encodes x to the representation of sequence features h, and the decoder
RNN decodes h to the reconstructed x; thus minimizing the reconstruction errors of £(x,%X) =
|x — %[|?, where x is one-hot encoded input. Through unsupervised learning of the encoder-
decoder model??, we obtain representations of inherent features h, which are directly connected
to the second activation layer. The second layer is RNNs layer used to construct the model. The
model in turn is used to determine patterns between canonical and non-canonical splice signals.
We then obtain the tuple of fine-tunned h =< hy,--- ,hq >, where h is the representation of
sequence features learned by features, which is a representation of introns and exons in hidden
layers, and d is the dimension of a vector.

The features h learned from the autoencoder are connected to the second stacked RNN
layer, which consists of our proposed architecture for outputting a classification score for the
given sequence D; € D. For the fully connected output layer, we use the sigmoid function as
the activation. The activation score is given by Pr(y = i|h) = Z;:/U (Hi)fé;)"("z;?h)), where y is
the label that indicates whether the given region contains introns (y = 1) or exons (y = 0).
For our training model, we use a recently proposed optimizer of multi-class logarithmic loss
function Adam?3!. The objective function £(w) that must be minimized is defined as follows:

N
£(w) = - S (wilog(pr) + (1 — ylog(1 — po) (6)
n=1

where N is the mini-batch size. A model Mp, has a possible score of p; for one species, where
p; is the score of given non perturbed sequences.
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Fig. 6. Comparison of learning algorithms with random hiding algorithms (best viewed in color).
(a) differences in accuracy for intron region (b) differences in accuracy for exon region (c) difference
in accuracy for both region. [The performances of four supervised learning algorithms when detecting
hidden messages are shown for six variable lengths of nucleotides (nts).]

4. Results
4.1. Dataset

We simulated our approach using the Ensembl human genome dataset and human UCSC-
hg38 dataset®?, which include sequences from 24 human chromosomes (22 autosomes and 2
sex chromosomes). The Ensembl human genome dataset has a two-class classification (coding,
and non-coding) and the UCSC-hg38 dataset has a three-class classification (donor, acceptor,
and non-site).

4.2. Input Representation

The machine learning approach typically employs a numerical representation of the input
for downstream processing. Orthogonal encoding, such as one-hot coding??, is widely used
to convert DNA sequences into a numerical format. It employs n.-bit one-hot encoding. For
ne = 4, {A,C,T,G} is encoded as described in Eq. (5). According to Lee et al.!”) the vanilla
one-hot encoding scheme tends to limit generalization because of the sparsity of its encoding
(75% of the elements are zero). Thus, our approach encodes nucleotides into a 4D dense vector
that follows the direct architecture of a normal neural network layer33?, which is trained by the
gradient decent method.
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Fig. 7. Comparison of learning algorithms in terms of robustness (best viewed in color). Mean
and variance of accuracy are measured for the fixed DNA sequence length of 6000 for 500 cases by
changing one percent of the hidden message. The shaded line represents the standard deviation of
the inference accuracy.

4.3. Model Training

The proposed RNN-based approach uses unsupervised training for the autoencoder and su-
pervised training for the fine-tuning. The first layer of unsupervised training uses 4 input
units, 60 hidden RNNs units with 50 epochs and 4 output units that are connected to the
second layer. The second layer of supervised training uses 4 input units that are connected to
stacked LSTM layers with full version including forget gates and peephole connections. The 4
input layers are used for 60 hidden units with 100 epochs, and the 4 output units are a fully
connected output layer containing K units for K-class prediction.

In our experiment, we used K = 2 to classify sequences (coding or non-coding). For the
fully connected output layer, we used the softmax function to classify sequences and the
sigmoid function to classify sites for the activation. For our training model, we used a recently
proposed optimizer of multi-class logarithmic loss function Adam?!. The objective function
L(w) that has to be minimized is as described in Eq (6). We used a batch size of 100 and
followed the batch normalization®*. We initialized weights according to a uniform distribution
as directed by Glorot and Bengio® . The training time was approximately 46 hours and the
running time was less than 1 second (Ubuntu 14.04 on 3.5GHz i7-5930K and 12GB Titan X).

4.4. Fvaluation Procedure

For evaluation of performance, we used the score obtained from the softmax of the neural
network. We exploited the state-of-the-art algorithm? to embed hidden messages for the mes-
sage hiding. We randomly selected DNA sequences from the validation set using the Ensembl
human genome dataset. We obtained the score of the stego-free sequence from the validation
set. In the next step, we embedded hidden messages to a selected DNA sequence from the vali-
dation set, and we obtained the score. Using the score distribution of the stego-free and steged
sequences, we evaluated the different scores for the range 3y + . The output from softmax of
the neural network is expected to have a similar score distribution as the unmodified genome
sequences. However, the score distribution changes if messages are embedded. As shown in
Fig. 4(b) and Fig. 4(c), modified sequences are distinguishable using our RNNs model.
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Table 1. Detection performance of sequence alignment and denoising tools.

Both Region (%) Intron Region (%) Exon Region (%)
RNN (proposed) 99.93 99.96 99.94
BLAST?6 84.00 85.00 85.00
Coral®” 0.00 0.00 0.00
Lighter38 0.00 0.00 0.00

4.5. Performance Comparison

We evaluated the performance of our proposed method based on four supervised learning
algorithms (RNNs, SVM, random forests, and adaptive boosting) to detect hidden messages.
For the performance metric, we used the differences in accuracy.® Using the prediction per-
formance data, we evaluated learning algorithms with respect to the following three regions;
introns dedicated, exons dedicated, and both regions together.

For each algorithm, we generated simulated data for different lengths of DNA sequences
(6000, 12000, 18000, 24000, 30000, and 60000) using the UCSC-hg38 dataset3?. We also ran-
domly selected 1000 cases for the fixed DNA sequence length for the modification rate 1 to
10%. Using selected DNA sequences, we obtained the average prediction accuracy of different
numbers of samples against non-perturbed DNA sequences for 1000 randomly selected cases.
In the next step, we obtain the prediction accuracy for the modified data generated according
to the hiding algorithms. Using the averaged prediction accuracy for both the perturbed and
non-perturbed cases, we evaluated the differences between the prediction accuracy rates for
varying different numbers of samples. We carried out five-fold cross-validation to obtain the
mean/variance of the differences in accuracy.

Fig. 6 shows an experiment for each algorithm using six variable DNA sequence lengths.
Each algorithm was compared to three different regions based on the six variable DNA se-
quence lengths. The experiments were conducted by changing from one to then percent of
the hidden message. SVM showed good detection performance in the exon region, but showed
inferior performance in the intron as well as both regions category. In the case of adaptive
boosting, the detection performance was similar in both regions and in intron only categorie,
but performed poorly in exon regions. In the case of the random forest, the cases with the
exon and both regions showed good performance except for some modification rates. In the
intron regions, the detection performance was similar to that of other learning algorithms.
Notably, our proposed methodology based on RNNs outperformed all of the existing hidden
messages detection algorithms for all genomic regions evaluated.

In addition, we examined our proposed methodology based on denoising methods using
Coral®” and Lighter®®. The UCSC-hg38 dataset was used to preserve local base structures
and perturbed data samples were used as random noise. As shown in Table 1, the results
showed that both Coral and Lighter missed detection for all modification rates in all regions.
In addition, the sequence alignment method performed poorly. The results suggest that there
is a 15 to 16% chance that hidden messages may not be detected in all three regions.

Accuracy = (TP + TN)/(TP +TN + FP + FN), where TP, FP, FN, and T'N represent the
numbers of true positives, false positives, false negatives, and true negatives, respectively.
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To validate the learning algorithms with respect to robustness, we tested them with a
fixed DNA sequence length of 6000 with 500 cases for each modification rate to measure the
mean and variance of the test accuracy. Fig. 7 shows how the performance measures (mean
and variance of accuracy differences) change for modification rates ranging from 1 to 10 in
the intron, exon, and both regions categories. The plotted entries represents the the averaged
mean over the 500 cases, and shade lines show the average of the variances over the 500 cases.
The results indicate that hidden messages may not be detected if the prediction difference is
less than the variance. The overall analysis with respect to the robustness showed that the
learning algorithms of SVM, random forests and adaptive boosting performed poorly.

5. Discussion

The development of next-generation sequencing has reduced the price of personal genomics3?,

and the discovery of the CRIPSPR-Cas9 gene has provided unprecedented control over
genomes of many species®®. While the technology is yet to be applied to simulations involving
artificial DNA, human DNA sequences may become an area in which we can apply DNA
watermarking. Our experiments using the real UCSC-hg38 human genome implicitly consider
that unknown relevant sequences are also detectable because of the characteristics of simi-
lar patterns in non-canonical splice sites. The number of donors with GT pairs and acceptors
with AG pairs were found to be 86.32% and 84.63%, respectively'®. Existing steganography
techniques modify several nucleotides. Considering few single nucleotide modifications, we can
transform DNA steganography to the variant calling problem. In this regard, we believe that
our methodology can be extended to the field of variant calling.

Although there are many advantages to using machine learning techniques to detect hidden
messages*! ™3, the following improvements are required: parameter tuning is dependent on the
steganalyst, e.g., the training epochs, learning rate, and size of the training set; the failure
to detect hidden messages cannot be corrected by the steganalyst. However, we expect that
the future development of such techniques will resolve the limitations. According to Alvarez
and Salzmann®, the numbers of layers and neurons of deep networks can be determined using
an additional class of methods, sparsity regularization, to the objective function. The sizes of
vectors of grouped parameters of each neuron in each layer incur penalties if the loss converges.
The affected neurons are removed if the neurons are assigned a value of zero.
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Phylogeography research involving virus spread and tree reconstruction relies on accurate
geographic locations of infected hosts. Insufficient level of geographic information in nu-
cleotide sequence repositories such as GenBank motivates the use of natural language pro-
cessing methods for extracting geographic location names (toponyms) in the scientific article
associated with the sequence, and disambiguating the locations to their co-ordinates. In this
paper, we present an extensive study of multiple recurrent neural network architectures for
the task of extracting geographic locations and their effective contribution to the disam-
biguation task using population heuristics. The methods presented in this paper achieve a
strict detection Fj score of 0.94, disambiguation accuracy of 91% and an overall resolution
Fy score of 0.88 that are significantly higher than previously developed methods, improving
our capability to find the location of infected hosts and enrich metadata information.

Keywords: Named Entity Recognition; Toponym Detection; Toponym Disambiguation; To-
ponym Resolution; Natural Language Processing; Deep Learning;

1. Introduction

Nucleotide sequence repositories like GenBank contain millions of records from various or-
ganisms collected around the world that enables researchers to perform phylogenetic tree and
spread reconstruction. However, a vast majority of the records (65-80%)1? contain geographic
information that is deemed to be at an insufficient level of granularity; information that is
often present in the associated published article. This motivates the use of natural language
processing (NLP) methods to find the geographic location (or toponym) of infected hosts
in the full text. In NLP, this task of detecting toponyms from unstructured text, and then
disambiguating the locations to their co-ordinates is formally known as toponym resolution.
Toponym resolution in scientific articles can be used to obtain precise geospatial metadata
of infected hosts which is highly beneficial in building transmission models in phylogeography
that could enable public health agencies to target high-risk areas. Improvement in geospatial
metadata also enriches other scientific studies that utilize GenBank data, such as those in
population genetics, environmental health, and epidemiology in general, as geographic location

(© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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is often used in addition to or as a proxy of other demographic data. Toponym Resolution
is typically accomplished in two stages (1) toponym detection (geotagging), a named entity
recognition (NER) task in NLP and (2) toponym disambiguation (geocoding).

For instance, given the sentence “Our study mainly focused on pediatric cases with differ-
ent outcomes from the most populated city in Argentina and one of the hospitals in Buenos
Aires where patients are most often referred.”, the detection stage deals with extracting the
locations “Argentina” and “Buenos Aires”.? The disambiguation stage deals with assigning
the most likely, unique, identifiers from gazetteer resources like Geonames® to each location
detected e.g. “3865483:Argentina” from 145 candidate entries containing the same name and
“84835910:Buenos Aires” from 943 candidate entries with variations of the same name. Both
tasks bring forth interesting NLP challenges with applications in a wide number of areas.

In this work, we present a system for toponym detection and disambiguation that improves
substantially over previously published systems for this task, including our own.*% Since
detection is the first step in the process, its impact on the overall performance of the combined
task is multiplied, as locations not detected can never be disambiguated. We use recurrent
neural network (RNN) architectures that use word embeddings, character embeddings and case
features as input for performing the detection task. In addition to these, we also experiment
with the use of conditional random fields (CRF) on the output layer as they have known to
improve performance. We perform ablation studies/leave-one-out analysis with repetitive runs
with different seed values for drawing strong conclusions about the use of deep recurrent neural
networks, their architectural variations and common features. We evaluate the impact of the
results from the detection task on the upstream disambiguation task, performed using the
commonly assumed population heuristic” whereby the location with the greatest population
is chosen as the correct match.

The rest of the document is structured as follows. In Section 2, we summarize research
efforts in the area of toponym detection and disambiguation and list the contributions of this
paper in light of previous work. We distinguish the RNN architectures used for evaluation
along with the population heuristic used for measurement in Section 3. Finally, we present
and discuss the results of the toponym detection and disambiguation experiments in Sections
4 and discuss limitations and scope for improvements in Section 5.

2. Related Work

Toponym detection and toponym disambiguation have been widely researched by the NLP
community, with numerous publications on both detection and disambiguation tasks.® 19 To-
ponym detection is commonly tackled as a NER challenge where toponyms are recognized
among other named entities like organization names and people’s names. Previous studies!!
have identified the performance of the NER as an important source of errors in enhancing
geospatial metadata in GenBank, motivating the development of tools for performing detec-
tion and resolution of named entities such as infected hosts and geographical locations.!?13
The annotated dataset used in this work®!! includes both span and normalized Geonames ID

®http://www.geonames.org/ Accessed:Sept 30 2018
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annotations. Since the performance of the overall resolution task is deeply influenced by the
NER, some of the previous works using this dataset have looked specifically at improving the
NER’s performance. Our previous research on toponym detection have used rule-based meth-
ods,* traditional machine learning sequence taggers using conditional random fields (CRF)5
and deep learning methods using feed forward neural networks.® NER performance since the
introduction of the dataset has increased from an F1-score of 0.70 to 0.91 closing in on the
human-level annotation agreement of 0.97. In the previous baseline for toponym resolution*
a rule based extraction system was used to detect toponyms. In subsequent work, traditional
machine learning algorithms such as conditional random fields (CRFs)® and feedforward neu-
ral nets® were introduced for improving the NER’s performance. There exist some studies
involving RNN experiments that explore the use of RNN architectures for sequence tagging
tasks in the generic domain.'*'5 While these tasks measure the performance on specific tasks,
the effect of optimal performances haven’t been measured in upstream tasks.

On the other hand, toponym disambiguation has been commonly tackled as an information
retrieval challenge by creating an inverted index of Geonames entries.*'6 Given a toponym,
candidate locations are first retrieved based on words used in the toponym and subsequently
heuristics are used to pick the most appropriate location. Popular techniques use metrics such
as entity co-occurrences, similarity measures, distance metrics, context features and topic
modeling.”162% This approach is largely adopted due the large number of Geonames entries
(about 12 million) to choose from. We also find that the most common baseline used for
measuring the disambiguation performance is the population heuristic where the place with the
most population is chosen as the correct match. Most research articles that focus specifically
on the disambiguation problem use Stanford-NER or the Apache-NER tool?*22 for detection
which has been trained on datasets like CoNLL-2003, ACE-2005 and MUC. Some studies
assume gold standard labels and proceed with the task of disambiguation which makes it
difficult to assess the strength of the overall system. It is also important to note that a
majority of efforts have been focused on texts from a general domain like Wikipedia or news
articles.?222 Only a handful of publications deal with the problem in other domains like
biomedical scientific articles®?3 which contain a different and broader vocabulary. Similar to
the previous disambiguation method developed for this dataset,* we build an inverted index
using Geonames entries but use term expansion techniques to improve the performance and
usability of the system in various contexts.

In light of previous work, the main contributions of this work can be summarized as follows:

(i) We perform a comprehensive and systematic evaluation of multiple RNN architectures
from over 400 individual runs for the task of toponym detection in scientific articles and
arrive at state-of-the-art results compared to previous methods.

(ii) We discuss the impact of significant performance improvement in toponym detection in
the upstream task of toponym resolution.

3. Methods

Our approach for detection and disambiguation of geographic locations are tackled indepen-
dently, as described in the following subsections. For the purposes of training and evaluation,
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we use the publicly available human annotated corpus of 60 full-text PMC articles containing
1881 toponyms.* Of the 60, the standard test set for the corpus includes only 12 articles con-
taining a total of 285 toponyms, a large majority of which are countries and major locations.
The annotated dataset contains both span annotations and gazetteer ID annotations linking
[SO-3166-1 codes for countries and GeonamesIDs for the remaining toponyms. For uniformity,
we converted all ISO-3166-1 codes to equivalent GeonamelDs.

3.1. Toponym Detection

The task of toponym detection typically involves identifying the spans of the toponyms in
an NER task where the sequence of actions is illustrated in Fig 1. As input features, we
use publicly available pre-trained word embeddings that were trained on Wikipedia, PubMed
abstracts and PubMed Central full text articles.?* In addition to word embeddings, we experi-
ment with orthogonal features such as (1) a case feature to explicitly distinguish all-uppercase,
all-lowercase and camel-case words encoded as one-hot vectors that are appended to the word,
and (2) fixed length character embeddings. Character embeddings have shown to improve the
performances of deep neural networks and are employed in few different ways. One of the
popular methods used involves the use of a CNN layer?> or an LSTM layer?® on vectors from
a randomly initialized character embeddings that are fine tuned during training appended to
the input word embedding layer. During initial experiments we found that implementation
of this architecture added significantly to the training time and hence we employ the use of
a simpler model where character embeddings are pre-trained using word2vec and appended
directly to the input layer along with word embeddings and case features.

The proposed RNN units and their variations can be used on their own for NER purposes.
However, bidirectional architectures are popularly employed for NER as they have the com-
bined capability of processing input sentences in both directions and making tagging decisions
collectively using an output layer as illustrated in figure 1. In this paper, we specifically look
at bi-directional recurrent architectures. It is also common to observe the use of a CRF output
layer on top of the output layer of bidirectional RNN architecture. CRF’s are known to add
consistency in making final tagging decisions using IOB or IOBES styled annotations. We
experiment between combinations of the RNN variants along with the optional features in an
ablation study to identify the impact of these additive layers on the NER’s performance as
well as its impact on the upstream resolution task.

3.1.1. Recurrent Neural Networks

RNN architectures have been widely used for auto-encoders and sequence labeling tasks such
as part-of-speech tagging, NER, chunking among others.2” RNNs are variants of feedforward
neural networks that are equipped with recurrent units to carry signals from the previous
output y'~! for making decisions at time 3’ as shown in equation 1.

y=cW- -z, +U-y_1+0b) (1)

Here, W and U are the weight matrices and b is the bias term that are randomly initial-
ized and updated during training. o represents the sigmoid activation function. In practice
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Fig. 1. A schematic representation of the sequence of actions performed in the NER equipped with
bi-directional RNN layers and an output CRF layer. RNN variants discussed in this paper involve
replacing RNN units with LSTM, LSTM-Peepholes, GRU and UG-RNN units.

other activation functions such as tanh and rectified linear units (ReLU) are also used. This
characteristic recurrent feature simulates a memory function that makes it ideal for tasks in-
volving sequential predictions dependent on previous decisions. However, learning long term
dependencies that are necessary have been found to be difficult using RNN units alone.?

3.1.2. LSTM

LSTM networks? are variants of RNN that have proven to be fairly successful at learning long
term dependencies. A candidate output g is calculated using an equation similar to equation
1 and further manipulated based on previous and current states of a cell that retains signals
simulating long-term memory. The LSTM cell’s state is controlled by forget (f), input (i) and
output (o) gates that control how much information flows from the input to the state and
from state to the output. The gates themselves depend of current input and previous outputs.

g=tanh(W9 -2, + U9 - y;—1 +19) (2)
f=oW/! 2, +U" y_1 +0) (3)
i=o(W'a+ U gy +bY) (4)
o=c(W° -2, +U° - y—1 +b°) (5)

The future state of the cell ¢; is calculated as a combination of (1) signals from forget gate
g and the previous state of the cell ¢;_; which determines the information to forget (or retain)
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in the cell, and (2) signals from the input gate i and the candidate output g that determines
the information from the input to be stored in the cell. Eventually the output y; is calculated
using signals from the output gate o and the current state of the cell ¢;.

a=fOca1+i0g (6)
Yy = 0 ® tanh(c;) (7)

In the above equations, ® indicates pointwise multiplication operation. While the above
equations represent LSTM in its most basic form, many variations of the architecture have been
introduced to simulate retention of long-term signals a few of which have been summarized
in the following subsections and subsequently evaluated in the results section. For reasons of
brevity, we do not include the formulas used for calculating the output y; but they can be
inferred from the works cited.

3.1.3. Other Gated RNN Architectures

We evaluate in our experiments one of the LSTM variations introduced for speech processing?’
that introduced the notion of peepholes (LSTM-Peep) where the idea is that state of the cell
influences the input, forget and output gates. Here, signals for the input and forget gates i
and f depend not only on the previous output y;_; and current input z; but also the previous
state of the cell ¢;_; and the output gate o depends on the current state of the cell ¢;.

Gated Recurrent Unit (GRU)?! also known as coupled input and forget gate LSTM (CIFG-
LSTM)! is a simpler variation of LSTM with only two gates: update z and reset r. Their
signals are determined based on the current input x and previous output y;—; similar to the
gates in LSTMs. The update gate z attempts to combine the functionality of input and forget
gates of LSTMs 7 and f and eliminates the need for an output gate as well as an explicit
cell state. A singular update gate signal z controls the information flow to the output value.
Although it appears far more simple, GRU has gained a lot of popularity in the recent years
in a variety of NLP tasks.32:33

Update gate RNN (UG-RNN)34 is a much simpler variation of LSTM and GRU architec-
tures containing only an update gate z is also included in our experiments. The importance
of the update gate is often highlighted in RNN based architectures.'® Hence, we include this
model to perform a gate based ablation study to understand their contributions to the overall
resolution task.

3.1.4. Hyperparameter search and optimization

The performance of deep neural networks relies greatly on optimization of its hyperparame-
ters and the performance of the models have been found to be sensitive to changes in seed
values used for initializing the weight matrices.?” We first performed a grid search over the
previously recommended optimal range of hyperparameter space for NER tasks?” and to arrive
at potential candidates of optimal configurations. We then performed up to 5 repetitions of
experiments at the optimal setting for the model at different seed values to obtain the median
performance scores. All models were developed using the TensorFlow framework and trained
on NVIDIA Titan Xp GPUs equipped with an Intel Xeon CPU (E5-2687W v4).
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3.2. Toponym Disambiguation

For toponym disambiguation, we use the Geonames gazetteer data to build an inverted index
using Apache Lucene® and search for the toponym terms extracted in the toponym detection
step in the index.

3.2.1. Building Geonames Index

Individual Geonames entries in the index are documents with common fields such as Geon-
amelD, LocationName, Latitude, Longitude, LocationClass, LocationCode, Population, Conti-
nent and AncestorNames. Here, LocationName contains the common name of the place. For
countries, we expand this field by using official names, ISO and ISO3 abbreviations (e.g. United
States of America, US and USA, respectively, for United States). For ADM1 (Administrative
Level 1) entries that have available abbreviations (e.g. AZ for Arizona, and CA for Califor-
nia), we add such alternate names to the LocationName field. In addition to the above fields
we add the County, State and Country fields depending on the type of geoname entry. Fields
such as LocationName, County, State, Country and AncestorNames are chosen to be reverse
indexed such that partial matches of names offers the possibility of being matched with the
right disambiguated toponym on a search.

3.2.2. Searching Geonames Index

Most cities and locations commonly have their parent locations listed as comma separated val-
ues (e.g. Philadelphia, PA, USA). In such cases, the index provides the capability to perform
compound searches (e.g. LocationName: “Philadelphia” AND AncestorNames: “PA, USA”).
We find that this method offers the best scalable framework for toponym disambiguation
among approximately 12 million entries. Efficient search capabilities aside, the solution in-
ternally provides documents to be sorted by a particular field. In this case, we choose the
Population field as the default sorting heuristic such that search results are sorted by highest
population first. An additional motivation for the implementation of this solution is the flexi-
bility of using external information to narrow down search results. For example, when Country
information is available in the GenBank record, we can use queries like LocationName: “Paris”
AND Country: “France” to narrow down the location of infected hosts.

4. Results and Discussion

For the NER task, we use the standard metric scores of precision, recall, and Fj-scores for
toponym entities across two modes of evaluation:(1) Strict where the predicted spans of the
toponym have to match exactly with the gold standard spans to be counted as a true positive
and (2) Overlapping where predicted spans are true positives as long as one of its tokens overlap
with gold standard annotations. For toponym disambiguation, we compare the predicted and
gold standard GeonamelDs to measure precision, recall and fi-scores as long as the spans
overlap. We compare our scores with the previous systems that were trained and tested on the

Phttp:/ /lucene.apache.org/ Accessed:Sept 30 2018
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same dataset. To evaluate the performance of the overall resolution task, it is important to
examine the performance of the individual systems to assess the cause of errors and identifying
regions for improvement.

4.1. Toponym Disambiguation

Our toponym disambiguation system is unsupervised, giving us the capability to test its per-
formance on the entire dataset assuming gold standard toponym terms to be available. Under
this assumption, the accuracy of the disambiguation system was found to be 91.6% and 90.5%
on training and test set respectively. Analyzing the errors, we found that comparing ids di-
rectly is a very strict mode of evaluation for the purposes of phylogeography as Geonames
contains duplicate entries for many locations that belong to two or more classes of locations
such as administrative division (ADM) and populated area or city (PPLA, PPLC) but refer
to the same geographical location. For instance, when we look at the test set alone, which had
27 errors from a total of 285 locations, 19 appeared to be roughly the same location. These
included locations like Auckland, Lagos, St. Louis, Cleveland, Shantou, Nanchang, Shanghai,
and Beijing which were assigned the ID of the administrative unit by the system, while the
annotated locations were assigned the ID of the populated area or city or vice versa. Given
these reasons, we find that the performance of the resolution step exceeds the reported scores
by 5% to arrive at an approximate accuracy of 95-96%. However, for the purposes of compar-
ison with previous systems we report the overall resolution performance in Table 1 without
making such approximations. We did however observe 8 errors where the system assigned
GeonamesIDs were drastically different from their original locations due to the population
heuristic. For example, a toponym of Madison was incorrectly assigned the ID of Madison
County, Alabama which had a higher population than the gold standard annotation Madison,
Dane County, Wisconsin(WI).

4.2. Toponym Resolution

Analyzing the errors across the architectures, we find that 80-90% of the erroneous instances
to be repeating across the RNN architectures making it challenging to use ensemble methods
for reducing errors. These included false negative toponyms such as Plateau, Borno, Ga,
Gurjev, Sokoto etc. which appear in tables and structured contexts making it difficult to
recognize them. However, as discussed in our previous work,% we plan to handle table structures
differently by employing alternative methods of conversions from pdf to text. Almost all false
positives appeared to be geographic locations, however in the text they were found to be
referring to other named entities like virus strains and isolates rather than toponyms.

We found that the LSTM-Peep based architecture appeared to have marginally better
performance scores on the NER task and hence the overall resolution task. Feature ablation
analysis shown in Figure 2 indicate that inclusion of the character embedding feature con-
tributed to increase in the overall performance of RNN models. However, inclusion of case
feature in combination with the character embeddings appeared to be redundant. Inclusion of
the CRF output layer seemed to have a positive impact on most models while additive layers
seemed to have more effect on GRU, LSTM and LSTM-Peep architectures.
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Table 1. Median Precision(P), Recall(R) and F} scores for NER and Resolution. Bold-styled
scores indicate highest performance. All recurrent neural network units were used in a bidirec-
tional setup with inputs containing pre-trained word embeddings, character embeddings and
case features, and an output layer with an additional CRF layer.

Method NER-Strict NER-Overlapping Resolution
P R R P R R | P R R
Rule-based* 0.58 0.876 0.698 | 0.599 0.904 0.72 0.547 0.897 0.697
CRF-AIIP 0.85 0.76 0.80 0.86 0.77 0.81 - - -
FFNN + DSS 0.90 093 0091 - - - - - -
RNN 0.910 0891 0.901 | 0.931 0912 0.922 | 0.896 0.817 0.855
UG-RNN 0.948 0902 0.924 | 0.959 0912 0.935 | 0.903 0.824 0.862
GRU 0.952 0919 0.935 | 0.967 0930 0.948 | 0.888 0.835 0.860
LSTM 0.932 0926 0.929 | 0.954 0947 0.950 | 0.892 0.842 0.866
LSTM-Peep 0.934 0.944 0.939 | 0.951 0.961 0.956 | 0.907 0.863 0.884
[ Nofeatures [ No Char feature No Case feature All Features No CRF Layer [ 1RNN layer | 2RNNlayers [l 3 RNN layers
0.95 0.95
|

| |

| | |

\ \ \

\ | \

| | |
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\ \ \

| | |

\ \ \

\ 1 \
UG-RNN GRU LSTM LSTM-Peep UG- RNN GRU LS'IM LSTM-Peep

Fig. 2. (Left) Ablation/leave-one-out analysis showing the contribution of individual features to the
NER performance across the RNN models. (Right) Impact of additive layers on the performance of
the NER across the RNN models. Here, RNN layers refer to respective variants of RNN architectures.
Y-axis shows strict F} scores.

5. Limitations and Future Work

In this work, we find that utilizing state-of-the-art NER architectures help us obtain perfor-
mances that are inching close to human performance. However, we do find that the articles
in the test set may perhaps be relatively easier than the average article for the detection
task when we compare it to randomly selected validation/development set performances. As
discussed in our previous work,’ distance supervision datasets can contain toponym spans in
close proximity to each other generating noisy training examples. This makes it challenging to
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use distance supervision techniques to increase the size of training data for training sequence
tagging models based on RNN architectures. Hence, to address this issue, we are in the process
of expanding the annotation dataset from 60 articles to 150 articles for a more comprehensive
training and evaluation of the system.

Irrespective of the ease of detection in the test set, there appear to be false negative
toponyms (discussed in the previous section) that could possibly be the location of infected
hosts(LOIH). While there are chances that toponyms that are LOIH appear repeatedly in the
scientific article in varying contexts thus increasing the chances of them being detected, in
our following work we wish to evaluate the impact of these false negatives on the overall task
of identifying the LOIH. To reduce false positives where locations could infact refer to other
named entities like virus strains and isolates than toponyms themselves, we intend to explore
approaches from metonymy resolution®® for filtering out such false positives.

6. Conclusion

Phylogeography research relies on accurate geographical metadata information from nucleotide
repositories like GenBank. In records that contain insufficient metadata information, there is
a motivation to extract the geographical location from the associated articles to determine the
location of the infected hosts. In this work we present and evaluate methods built on recurrent
neural networks that extract geographical locations from scientific articles with a substantial
increase in performance from an Fj score of 0.88 which improves significantly over the previous
toponym resolution system F; of 0.69. Our implementations of the toponym detection and to-
ponym disambiguation® systems along with the updated version of the annotations containing
GeonamelDs? are available online.
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The increasing amount of scientific literature in biological and biomedical science research
has created a challenge in continuous and reliable curation of the latest knowledge discov-
ered, and automatic biomedical text-mining has been one of the answers to this challenge.
In this paper, we aim to further improve the reliability of biomedical text-mining by train-
ing the system to directly simulate the human behaviors such as querying the PubMed,
selecting articles from queried results, and reading selected articles for knowledge. We take
advantage of the efficiency of biomedical text-mining, the flexibility of deep reinforcement
learning, and the massive amount of knowledge collected in UMLS into an integrative arti-
ficial intelligent reader that can automatically identify the authentic articles and effectively
acquire the knowledge conveyed in the articles. We construct a system, whose current pri-
mary task is to build the genetic association database between genes and complex traits
of human. Our contributions in this paper are three-fold: 1) We propose to improve the
reliability of text-mining by building a system that can directly simulate the behavior of a
researcher, and we develop corresponding methods, such as Bi-directional LSTM for text
mining and Deep Q-Network for organizing behaviors. 2) We demonstrate the effectiveness
of our system with an example in constructing a genetic association database. 3) We release
our implementation as a generic framework for researchers in the community to conveniently
construct other databases.

Keywords: Biomedical text-mining, Deep Reinforcement Learning, Genetic Association
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1. Introduction

Understanding the biological and biomedical science is one of the most fundamental goals
of research and an essential step towards the realization of “precision medicine” in this era.
Scientists all over the world are collaboratively contributing to this final goal, leading to an
accompanying growth of the scientific literature. For example, PubMed?® has seen exponential
growth regarding the number of publications in recent years' and has collected over 27 million
abstracts.? These massive amount of articles consequently bring in the challenge of integrating
the information conveyed effectively and accurately.

Biomedical information extraction has been the answer to this challenge for a long time.3*
However, due to the demand of high reliability in biomedical research, following a typical
general-purpose information extraction protocol and examining every article in the corpus
nondiscriminatorily may lead to falsely constructed knowledge because of the non-negligible
number of scientific literature with the issues of reproducibility.5 7

To fulfill the need of reliability in text mining and knowledge-base construction, instead
of requiring the system to scan the entire corpus uniformly, we propose to train the system to
directly simulate the behavior of a scientist with a sequence of actions including 1) querying the
web, 2) evaluating the article, 3) studying the article for knowledge if necessary, 4) rejecting the
knowledge if necessary, and 5) storing the knowledge. The 2"! and 4" steps play the essential
roles in maintaining the reliability in constructed databases in our proposed system. Boosted
by the power of deep reinforcement learning in organizing these actions, the ability of deep Bi-
directional long short-term memory (LSTM) in text mining, and massive amount of knowledge
encoded in Unified Medical Language System (UMLS),® we are able to present our human-
like system that can imitate the behaviors of a real scientist and construct the database of
reliable and cutting-edge biomedical publications efficiently and endlessly. Therefore, we name
our system the Everlasting Iatric Reader (Eir)P. We further apply our system to construct
a genetic association database, where we can verify the performance of Eir with a manually
crafted database of 167k gene-trait associations from high quality articles.’

The contributions of this paper are three-fold:

e We propose to improve the reliability of text-mining by building a system that can
directly simulate the behavior of a researcher, and we develop corresponding meth-
ods, such as Bi-directional LSTM for text mining and Deep Q-Network for organizing
behaviors.

e We demonstrate the effectiveness of our system with an example in constructing a
genetic association database.

e We release our implementation as a generic framework for researchers in the community
to conveniently construct other databases.

2the database maintained by the National Center for Biotechnology Information (NCBI)

PWe name our system Everlasting Iatric Reader because it can endlessly construct the knowledge in
the medical area, where the high reliability is an issue, and also because the acronym (Eir) shares
the name of the goddess of medical knowledge in Norse mythology, which is related to the final goal
of this and following-up projects.
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The remainder of this paper is organized as follows. In Section 2, we will introduce the
related works in biomedical text mining. In Section 3, we will systematically introduce our
system, mainly with deep reinforcement learning module that organizes the actions, text
mining module that extracts the information, and implementation specifications. In Section 4,
we will compare the performance to validate the strategy of Eir. Finally, in Section 5, we will
draw conclusions and discuss about the future work.

2. Related Work

Text mining from biomedical literature has been studied extensively for a long time with a
variety of different applications, such as patient analysis from electronic health records,'0 12
gene annotations from protein networks,'® and drug repositioning from literature.'* One can
refer to comprehensive reviews*!%16 and the references therein for more detailed discussions.

The text mining usually leads to automatic construction of knowledge bases. In recent
years, Mallory et al.'” curated a database of gene-gene interactions. They applied the infor-
mation extraction engine DeepDive'® to around 100k full text PLOS articles for extracting
direct and indirect gene-gene interactions. Poon et al.'® introduced the Literome project, where
they extracted directed genic interactions and genotype-phenotype associations from PubMed
articles. Lossio-Ventura et al.? introduced a pipeline to build an obesity and cancer knowledge
base. Very recently, Lossio-Ventura et al. also noticed the reliability issue of knowledge base,
so they further proposed to incorporate cross-sourcing process to improve the reliability of the
their previously developed knowledge base.?!

On the other hand, the boom of deep learning techniques has allowed many more advanced
methods developed for biomedical applications.???* As a result, LSTM and its variants,?>26
and word embedding techniques?”?® have been studied extensively for a variety of applications.

In comparison, a difference between most of previous work and our work is that we aim
to improve the reliability of the extracted knowledge by examining the source unstructured
data (i.e. the PubMed literature in our case). To put in simpler words, while most previous
work are extending human’s intelligence of comprehending the articles, our system aims to
extend human’s intelligence of the entire research process that starts with querying the web
and selecting the interesting article. To the best of our knowledge, this paper is the first one
that simulates the entire research process in biomedical information extraction to improve
the reliability of the constructed knowledge base. However, many similar concepts??3! have
been proposed previously. Most relevantly, Kanani et al3? utilized reinforcement learning to
reduce computational bottlenecks, minimizing the number of queries, document downloads
and extraction action, a similar strategy has been proposed independently for biomedical text
mining with the concept “focused machine reading”,3® which is inspired by Narasimhan et
al,3* who built an information extraction system that can query the web for extra information
with reinforcement learning.

3. Method

In this section, we officially introduce the our system. We will start with the main frame-
work, and continue to introduce the deep reinforcement learning module that organize differ-
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ent actions of the system, which is followed by the discussions of proprecessing module and
biomedical text mining module. After a systematic introduction of the detailed algorithms,
this section is concluded with implementation specifications.

3.1. Model Framework

Eir’s research process is a markov decision process (MDP), where the model learns to query
the search engine for scientific articles to read for the knowledge. We represent the MDP as
a tuple < S, A, T, R >, where S = s is the space of all possible states, A = a is the set of all
actions, R(s,a) is the reward function, and 7'(s'|s, a) is the transition function.

PubMed ‘APOE Alzheimer's

Create RSS  Create alert Advanced

i Step 1. Query

AAPOE Alzheimer's
Create RSS Create alert Advanced

Step 5. Store
& Stop

=

PubMed

-+

4

Format: Summary - Sort by: Best Match+ Per page: 20+ Sendto +

APOE
Search results i *
Chromosome 19
Items: 1 to 20 of 8286 Page 1 | of415 Next> Last>> * ' ‘

=

© Your has been changed to Best Match ]
*) Apolipoprotein E in Alzheimer's disease: an update.

p

1. YuJT, Tan L, Hardy J.
Annu Rev Neuroscl, 2014;37:78-100. doi: 10.1148/annurev-neuro-071013.014300. Epub 2014 Apr 21. Review.
PMID: 24821312
‘Simiar artices

The APOE Gene is Differentially Methylated in Alzheimer's Disease.

Foraker J, Millard SP, Leong L, Thomson Z, Chen S, Keene CD, Bekris LM, Yu CE.
J Alzheimers Dis. 2015,48(3)745-56. doi: 10.3233/JAD-143060.

PMID: 26402071

‘Similar arides:

Step 4. Question the credibility

AB immunotherapy for Alzheimer's disease: effects on apoE and cerebral vasculopathy.

3. Sakai K, Boche D, Carare R, Johnston D, Holmes C, Love S, Nicoll JA. el Dl s

0-071013.014300. Epub 2014 Apr 21

Acta Neuropathol. 2014 Dec; 126(6)-777-89. do: 10.1007/500401-014-1340-9, Epub 2014 Sop 7.
PMID: 25195061
‘Simiar artides:

E and lipid is in the etiology and treatment of sporadic Alzheimer's

disease.

Poier J, Mion J,Picard C, Gormiey P, Thérous L, Breiner J, Dea D

Neurobol Aging. 2014 pl 2:53-10. doi: 10101 014.03.097.
118 Free PMC Article

16. Review.

Step 2. Examine the reliability of a report

=

Apolipoprotein E in Alzheimer's disease: an update.
YuJT', Tan L, Harov J
@ Author information

Abstract

The vast majority of Alzheimer's disease (AD) cases are late onset (LOAD), which is genetically complex with heritabilty estimates up to
80% E (APOE) has been irrefutably recognized as the major genefic risk factor, with inheritance, for LOAD.
Athough e echariars s ke e paogeri e of APOE i AD are sl o comletay urersiod, everging Gas wgee Ut

[APOE contributes to lhwugh both amyloid-B (A) and A dent pathways| Given the central role for
APOE in the AD , including converting APOE conformation,

regulating APOE expression, mimicking ety pepm-s blocking the APOE/AB interaction, modulating APOE lipidation state, and gene
therapy. Accumulating evidence also suggests the utity of APOE genotyping in AD diagnosis, risk assessment, prevention, and treatment
response

KEYWORDS: Alzheimers disease; amyloid-5; apolipoprotein E; pathogenes's; polymorphism; tau; therapy

Step 3. Study the paper

Fig. 1: Overview of Eir’s possible behaviors

We present the details of these components as following;:

e Actions: Action (we use a to denote action throughout this paper) is a set of Eir’s

behaviors to simulate a real researcher, including

1.

Gl W

Query the search engine.

Evaluate whether the article is reliable.
Read the article for detailed information.
Exam credibility of the information and querying again.

Stop.

115



Pacific Symposium on Biocomputing 2019

As shown in Figure 1, for every interesting query, Eir starts with the 15¢ action and
then enters the loop from the 2°¢ action to the 4** action until Eir is satisfied with the
finding of current research interest and ceases with the 5" action. Then Eir repeats
the entire process with another query.

e States: The state s in the MDP describes the research status of Eir, possible candidate
states include the ones that are precedent or after each aforementioned action. There
are only a countable number of actions, but we use continuous real-valued vector to
represent each state so that we could have a better modeling power to distinguish Eir’s
research status after each action. The state is constructed with a variety of information,
including the embedding vector that the Bidirectional LSTM yields, the confidence of
biomedical text mining module, the confidence of selecting an article to read, etc.

e Rewards: The reward function is chosen to maximize the intermediate paper selection
accuracy and final extraction accuracy together while minimizing the number of queries.
The accuracy component is calculated using the difference between the accuracy of the
current and the previous set of entity values.

e Transitions: Transition T'(s'|s,a) is modeled as a function of how the next state s is
updated given the current state s and action a taken.

3.2. Deep Reinforcement Learning for Organizing Actions

As we have introduced previously, we utilized deep reinforcement learning to arrange the
sequence of actions a to perform, given a state function denoted as Q(s,a). To update Q(s, a),
we used the popular Q-learning,3> which iteratively updates Q(s, a) as following:

Qi+1(s,a) = E[r +ymax Q;(s,a’)|s, a]
a/

where r» = R(s,a) is the reward and v is a discounting factor.

Because of the continuous nature of our state space S, we use a deep Q-network (DQN)36
as a function approximator Q(s,a) = Q(s,a;0). The Q-function of DQN is approximated by
a neural network, whose parameters (i.e. ) are updated through stochastic gradient descent.
We followed the detailed parameter learning strategies introduced previously.3

3.3. Preprocessing and Name Entity Recognition with UMLS

Before we feed in the texts into the text mining module, we notice that the literature is filled
with alternative, idiosyncratic and arbitrary names and symbols. The text mining module
will only exhibit its full power when the texts are processed into a uniform representation.
Therefore, we utilize the rich information collected by the unified medical language system
(UMLS).® UMLS defines a unique concept for all the terms that are interchangeable. For
example, “Alzheimer’s disease”, “Alzheimer’s”, and “alzheimer” will be mapped into the same
concept. UMLS contains over one million biomedical concepts that are split into 133 broad
categories (such as “Organisms”, “Anatomical structures”, “Biologic function”). With the help
of MetaMap,3” we are able to translate the unstructured texts into a sequence of concepts,
together with the category information, an associated confidence score, and two binary values
to indicate whether the concept is in gene ontology, and in disease ontology respectively.
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3.4. Baidirectional LSTM for Relation Classification

As Eir queries PubMed with a gene-trait pair, the text mining model only needs to classify
whether the returned texts from PubMed can be seen as evidences to support that there
is association between the queried gene-trait pair. Therefore, the text mining module can be
conveniently regarded as a classification module. We use a Bidirectional LSTM?® for classifying
whether the text describes as association relationship between the gene and the trait the
system queried. We choose this Bidirectional LSTM architecture mainly because we notice
that it is empirically the best performing method among other neural architecture for our
specific task. We first treat the sequence of concepts as words in text and created a 512-
dimension vector of continuous values to represent each concept. Further, we feed in this
concept-embedding, together with an one-hot representation of the category information, and
the two binary values into the Bidirectional LSTM, which is trained through Adam.

3.5. Algorithm

Algorithm 1 describes the overall algorithm of the MDP process of Eir, where g and ¢ stands
for gene and trait respectively, a stands for action, s stands for state, and r stands for reward.
“Agent” refers to DQN, which organizes the sequence of actions given states and reward.
Details including the methodology of updating (s,r) has been discussed in previous sections.

3.6. Implementation Specification

The Deep Reinforcement Learning component of Eir is implemented as an extension of
Narasimhan et al,3* we also use a DQN consisting of two linear layers (20 hidden units each)
followed by rectified linear units (ReLU), along with two separate output layers.

The web query component is built with a web crawling engine Scrapy® communicating
with NCBI PubMed search engine. At this moment, we only query for the abstracts of the
articles. We only work with abstracts for three reasons: 1) this allow us to conveniently access
and scan a large amount literature, 2) we notice that a majority of articles disclose the most
important findings in the abstract with a straightforward style of writing, 3) previous work
notice that mining from full texts may lead to more false positives.??

The preprocessing module is built as a python script that runs MetaMap, which is a binary
software that allows users to conveiently annotate words and phrases of texts with manually
defined concepts in UMLS.

The sentences are truncated with max length of 300 concepts. We only consider the 30,000
most frequent concepts together with the specific defined ‘SOS’ (start of sentence), ‘EOS’
(end of sentence), ‘UNK’ (unknown) and ‘PAD’ (padding the sentences shorter than 300)
concepts. We use a 2-layer Bidirectional LSTM with hidden dimension set to 1000, and feed 512
dimension concept embedding, one dimension gene ontology, one dimension disease ontology,
and 136 dimension semantic type as the input of LSTM. The LSTM is trained jointly with
the embedding matrix using Adam with step size set to 0.00004 and batch size set to 64.

“https://scrapy.org/
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Then We train the Eir models for 10000 steps every epoch using the Maxent classifier as
the base extractor, and evaluate on the entire test set every epoch. The final accuracy reported
are averaged over three independent runs; each runs score is averaged over 5 epochs after 45
epochs of training. The penalty per step is set to -0.001. We used a replay memory of size
500k, and a discount « of 0.8. We set the learning rate to 2.5E5. The ¢ in e-greedy exploration
is annealed from 1 to 0.1 over 500k transitions. The target-QQ network is updated every 5k
steps. The whole framework was trained to optimize the reward function.

We release our implementation? for the community to use our system or build more ad-
vanced text mining module into our system for better performance.

Algorithm 1 MDP framework of Eir

for epoch =1, M do
for g,t in query_list do
Query the search engine with g and ¢.
Update and send state (s,r) to agent
Get action a from agent
while « is not “stop” do
if a is “select” then
Update (s,r) with selection
else if a is “reject” then
Update (s,r) with rejection
else
Translate texts into sequence of concept embeddings.
Relation classification with Bidirectional LSTM
Update (s,r) with classified relation
end if
Send state (s,r) to agent
Get action a from agent
end while
end for
end for

4. Experiments

In this section, we will verify the performance of Eir by showing that, with the same text
mining module, the Eir system can help improve the performance of extracted associations.
We will first discuss how we construct the experimental data sets then discuss the results.

4.1. Data

Within the scope of this paper, Eir focus on constructing the knowledge base for gene-trait
association relationship of human. To enable Eir to learn the associations, we utilized the high

dhttps://github.com /lebronlambert /Eir
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quality data set of 167k association relationship that is manually crafted for over ten years.”

In addition to the gold-standard information of gene-trait association relationship, another
contribution of this data set is the collection of high quality publications that report these
associations. Every entry in the database is grounded by the authentic source of scientific paper
that originally publishes the relationship. These detailed information grants us the possibility
of directly training Eir to discriminate the reliable papers out of the less favourable papers
that were not selected by GAD curators for some reasons.

Despite that Eir is designed for extracting latest information online, in order to test the
effectiveness of Eir, we need to run the core functions on a local collections of articles with
manually labelled true associations. Therefore, we query the PubMed with 54,041 queries of
gene-trait pairs through our API and download 913,939 results with 305,651 distinct medical
articles. After removing some invalid records (e.g. articles with invalid PMID), there are
roughly 133,548 records (44,592 distinct articles) appear in the GAD database, which will
serve as the reliable articles. As the construction of GAD ceased in 2014, we regard the
articles that are published before 2014 but not in the GAD database as less favorable articles.
To balance the data set for performance evaluation, we sampled 140,361 less favorable records
before 2014 for comparison. Note that, these less favorable articles are not collected randomly,
but are returned from PubMed search engine when we query with a pair of gene and trait.
Besides, we delete the articles whose titles and abstracts do not contain the queried gene and
trait explicitly to remove obviously irrelevant articles. Then, we random split the whole data
set to sample 80% records as training data, and the rest as testing data. The training set
consists of 55k records, the testing set consists of 219k records.

4.2. Fvaluation

In order to show the effectiveness of the Eir system, we compare the system’s precision, recall,
and F1 score with a conventional biomedical text mining strategy that scans all the documents
nondiscriminatorily. As Eir uses the Bidirectional LSTM for text mining module, we use the
same model as baseline method for fair comparison.

4.3. Results
4.3.1. Improved Reliability

We first train our baseline Bidirectional LSTM and the results are shown in the Table 1 (first
row). The Bidirectional LSTM yields a precision of 91.25%, a recall of 96.55%, and an overall
F1 of 93.80%. These numbers indicate that the Bidirectional LSTM is capable to capture the
feature of authentic articles.

Further we add the Deep Re-
inforcement Learning component

Table 1: Results of Reliability Comparison i _
to train the overall Eir system.

precision | recall F1 The results of Eir are shown as
Bidirectional LSTM 9125% 9655% 9380% Table 1 (Second row>' We can see
Eir 91.4% 97.0% | 94.1% that the precision score is 91.4%,

the recall score is 97.0%, the F1
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score is 94.1%. Compared to the baseline model, our Eir framework is better at extracting
the features of valuable articles and utilizing the information and can retrieve the authentic
articles more efficiently by employing the Deep Reinforcement Learning module.

4.3.2. Robustness in Real-world Situations

Table 2: Results of Eir in real-world situations

Full Data 20% Authentic Articles | 10% Authentic Articles ‘
Prec Recall F1 Prec  Recall F1 Prec  Recall F1
Bi-LSTM | 91.25% 96.55% 93.80% | 87.7% 95.7% 91.5% | 86.9% 92.2% 89.4%
Eir 91.4%  97.0%  94.1% | 87.9% 96.9% 92.2% | 87.8% 96.9% 92.1%
Increment | 0.16%  0.47%  0.32% | 0.23% 1.25% 0.77% | 1.04% 5.10% 3.02%

To better simulate the real-world situation that the researchers are in, we remove different
percentage of authentic articles both in the training data set and in the testing data set,
for the researchers get ample amount of less favorable articles. We randomly remove a certain
percentage of authentic articles to do the ablation experiments. As the percentage of authentic
articles decreases, the difficulty of our task increases. The results are shown in Table 2. We can
see the Eir system is more robust than the baseline model under these situations. Eir reports
higher precision, recall, and F1 score in all of these settings. More interestingly, we calculate
the increments Eir achieves over baseline model. We notice that, as the difficulty increases,
the increment also increases. Therefore, we believe Eir will be more helpful in the real-world
situation when a large amount of articles are less favorable articles.

4.3.3. Number of Articles Read

Finally, we examine Eir’s performance in the numbers of articles it needs to read to make a
decision. Since Eir stops once it believes it has sufficient amount of information, we anticipate
Eir will inspect less amount of articles than baseline models. To conduct this experiment, we
exclude the gene-trait query pair with only one authentic articles. In the remaining data set,
there is on average 2.54 articles for every query, and Eir reads only on average 2.46 articles.
We further repeat this experiment with a data set that excludes all the articles with less than
4 articles per query, resulting in a data set with on average 6.23 articles for every query. Eir
reads on average 6.10 articles.

5. Conclusions and Future Work

In this work, we introduced a system, namely Everlasting Tatric Reader (Eir), for biomedical
text mining. A distinct difference between our system and previous biomedical text mining
works is that our system is aimed to directly simulate the behaviors of scientists, including
searching for scientific literature, examining the reliability of the manuscript, studying the
paper for details, and continuing to search with suspicion of the learned knowledge.
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In contrast to traditional biomedical text mining tools, the distinguishable advantage Eir
has is the ability to discriminate reliable articles out of questionable articles and to shield the
problems introduced by humans. This ability is particularly important in biomedical areas
because in clinics, a falsely constructed knowledge may lead to fatal errors, while a missing
piece of true knowledge will at most delay the cure of certain disease. Also, it is necessary
to select trustworthy papers to read for information because it is known that there is a non-
negligible number of publications with the troubles of reproducibility.

There are also limitations of the current Eir. For example, the action of Eir for evaluat-
ing the literature quality is trained supervisedly. The performance of our Eir can be greatly
improved with a more cleaned data source, as now the false positives are introduced by some
manuaaly crafted data that are labeled not correctly. Therefore, we will need a manually
crafted data set first before we use Eir in some application. In this paper, we choose to con-
struct the genetic association database because of the availability of GAD.® However, there
are still a large number of manually curated databases with information about which paper
these information comes from, such as GWAS Catalog®® for SNP-phenotype association or
UniProt*! for protein function annotation.

Looking into the future, a direct extension of our work is to broaden Eir vision to ask
investigate into more biomedical topics in addition to gene-trait association relationships. Our
immediate next-step plan is to train Eir for SNP-phenotype association with GWAS Catalog,
then we can integrate these databases into GenAMap,*? a visual machine learning tool for
GWASe, for validation purpose of GWAS results. On the method development side, we hope
to upgrade the biomedical text mining module with state-of-the-art methods to improve the
information extraction performance, so that Eir could serve the community better. As a long-
term plan, we hope Eir could help the community to build the omini-biomedical knowledge
base, therefore, we released the source code of Eir for others in the community to use.
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Estimating classification accuracy in positive-unlabeled learning:
characterization and correction strategies

Rashika Ramola, Shantanu Jain, Predrag Radivojac*

Northeastern University, Boston, Massachusetts, U.S.A.

Accurately estimating performance accuracy of machine learning classifiers is of fundamental impor-
tance in biomedical research with potentially societal consequences upon the deployment of best-
performing tools in everyday life. Although classification has been extensively studied over the past
decades, there remain understudied problems when the training data violate the main statistical
assumptions relied upon for accurate learning and model characterization. This particularly holds
true in the open world setting where observations of a phenomenon generally guarantee its presence
but the absence of such evidence cannot be interpreted as the evidence of its absence. Learning from
such data is often referred to as positive-unlabeled learning, a form of semi-supervised learning where
all labeled data belong to one (say, positive) class. To improve the best practices in the field, we here
study the quality of estimated performance in positive-unlabeled learning in the biomedical domain.
We provide evidence that such estimates can be wildly inaccurate, depending on the fraction of pos-
itive examples in the unlabeled data and the fraction of negative examples mislabeled as positives in
the labeled data. We then present correction methods for four such measures and demonstrate that
the knowledge or accurate estimates of class priors in the unlabeled data and noise in the labeled
data are sufficient for the recovery of true classification performance. We provide theoretical support
as well as empirical evidence for the efficacy of the new performance estimation methods.

Keywords: Positive-unlabeled learning, AlphaMax, Matthews correlation, accuracy estimation.

1. Introduction

Machine learning-based prediction has become the cornerstone of modern computational bi-
ology and biomedical data science. Numerous approaches have been developed and applied in
these fields, including those related to the function of biological macromolecules,? the effect of
genomic variation,® precision medicine,*® or computer-aided clinical decision making.® A sig-
nificant part of this research considers binary classification where the learning algorithms have
been extensively studied and characterized, both theoretically and empirically.” The objective
in binary classification is to train (learn) a model (function) that can distinguish one type
of objects from another; e.g., predicting the effect of single nucleotide variants as pathogenic
or benign.? However, these algorithms have a broader value because multi-class, multi-label
and even structured-output learning are often framed as extensions of binary classification,
sometimes in a straightforward manner.®

In addition to learning, binary classification has also been extensively studied with re-
spect to the performance evaluation of predictive models.” Typically, the prediction algorithm
outputs a real-valued score for a given input example, after which a thresholding function
is applied to map the prediction score into one of the elements of the output space (e.g.,
pathogenic vs. benign). In some cases, one first chooses the decision threshold and then com-
putes the performance measures for the model on the binarized predictions. In others, calcu-

*The first two authors should be regarded as Joint First Authors.

© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed under the terms of
the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.
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lating the performance measures entails some form of aggregating over all decision thresholds.
The first category of evaluation metrics includes classification accuracy, or the probability
that a randomly selected, previously unseen, example from the population will be correctly
classified. Other, more specialized measures, include the true positive rate (sensitivity, recall),
true negative rate (specificity, 1 — false positive rate) or precision (positive predictive value, 1
— false discovery rate).” These measures may also be combined to compute derived quantities
such as the balanced sample accuracy, F-measure” or Matthews correlation coefficient.” The
second group of metrics include two-dimensional plots such as the Receiver Operating Char-
acteristic (ROC) curve and the precision-recall curve that visualize the trade-offs between
various quantities as a function of the decision threshold. These curves can be further sum-
marized into a single quantity by computing the area under the curve. Alternatively, metrics
such as F-measure can be computed for each decision threshold to report the maximum value
over all thresholds; e.g., Fiax.'? This allows each algorithm to select its own decision threshold
and also comparisons between algorithms that binarize their outputs with those that do not.
It is worth mentioning that cost-sensitive learning and evaluation,''? as well as information-
theoretic approaches™!* can also be considered in certain classification scenarios; however,
these evaluation strategies are beyond the scope of this work.

Although binary classification has been extensively studied and is well understood,” there
remain problems related to the open world setting that require attention. Open world refers to
the framework in knowledge representation and artificial intelligence in which the observation
of a phenomenon generally establishes its presence; however, the lack of the observation cannot
be interpreted as the evidence of absence of the phenomenon. One such example is protein
function assignment,'® where an experimental assay can definitively establish, say, that a
particular protein is an enzyme. High-throughput experiments can similarly establish the
presence of the phenomenon, albeit with some error as in generating protein-protein interaction
networks using yeast two-hybrid systems.'® However, no protein has ever been experimentally
assayed for all functions and, additionally, an unsuccessful experiment does not necessarily
establish the lack of particular activity. This is because an absence of required molecular
partners, an inadequate set of experimental conditions (e.g., pH, temperature!”), or a human
error can combine to result in a failed experiment.? When presented with such data, one is
de facto given a set of positive examples (e.g., enzymes) and a set of unlabeled examples
(e.g., a sample of all proteins) and the learning setting is referred to as positive-unlabeled
learning.!® Although the unlabeled set contains an unknown fraction of positive examples,
the standard practice ignores this fact and considers all unlabeled examples to be negative.
One then trains a prediction model (interestingly, this approach is optimal for a wide range
of loss functions referred to as composite loss functions'?) and estimates its performance,
after which the predictor is deployed with a particular estimated quality. In other words,
machine learning models in the positive-unlabeled setting are trained/evaluated on positive
vs. unlabeled data, whereas the ideal predictor, certainly one expected by the downstream
user, would be trained/evaluated on positive vs. negative data. Following Elkan and Noto,?

PEven with exhaustive experimentation and no human error, the “negative” findings are rarely published.
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we will refer to the predictors trained on positive vs. negative data as traditional classifiers
and models trained on positive vs. unlabeled data as non-traditional classifiers. Similarly, we
will refer to the two different types of evaluation as traditional and non-traditional evaluation.
The primary objective of this work is to study non-traditional classifiers and the adverse
effects of non-traditional performance evaluation when the intent is to carry out a traditional
evaluation. We show that the traditional performance of these classifiers can be recovered with
the knowledge or an accurate estimate of class priors (i.e., the fractions of the positive and
negative examples in a representative unlabeled set) and the labeling noise (i.e., the fraction of
negative examples in the labeled data set that have been mistakenly labeled as positive). We
conduct extensive and systematic experiments to evaluate the proposed methods and draw
conclusions pertaining to the best practices of performance evaluation in the field.

2. Methods
2.1. Performance measures: definitions and estimation

In this section, we give definitions of several widely used performance measures and their
standard estimation formulas. To this end, we first describe the probabilistic framework used
in the definitions. Consider a binary classification problem of mapping an input = € X to its
class label y € ¥ = {0,1}. Assume that z and y come from an underlying, fixed but unknown
joint distribution h(z,y) over X x J.° Let h(x) denote its marginal density over z. It follows
that h(z) can be expressed as a two-component mixture:

h(x) = whi(z) + (1 = m)ho(x), (1)

for all z € X', where h; and hg represent the distributions of the positive and negative examples
(inputs), respectively, and 7 € (0,1) is the proportion of positive examples in h, also referred
to as the class prior for the positive class.

Next, we give definitions of the three most fundamental performance measures: (1) true
positive rate (v), the probability that a positive example is correctly classified, (2) false positive
rate (n), the probability that a negative example is incorrectly classified as positive, and (3)
precision (p), the probability that a positive prediction is correct. Mathematically, given a
binary classifier 3 : X — ), they are defined as

v = Ep, [§(2)], n = En[9(2)], p= WEh[l [2(39(69)6])] _ %y @)

where E;, denotes expectations w.r.t. h and 6 = Ej[j(x)] is the probability of a positive predic-
tion. A classifier with a high v and p, but low 7 is desirable. However, these measures are at
odds with each other; i.e., typically, increasing a classifier’s v leads to a smaller p and a larger
n. A classifier that always predicts either 0 or 1 can optimize them individually at the expense
of others. Consequently, they are often used together to gauge a classifier’s performance; for
example, in an ROC curve analysis. Moreover, other performance measures combine them
explicitly or implicitly in their formulation. Though 6 itself is not widely used as a measure

°For convenience, we use terms density and distribution interchangeably.
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Table 1: (a) Confusion matrix of () on a labeled data set. (b) Standard estimation of v, 1, = and 6.

of classifier performance, it also appears in the expression of several important measures (a
classifier for which 6 > 7 is sometimes said to “overpredict”). A particularly useful expression
of 6 in terms of v,n and 7 is derived as follows.

0 = En[j(x)] = 7En, [§(2)] + (1 = 7)Ep, [§(2)] = 77 + (1 =)y (3)

In this paper, we focus on four performance measures that are widely used in biomedical
research: (1) Accuracy (acc), the probability that a random example is correctly classified
(2) Balanced accuracy (bacc), the average accuracy on the positive and negative examples,
weighed equally, (3) F-measure (F), the harmonic mean of v and p,4 and (4) Matthews corre-
lation coefficient (mcc), the correlation between the true and predicted class. Mathematically,
they are defined as follows:

acc = my + (1 - m)(1 - 1) (4) bace =+ 1" (5)
1 om Euly - 5(2)] — Ealy] - Eal§(2)

F = = 6 = 7

R I O mee VAl Vali@) )

where V), in Eq. (7) denotes the variance operator w.r.t. distribution h(xz). Notice that, since
y ~ Bernoulli(7) under h, Ex[y] = 7 and Vj[y] = 7(1 —7); similarly, Vi [g(x)] = 6(1 — 0). Further,
using the law of iterated expectations, Ex[y - §(x)] = 7Ep, [4(z)] = 7. Thus,

™ y—0  [x(l-m)
A—mvea—g \oi-0
Using the estimates of v, n, 7 and 6 from Table 1, we give the standard formulas for acc,

bacc, F and mcc estimation, in terms of the classifier’s confusion matrix entries. For example,
simple algebraic operations on Eq. (8) give

“(y—=n) (8)

mce =

H/lc\C:ﬁ(l_fr)(&.(l_ﬁ)_ﬁ.(l_ry)): tp-tn—1fp-fn
\/éﬁ-(l —#)(1-6) V/(tp + Ip) (tp + ) (tn + fp)(tn + fn)
Similarly, the standard estimation formulas for acc, bacc and F can be easily derived as:
— - 2t
ace = ot bacc = L_tp It F= P

tp+ fn+ tn + fp’ §tp+fn+§tn+fp’ 2tp+fm+fp

dWe only consider the F; score in the family of F-measures.
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2.2. Positive-unlabeled setting

Let D represent a set of examples drawn from h(z); at this stage, the class of an z in D is
unknown. Consider a labeling procedure that selects some examples from D for labeling. As is
the case in many domains, the procedure tests only for the class of interest, the positive class.
The procedure is successful when it deems the example as positive with high confidence. The
successfully labeled examples are collected in a labeled set L, whereas the rejected examples
along with the examples not selected for labeling, in the first place, are collected in an unlabeled
set U. In spite of being labeled as positive, some examples in L might, in fact, be negative,
due to the errors in the labeling procedure.

The typical, positive-unlabeled assumption made about the labeler is that the examples
from D are selected independently of z, given y and further, that the same assumptions apply
to the success of labeling.?%?! The assumptions ensure that the distributions of positives and
negatives remain unchanged in L and U and only the class proportions are affected. Let f(z,y)
and g(z,y) denote the underlying joint distribution of U and L, respectively. Note that y still
denotes the true unobserved class and not class assigned by the labeler. For f(z) and g(x)
denoting the marginals over z,

f(x) = ahi(x) + (1 = a)ho(z),  g(x) = Bhi(x) + (1 = B)ho(x), (9)

for all z € X, where a and 8 denote the proportion of positives in the unlabeled and labeled
set, respectively. By design, L has a higher concentration of positives than D; i.e., g € (7, 1].
Similarly, U has a lower concentration of positives than D; i.e., a € [0,7). When 8 =1 we say
that the labeled data is clean. When g < 1, the labeled data contains a fraction (1 — ) of
negatives that are mislabeled. We will refer to the latter scenario as the noisy positive setting
and 1 — g as the noise proportion.

The relationship between h, f and g is further constrained, since D is partitioned by L
and U. Precisely,

h(z) =cg(x)+ (1 —co)f(x) = (cﬁ +(1- c)a)hl(:lc) + (1 —cf—(1— c)a)ho(x), (10)
for all z € X, where ¢ = % Thus,
T=cf+ (1—c)a. (11)

To distinguish A from f and g, we refer to h as the true or the target distribution. We are
primarily interested in a classifier’s performance on the true distribution, which is reflected in
our goal to obtain unbiased estimates of the performance measures w.r.t. the true distribution.

2.3. Performance measure correction

The absence of negative examples in positive-unlabeled learning is tackled by treating the
unlabeled set as a surrogate for negatives. This is referred to as the non-traditional approach.?’
A non-traditional classifier trained on such data learns to discriminate the labeled-as-positive
set from the unlabeled set. Surprisingly, an optimal non-traditional classifier has been shown
to perform optimally in the traditional sense; i.e., as a discriminator between the positive and
negative examples.?! However, measuring a classifier’s performance non-traditionally does not
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reflect its performance in the traditional sense. Ref. 22 demonstrated the bias in the non-
traditionally estimated ~, n and p and its implications towards the ROC and precision-recall
analysis. They also provided techniques for bias correction using estimates of the class prior
and the noise proportion.?? We take a similar approach in this work and show that the standard
estimators of acc, bacc, F' and mcc, when used in a non-traditional framework, are biased. Then
we give formulas to correct the bias by estimating the class prior and the noise proportion. To
formalize the notion of a non-traditional labeled set, we introduce the pseudo class g, which
is 1 for every example in L and 0 for those in U. The non-traditional labeled set £P" contains
all examples from L and U along with their pseudo class labels. The standard approach (see
Table 1) for estimating v, n, 7 and 6 presupposes that the examples in the labeled set are drawn
randomly from h(z,y) and more importantly, that tp, fn, tn and fp are counted w.r.t. the true
class. However, when working with £P", the counts are based on the pseudo class, which affects
the quality of the standard estimates.

In particular, 4 and 7 give biased estimates of v and 7, respectively. Instead, they give
unbiased estimates of 4P = E,[g(x)] and nP" = Ef[g(z)]; this is because g and f correspond
to the distributions of the pseudo positives and the pseudo negatives, respectively. More-
over, 7 represents the proportion of the pseudo positives ¢, instead of =w; that is, # = c.
However, 6 is still an unbiased estimator of 6, since  only depends on the marginal dis-
tribution of z in £P", which is the same as h(z) as per Eq. (10). To summarize, we have

’3/ estimates ’}’pu 7& 5, 'f] estimates Upu ?é n, P 675 ™ é estimates 0.

The bias in 4,  and # is also reflected in the standard estimates of acc, bacc, F' and mcc.
They give unbiased estimates of the following quantities instead.

1 4 ~PU _ ppu
accP! = eyP" + (1 —¢)(1 — nPY) baccP = 2~ 5 d
2cyPY 1—
FPu — pu o c) opu_ o pu
Next, we give the relationship between v, n, v** and nP" which are then used for bias correction.
1—a)yP" — (1 — B)pPu obtained by solvin
_ g n g
= T A
BnPY — qyPu Y =Eg[g(x)] = By + (1 - B)n
=T P =Eply(x)] = ay + (1 - a)y

We derive the bias-corrected estimates of acc,bacc, F and mcc by correcting for v,n and

— PR “ RN - 1 Acr - Acr
Ao = Forder + (1 — o) (1 — ) (12) bacc,, — % (13)

for(l—fer) .
M(’M — Ter) (15>

where 9., N and 7., are estimated using estimates of o and 3 as follows:

MCCer =

- 27%07":)/07“
F.,. = - 14
ey (14)

129



Pacific Symposium on Biocomputing 2019

Yo = (B=&)HA=aF = 1=B)),  da=B-a)"'(B1-a5),  fa=cB+(1-c)a
Theorem 2.1 shows that unbiased bacc and mcc estimates can also be directly recovered
from bacc”" and mccP" estimates, requiring only estimation of classifier-independent quan-
tities m,« and B (the class proportions in D, U and L); i.e., v and n do not need to be
corrected as an intermediate step. Furthermore, the relationship between bacc (mcc) and
its positive-unlabeled counterpart is monotonic, which is a desirable property when con-
structing a classifier by thresholding a score function. It ensures that the threshold obtained
with the positive-unlabeled data by optimizing the non-traditional measure also maximizes
the traditional measure. The inequalities derived in the theorem demonstrate that the non-
traditionally evaluated bacc and mcc underestimate the traditional performance, provided the
non-traditional classifier performs better than random.

Theorem 2.1. The following equations hold true.

2bacc™ -1 1 1 (1 —m)
bacc=———+ -, and mcc=
2 B—al c¢l-c)

2(8 —a)

Moreover,
sign(mcc)(mee — mecP?) >0,  and  bacc — bacc®™ > 0, when bacc®™ > 1/2.
Proof. The proof of the two equalities follow by observing vP* —nP* = (5 —a)(y—n) and using

it in the expressions of bacc™ and mccP", thereby obtaining a conversion to bacc and mcc

(Egs. (5) and (8)). Now, mcc — mecP! = mccp“(ﬂ%a ’;8::)) — 1). The mcc inequality follows
1—7

since /oy o=y = 1 because T—¢(f—a)=a>0and 1—7—(1—¢)(f—a)=1—-5> 0.

The bacc inequality follows since 8 — a > 0 and consequently, 2bacc — 2baccP" = 2bacc™=1 _

B—a

(2baccP" — 1) > 0, provided bacc" > 1/2. O

3. Experiments and Results
3.1. A case study

We first demonstrate the problem with non-traditional evaluation in a situation where the
positive and negative conditional distributions, h; and hg, are univariate Gaussians with
Ep, [x] > Ep, [z] and V},, [z] = Vj, [z]. Knowing the underlying distributions allows us to make ex-
act computations of performance measures, instead of estimating them from data. As per Sec-
tion 2, let h(z) = whyi(z)+(1—m)ho(z), f(x) = ahi(x)+(1—a)ho(z) and g(z) = Bhi(z)+(1—5)ho(z)
be the true, labeled and unlabeled data distributions, respectively. Values of «;, 8 and ¢ will be
fixed, from which = = ¢8+ (1 —c¢)a will be computed. We will consider a simple linear classifier
g(x) = 1(x > 1), where 1(-) is the indicator function and 7 € R is the decision threshold. This
thresholding function predicts a 0 for inputs below 7; otherwise, it predicts a 1.

In the traditional setting, the true positive rate (y) and false positive rate (n) can be
straightforwardly computed as v = 1—cdfy, (7) and n = 1—cdfy, (7), where cdf; is the cumulative
distribution function corresponding to the density f. On the other hand, when evaluated
in the non-traditional setting, these quantities can be expressed as +*" = 1 — cdf,(7) and
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Fig. 1: Traditional vs. non-traditional performance accuracy as a function of decision threshold 7. The circles
and vertical lines in all four panels indicate the threshold values and the corresponding best performances in
both traditional and non-traditional setting. (Upper left) Classification accuracy: top traditional performance

acCmax = 0.86 is reached at the threshold value 7 = 0.42, whereas the top non-traditional performance accbl, =

0.90 is reached at 7 = 5; (Upper right) Balanced accuracy: top traditional performance baccyax = 0.84 and

non-traditional performance bacch,, = 0.67 are both reached at 7 = 0; (Lower left) F-measure: top traditional

performance Fiax = 0.77 is reached at 7 = 0.19, whereas the top non-traditional performance FPL = 0.30 is

reached at 7 = 0.50; (Lower right) Matthews Correlation Coefficient: top traditional performance mcemax =
0.66 and non-traditional performance mccP® = 0.22 are both reached at 7 = 0.29.

max

nP* = 1 — cdfy(7). The probability of positive prediction 6 is computed using Eq. (3). Of
course, g = hy when 8 =1 and f = hy when a = 0, but this case corresponds to the standard
supervised learning problem and is not of interest.

Let us now be concrete and consider that hg = N(—1,1), hy = N(1,1), a = /4, 8 = 3/4 and
¢ = 1/10; thus, # = 3/10. In Figure 1, we plot the values of the accuracy, balanced accuracy,
F-measure and Matthews correlation coefficient in the traditional and non-traditional setting
for each value of 7 € (—5,5), where acc, accP", bacc, bacc®™, F, FP' mcc and mccP" are
calculated from ~, n, 6, h, f, g, and ¢, as shown in Section 2. As a reminder, ¢ represents
the proportion of labeled examples in the training set consisting of all labeled and unlabeled
examples; however, a data set is not generated here. It is important to point out the large
differences between all traditional and non-traditional estimates, which provide evidence that
the non-traditional estimates can be far from accurate, as in this example. As proved in
Section 2, the maximum values for baccyax vs. bacck:  and mccepax vS. mechax are observed
at the same score thresholds 7, respectively. This is desirable as one can establish the best
decision threshold using positive-unlabeled data and secure the best predictor performance
even without the precise knowledge of what that performance is. On the other hand, accyax vs.
acChax as well as Fiax vS. Faax do not occur at the same decision thresholds, which presents a
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problem for method benchmarking. The F-measure is further interesting as a simple predictor
(1 = —5) that gives positive predictions on (almost) all inputs can achieve a high-scoring F,
which may be misinterpreted in practice as good performance. Similarly, in terms of accuracy,
an inability to “beat” a trivial classifier (the one always predicting the majority class) might
be incorrectly interpreted as inability to develop a good classifier.

3.2. Data sets

The empirical evaluation was carried out on 14 data sets from the UCI Machine Learn-
ing repository. The selected data sets span various biomedical problems, such as recognizing
splice-junction boundaries from the DNA sequence,?® predicting the physical activity of an
individual based on their smartphone?* or sensor?® data, and predicting hospital re-admissions
by using a patient’s demographics, medical diagnoses and lab test results.?6 Where necessary,
the data sets were converted to binary classification problems by considering one of the classes
as positive and the other(s) as negative or by converting regression problems to classification
by introducing appropriate thresholds on the target variable. The following data sets were
used: Covertype, Activity recognition with healthy older people using a batteryless wearable
sensor (two experiments), Epileptic Seizure Recognition, Smartphone-Based Recognition of
Human Activities and Postural Transitions, Mushroom, Thyroid Disease, Anuran Calls, Wilt,
Abalone, HIV-1 protease cleavage, Splice-junction Gene Sequences, Parkinsons Telemonitor-
ing, and Physicochemical Properties of Protein Tertiary Structure.

3.3. Ezxperimental protocols

The experiments were designed to simulate the construction of non-traditional classifiers in
the positive-unlabeled setting and assess the quality of performance estimation both in the
non-traditional and traditional mode. Labeled and unlabeled data sets, with n; and n, exam-
ples, respectively, were first created by sampling an appropriate number of positive/negative
examples as follows. After fixing the value of 8 from {1,0.9,0.8,0.7}, 3-n; points were sampled
from the positive set and (1 — 3) - n; from the negative set to make the labeled data set. This
process determined the true value of a as the ratio of the remaining positive points and the
remaining negative points from the original data set. Unlabeled data set was then formed
by selecting « - n,, points from the remaining positive points and (1 — «) - n,, points from the
remaining negative points. The number of unlabeled examples n, was set to 10,000 in all data
sets with sufficient size. Otherwise, it was set to 5000, 2000 or 1000. The size of the labeled
data set n; was picked so as to fix the ratio of labeled vs. unlabeled data to 1:10. That is,
if n, = 1000, n; would be set to 100. This ratio mimics a typical situation in which one is
presented with larger unlabeled data compared to the labeled data. A non-linear classification
model was trained on each non-traditional data set. Its performance was evaluated in both
non-traditional and traditional setting. This experiment was repeated 50 times for different
random selections of labeled and unlabeled data sets, each of which was considered for four
different values of .

One-hundred bagged two-layer neural networks, each with 7 hidden neurons, were used as
a non-traditional classifier in all experiments. The networks were trained using the RPROP
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algorithm?” with a validation (25% of the training set) stop or at most 5,000 epochs. Out-
of-bag performance evaluation was carried out in all experiments. At the end of each run,
we calculated four performance measures: the maximum classification accuracy (accmax), the
maximum balanced accuracy (bacCpax), the maximum F-measure (Fax) and the maximum
MCC (mcCmax), in four different scenarios: (1) the non-traditional (PU) estimates, where the
labeled data was considered to be positive and unlabeled data negative; (2) the traditional
(true) performance estimates, where the actual class labels instead of the PU labels were
used; (3) the recovery setting proposed in Section 2 with actual («, ) values; and (4) the
recovery setting proposed in Section 2 with estimated (a, ) values, referred to as (&, 3).
The non-traditional estimates provide the performance that a practitioner would report by
ignoring noise and assuming that the unlabeled set was negative. The traditional performance
estimates represent the estimated true performance of these models that a practitioner would
not be aware of. The third and fourth scenario represent the traditional estimates after the
correction. They were designed to explore the effects of incorrectly estimating («, 8), instead
of knowing their true values. The AlphaMax algorithm?!2® was used to obtain (&, 3).

3.4. Results

We measured the difference between non-traditional and corrected performance against the
traditional performance in each run. The traditional performance was considered to be “true”;
it could be estimated because the positive-unlabeled setting was simulated on data sets where
both positives and negatives were available. The corrected performance was presented twice:
first with known (o, 8) that were used to construct positive-unlabeled data sets and, second,
with (a, 8) themselves estimated from the positive-unlabeled data. The experimental results,
summarized in a single box plot over all 14 data sets and all 50 runs, are shown in Figure 2.
Non-traditionally estimated (without correction) bacCmax, Fmax and mccpmax significantly un-
derestimate the traditional performance, whereasd accpa., significantly overestimates it. The
errors generally deteriorate with the increasing level of noise (1 — ).

The corrected estimates attained much smaller error. While using the true values of «
and S provided a near perfect recovery of the traditional performance, the estimated values
generally resulted in a slightly overestimated traditional performance. We note however that
we did not perform any model selection and parameter optimization during class prior and
noise level estimation and, therefore, one could expect to observe an improved recovery after
these steps. Manual inspection of the likelihood curves outputted by AlphaMax would also be
recommended to increase confidence in the recovered performance estimates.

4. Conclusions

Estimating the performance of machine learning models is one of the critical yet understudied
research directions in the biomedical sciences. Incorrect evaluation might have severe negative
effects upon the deployment of machine learning tools and the perception of their usefulness
in the nearby future, including in genetic counseling, precision medicine, clinical decision
support, etc.3® This work therefore investigated the quality of performance evaluation in
binary classification when training data best fits the positive-unlabeled setting.'® However,
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Fig. 2: Error in the non-traditionally evaluated performance measures before and after correction for 14
biomedical data sets. PU represents the estimates on the Positive Unlabeled data without bias-correction. CR
and CE represent the bias-Corrected estimates with the Real and Estimated values of o and . In each run, the
optimal decision threshold was selected first, to maximize the performance, and then the resulting performance
was compared with the true performance at that same threshold. (Upper left) Classification accuracy: Eq. (12)
was used for correction. All estimates were clipped between 0 and 1; (Upper right) Balanced accuracy: Eq. (13)
was used for correction. All estimates were clipped between 1/2 and 1; (Lower left) F-measure: Eq. (14) was used
for correction. All estimates were clipped between 0 and 1; (Lower right) Matthews Correlation Coefficient:
the formula from Theorem 2.1 was used for a direct correction from the mccP" estimate. All estimates were
clipped between —1 and 1. The x-axis is the true value of 8, according to which the box plots were grouped.

the generality of our methods is provided by the equivalence between training from noisy
positive vs. unlabeled data and the so-called corrupt binary classification model, where it
is assumed that both positive and negative examples are given, but that each data set is
corrupted by a (potentially) different amount of label noise.

To characterize performance evaluation problems, we built on the previous work in machine
learning???? to evaluate the quality of four estimated measures: accuracy, balanced accuracy,
F-measure, and Matthews correlation coefficient. We found that the balanced accuracy and
Matthews correlation coefficient are well-behaved, meaning that they provide certain impor-
tant guarantees to the practitioner even when applied in the positive-unlabeled setting. For
example, the optimal decision threshold for maximizing the performance does not change when
the evaluation is shifted from the non-traditional to the traditional setting; furthermore, the
performance in the traditional setting is always better than non-traditionally estimated. On
the other hand, classification accuracy and F-measure provide fewer guarantees and require
sophisticated understanding when deployed in practice.

To mitigate the problems associated with any of the above-mentioned performance esti-
mation strategies, we first showed that the true (traditional) classification performance can be
recovered with the knowledge of (1) the class priors in the unlabeled data and (2) the propor-
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tion of noise in the labeled data. We then used the AlphaMax algorithm?!:?® to estimate both
of these quantities in a nonparametric fashion and showed that the performance estimation
process is significantly improved. As a practical guideline, we suggest that the deployment
of machine learning models should be accompanied with both non-traditional and recovered
traditional performance estimates along with the estimated values of « and g.
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Cancer is a complex collection of diseases that are to some degree unique to each patient.
Precision oncology aims to identify the best drug treatment regime using molecular data
on tumor samples. While omics-level data is becoming more widely available for tumor
specimens, the datasets upon which computational learning methods can be trained vary
in coverage from sample to sample and from data type to data type. Methods that can
‘connect the dots’ to leverage more of the information provided by these studies could offer
major advantages for maximizing predictive potential. We introduce a multi-view machine-
learning strategy called PLATYPUS that builds ‘views’ from multiple data sources that are
all used as features for predicting patient outcomes. We show that a learning strategy that
finds agreement across the views on unlabeled data increases the performance of the learning
methods over any single view. We illustrate the power of the approach by deriving signatures
for drug sensitivity in a large cancer cell line database. Code and additional information are
available from the PLATYPUS website https://sysbiowiki.soe.ucsc.edu/platypus.

Keywords: Pattern Recognition; Machine Learning; Multiple View Learning; Cancer; Drug
Sensitivity; Incompleteness; Unlabeled Data; Semi-Supervised; Co-Training; Integrative Ge-
nomics; Systems Biology; Multidimensional; Multi-Omic

1. Introduction

Predicting whether a tumor will respond to a particular treatment strategy remains a chal-
lenging and important task. However, the availability and cost of screening compound libraries
for a tumor sample remains prohibitive. At the same time, the use of genomic assays, such as
DNA and RNA sequencing, for clinical decision making are on the rise. As the costs for these
high-throughput assays drop, applying ‘genomic signatures’ from machine-learning trained on
external data in place of the more expensive direct drug assay becomes an option.

One obstacle to achieving this goal is the ability to find training sets for machine-learning
classifiers for which comprehensive clinical outcomes are available, e.g. survival or drug sensi-
tivity. Non—uniformity of large composite datasets such as The Cancer Genome Atlas (TCGA,
cancergenome.nih.gov) forces many existing approaches to ignore data unless it is available
for all samples. At the same time, many studies have samples that would be useful to analyze
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fCurrently at the Ontario Institute of Cancer Research
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distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
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beyond their original purpose, yet cannot be included because they lack outcome data.

The large number of variables compared to far fewer samples can often result in bio-
logically irrelevant solutions.'?> However, issues related to the over-determined nature of the
problem sets can be minimized by using prior knowledge to inform feature selection techniques.
Incorporating this information can guide learning methods to both more generalizable and in-
terpretable solutions. For example, several approaches that include database-mined gene—gene
interaction information have shown promise for interpreting cancer genomics data and utiliz-
ing it to predict outcomes.!1%16:18 Tn addition, ensembles can reduce error caused by small
sample sizes.'”

We present a multiple view learning (MVL) framework called PLATYPUS (Progressive
LAbel Training bY Predicting Unlabeled Samples) that combines the advantages of the
knowledge-driven and ensemble approaches. ‘Views’ are feature extractions of particular data
platforms that encode specific prior knowledge and are each allowed to vote on the predicted
outcome, providing a more complete and diverse glimpse into the underlying biology. The
framework infers outcome labels for unlabeled samples by maximizing prediction agreement
between multiple views, thus including more of the data in the classifiers. It reduces over-
fitting caused by small sample sizes both by predicting labels for unlabeled samples and by
incorporating prior knowledge.®

A typical approach in machine learning is to train classifiers on a subset of samples con-
taining all of the data, impute missing data, or train ensembles based on data availability,
but are generally restricted to samples with the majority of the data for each sample.?’ The
semi—supervised MVL approach learns missing patient outcome labels, thus allowing the use
of all available labeled and unlabeled datasets. PLATYPUS trains on one or more views and
then co-trains on the unlabeled samples. By doing this, PLATYPUS can make predictions
on any patient regardless of data availability. This increases overall classifier accuracy while
also finding solutions that generalize to the entire population— which has proven extremely
difficult in high—feature, low—sample problems.? A comparison of PLATYPUS to other related
methods is provided in Supplemental Section S1.

2. System and methods
2.1. Data

At the time of download the Cancer Cell Line Encyclopedia (CCLE) contained genomic, phe-
notype, clinical, and other annotation data for 1,037 cancer cell lines,” described in Section S2.
Of these, drug sensitivity data was available for 504 cell lines and 24 drugs. Drug response was
converted to a binary label in order to transform the regression problem into a classification
problem. For each compound, cell lines were divided into quartiles ranked by ActArea; The
bottom 25% were assigned to the ‘non—sensitive’ class and the top 25% to the ‘sensitive’ class.
Cell lines lying in the middle were marked with ‘intermediate’ and considered unlabeled in
this test (Fig. S2). Note that these samples are often the most difficult to classify as they rep-
resent those with a range of sensitivities that may span orders of magnitude where the growth
inhibition curve has its steepest changes as a function of drug concentration. Thus, the ability
to input a binary designation for the growth inhibition using a co-training strategy could in
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itself have advantages over approaches that identify cutoffs in the drug response curves that
are more-or-less arbitrary, without the use of a clear optimization criteria, and without the
ability to make use of genomic signatures.

Data Type
[Gene Expression]

(a) View Creation
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Fig. 1. PLATYPUS framework illustrated with three views. (a) Creation of single views using
sample data and optional prior knowledge. (b) Iterative Learning: Each view maximizes prediction
accuracy on the labeled samples; unlabeled samples predicted with high confidence are added to the

known sample set; repeat until no new samples are labeled. (¢c) Models from the final iteration of
PLATYPUS training applied to new data.

2.2. Single views and co-training

PLATYPUS uses co-training (Fig. 1) between single views to learn labels for unlabeled sam-
ples. Single views are based on different feature sets. Genomic or clinical features can be used
directly (baseline views), or transformed using a biological prior (interpreted views). We built
four baseline views from the CCLE data: expression, CNV, mutation, Sample- and Patient-
Specific (SPS) information; and many interpreted views (Section S3). Each view can be set up
with the best suited machine learning algorithm and optimized parameters for its task, e.g. a
random forest or an elastic net (Section S5.1).

Co—training works by training a separate classifier using each view as a separate feature
set to make independent predictions, then incorporating disagreement into the loss function.
Each view trains on the labeled data then predicts labels for the common unlabeled set. High
confidence labels are passed as truth in the next iteration. Co-training methods iterate until
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either convergence, some threshold (a minimal change in label definition on the unlabeled
samples) is attained, or a maximum number of iterations is reached.

After co—training, each view can be used as a standalone classifier that incorporates learn-
ing from one or more data platforms without relying solely on that data platform. Since views
are trained in conjunction, the trained models will incorporate the perspectives of all views.
This also provides a measure of influence from all views when applying any of the classifiers
to new data, without requiring data for those views when making predictions.

2.3. Maximizing agreement across views through label assignment

The key step in the PLATYPUS approach is the inference of outcome labels for a set of
unlabeled data. Each training iteration seeks to improve the agreement of the assignments
given to the unlabeled data across all views. Views are first created by applying machine
learning methods using either the features directly, or from gene set summaries or subsetting
(Section S3). Fig. 1 shows an overview of PLATYPUS using three views. Any number of views
may be used— in this paper, up to 10 views are used per experiment.

PLATYPUS searches iteratively for a label assignment that improves the agreement on
unlabeled data (Fig. 1(b)). At each iteration ¢, the views are trained on labeled data and the
labels for unlabeled samples are inferred. Because the set of labels can change across iterations,
we denote the training data with sensitive labels as T (¢) and those with non—sensitive labels
as T~ (t) at iteration ¢. TT(0) and T~ (0) are the given sets of sensitive and non—sensitive
training samples before learning labels, respectively. The set of unlabeled samples is denoted
U(t), with all unlabeled samples before learning labels as U(0).

V is the set of views used in the PLATYPUS run. In iteration ¢, each view v € V is trained
to maximize its prediction accuracy on the labeled samples T (¢) and T (t). The accuracy of
view v at iteration ¢ is determined using cross—validation of the training samples and is written
here as a(v,t), where a(v,0) is the single view accuracy before learning labels. A prediction is
then made by the trained models for each unlabeled sample s. Let (v, s,t) be the prediction of
sample s by view v in iteration ¢ where it is 1 if predicted sensitive and 0 otherwise. The single
view votes are summarized to a sensitive ensemble vote LT (s,t) and non—sensitive ensemble
vote L™ (s,t) for each sample (Eq. 1 and 2).

Lf(s,t) =Y w(v,t)l(v,s,t) (1) L™ (s,t) = Y wv,t)(1-1(v,5,1))  (2)
vevs vevs
Only views with data to predict sample s are taken into account: V¢ = {v € V :

v has data for s}; and the different views are weighted by w(v,t) (Eq. 3). View accuracies
within [0.5,1] are rescaled to [0,1] and log—scaled. Views with an accuracy lower than 0.5 are
given a weight of 0 since it indicates worse than random predictions.

w(v,t) = ~log(1 — =05y if a(v,1) > 0.5 -
o otherwise

To determine, which unlabeled samples are added to the training data for the next iteration,
we define L™3(t), the strongest vote found between all samples in iteration ¢ (Eq. 4), and
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W(t), the set of samples reaching the strongest vote (Eq. 5).

LPX(t) = mmax {max{ L (s,0), L (s, )1} (4)
U(t)={s € U(t) : max{LT(s,t), L™ (s,t)} = L™(t)} (5)

In order to favor missing data for a sample over conflicting predictions, we define L™"(¢) as
mingey ) {min{L*(s,t), L~ (s,t)}}, the weakest contrary vote that is found between all samples
in W(t).

All samples meeting both the strongest vote and the weakest contrary vote conditions
(Label Agreement Criteria) build the set of new training samples 7 (¢), which are added to
T*(t) and T~ (¢) for the next iteration’s training data:

T(t) = {s € U(t) : min{L"(s,t), L (s,8)} = me(t)} (6)
THt+1) =T ) U{s€T(t): LT (s,t) > L (s,1)} (7)
T (t+1)=T #)U{seT(t): LT(s,t) < L™ (s,)} (8)

To avoid adding predictions with low confidence, L™**(¢) needs to stay above a certain value,
otherwise no labels are added to the training data in iteration ¢. This can be adjusted by the
learning threshold A, which represents the fraction of the maximal reachable vote, i.e. when
all views agree. By default \ is 75%.

The training process continues until a convergence criterion is met: either all labels have
been learned, no new labels have been learned in the last iteration, or a maximum number of
iterations has been reached. After termination of the learning process, the trained single—view
predictors can be used independently or as an ensemble via PLATYPUS (Fig. 1(c)).

3. Results
3.1. Preliminary experiments to optimize PLATYPUS performance

We ran 120 different PLATYPUS variants to predict drug sensitivity in the CCLE cell lines
to identify the best way to combine the views for this application. As mentioned in the Data
Section (Section S2), samples with intermediate levels of sensitivity for a particular drug were
treated as unlabeled and used by the co-training to maximize agreement across views. The
conversion of this regression problem into a classification problem in which drug sensitivities
arbitrarily are discretized into sensitive versus insensitive (top and bottom 25%), reflects the
reality of the clinical setting in which a decision must be made to either treat or not treat a
particular patient. The test measures the co-training strategy’s ability to infer sensitivities for
cell lines that are the most difficult to classify.

We first asked whether the interpretive views that use gene set information provide benefit
over using only the baseline views (Section 2.2). We then determined a weighting scheme for
the ensemble to achieve better performance. We ran PLATYPUS using the 4 baseline views
and the 3, 5, 7, and 10 best—performing single views for each of the 24 CCLE drugs at a A = 75%
learning threshold, for a total of 120 different PLATYPUS variants (5 per drug). Fig. 2(a)
shows the highest accuracy PLATYPUS models as well as each of the single view scores. In
almost all cases PLATYPUS significantly outperforms single view models, most notably for
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Fig. 2. PLATYPUS Performance. (a) Boxplot showing performance (in AUC) sorted by PLATY-
PUS score, of all single views and the best PLATYPUS score. PLATYPUS score for each drug is
the highest from the 3,5,7, and 10 view runs. (b) AUC for PD-0325901 sensitivity predictions for
each single view, colored by view type. The 10 views to the right of the gray line are used in the
PLATYPUS ensemble. See Fig. S3 for single view AUCs for all drugs. DT = Drug Target; GS =
Gene Set.

the MEK inhibitors AZD6244 and PD-0325901, and HDAC inhibitor Panobinostat. Adding
interpreted views to PLATYPUS increased PD-0325901 AUC from 0.94 to 0.99 (Fig. 2(b)),
motivating their continued inclusion in PLATYPUS models. Furthermore, within 10 iterations,
most PLATYPUS runs added 90% or more of the unlabeled cell lines to the labeled set,
effectively doubling the number of samples on which the models trained. We look more closely
at the results from the best overall performing PLATYPUS model, PD-0325901, as well as
important features from each of its models, in Section 3.2.

We next investigated how to combine the ensemble of different views to improve the
PLATYPUS method’s accuracy. Previous studies show that combining multiple weak but
independent models will result in much higher model accuracy.'”?° Similarly, previous work
has shown that using biological priors can reduce the influence of noise present in biological
data.l%1118 However, it is not clear how models can be combined in an ensemble to achieve
the best results. First, we tested a weighting scheme where each view contributed equally to
the final prediction, however this made the model sensitive to information—poor views (data
not shown). We then tested an AUC—weighted voting scheme, which derives view weights for
the current iteration based on the AUC obtained from the previous iteration (Eq. 3). Doing
so allows the PLATYPUS ensemble to incorporate a large number of views, without the need
for a pre-selection step, where each view has the opportunity to either become more accurate,
and contribute more to the prediction outcome, during label learning, or is effectively ignored
if it never reaches a high accuracy.

Figs. S5 and S6 show the effectiveness of label learning validation (LLV) for each of the 24
drugs in CCLE. Most of the drug models learn labels correctly, however model AUC decreases
once a model starts to learn labels incorrectly. Over many iterations this can lead to a model
where the majority of labels are learned incorrectly (e.g. Nutlin-3, Fig. S6). We found that this
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risk can be minimized by setting a high confidence threshold for label learning and by using
many information-independent views. In our experiments, LLV consistently helps identify
optimal parameters to run PLATYPUS on a given dataset.

Without missing data, PLATYPUS is equivalent to a classic ensemble classifier and often
outperforms any single view model. In order to understand the benefits of using additional
unlabeled data, we compared the ‘ensemble’ (first) iteration of PLATYPUS to the final and
the ‘best’ iterations. We define ‘best’ as the iteration with the highest AUC. Interestingly, in
almost all cases, the PLATYPUS AUC is higher than the ensemble AUC (Fig. S4). The use of
more samples by PLATYPUS helps ensure a more generalizable model. For the experiments
in this paper, we intentionally set a high number for maximum iterations to show how label
learning can degrade over time, and therefore the final iteration often scores poorly. Label
learning degradation is avoidable by using high label learning thresholds and an appropriate
number of iterations.

3.2. Predicting drug sensitivity in cell lines

Our analysis focuses on the full CCLE dataset, composed of 36 tumor types. For most drugs,
the Sample- and Patient-Specific (SPS) view has the highest starting view performance with
AUCs ranging from 0.6 to 0.8, and expression baseline views often performed similarly. The
mutation view is effective for some drugs (e.g. MEK inhibitors). Three of the four baseline
views are top performers for predicting cancer cell line sensitivity to PD-0325901 (Fig. 2(b)),
a MEK1/2 inhibitor. CNV view performance was never high enough to warrant inclusion in
PLATYPUS models except as the ‘aggregated copy number changes’ feature in the SPS view.

Interpreted views often outperform the SPS view (Fig. S3). We found several examples in
which a biological prior view outperformed the data—specific view, e.g. Metabolic Enzymes,
Drug Targets, and Chromatin Modifying Enzymes are better at predicting Lapatinib sen-
sitivity than the baseline expression predictor. The Drug Target Gene Set Hallmark view
outperforms data—specific views in Irinotecan and Panobinostat sensitivity predictions. Such
examples can be found for all compounds except for the MEK inhibitors, for which the baseline
mutations view is always the top performer.

In general, views incorporating expression data have high accuracy (Fig. S3), whereas
mutation views are comparable to a random prediction in most cases. This could be due to the
presence of many passenger mutations that have little bearing on cell fitness and drug response.
In one notable exception, AZD6244, the Drug Target Mutation view is more accurate than the
Drug Target Expression view. Generally, interpreted mutation views outperform their baseline
counterpart. For example, the Drug Target Mutation view is more accurate than the baseline
mutation view in both Irinotecan and Topotecan. Furthermore, the Drug Target Mutation
view trained on PD-0325901 increases the relative feature weights for RAS genes, suggesting
that it identifies the exclusivity of RAS/BRAF mutations described in Section S6. However
overall, mutation views have low accuracy despite mutations being key to drug sensitivity,
indicating that other representations that increase the signal-to-noise ratio of this data should
be explored in future work.

The Drug Target Gene Set views created from Molecular Signatures Database (MSigDB)
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gene set collections perform well overall, especially on Irinotecan, Topotecan, and Panobinostat
(Fig. S3). For most compounds the Drug Target Gene Set Hallmark is more accurate than the
Oncogenic and Immunologic. A possible reason is that these gene sets are from the Hallmark
collection, which are re-occurring, highly reliable gene sets built from combinations of other
gene set collections. Their similar performance could also be due to overlap in the gene sets.
We recommend that users test for and subsequently remove highly correlated views before
running label learning, and intend to incorporate this into future versions of PLATYPUS.
One approach to handling correlated views is to extend the ensemble vote step to use stacked
learning instead of the current agreement formula. By training a model on the predictions
from each view, PLATYPUS may be better able to handle correlated views by treating them
with less weight than more independent views.

In addition to the MSigDB gene set views, master regulator-based predictors via Virtual
Inference of Protein activity by Enriched Regulon analysis (VIPER)!3 were tested but are not
among the top performing ones for any drug. This could be due to use of a generic regulon as
VIPER input rather than tissue-specific versions for each cell line.'?

The PLATYPUS model for the drug PD-0325901 achieved the highest accuracy of all
experiments, with a near perfect AUC. We therefore chose to further investigate the results of
this drug to identify the nature by which the MVL approach finds an improved classification.
PD-0325901 was initially tested in papillary thyroid carcinoma cell lines and is known to be
especially effective in cell lines with BRAF mutations.' Since these are frequent in the CCLE
data, the high accuracy of the single view models is expected. Fig. 3 shows changes from the
ensemble to the ‘best’” PLATYPUS PD-0325901 models. Single view AUCs mostly increase
after several iterations, and feature weights within the models also shift to varying degrees. In
the baseline mutations view, RAS gene mutations have higher Gini coefficient changes in the
PLATYPUS model than in the ensemble (Fig. 3(c)), indicating increased model importance of
those genes. Past studies of the CCLE data” and our analysis (Section S6 and Table S3) have
found RAS and BRAF mutations in the data tend to be mutually exclusive, both of which
are linked to PD-0325901 sensitivity (Fig. S1). Thus, PLATYPUS is better able to identify
the dual importance of RAS/BRAF mutations than the single view and ensemble models.

We also chose to look at a case where PLATYPUS failed to achieve an improvement.
LBW242 is one such case. The single views for this drug all have near random scores. However,
instead of identifying an improvement through view combination as is the usual case in our
experiments (e.g. PHA-665752 and Nutlin-3), the PLATYPUS models also achieved near
random performance (Fig. 2(a)). Further investigation reveals that the performance may not
be the fault of PLATYPUS. Instead, little signal may be available in the drug sensitivity
labels for this case due to our quantization strategy (i.e. using the upper- and lower-quartiles
for the resistant and sensitive classes). The dose-response curve for LBW242 shows very few
of the CCLE cell lines may be truly sensitive. While our approach creates balanced class sizes
and ensures continuity between experiments, finding a more nuanced per—drug cutoff would
likely improve model performance. Suboptimal label cutoffs lead to a low signal-to—noise ratio
in the labels for a few of the drugs, which in general leads to low classifier performance.!® It
is also possible that the metric for drug sensitivity for some drugs is ineffective. Traditional
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methods to quantify sensitivity are dependent on population growth and thus slow—growing
cell lines may appear to be resistant to all drugs.%

These results are consistent with previous findings that have shown sensitivity to some com-
pounds is easier to predict than others.” For example, the two MEK inhibitors (PD-0325901,
AZD6244) and Panobinostat have higher overall accuracy in the single view models (Fig. S3).
Interestingly, in the case of Panobinostat, the ‘Chromatin Modifiers’ and ‘Positional Gene
Set” PLATYPUS views have higher single view accuracy than the baseline expression view,
which could indicate that there is an epigenetic effect from chromatin modifiers. We postulate
that a small region of the genome has been unwound, lending sensitivity to Panobinostat.
PLATYPUS captures this interaction, whereas single view models do not.
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Fig. 3. Performance and feature weight changes for single views between ensemble and PLATYPUS
in predicting sensitivity to PD-0325901. (a) For each random forest view, the average Gini change for
all features between the ensemble and the best PLATYPUS iteration, plotted against the view AUC
for the ensemble (arrow tail) and PLATYPUS (arrow head). Circled view is shown in detail in (c).
(b) Same as (a), but showing the elastic net views and their average change in feature weights. (c)
Scatter plot where each point is a feature in the Baseline Mutations view. Plot shows the ensemble
feature weight versus the PLATYPUS feature weight. (d) Same as (c¢), but showing feature weight
changes in the Oncogenic (OncogenicAll in (b)) view.
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3.3. Key features from PLATYPUS models

Each machine-learning algorithm used by a view has its own internal feature selection. We
extracted features from these models to evaluate the most informative features. Fig. 3(a-b)
show changes in single view model performance and average feature importance within those
models, before and after PLATYPUS training. Fig. 3(c-d) show feature changes and enrich-
ment of those features within one of the views. Fig. 3(c) highlights how PLATYPUS is able
to remove feature weights of spurious correlations between cell line mutations and the true
mutation features of importance, NRAS and BRAF. While the overall feature weights in the
single view model do not have large changes from the ensemble to PLATYPUS frameworks,
there is a large shift in 2 key features which are known to be significantly associated with
sensitivity to this particular drug. PLATYPUS is able to avoid overfitting the model whereas
the ensemble is unable to draw from external information. In Fig. 3(d), the model has signif-
icantly changed both in AUC and in feature weights between the ensemble and PLATYPUS
experiments.

Fig. S8 shows a closeup of the changes within the Fig. 3(d) view between PLATYPUS and
a general ensemble. It focuses on one feature from the view, MTOR_up_V1_up kurtosis, which
had the biggest increase in feature weight from ensemble to PLATYPUS. At a glance, this gene
set is not associated with cancer— it describes genes that are regulated by an inhibitor used to
prevent graft rejection by blocking cell proliferation signals via mTOR. However, the gene set
kurtosis correlates with ActArea and with our binary drug sensitivity labels (Fig. S8(a-b)). A
closer look shows that this is because of gene-gene correlations within the gene set. Kurtosis
features are intended to capture large changes within the gene set. Mean and median gene
set correlation values do not capture cell line differences in the co-correlated gene clusters,
whereas kurtosis highlights extreme values. No one gene expression correlates strongly with
the kurtosis of the whole set (Fig. S8(c,e)), and so the set cannot be replaced with a single
gene expression value. Clusters within the gene set are linked to EGFR signaling (cluster IV,
genes marked E), metastasis and Basal vs Mesenchymal BRCA (cluster V, genes marked M
and B respectively), and resistance to several cancer drugs (clusters IT and V, genes marked
R). Gene-gene correlations shown in Fig. S8(d) combine to form the overall kurtosis score. As
shown in Fig. S8(e), many genes related to cancer processes are the driving force in the gene
set kurtosis score. This highlights how small overall changes combine to improve PLATYPUS
accuracy over the ensemble.

Many of the highly ranked features from other models (Fig. S7 shows expression view for
PD-0325901, other data not shown) are known oncogenes, for example ETV4 was previously
found to be correlated with MEK inhibitor sensitivity.!> SPRY?2, a kinase inhibitor, corre-
lates with BRAF mutation status, both of which are predictive of sensitivity to PD-0325901,
AZD6244, and PLX4720. DUSP6 has been named as a marker of FGFR inhibitor sensitivity*
and a previous study shows a weak inverse correlation between DUSP6 expression and sensi-
tivity to MEK1/2 inhibitors.® Thus PLATYPUS recapitulates several known markers of drug
sensitivity.
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4. Conclusions

When compared to a traditional ensemble and to single view predictors, PLATYPUS often
has higher AUC (Fig. 2). The multi-view approach uses the set of unlabeled samples as links
between different views to find agreement in the different feature spaces. Since label learn-
ing validation shows that labels are learned correctly in most cases, the increase in improve
model performance may be due to doubling the number of samples that can be considered
while training. In 96% of our experiments, PLATYPUS outperforms an ensemble (Fig. S4).
Furthermore, PLATYPUS outperforms 85% of the single views and has higher AUC than all
of the single views for 17 of the 24 drugs. No one single view consistently outperforms any
of the PLATYPUS models In order to retain such high performance without PLATYPUS, a
user would need to test all single view models.

Important features from PLATYPUS views (both baseline and interpreted) have previously
been linked to drug sensitivity. The approach generally improves AUC while incorporating sig-
nificantly more data and allowing uncertainty— a necessity in medical research. By combining
extracted features from each of the MVL model views, the user is provided a clearer picture
of the key facets of sensitivity to each drug. We also investigated the generality of PLATY-
PUS by applying it to the prediction of an aggressive subtype of prostate cancer and found
it generalized to an external validation set not used during training (see Supplemental Sec-
tion S7). Overall, PLATYPUS enables the use of samples with missing data, benefits from
views without high correlation, and is a flexible form of MVL amenable to biological problems.

The PLATYPUS co-training approach has several important advantages. First, it is ideal
when samples have missing data, a common scenario in bioinformatics. Imagine a new pa-
tient entering a clinic for whom not all of the same data is available as was collected for a
large drug trial. A PLATYPUS model trained on the drug trial data is able to predict drug
response for this patient without retraining, simply by restricting to views for which there is
patient data. For example, a sample with only expression data could be provided predictions
using the expression—based views. Predicted label confidence for that sample will be much
lower since there are no scores from the missing views, ensuring that labels for samples with
complete data will be inferred in earlier iterations than those with missing data. PLATYPUS
automatically sets weights for view predictions, implicitly accounting for missing data, and
ensuring future predictions are not constrained by limited data. Second, co-training allows for
the use of different classification methods for each data type, capturing the strengths of each
data type and increasing flexibility in the framework. Third, PLATYPUS is effective when
using information—divergent views. Fourth, co—training combines predictions at a later stage
in the algorithm, so that views are trained independently. This is ideal for ensemble learning,
which has shown to be highly effective when models/views are independent, even with low
individual model accuracy.?!”

It is worth mentioning some distinct limitations of the approach as a pointer toward future
work. First, if missing data correspond to cases that are more difficult to classify, rather than
missing at random, the poorer performance of individual views may result in appreciably
lower agreement, and thus little benefit in combining views. Second, combining multiple views
introduces the need for setting additional parameters (e.g. the agreement threshold). This
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requires a user to gain familiarity with the performance of newly incorporated views in test runs
before final results can be obtained. Finally, highly correlated views can inflate the agreement
voting and down-weigh other, uncorrelated views. A future adjustment could incorporate
prediction correlation on the labeled samples for the voting of unlabeled samples.
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Natural killer (NK) cells have increasingly become a target of interest for immunotherapies'. NK
cells express killer immunoglobulin-like receptors (KIRs), which play a vital role in immune
response to tumors by detecting cellular abnormalities. The genomic region encoding the 16 KIR
genes displays high polymorphic variability in human populations, making it difficult to resolve
individual genotypes based on next generation sequencing data. As a result, the impact of
polymorphic KIR variation on cancer phenotypes has been understudied. Currently,
labor-intensive, experimental techniques are used to determine an individual’s KIR gene copy
number profile. Here, we develop an algorithm to determine the germline copy number of KIR
genes from whole exome sequencing data and apply it to a cohort of nearly 5000 cancer patients.
We use a k-mer based approach to capture sequences unique to specific genes, count their
occurrences in the set of reads derived from an individual and compare the individual’s k-mer
distribution to that of the population. Copy number results demonstrate high concordance with
population copy number expectations. Our method reveals that the burden of inhibitory KIR
genes is associated with survival in two tumor types, highlighting the potential importance of KIR
variation in understanding tumor development and response to immunotherapy.

Keywords: Killer immunoglobulin-like receptors, KIR, cancer, immunology, MHC, copy number

1. Introduction

Killer Immunoglobulin-like receptors (KIRs) are cell-surface receptors expressed by
Natural Killer (NK) cells and some T cells. KIRs bind to other naturally occurring immune
receptors, including Major Histocompatibility Complexes (MHCs), to inhibit or activate immune
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cell activity’. MHC molecules, which are expressed on nearly all nucleated cells, can present
pathogenic or tumorigenic peptides on the cell surface for recognition by T cells. In order to
evade the immune system, malignant cells often down regulate expression of MHC molecules®.
However, KIR on NK cells are able to respond with an immune attack if they can recognize that
the expression of MHC deviates from normal®. This dual system allows “no way out” for
cancerous cells -- either the MHC presents the neo-peptides or the MHC is downregulated and
NK cells attack the cell’. However, the efficiency of this process depends greatly on the ability of
the KIR expressed on NK cells to bind to the MHC receptors.

The impact of these NK cell mechanisms in response to malignancies has been validated
through the several associations found between KIR genotype and cancer phenotypes. The
presence of certain KIR genes can predict response to immunotherapy treatment and survival
outcomes in chronic myeloid leukemia and acute myeloid leukemia®’. Associations have also
been found between specific KIR genes and susceptibility to several cancers (malignant
melanoma, leukemia, nasopharyngeal carcinoma, and cervical cancer)>*'°!!. Furthermore, the
strength of HLA-KIR interactions plays a functional role and can influence disease
susceptibility'?.

However, all of these studies have been performed on cohorts of low sample size due to
the difficulty of studying the highly variable KIR region. KIRs are encoded by a cluster of genes
on chromosome 19q13.4. Individuals vary widely in the number of KIR genes they carry and in
the allelic variation within those genes. The region can contain up to 16 genes but sometimes has
as few as four gene, each one with up to 100 known allelic variants.

The highly homologous nature of the KIR genes hampers usage of conventional,
computational copy number technologies for short read Next Generation Sequencing (NGS)
data. However, the interesting immune implications of the region have led to the development of
several experimentally based techniques. One approach uses polymerase chain reaction to
amplify the sequences and sequence specific primers to detect particular alleles". Another uses
sequence specific oligonucleotides as a first pass and then sequences specific exons to identify
allelic variation'!. Sanger sequencing can also provide long enough reads to cover several genes
at a high resolution'*'*>. However, all of these techniques require KIR specific techniques in the
data gathering stage. Only two computational alternatives exist that do not require KIR specific
techniques in the data gathering stage. KIR*IMP imputes the KIR region from SNP genotype
data'® and PING predicts KIR copy number from NGS data'’. However, KIR*IMP cannot be
applied to large exome datasets and PING requires time consuming read mapping, a potentially
biased normalization and manual curation step.

To achieve the computational speed and accuracy required for inferring the KIR types of
nearly six thousand cancer patients in order to study tumor phenotypes, we implemented an
unsupervised, k-mer based algorithm that leverages large populations to determine copy number
(Figure 1). Using this cancer cohort, we discovered that patients in uterine and cervical cancer
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survive longer when they have fewer inhibitory KIR genes as compared to patients that have
more inhibitory genes.

KIR Reference Population of TP Individual
praey e ez cene3 - exome data 19T exome to test T
Allele 2 —_—— e e o
Allele 3 —_ l TTT“TT l
¢ Distribution of k-mer
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Figure 1. Schematic of copy number calling pipeline. Unique k-mers are derived from a KIR reference library. The
exome data for thousands of individuals is searched for these unique k-mers to find distributions of frequencies in the
population. The copy number for a specific individual can be deduced from where their frequency falls in the
distribution.

2. Materials and Methods
2.1 Data collection

Exome sequencing, transcriptome sequencing and clinical data from The Cancer Genome Atlas
was downloaded from the National Cancer Institute's Genomic Data Commons on August 3rd,
2018. All disease types were obtained. KIR alleles were downloaded from the Immuno
Polymorphism Database on October 6th, 2016'%. Population KIR allele frequencies were
obtained from The Allele Frequency Net Database on February 22, 2017,

2.2 K-mer selection
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Figure 2. Unique k-mer counts. The number of unique k-mers found in each KIR gene across a spectrum of k.

A set of k-mers were selected to represent each KIR gene -- these k-mers are referred to as
unique k-mers. The criteria for the unique k-mers are as follows: a unique k-mer, or its reverse
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complement, must appear in (1) every allele of a specific KIR gene and (2) no alleles of any
other KIR gene. Unique k-mers of lengths 10, 15, 20, 25, 30, 35 and 40 were collected based on
the KIR reference from the Immuno Polymorphism Database (IPD)'®. The number of unique
k-mers for each gene is shown in Figure 2. In addition, only one length of k-mer, 30, was
collected in 100 random genes from throughout the genome.

2.3 NGS pipeline and k-mer extraction

The genomic region encoding the KIR locus (GRCh38:chr19:54025634-55084318) and the
regions encoding the 100 random genes were extracted from the exome sequencing bam files
from the TCGA. The unmapped reads of the exome sequencing bam files were also pulled from
the exome sequencing bam files. All of these genomic regions were merged together into a single
bam file. Then, the reads were stripped into a fastq file and realigned using Bowtie2*’ to a
reference that is constructed of all the KIR alleles for each KIR gene from IPD and each of the
100 random reference genes. All reads that mapped in the reference at least once are again
stripped and then searched for the set of unique k-mers and occurrence counts are stored for each
k-mer. The pipeline concludes with each patient having a vector of occurrence counts for every
unique k-mer.

2.4 Data cleaning

To identify substructure in the dataset that might indicate problematic samples, the k-mer
frequency for each of a set of 100 random genes for all patients in TCGA are visualised with a
t-SNE plot*'. To further understand the relationship between sequencing depth and clusters of
samples, we plotted the distribution of k-mer counts in the set of 100 random genes and also
k-mer counts in the KIR region. To reduce noise from outliers, only the samples from the largest
cluster of the t-SNE (Agilent Sureselect capture kit) were selected and all samples with < 40,000
k-mer coverage in the set of 100 random genes and < 20,000 k-mer coverage in the set of KIR
genes were excluded. After applying these filters, a total of 4,717 samples remained.

2.5 Normalization of k-mer frequencies

Since every sample will have different sequencing depth, the k-mer counts must be normalized
before being compared between samples. Furthermore, there are several lengths of k to choose
between. We evaluated normalization methods and lengths of k based on reduction in variance of
k-mer counts associated with KIR3DL3 which is known to be almost universally diploid. We
tested each length of k (15, 20, 25, 30, 35, 40) against each of the following normalization
approaches: (1) the mean of the number of k-mers mapped to the set of 100 random genes, (2)
the mean of the number of reads with at least one k-mer mapping to the set of 100 random genes,
(3) the median of the number of k-mers mapped to the set of 100 random genes and (4) the
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median of the number of reads with at least one k-mer mapping to the set of 100 random genes.
In the end, we used a k of 30 and normalized with option (1) for the remainder of the analysis.

2.6 Copy number segregation and cutoff selection

KIR genes have varying numbers of unique k-mers (Figure 1). After collecting 30-mer
occurrences for each gene and normalizing them to the mean of the number of k-mers mapped to
the set of KIR genes, we plotted the values for all individuals across the population with a
histogram. Kernel density plots show the distribution of unique k-mer counts for each gene
(Figure 3).

Low Frequency High Frequency
Anchor genes Non-anchor genes Non-anchor genes

A Al
A

KIR3DP1 KIR3DL3

KIRZDS4 KIRZDL1 KIRZDP1

KIR3DS1 KIR2ZDSS KIR2DS2 KIR2ZDS3

KIR3IDL2 KIRZDL4

Normalized k-mer count per sample
Figure 3. K-mer frequency distribution and copy number thresholds. The distribution of k-mer frequencies across
patients in TCGA for anchor genes, high frequency non-anchor genes and low frequency non-anchor genes. The
green lines denote copy number thresholds.

These kernel density plots can be used to assign gene copy numbers in an unsupervised
manner. First, the genes are divided into three categories based on the documented ploidy of the
gene: anchor genes that are present in two copies for most individuals (KIR3DL3, KIR3DP1,
KIR2DL2 and KIR3DL2), high frequency non-anchor genes that are present at least once in
most individuals (KIR2DP1, KIR2DL1, KIR2DS4 and KIR2DLY5) and low frequency
non-anchor genes that are present less than once in most individuals (KIR2DS3, KIR2DS2,
KIR2DS5 and KIR3DST1). Second, peaks and valleys are called for each kernel density plot by
finding local minima of the second derivative. Third, we map the highest peak to the most
common ploidy based on the documented copy number variant frequency in the population and
determine cutoffs by selecting the valleys surrounding that peak. For anchor genes, the highest
peak is determined to be two copy numbers. Samples beyond either edge of the peak (as
determined by a second derivative close to 0) are assigned a copy number of 1 or 3+. Instead of
looking for subsequent minima, we used the width of the highest peak to create a new threshold
for samples with 0 copies to the left of the region for 1 copy. For high frequency non-anchor
genes, three peaks are usually observed and thresholds are defined as the valleys between them.
The left-most and shortest peak corresponds to 0 copies, the middle peak to 1 copy and the
right-most and highest peak to 2 copies. All samples beyond the the third peak correspond to 3+
copies. For low frequency non-anchor genes, typically only two peaks are observed. The
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left-most and highest peak is assigned 0 copies and the second peak is assigned 1 copy. The
distance between these peaks is used to denote thresholds for the samples that had 2 copies or 3+
copies. Each sample was assigned copy numbers at each KIR gene according to where their
k-mer count fell in the distribution. However, patients that fell very close to the cutoff
boundaries for a gene (the value of the boundary that splits one copy from two copies divided by
50) were excluded for that gene. All of the genes that do not have any unique k-mers are known
to co-segregate with other KIR genes. Thus, we inferred copy number for these genes from the
copy number of the co-segregating gene as follows: individuals typically have as many copies of
KIR2DSTI as they do KIR3DS1, KIR2DL2 as KIR2DS2, KIR3DL1 as KIR2DS4 and
KIR2DLS5A as the combined total of KIR2DS3 and KIR2DSS5. Furthermore, individuals
typically have an inverse number of KIR2DL3 as KIR2DS2 (e.g. 0 KIR2DL3 and 2 KIR2DS2, 1
KIR2DL3 and 1 KIR2DS2 or 2 KIR2DL3 and 0 KIR2DS2).

2.7 Validation of copy number

KIR gene counts for TCGA patients of a specific ancestry are expected to follow the documented
distribution of the corresponding population. To validate this assertion, KIR gene frequencies for
a European ancestry population from IPD were compared to predicted KIR gene frequencies for
the European ancestry patients in TCGA. The correlation between individual gene frequencies
was determined using a Pearson correlation.

2.8 Survival analysis

For each tumor type, we divided patients into two sets: those that had the median number of
inhibitory genes or fewer and those who had greater than the median number of inhibitory genes.
We calculated the survival difference between the two cohorts using the Kaplan Meier and the
log rank test as implemented by the lifelines python library. P-values were adjusted with
Bonferroni correction. The two tumor types with different survival outcomes, cervical squamous
cell carcinoma (CESC) and uterine carcinosarcoma (UCS), were combined because of their
similar physical location, immune infiltration profiles and rates in order to increase statistical
power.

2.9 Additional immune analysis

We used RNA-seq data from TCGA to obtain immune infiltration predictions with EPIC*. Then,
we checked the relationship between inhibitor gene count with infiltration of CD8" T cells and
NK cells for the tumor types where significant survival differences were found. P-values were
calculated with a Mann-whitney U test between the patient set with high and low inhibitory gene
counts. Furthermore, we calculated MHC-I PHBR scores (which represent the ability of a patient
to present a specific mutation to the immune system based on their specific HLA alleles) for
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each patient’s observed driver mutations as outlined in Marty et al.”® and compared the PHBR
scores for CESC and UCS patients with all other patients using a Mann-whitney U test.

3. Results and Discussions
3.1 Establishing unique k-mers

The key challenge for determining KIR gene copy number is the high frequency of reads
mapping to multiple places across the homologous region. To address this challenge, we
developed an algorithm that capitalizes on distinct k-mers to successfully determine the
sequencing coverage of the gene from which each k-mer was derived. To construct our
algorithm, we began by building a library of unique k-mers for all KIR genes. A unique k-mer is
then defined as a string of length k that appears in all alleles of a specific gene but in no alleles
of any other gene. The IPD contains all observed alleles of each KIR gene. Using this reference,
we searched each gene for unique k-mers and found that all KIR genes either have unique k-mers
(Figure 2) or are co-inherited with other KIR genes that have unique k-mers®.

3.2 Varying coverage of KIR region by exome capture kit

Next, we explored The Cancer Genome Atlas (TCGA), a large set of cancer patients
(~10,000 individuals) with germline exome sequencing to learn the relationship between k-mer
counts and gene copy number. We first evaluated the implication of technical covariates for our
analysis. The majority of patients in TCGA had their exome captured with an Agilent capture kit;
however, there were several other capture kits used for subsets of patients (Figure 4A). We
selected 100 random genes in the genome and chose up to 100 unique k-mers from each gene.
For each individual, we counted all observations of each k-mer and then normalized each k-mer
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Figure 4. Patient exome data substructure. (A) A bar plot representing the number of patients whose exome data
was captured with each exome capture kit. (B) A t-SNE plot representing the clustering of patients based on their
k-mer frequency for 100 random genes in the genome. Each sample is colored by their exome capture kit. (C-D)
Histograms showing the sequencing coverage of the patients with an Agilent capture kit versus the sequencing
coverage of all other patients for (C) 100 random genes in the genome and (D) the KIR genes.
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count by the total number of observed k-mers across all 100 random genes found in that
individual, resulting in a frequency for each k-mer. Using a t-SNE clustering approach, we
discovered that the patients clustered by exome capture kit (Figure 4B), suggesting that capture
kit could confound k-mer frequency analysis. Among capture kits, the Agilent kit was both the
most frequently used kit in TCGA and the kit with the highest coverage of the KIR region. Thus
we restricted our analysis to individuals sequenced with this capture kit. Furthermore, we
eliminated all patients with low coverage of the 100 random genes or of the KIR region, leaving
us with 4,717 high quality individuals.

3.3 Inference of KIR copy number

Next, we searched the reads for each patient mapping to the KIR reference for unique k-mers.
Since every patient will have a different sequencing depth, we had to normalize the k-mer counts
before comparing them among individuals. Furthermore, we gathered k-mer counts for several
lengths of k and wanted to choose the optimal value. Thus, we swept the parameter space,
evaluating several normalization techniques and several values for k (Figure 5A). We evaluated
each approach by determining the variance of frequency for k-mers specific to KIR3DL3
(Figure 5B), an anchor gene that is known to be present at two copies in nearly all individuals,
under the assumption that lower variance across the population would mean better normalization
for sequencing depth differences. We found the optimal normalization technique to be the
average k-mer count of the k-mers from the 100 random genes. Though a k of 20 performed the
best, we chose to k to be 30 because its performance was very close to optimal and it has higher
k-mer coverage of low frequency KIR genes than a k of 20.
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Figure 5. Evaluation of optimal normalization. (A) A heatmap representing the variance of k-mer frequency of
KIR3DL3 anchor gene across Agilent captured TCGA patients. Several lengths of k and normalization techniques
are tested. (B) A histogram showing the k-mer frequency of KIR3DL3 anchor gene with the optimal normalization
technique.

After establishing the normalization technique, we calculated the normalized k-mer count
over all of the unique k-mers for every KIR gene of each patient. The frequencies were
combined across the population to construct density curves showing the proportion of individuals
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with similar frequencies. Each KIR gene shows a smooth density curve with peaks that
correspond to gene copy number. Anchor genes that are present in all patients have a single peak
while the non-anchor genes that are present mostly at 0, 1 or 2 copies have three peaks (Figure
3). From the peaks, we determine a cutoff based around the local minima of the population
densities. To determine the copy number of a specific individual, we follow the same alignment
and k-mer searching approach, followed by the assignment of gene copy number depending on
the individual’s placement on the curve of each gene. We applied our algorithm to 4,717
individuals in TCGA to assess the copy number of each KIR gene. For most genes, we observed
good agreement to copy number calls with PING; however, on genes where the methods
disagreed, our method predicted closer to the expected caucasian frequency (Figure S1A).
Furthermore, our method ran four times as fast as PING on the same hardware (Figure S1B).

3.4 Population variation of the KIR region

As anticipated, the distributions of copy number per KIR gene across the population are
highly variable (Figure 6A). The anchor genes have two copies for nearly all individuals while
non-anchor genes have a mixture of copy numbers. To validate our method computationally, we
assessed correlation between known KIR copy number frequency against our algorithm. The
results were very promising; there was a high correlation (R? = .999) between ancestry-matched
population frequencies of KIR haplotypes in TCGA and a recent study that used an experimental
approach for typing** (Figure 6B). This finding also suggests little or no germline KIR-based
cancer predisposition; however, more comparisons with non-cancer populations will be required
to make a deﬁnitive assertion.
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Figure 6. TCGA KIR copy number distribution and validation. (A) A stacked bar chart showing the fraction of
patients with each copy number across all KIR genes. (B) A dot plot showing the comparison in gene frequency
(average gene copy number per haplotype) within the European ancestry population of TCGA and an experimentally
typed European ancestry population.

3.5 KIR inhibitory gene burden correlates with survival in cervical and uterine cancer

KIR genes are divided into two functional categories: activating genes and inhibitory
genes. Inhibitory genes bind to specific MHC-I ligands to inhibit the NK cell from attacking the
MHC-I expressing cell'**. Often in cancer, cells will down regulate their MHC-I molecules to
avoid immune presentation of neoantigens. When this happens, there is no inhibition of the NK
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cells by the KIR, and NK cells attack. Activating genes have remained more elusive with their
ligands and function mainly unknown'?. They are believed to have evolved after the inhibitory
genes and are non-essential to proper immune functioning. Since inhibitory genes are variable in
copy number across individuals, we tested survival differences within tumor types for patients
with high and low numbers of inhibitory gene copies. We found two tumor types, cervical
squamous cell carcinoma (CESC) and uterine carcinosarcoma (UCS), with unadjusted p-values
of less than 0.05 (P=0.000182 and P=0.0113, respectively). In both of these tumor types, patients
with high numbers of inhibitory genes had lower survival rates, suggesting that NK cells were
unable to defend against the tumor in these patients. Since these tumor types are physically
co-localized and have similar immune infiltration profiles and survival rates (Figure S2), we
analyzed these cohorts together to increase sample sizes (adj P=0.00612, Figure 7A).
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Figure 7. The impact of KIR copy number on tumor development phenotypes in CESC and UCS. (A) Kaplan-meier
survival curves denoting the difference in survival between patients with more inhibitory genes than average and less
inhibitory genes than average. (B) A boxplot showing the difference in MHC-I presentation of driver mutations
between CESC and UCS.

To investigate why we found a significant survival difference in these two tumor types as
compared to others, we explored the ability of their MHC-I to present observed driver mutations
for recognition by the immune system?. Patients with CESC and UCS had better presentation of
observed driver mutations to the immune system than other tumors (P=0.0034, Figure 7B),
suggesting that the CESC and UCS tumors have immunosuppressive mechanisms at play. One
possible mechanism for this immunosuppression is impaired antigen presentation, potentially via
mutation® or loss of heterozygosity in the HLA region®, allowing perpetuation of the tumor
despite high affinity of observed drivers for the MHC-1. If MHC-I presentation on the cell surface
is altered and T cells become less relevant, we expect that individuals with higher inhibitory KIR
gene counts would have less ability to initiate an NK based attack against the tumor. These
observations suggest that when NK cells are called to action, patients with higher NK cell
inhibition may be less able to attack the cancer cells, resulting in a shorter survival time.

5. Conclusions

Though natural killer cells are increasingly being considered as targets for
immunotherapy, little is understood about the role of KIR, their main receptor family, on tumor
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development. Here, we describe our effort to evaluate the copy number of KIR genes in a large

cancer cohort to learn about their influence in relationship with MHC on tumor development. We

demonstrate the value of algorithmically learning KIR copy number in a large population by

uncovering a survival difference in CESC and USC based in the number of inhibitory genes

carried by an individual. Due to batch effects in exome sequencing, the current method must be

retrained on each new cohort of individuals. This limitation leaves us unable to validate many of

our methods experimentally. Furthermore, our method does not provide allele calls and cannot

be used to determine the copy number of small cohorts or individual patients. However, our

analysis highlights the importance of KIR variability to tumor development and warrants further

study of this complex locus.
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Background: MicroRNAs (miRNAs) are small, non-coding RNA that regulate gene expres-
sion through post-transcriptional silencing. Differential expression observed in miRNAs,
combined with advancements in deep learning (DL), have the potential to improve cancer
classification by modelling non-linear miRNA-phenotype associations. We propose a novel
miRNA-based deep cancer classifier (DCC) incorporating genomic and hierarchical tissue
annotation, capable of accurately predicting the presence of cancer in wide range of human
tissues.

Methods: miRNA expression profiles were analyzed for 1746 neoplastic and 3871 normal
samples, across 26 types of cancer involving six organ sub-structures and 68 cell types. miR-
NAs were ranked and filtered using a specificity score representing their information content
in relation to neoplasticity, incorporating 3 levels of hierarchical biological annotation. A DL
architecture composed of stacked autoencoders (AE) and a multi-layer perceptron (MLP)
was trained to predict neoplasticity using 497 abundant and informative miRNAs. Addi-
tional DCCs were trained using expression of miRNA cistrons and sequence families, and
combined as a diagnostic ensemble. Important miRNAs were identified using backpropaga-
tion, and analyzed in Cytoscape using iCTNet and BiNGO.

Results: Nested four-fold cross-validation was used to assess the performance of the DL
model. The model achieved an accuracy, AUC/ROC, sensitivity, and specificity of 94.73%,
98.6%, 95.1%, and 94.3%, respectively.

Conclusion: Deep autoencoder networks are a powerful tool for modelling complex
miRNA-phenotype associations in cancer. The proposed DCC improves classification accu-
racy by learning from the biological context of both samples and miRNAs, using anatomical
and genomic annotation. Analyzing the deep structure of DCCs with backpropagation can
also facilitate biological discovery, by performing gene ontology searches on the most highly
significant features.

Keywords: Deep learning; miRNA; Autoencoder; Cancer classification; PSB
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1. Introduction

Following rapid advances in biotechnology (RNA-Seq) and machine learning, mining of high-
resolution transcriptomic data has become a promising tool for the discovery of potential
RNA cancer biomarkers.! However, the ability to use this high-dimensional data to predict
cancer is limited by the tendency of large models to overfit available data, known as the curse
of dimensionality.? This problem can be mitigated by filtering variables, and reducing the
dimensionality of input, techniques that can be incorporated in machine learning algorithms.

Deep learning (DL) describes a family of machine learning algorithms designed to model
non-linear features at various levels of abstraction, by processing training data over multiple
connected layers. DL models are a type of artificial neural network (ANN) which learn by
calibrating the weights of connections between nodes by backpropagation of the error gra-
dient. Applying backpropagation to deeper networks can be ineffective due to the problem
of “vanishing gradients”, but this problem was solved in 2006 by Hinton and Salakhutdinov,
who devised a procedure for pre-training hidden layers.? Hinton’s original formulation used
stochastic, binary networks with one hidden layer and symmetrical weights, known as Re-
stricted Boltzmann Machines (RBMs). RBMs were pre-trained such that the hidden layer of
one RBM formed the input of the next. After pre-training, the entire model (named a Deep
Belief Network, or DBN) could be fine-tuned with supervised learning. Because each layer
encodes features based on the previous layer, the higher layers contain increasingly abstract
feature sets. In addition, the non-linearity of deep learning results in highly generalizable mod-
els that are less dependent on preprocessing and normalization. Both of these characteristics -
complex internal structure, and insensitivity to input variance - makes DL models well-suited
to transcriptomic applications. DBNs have been used with microarray data to cluster breast
cancers? and glioblastomas into prognostically relevant subtypes.® Deep Boltzmann Machines,
a related architecture, have also been used to classify human colorectal carcinomas by sub-
type.5 In each of these studies, training data was limited to a single cancer type, permitting
subtype discrimination but limiting the scope for transfer learning between cancers. Deep
neural nets have also been used to predict cancer type based on genetic data (somatic point
mutations) albeit with poorer accuracy than RNA-based models.”

The pre-training method applied to DBNs can be generalized for layers with continuous
outputs,® known as autoencoders, which recreate their input using a single real-valued hidden
layer and non-symmetrical weights. Autoencoders can be stacked and pre-trained in a manner
analogous to DBNs, and the resulting stacked (or deep) autoencoders (SAE/DAE) can be fine-
tuned using supervised learning. It is possible to limit overfitting by imposing a constraint on
the sparsity (number of active nodes) of autoencoders in an SAE. Recently, stacked sparse
autoencoders have shown promising results classifying cancer sub-types®1°

Most studies applying deep learning to RNA-based cancer prediction have focused on the
familiar protein-coding variety, mRNA. However, at least 15 types of non-coding RNA are
also produced (accounting for approx. 98% of nuclear output), including potentially valuable
biomarkers such as microRNAs.!* microRNA (or miRNA) are a small non-coding class of RNA
responsible for post-transcriptional repression of mRNAs. In contrast to over 22,000 mRNA
in the human genome, the high-confidence set of miRNAs is limited to just over one thousand.
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This relatively smaller input space mitigates the effects of the curse of dimensionality in DL
models. In addition, miRNAs individually display much greater tissue- and tumour-specificity
than mRNAs, perhaps due to their role as upstream regulators of RNA activity.!?

To date, most miRNA DL applications have focused on diagnostic or prognostic classifi-
cation of tumour subtypes. In one study, DBNs were used to select miRNAs to classify six
tumour types.'® Other projects have examined so-called multimodal architectures integrating
miRNA expression with other data sources. One study fed a combination of miRNA, mRNA
and gene methylation data to a DBN to cluster ovarian and breast cancer samples.'* Another
study combined the same inputs using a 3-layer stacked autoencoder to predict survival time
in liver cancer.'> Combining data from multiple sources may improve results, at the cost of
increasing complexity and the risk of overfitting. Instead, the proposed DCC is supplied with
concise data situating both samples and miRNAs in a biological context enabling comparisons
between related samples and miRNAs.

In this paper, we propose a DL model to predict the presence of cancer based on miRNA
sequencing across over 30 human tissues, from approximately 3600 patients, using an ensemble
of deep autoencoders. The proposed model leverages the biological context of both samples
and sequences. First, hierarchical anatomical annotation was used to score and filter miRNAs
based on their information content. In addition, annotation of miRNA cistrons and sequence
families were used to create variants of input data, used to train ensembles of classifiers
with superior performance than any single component. The DCC also goes beyond cancer
classification, by identifying significant miRNAs with backpropagation, and exploring with
network visualization. Finally, targets of selected miRNAs were analyzed using gene ontology,
to provide insight into the biological nature of the selected miRNAs’ association with cancer.

2. Data

Samples were sequenced between September 2008 and December 2015 at Rockefeller Univer-
sity using the Illumina HiSeq. Samples were richly annotated by expert clinicians using over
30 features, including the type of biological material, disease state and anatomical site, as
well as expression of 1187 miRNAs. Our original data included samples from body tissues,
body fluids and cultured or sorted cells, from a wide array of anatomical sites (Fig. 2). All
subsequent analyses were confined to tissue samples, due to greater average sequencing depth
and balanced subclasses. Of tissue samples, 2026 (56%) were neoplastic, and 1606 (44%) were
either normal or affected by an unrelated diseased. Site-of-origin was described at three differ-
ent levels, namely organ, organ substructure, and cell type, organized into a 3-level anatomical
hierarchy. The dataset includes samples from 26 organs, 6 organ sub-structures and 68 cell
types. Sequence families: are sets of miRNAs defined on the basis of sequence similarities
and represent miRNAs which are likely to share targets - due to the pleiotropy of miRNA
targeting, they are likely to have overlapping sets of targeted mRNAs. Precursor clusters: are
defined to include miRNAs that either share an identical mature form, or are clustered closely
in the genome, and are likely to be co-expressed due to shared promoters. Because of this
fact, they may be up- or down-regulated in concert, which may indicate involvement in shared
(patho-)physiological pathways.!
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Table 1. Organs represented by the
largest number of samples, with number of
samples from each.

Source organ Number
C, SC and other soft tissues 913
Breast 762
Thyroid gland 333
Brain 292
Skin 269
Kidney 244

Hematopoietic and RC system 173
Heart, mediastinum, and pleura 141

Fig. 2. Left: Eight organs representing the greatest number of tissue samples. Right: Sun-
burst diagram depicting tissue samples at three anatomical levels: (from the centre outwards)
organ, organ substructure and cell type. Only cell types with greater than 100 samples are
shown. C = connective, SC = subcutaneous, RC = reticuloenothelial.

2.1. Preprocessing

Outlier Remowval: We used the inter-quartile range (IQR) to label and subsequently remove
outliers and batch effects .17 Upper and lower bounds were established at a certain distance
below the first quartile and above the third quartile of the data and we measured the distance
of outlier points beyond the bulk of the data. The distance is usually set at a multiple of the
IQR; 1.5xIQR was suggested in previous work and that is the value used herein.!”

Batch effects were identified using median Spearman coefficient and the bounds established
by the IQR method. Batches were removed if at least half their samples were flagged by the
IQR method. Following the removal of batches, the Spearman correlations of the remaining
points were recalculated. Removal of samples with extreme Spearman values results in tighter
bounds, which may enable the detection of further outliers and batch effects. This process was
performed iteratively until batch effects could no longer be identified.

Filtering: The initial set of 1187 human miRNAs was filtered based on abundance of
expression, eliminating the lowest-expressed miRNAs. An expression threshold was set at 1.41
x 107, which corresponds to 14 counts in one million. Any miRNA that was not expressed
at or above this level in at least 1% of samples was removed. 397 miRNAs were filtered
out on account of low-expression. The remaining miRNAs were also filtered on the basis of
information content or cancer specificity.

The specificity of an miRNA, m, for a given tissue, ¢, (G,,+) is a measure of the relative
expression level of m in ¢, compared to other tissues.G,,; can be understood as the proportion
of total m expression in all samples that would occur in ¢, if all classes were sampled from
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/ alignment Sample cleaning > miRNA filtering - Deep AE

> (batch & outlier) (low information) Cistuncounts. classifier
Clinical Seq family

annotation counts

Fig. 1. Flowchart illustrating the datasets used (rounded boxes) and the various transformations
and preprocessing steps (rectangular boxes) applied to it, before it is fed as input in the the deep
autoencoder model.

equally. G, + is a value ranging from 0 to 1, representing the specificity of miRNA m for tissue
t. If Gy, is close to 1, this indicates that m is expressed much more in ¢ than in other tissues.
The specificity of m is determined by the distribution of Gy, for different tissues. If G,,; were
the same for all values of ¢, then the specificity of m would be 0. Once Gy, is determined for
all m and ¢, the total information content of a miRNA, s,,, can be calculated using all Gy, +«
terms of m for all tissues tx.

Sm = logy(#oftissues) + Z(vat *1ogy (Gm,t)) (1)
t

Therefore, the maximum possible specificity (i.e. a miRNA expressed solely in one class)
is logy(#ofclasses), and cancer specificity of miRNAs ranges from 0 to 1. miRNAs that did
not meet a minimum information content threshold (s,, > 0.01) were excluded. The remaining

497 miRNAs were inputs to the DCC to predict the presence of cancer (Fig. 1).
Normalization: We used Total Counts Scaling (T'CS), in which read counts are divided by
the total number of sequenced counts, known as the sequencing depth for normalization.'® TCS
was preferred to more complex methods due to its widespread use and ease of interpretation.!'®

3. Deep Cancer Classifier

The proposed deep cancer classifier (DCC) merges stacked autoencoders with a multilayer
feedforward network to accurately classify cancer using miRNA in a range of human tissues
(Fig. 2). Data (miRNA, cistron and sequence family expression) was presented to DCC via the
input layer. Each successive autoencoder layer is smaller than the last, the layer sizes forming a
geometric series. By training each autoencoder in the usual unsupervised manner (minimizing
mean squared error with respect to input) it is possible to represent abstract, latent features
in the data. These latent features were repeatedly transformed and compressed to 20 in the
third AE layer. Following pre-training, the weights of each AE layer were initialized with the
weights of the corresponding hidden layers, the AE layers were joined together, and a feed-
forward MLP was added. After this step the DCC undergoes supervised learning to boost
its classification performance. The model now uses the complex latent features learned in the
first stage to predict the presence of cancer. Weights throughout the entire network were fine-
tuned through backpropagation to minimize cross-entropy loss of predictions. The proposed
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multi-modal architecture of DCC allows for learning multiple layers of latent features from
miRNA expression while integrating expert clinical annotation. After developing the model
using miRNA profiles using training data, the DCC’s performance was tested on left-out
samples, and benchmarked against other popular ML methods.

3.1. Training & testing

Of the initial 2518 tissue samples, 40% were used as a development set to tune model pa-
rameters, while the other 60% were set aside to provide an unbiased measure of the model’s
performance. This selection was stratified with respect to both cancer status and organ type.
Five-fold cross-validation (CV) was performed on the development set, requiring each fifth of
the data to provide validation for a model trained on the other four fifths. Once the model’s
hyperparameters were tuned, the previously unseen test set was used to assess its performance.

An ensemble of development models was used to maximize test set performance (Fig. 2).
Each model predicts cancer status as a probability and the output probabilities were averaged
over models from different cross-validations. Model variants based on the three input sources
(miRNA, cistron and sequence family) were combined in the same way, so each test set pre-
diction was based on an ensemble of 3 x 5 = 15 classifiers. These values were finally rounded
to 0 (non-neoplastic) or 1 (neoplastic) to establish the number of true and false predictions
for each type, and by extension the model’s accuracy, sensitivity and specificity.

AEs AE;s, e MLP¢
3
£ -
“— - -
© o a
= o a1
<5 - -
> -
L
wv

AE. AE.; .. MLP,

Cistrons
6o
(4 2)]
L
Predicted cancer status

AE AEm: .- MLP,,

\

Fig. 2. Simplified schematic of the network topology with three input types (expression of individual
miRNAs; miRNA cistron profiles; miRNA sequence family profiles) and main phases in the model’s
operation. First the AEs undergo unsupervised pre-training, each layer recreating the hidden layer
activations of the last, following which the entire model is fine-tuned to classify cancer.
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.
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3.2. Parameter tuning

Deep learning models are characterized by a large number of configurable parameters, includ-
ing the overall layout (topology) of the network, initial weights for connections between nodes,
and various functions determining the way the network learns (i.e. how weights are updated).
By using CV on the development set, different model configurations can be compared, allow-
ing select parameters to be optimized. Even when working exclusively on the development set,
there is a risk of overfitting the model if too many parameters are tuned to the development
set, reducing the test performance. Therefore, a small number of significant parameters were
selected for optimization. Namely, the size the latent features produced by the deep autoen-
coders, the number of stacked AE layers, the optimizer function to training the autoencoder,
and an analogous optimizer for training the classifier.

The size of the smallest AE layer, also called the encoding size, determines the level of
compression the input must undergo, and the amount of information available to the classifier.
The size of the other AE layers were chosen to form a geometric series, the size of each layer
decreasing by a constant factor between the input and final compressed form. The number
of AE layers affects the amount of information learned in a different way. Each layer tends
to represent different latent features in the data, so deeper networks can capture a greater
number of more complex features. The downsides to increased network depth include the risk
of overfitting, as well as potentially long training times.'® Optimizers are algorithms which
control the way weights are updated during training, and may control parameters such as (ini-
tial) learning rate, momentum and others. It is typically easier and more effective to use these
thoroughly tested configurations, instead of varying these parameters independently. Because
the performance of any single run is affected by random occurrences (e.g. the splitting of sam-
ples, random initialization of weights), the CV optimization procedure was repeated 30 times
for each value of each parameter. Based on the distribution of scores for each configuration,
the Kruskal-Wallis (K-W) test was applied to detect significant differences between groups.
If a difference was detected, pairs of samples were compared using the Mann- Whitney U test
to determine which samples were involved. As the K-W and Mann-Whitney U tests are non-
parametric, no assumptions were made about the normality of the underlying distribution.

3.3. Feature importance

The importance of individual miRNAs (or cistrons, etc.) for cancer classification can be esti-
mated using backpropagation, the same algorithm used to train models in supervised learning.
However, rather than the gradient of error, we calculated the gradient of activation across in-
put nodes.?? Signed activation gradients can be computed for every edge between nodes. By
taking the sum of the absolute values of activation gradients for all edges connected to a given
node, the “contribution” of input features to the activation of higher nodes was determined.
A distinct activation is produced in response to each batch of samples presented as input. To
calculate the average activation gradient across input features, five DCC variants were trained
using 5-fold cross validation. Then, the test set was presented to each variant in 16-sample
batches, and the input activation gradients were recorded for each batch. Finally, the gradients
were averaged across batches and CV variants, producing a single score for each input feature
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(e.g. miRNA) representing its relative importance for classifying cancer.

The miRNAs with the greatest putative cancer association were validated using a net-
work analysis tool called the Integrated Complex Traits Network (iCTNet2).2! iCTNet2 links
numerous biological databases (miRNA, gene, protein, disease, etc.) allowing visualization of
indirect associations. Having made a list of miRNAs known to regulate cancer-related genes,
one may expect a degree of overlap between this set of cancer-related miRNAs and those re-
turned by the backpropagation method described above. Comparing the number of miRNAs
found in both sets to the number expected by chance alone will provide an estimate of level
of “cancer enrichment” in the miRNA set produced by the analysis of feature contribution.

Targets of selected miRNAs can also be investigated using gene ontology (GO). BiNGO is
a cytoscape app that illustrates gene oncologies as hierarchical networks, with nodes (repre-
senting processes) coloured to illustrate their level of enrichment.?? Enrichment is calculated as
over-representation relative to entire GO annotation. This is measured by a p-value, adjusted
using the Benjamini & Hochberg correction.

4. Results and Discussion
4.1. Model selection

Classification accuracy of the DCC was strongly associated with minimum AE size at the
lower end of the tested range. Increasing the encoded size from 5 to 20 caused a clear benefit,
although further increases had a null or negative effect (Fig. 3). While compressing miRNA
profiles to just five features was clearly sub-optimal, it was still sufficient to classify samples
with 93.7% accuracy. A similar trend was observed in relation to layer number. Validation
accuracy was greatest when using three stacked autoencoders. Additional AE layers seemed to
increase training times, without any significant performance increases. The choice of model op-
timizers had a strong effect on performance for supervised learning, but pre-training appeared
to be relatively insensitive to optimizer choice (at least between the 5 tested configurations).
Adagrad exhibited marginally superior performance for pre-training, while Adam was the most
effective algorithm for supervised classification via backpropagation (Accuracy = 0.948).

Table 3. Summary of key parameters, with optimal values

Parameter Optimal value (Range) Accuracy range
Encoding size 20 (5-60) 0.937 - 0.948
AE layers 3 (1-5) 0.933 - 0.949
AE Optimizer Adagrad (*) 0.948 - 0.949
MLP Optimizer Adam (*) 0.844 - 0.948

* Tested optimizers: SGD, RMSprop, Adagrad, Adadelta, Adam
4.2. Classifier performance

The most common and intuitive way of assessing the performance of a classifier is its accuracy,
given by the number of true predictions over the total number of predictions. The true pre-
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Fig. 3. Left: Test set AUC/ROC, accuracy, sensitivity and specificity in relation to the size of the
latent feature representation produced by the stacked autoencoder (with 3 layers). Right: Test set
performance (min. encoding size 20), with various numbers of stacked autoencoder layers.

dictions are the sum of the true positive (TP) and true negative (TN) predictions. Accuracy
is a suitable metric for problems with similarly-sized target classes, but for highly imbalanced
datasets, the success rate for positive and negative samples can be measured using sensitivity
or specificity, respectively. Out of 1511 samples, the DCC was able to correctly classify 1421
of them (94.8%). The model had slightly better sensitivity (0.95) than specificity (0.94). The
Receiver Operating Characteristic (ROC) illustrates the trade-off between Type I and Type
IT errors. The Area Under the Curve (AUC) was 0.985.

4.3. Comparison with other methods

Receiver operating characteristic Machine learning performance comparison
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Fig. 4. Left: Receiver Operating Characteristic (ROC) graph showing performance at different
thresholds, compared to random forests (RF) and support vector machines (SVM). Right: DCC
performance compared with RF and SVM. Error bars show std. dev. for 30 trials, with 5xCV.

The model’s performance on test set of 1510 samples was compared to the that of two
well-known machine learning methods, support vector machines (SVM) and random forests
(RF). The proposed DL model significantly surpassed the performance of a SVM with a linear
kernal, and C=1. The example ROC on the following page shows that DCC outperforms SVM
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and RF at every error threshold, with an average Area Under the Curve (AUC) of 0.9854.

4.4. Feature importance

Backpropagating the activation of the output node to the input nodes enables an estimation
of the contribution each feature makes to the model’s output. The top 20 miRNAs by output
contribution are shown below (Fig. 5). The distribution of activation gradients across miRNAs
was highly skewed; while the maximum gradient (for miR-21) was 22.9, only 26 of the 1187
features had an average activation gradient greater than 1. It would appear most of the
information required to classify samples is concentrated in a small number of sequences.

iCTNet was used to link miRNAs, genes(/proteins) and human cancers, outputing a list of
61 miRNAs linked to cancer-associated genes (Fig. 5). iCTNet uses a different miRNA refer-
ence library (miRCat); after converting miRNAs to a common form and collapsing duplicates,
the iCTNet network was reduced to 46 miRNAs, of which 44 were present in our reduced set
of 582 miRNAs. Of the top 20 miRNAs by average output activation gradient, 8 were found
in the list of cancer-linked miRNAs. Since 7.6% of the miRNAs in the larger list are present
in the cancer-associated network, the expected number of matches (based on the binomial
distribution) is just 1.5. Therefore, the backpropagation method returned a set of miRNAs
with a cancer enrichment of 8/1.5 = 5.3.

Fig. 5. Left: Network graph showing links between cancers (blue), genes/proteins (green) and miR-
NAs (red). Of the 44 cancer-linked miRNAs shown, 8 ranked in the top 20 by output activation
gradient (bright red, outlined). Right: Gene ontology graph for genes targeted by selected miRNAs.
Node color represents p-value of category over-representation. Five most over-represented categories
highlighted in blue.

Sixteen miRNAs from the ICTNet graph are among the top 50 miRNAs by activation
gradient. Gene ontology analysis was performed on 49 genes linked to these miRNAs (Fig. 5).
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The graph displays a hierarchical GO network, containing at least two major clusters of related
enriched biological processes. The bottom-right cluster stems from “Regulation of cellular
process” and “Regulation of biological process”, and contains “Positive regulation of cellular
process” and “Regulation of cell proliferation”. The other 3 of the top 5 most highly-enriched
GO categories (Table 4) are found in the uppermost cluster, descended from “Developmental
process”, and “Multicellular organismal development”.

Feature importance by backprop.
Table 4. Most over-represented gene ontology categories

linked to selected miRNAs

Gene ontology category Adj. p-value # of genes s
Positive regul’n of cellular process 4.42E-5 22/49 10
Regulation of cell proliferation 3.60E-5 15/49
Epithelium development 4.42E-5 10/49 5
Tissue morphogenesis 1.84E-5 10/49 I I . EmEn
Morphogenesis of an epithelium 1.84E-5 9/49 o _ _ o
Tb\o\,\ﬁé\ %,b\?f ’\%‘\-;\KCD {'?C"\ S ’19,002%.0@
@,@"S“L & & S %&\% il &@& & &
W &G X @,6‘8_ & v@'
\(\‘0

5. Conclusion

The proposed deep cancer classifier is capable of diagnosing cancer in a wide range of human
samples with almost 95% accuracy, which represents an improvement on conventional machine
learning algorithms random forests and support vector machines. The model’s performance is
enhanced by exploiting two forms of contextual information, namely anatomical annotation
of samples, and sequence annotation linking miRNAs to cistrons and sequence families. Once
trained, the deep structure of the DCC can be interrogated for insights into the links between
miRNAs and cancer. In particular, this enables the identification of miRNAs that may play
serve as biomarkers or mediate the effects of cancers across diverse tissue types. The absolute
activation gradient reveals a highly skewed distribution of feature importance, led by miR-21,
a ubiquitous miRNA known to be disregulated in cancer.?® This highly skewed feature impor-
tance distribution suggests the possibility of creating diagnostic arrays using small numbers of
miRNAs. Gene ontology analysis of cancer-linked miRNAs identified multiple highly-enriched
processes, some of which bare an obvious relationship to cancer (e.g. regulation of cellular
proliferation) while others may indicate possible directions for future research.
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The rapid acceleration of microbial genome sequencing increases opportunities to understand
bacterial gene function. Unfortunately, only a small proportion of genes have been studied. Recently,
TnSeq has been proposed as a cost-effective, highly reliable approach to predict gene functions as a
response to changes in a cell’s fitness before-after genomic changes. However, major questions
remain about how to best determine whether an observed quantitative change in fitness represents a
meaningful change. To address the limitation, we develop a Gaussian mixture model framework for
classifying gene function from TnSeq experiments. In order to implement the mixture model, we
present the Expectation-Maximization algorithm and a hierarchical Bayesian model sampled using
Stan’s Hamiltonian Monte-Carlo sampler. We compare these implementations against the frequentist
method used in current TnSeq literature. From simulations and real data produced by E.coli TnSeq
experiments, we show that the Bayesian implementation of the Gaussian mixture framework
provides the most consistent classification results.

Keywords: Bayesian; bacteria; genetics.

172



Pacific Symposium on Biocomputing 2019

1. Introduction

1.1. TnSeq Motivation and Background

Understanding of bacterial gene function has not kept pace with the rapid acceleration of microbial
genome sequencing. Only a small proportion of genes have had their functions experimentally
examined and function estimates for unexamined genes have proven inaccurate.® Transposon
mutagenesis with next generation Sequencing (TnSeq) is a recent method that alleviates this
shortcoming in the study of gene function by allowing the simultaneous examination of a wide array
of microbial genes.

In TnSeq, a transposon inserts itself into bacterial genes, creating mutants and potentially
disrupting bacterial functions. In a library of mutants, DNA is isolated from a section of the bacterial
pool as a control group. The remaining section can then be subjected to a test condition. Bacteria
whose disrupted genes are essential for growth should decrease in frequency after exposure to the
condition. PCR amplifies the DNA sequences bordering the insertions, which are then sequenced
and map back to the genome. The change in a gene's fitness can be quantified by comparing the
abundance of mutants before and after the test condition. Based on this change, we can then examine
the effect of the disrupted genes in specific test conditions.? The test conditions under which the
mutants suffer fitness penalties are then used to infer gene function.

1.2. Motivation and New Methods

The data produced by TnSeq poses classic statistical challenges. First, TnSeq allows researchers to
produce fitness measurements for thousands of poorly understood genes across hundreds of
experimental conditions.® This increase in scale from traditional experimental methods complicates
attempts to create a universal decision rule for identifying a gene insertion’s fitness condition. The
inflated number of experiments also increases the frequency of outliers and edge cases. Furthermore,
the magnitude of fitness change varies between gene insertions and experimental noise can be
unpredictable. Current practice implements a frequentist statistical significance framework that does
not incorporate assumptions inherent in TnSeq and ignores inter-gene information for classification.
These shortcomings lead to overly conservative predictions due to overestimates of variance given
the unique nature of TnSeq data. The frequentist framework also requires tuning to control the false-
positive rate.> Finally, the current frequentist framework does not produce an easily interpretable
uncertainty estimate for its classifications.

In this paper, we propose modeling the fitness measurements for gene insertions as two-
component Gaussian mixture models. We use simulations to show that this framework increases
sensitivity to fitness changes while controlling the false discovery rate at acceptable levels. We also
provide two distinct methods for fitting these mixture models. The Expectation-Maximization
algorithm is a widely accepted method for fitting such models. We also propose a hierarchical
Bayesian approach in which we model the parameters of our Gaussian mixture as random variables
with prior distributions. This strategy allows us to incorporate inter-gene information and prior
knowledge of the TnSeq method as soft constraints on our estimates. We will ultimately compare
the performance of these methods against the current frequentist framework.
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2. Methods

2.1. TnSeq Experimental Data

We present a model of transposon sequencing in which only one strain of each gene insertion is
counted. A control count is first obtained for each gene insertion by examining its growth under a
condition known to have no effect on bacterial survival. Given n insertions, and m experimental
conditions, TnSeq then produces an n x m matrix where each row represents an insertion, and each
column contains fitness counts for an experimental condition. Thus if we denote this matrix C, the
matrix element C; ; represents the fitness counts for gene insertion i under experimental condition j.
The final fitness measurement for each insertion under each experimental condition is calculated
via the equation:

f =log(ny + 1) —log(no +1)* 1)

where n; is the cell is count under the experimental condition and n, is the cell count under the
control condition. The total variance of the gene’s fitness value is calculated via:

1 1

+
_ 1+nq4 14nyo
V= In(2)2 (2)

This variance assumes Poisson noise and is later used for calculating a t-like statistic for the
frequentist method.®

2.2. Mixture framework

We apply our novel Gaussian mixture framework to the n x m matrix representing the fitness
measurements of each insertion. We denote this matrix E. The matrix element E; ; represents the
fitness measurement of the ith insertion under the jth experimental condition. We wish to identify
each E; ; as the result of a neutral or deleterious experimental condition. Fitness measurements under
deleterious experiments indicate that the mutant’s disrupted gene is relevant to some function. Note
that whether an experiment is neutral or deleterious depends on the mutant. To evaluate the
likelihood of our label estimate, we propose modeling each row of E as a two-component Gaussian
mixture. We would like the first mixture component to capture experiments in which fitness is
unaffected such that E; ;| unaf fected ~ N(u;,0;). The second component captures experiments
in which fitness is affected such that E; ;| af fected ~ N(u; 4, 0;). Due to the nature of TnSeq data,
we expect y; o to be close to 0 and y; ; to be negative. This second component mixture exists because
groups of experiments deliberately test similar bacterial functions and therefore produce similar
fitness changes. This aspect of TnSeq also allows us to assume variances for the mixtures. We
therefore define the likelihood of row i of the matrix as:

Ej ~ 09 (1o, 0) + (1 = 0)p (11, 00) ©)

where ¢ is the pdf of a normal distribution, and 0 is the proportion of experiments in which the
mutant is unaffected.
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This framework can generate a probability that any fitness measurement is the product of a
deleterious experiment. This probability that fitness measurement E; ; is produced by a deleterious
experiment is defined as:

I d(E;jlui1,00)
Y ¢(Ejlpmi0) + ¢CE; |10 00) (4)

This value is simply the density of the fitness-affected mixture divided by the total density. We
classify the E; ; as the result of a deleterious experiment if a; ; is greater than .5.

2.3. Classification methods

2.3.1. Novel method — EM

An accepted statistical method for estimating unobserved labels under a Gaussian mixture likelihood
is the Expectation-Maximization (EM) algorithm.* The EM algorithm iteratively fits a Gaussian
mixture model by constructing a monotonically increasing sequence of lower bounds for the log
likelihood function. We allow the mixture that is closest to zero represent the experiments that do
not affect mutant fitness. The selection of a two-component mixture model as opposed to classifying
all experiments as neutral is based upon the commonly used Bayesian Information Criterion (BIC).*
We fit a two-component mixture model if it has the lower BIC compared to a simple Gaussian
model. Otherwise we assume the insertion’s fitness values are all produced from neutral
experiments. We make this assumption as it is biologically improbable that all or even most
experiments will harm fitness. We implement the algorithm through the R package Mclust.®

2.3.2. Current method — t-statistic

The current method in TnSeq literature leverages the estimated variance of fitness measurements to
calculate the statistical significance of fitness changes.? It calculates a t-like statistic:

_ _f
b= ®)

where .1 is a small regularizing constant, and V' is the variance estimate for the insertion’s fitness
measurements as described in section 2.1. An experiment is considered deleterious if |t| >
4and |f| > .5. This statistic is assumed to have a standard normal distribution®.

The frequentist approach does not provide an easily interpretable probability for label estimates.
For the sake of comparison, we define a; ; for the t-statistic classifier as:

a,j=1-— ¢ (6)

where ¢(t) represents a standard normal cdf. This expression is simply one minus the probability
that we obtain a statistic as extreme as ¢ under the assumption of no fitness change. This a; ; can be
interpreted as the confidence of the classification.
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2.3.3. Bayesian hierarchical model

We finally adopt a Bayesian hierarchical modeling framework for fitting a Gaussian mixture model.
The hierarchical approach assumes that model estimates for individual insertions are conditional on
some unobserved parameters shared across all insertions. We denote these parameters as hyper-
parameters. The hyper-parameters have their own hyper-prior distributions which are estimated
from all insertions in the data set. This strategy of conditioning estimates for individual genes on
these sample-wide hyper-priors achieves a pseudo pooling effect. The hyper-prior distributions
leverage across-gene information to weaken the influence of outliers and increase sensitivity to
small mixture probabilities.®

We fit our hierarchical Bayesian model in the R interface to the probabilistic programming
language, Stan.’ Stan allows fast, out-of-the-box fitting of Bayesian models without the computation
of the conditional parameter distributions or tuning variables.® We later provide strategies for
partitioning our data set in order to speed computations and allow parallelization.

We use the following priors in our Bayesian model. We give .0 prior distribution N (0, §). The
location of the prior is fixed at O to reflect the experiments’ null effect on fitness. The scale of the
prior is modeled by hyper-parameter & with a InverseGamma(20,1) prior. The parameters of the
prior and hyper-prior reflect our strong belief that neutral experimental conditions should
consistently produce fitness measurements close to zero plus or minus some error common to the
mutants in the sample. The hierarchical structure on § estimates this error from the mutants in
sample. We default to the Inverse Gamma distribution for its conjugacy properties.

We constrain #i.1 to be negative by the assumptions of transposon sequencing®. We give y;
prior distribution N(—3, 1). The mean of the prior is fixed at a negative real to prevent degenerate
label switching with the first mixture. We choose —3 because it represents a moderate change in
fitness.® The choice of —3 specifically as compared to any other reasonably small negative real is
unimportant due to the choice of the uninformative scale prior A, which has a prior distribution that
is uniform across all positive real numbers. The uninformative prior allows A to become arbitrarily
large as the data demands.® The data dominates the value of 2 in this the model and reflects our lack
of prior information of the true distribution of the fitness measurements. We model Aas a
hierarchical parameter to prevent outliers from overly affecting u;, estimates and to increase
sensitivity to departures from zero. Although A's prior is not a proper distribution, the joint
distribution of u; ; and 4 is proportional to an inverse gamma distribution, which ensures that the
integral of the posterior distribution is finite.®

We give 6; a beta prior with symmetric uniform hyper-priors for its flexibility over the [0,1]
interval as well as by the methods of Disselkoen 2016.1° The hierarchical structure on theta resists
outliers and prevents overfitting on single mutants.

We give o; a Cauchy(0,5) prior. The prior is weakly informative by allowing for large values
in the heavy tails of the distribution. This reflects our weak confidence that most variances should
be reasonably small with a few exceptions. We select the Cauchy distribution by recommendation
of Gelman 2006.°
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2.3.4. Data partitioning for the Bayesian model

Markov Chain Monte Carlo sampling methods are computationally intensive for large data sets and
sensitive to the true parameter diversity of the data. Therefore, we propose fitting the Bayesian
model separately on partitions of the data that maximize within-partition similarity. Partitioning the
data speeds sampling and makes the computations easily parallelizable. To maximize the similarity
of genes within the partitions, we use the k-means clustering algorithm on the normalized log-fitness
vectors of the genes. This clustering is equivalent to clustering the gene insertions by angular
distance or correlation of their fitness measurement vectors.'! For computational considerations in
our simulation scenarios, we currently set the number of clusters such that there are on average 20
genes per partition.

2.4. Simulation

To evaluate the performance of our classifier, we simulate sets of insertions and fitness
measurements under a fixed number of experiments. We simulate different scenarios where we vary
the proportion of insertions that affect fitness under any experimental conditions. In this study we
simulate cases where 0%, 25%, 50%, 75%, and 100% of insertions affect fitness. Simulating these
distinct scenarios is important because the hierarchical Bayesian model estimates parameters of
individual insertions from a parameter distribution estimated over the entire data set. For each
scenario, we simulate 100 separate sets of 100 gene insertions to test the performance of the three

methods. We note that the Bayesian model is fit separately on each of these sets of 100.

We adopt the following algorithm for simulating bacterial counts and fitness measurements.
First, across all gene insertions in a set we define a probability  that a gene insertion affects fitness
under any experimental conditions. We then proceed through the following steps to draw the mutant
counts.

For each gene insertion i:

e Draw parameter T from gamma distribution gamma(&, ), in which @& and /8 are the gamma
parameter maximum likelihood estimates from the experimental control counts of E.coli mutants
provided by Price 2018.1 This distribution is not significantly different from the empirical
control count distribution by the Kolmogorov-Smirnov test (p > .3).

e Draw the simulated control count from poisson(t). Denote poisson(t) as the neutral
distribution.

e Choose a fitness factor, F from uniform(.15,.95). We denote poisson(t * F) as the affected
distribution.

e With probability §, draw 6 from uniform(.3,.95). Else set 8 to be 1. 6 is the probability that
an experiment does not affect mutant fitness.

e For every experiment, draw a count from the control distribution with probability 0. Otherwise
draw a count from the deleterious distribution.

Pre-fixed simulation distribution parameters were chosen to account for all reasonable biological

possibilities. Uniform distributions were chosen by the maximum entropy principle to reflect our
uncertainty surrounding the true distribution of real data sets.*? The fitness measurements and t-
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statistics for each experiment can be calculated for each gene insertion using the control count and
Eq. (5) and (6).

2.5. Real data

We apply our methods to Escherichia coli BW25113 TnSeq data provided by Price 2018.1 They
examine the fitness of E.coli mutants produced by 3789 distinct gene insertions. They subjected
mutants to 162 experimental conditions. We apply the EM and Bayesian classifiers to the provided
3789 x 162 matrix of fitness measurements. We use the t-statistic classification results provided by
Price 2018.

3. Results

We evaluate the following performance metrics for each of the classification methods. We use the
mean of the posterior distribution draws of the Gaussian mixture parameters to define the Bayesian
model.® We use the following metrics to evaluate the performance of the classifiers.

3.1. Metrics

Define the true label for fitness measurement E; ; as [; ;, taking value O if E; ; is the result of a neutral
experiment and value 1 if E; ; is the result of a deleterious experiment. Let the predicted label for
E;jbel,,. Similarly [, is O if the classifier labels the fitness measurement as a neutral result and
1 if the classifier labels the measurements as a deleterious result.

3.1.1. Classification rate

The classification rate is the raw percentage of experiments that the model classifies correctly.
Therefore the Classification Rate for the ith insertion would be:

_ E;n:l I{Ii.j =l,;}
m 0

where I{li,- =) is an indicator function that takes value one if [; ; = l/l\] and zero otherwise.

CR,

3.1.2. False positive rate

The false positive rate is the Type I error. It is the percentage of neutral experiments that the model
incorrectly classifies as deleterious. In ideal scenarios, this value should be low. The False Positive
Rate for the ith mutant is therefore:

Em I~ A
Jj=1 {Il.j =1 " Ij =0}

FPE - m
Ej=1 I{Ei.j =0} (8)

where I~ _; ~;, . =9y Is an indicator function that takes value one if ll/]\ =1land[;; = 0.
L L 5 !
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3.1.3. Positive classification rate

The positive classification rate is the percentage of deleterious experiments that the model correctly
classifies as deleterious. In ideal scenarios, this value should be high. The positive classification rate
for the ith insertion is therefore:

P, = Eﬁl"{ﬁ?jﬂ Ay j =1}

E:filf{ifi.j =1} (9)

where L =1 g5 =15 is an indicator function that takes value one if l’l; =land[;; = 1.
Otherwise the function takes value 0.

3.1.4. Cross entropy

We measure the accuracy of our probabilistic estimates using cross-entropy. The cross entropy for
the classification of the ith insertion is defined as:

CE; = _Z [, log(a;;) + (1 — I, log(1 — a; ;)
i-1 (10)

Cross entropy is a common loss function for evaluating classifiers that produce probability
estimates ranging from 0 to 1. The greater the difference between the true and model classifications,
the higher the cross entropy will be. For example, if the true label is 1 and a; ; is 0, then the classifier
performs badly and the cross entropy will be high. However, a better probability estimate of .49 will
correspond to a lower cross entropy value.

3.2. Simulation Results

We simulate the scenarios in which 0%, 25%, 50%, 75%, and 100% of gene insertions are affected
by experimental conditions. For each scenario, we simulate one hundred sets of one hundred
insertions. On each set, we separately fit the Bayesian model on a single Markov chain with 1000
warm-up iterations and 1000 sampling iterations. We take the posterior means of the Gaussian
mixture parameters to define our Bayesian classification model.

The simulation results demonstrate that the three methods provide identical classifications for
64% of the 50,000 simulated genes. These classifications produced models with over a 98%
classification rate. This is expected as the simulated fitness values for many gene insertions are
either obviously unimodal or clearly clustered into two groups. In an additional 10% of cases, all
the classifiers achieved at least a 90% classification rate. Thus, the entire simulation population does
not tell us much about the relative performance of the classifiers on difficult classification problems.

We proceed to examine only the 26% of the cases where the t-statistic, EM algorithm, and
Bayesian classifier do not provide identical classifications and at least one of the classifiers fails to
achieve an 90% classification rate. We call this the difficult subset.

We see in Figure 1 and Table 1, Column 3 that the t-statistic performs relatively well when the
proportion of affected mutants is small (0%, 25%). For higher proportions, we see that the t-
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statistic's performance deteriorates in the second and third classification quantiles relative to the
other methods. On the other hand, the EM algorithm performs well when the proportion of affected
mutants is large (75%, 100%). The EM algorithm suffers in performance for the first and second
and third quantiles, especially for lower proportion (0%, 25%, 50%). Only the Bayesian model
demonstrates consistent behavior across proportions and quantiles, outperforming both the other
methods except when the proportion of affected mutants is 0%.

We see from the positive classification rate in Figure 1 and Column 4 in Table 1 that the t-statistic
is by far the least sensitive to changes in fitness and therefore has the lowest positive classification
rate. The Bayesian algorithm provides a vast improvement on the positive classification rate. But
the EM algorithm overall provides the most sensitive classification results, especially true at lower
proportions. The EM algorithm achieves this sensitivity by incurring higher false positive rates. The
Bayesian algorithm does not suffer from as high false positive rates. The t-statistic expectedly
maintains the lowest false positive rate. Therefore, we see that the Bayesian algorithm achieves
higher and consistent classification by compromising between sensitivity of the EM algorithm and
the conservatism of the t-statistic.

Rate Performance Metrics

Classification False Positive Positive
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Fig. 1. Cumulative distributions of classification, false positive and positive classification rates on the
difficult subset of simulated gene insertions. Columns indicate the metric displayed, and rows indicate the
proportion of mutants affected in each mutant set.

Table 1. Mean Classification Rate, Positive Classification Rate, False Positive Rate and Cross Entropy for Classifiers

2. % Affected 3. Mean CR 4, Mean PCR 5. Mean FPR 6. Mean CE
Bayesian 0 .90 NA .08 65.13

25 75 .57 .07 242.27

50 12 .60 .06 279.49

75 73 .61 .05 301.30

100 73 .64 .05 288.97
EM 0 40 NA .33 305.95

25 .58 .65 .20 313.95

50 .63 .64 14 320.05
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75 .66 .63 .10 334.89
100 .68 .63 .09 334.79
T 0 .95 NA .05 171.68
25 72 22 .03 267.99
50 .62 21 .02 308.60
75 .59 22 .02 339.06
100 57 21 .02 343.20

From Figure 2 and Column 6 in Table 1, we see that the Bayesian and EM method produce
smaller cross entropy losses for most classifications compared to the t-statistic. However, we also
see that the Bayesian and EM methods have fatter tails, indicating a significant subset of cases where
the two methods provide poor probability estimates. From Table 1 Column 6, we see that from an
entropy standpoint, the Bayesian algorithm outperforms the EM algorithm and t-statistic on average
in every scenario. Therefore, we can see that the Bayesian algorithm provides accurate probabilistic
estimates more consistently.
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Fig. 2. Cumulative distribution of Cross Entropy Distributions. Cross entropy values near zero indicate
accurate probability estimates of classification confidence.

3.3. Comparisons on real data

We apply the EM and Bayesian methods to the fitness measurements from the real E.coli data (see
section 2.5 for details). For the t-statistic, we use the classifications produced by the work of Price
2018, The t-statistic is by far the most conservative, identifying 496 genes as important to some
examined bacterial function. The EM algorithm identifies 1322 genes and the Bayesian method
identifies 1786 genes. Of the 496 genes identified by the t-statistic, the EM algorithm shares 137
identifications. The Bayesian algorithm shares 455 gene identifications with the t-statistic. In Figure
3 we present three examples where each of the three classifiers fails to identify a gene’s function
where the other two are successful.

The mutant from the insertion into gene b0002 is an instance where the t-statistic does not
identify a gene where the Bayesian model and EM algorithm do. The EM algorithm and Bayesian
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model provide the same classifications for b0002, while we see that the t-statistic fails to identify
any changes in fitness. This failure of the t-statistic behavior can be attributed to the clear existence
of two separate mixture components with separate variances. The t-statistic calculates the variance
from both mixtures and therefore underestimate significance.

We next give an example where the EM algorithm does not identify a gene (b0008) that the t-
statistic and Bayesian model identify. In this case in Figure 3, we see that the BIC does not detect
the presence of two mixtures and our implementation of the EM algorithm and therefore assumes
no changes in fitness. We have considered changing the BIC threshold for two-mixture selection,
but any changes resulted in much worse simulation results.

Now we examine the insertion on b1198. This insertion belongs to the 16 cases where the
Bayesian algorithm does not identify a gene that the EM algorithm and t-statistic both identify as
important to some function. In each of these cases the EM algorithm and t-statistic identify a positive
fitness change from a gene insertion. This is improbable, as a gene deletion should not increase
fitness. The Bayesian model's priors explicitly prevent this classification result.

Classification Examples

Bayesian EM

20009

a- A L _.‘.....Jl.

Classification
Affected
I unattected

Count
200

2611

6420 28420284202
Fitness

Fig. 3. Classifications for mutants produced by insertions into genes b0002, b0008, and b1198. Bars
represent counts of fitness measures under various experimental conditions.

3.4. Software

R scripts for the implementation of the classification methods can be found at:
http://www.nathantintle.com/supplemental /TnSeqRFunctions.R

4. Discussion

We have presented a two-component Gaussian mixture framework for classifying experimental
effects on mutant fitness. This framework provides an alternative to the current frequentist
framework. We have shown how the frequentist approach produces conservative estimates due to
its estimation of a large variance encompassing all of mutant's fitness values despite the existence
of two smaller distributions. The mixture framework addresses this problem by estimating the
smaller variances of two smaller components.

Furthermore, simulations demonstrate that the Bayesian classifier generally outperforms the EM
algorithm. By incorporating reasonable priors and exploiting a hierarchical structure, the Bayesian
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model leverages inter-gene information to provide a compromise between the sensitivity of the EM
algorithm and the conservatism of the t-statistic. The Bayesian model's performance is also nearly
invariant under the proportion of mutants affected. Given high uncertainty about the genes studied,
the Bayesian model should be the model of choice for classification.

On the real E.coli data, we see that the Bayesian classifier is able to identify all the genes with
negative fitness changes that the t-statistic identifies. The Bayesian classifier demonstrates
significantly more sensitivity to fitness changes while maintaining consistency with the t-statistic.
This behavior is distinct from the EM algorithm, which has significantly different identifications
and seems to be insensitive to lower mixing probabilities. Still, both mixture classifiers are able to
identify multi-functional genes at a much higher rate than the t-statistic.

Despite the promise of the methods proposed, further work is necessary to validate our approach
on additional datasets for which true fitness changes are known. We note that while the performance
of the Bayesian classifier is generally better than the EM algorithm, the computational time of the
Bayesian classifier may be prohibitive in some cases (e.g., it takes 30.8 hours with 5 cores to fit the
E.coli 3789 x 162 fitness measurement matrix). Further work will seek to enhance the computational
time of the Bayesian classifier, though we acknowledge that it may never be as ‘instantaneous’ as
the EM algorithm or t-statistic approaches.

The success of the Bayesian classifier encourages further expansion of the hierarchical model
structure. Hyper-prior distributions can be defined to account for multiple strains per mutant or
even genes across bacteria. Covariance priors can be added to leverage co-fitness information? to
make more robust classifications. Further development of the hierarchical structure will allow rich
probabilistic models of gene function and fitness. In the meantime, we suggest use of the proposed
Bayesian classifier to improve classification accuracy of changes in mutant fitness.
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SNPs2ChIP: Latent Factors of ChIP-seq to infer functions of non-coding SNPs
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Genetic variations of the human genome are linked to many disease phenotypes. While
whole-genome sequencing and genome-wide association studies (GWAS) have uncovered a
number of genotype-phenotype associations, their functional interpretation remains chal-
lenging given most single nucleotide polymorphisms (SNPs) fall into the non-coding region
of the genome. Advances in chromatin immunoprecipitation sequencing (ChIP-seq) have
made large-scale repositories of epigenetic data available, allowing investigation of coordi-
nated mechanisms of epigenetic markers and transcriptional regulation and their influence
on biological functions. To address this, we propose SNPs2ChIP, a method to infer bio-
logical functions of non-coding variants through unsupervised statistical learning methods
applied to publicly-available epigenetic datasets. We systematically characterized latent fac-
tors by applying singular value decomposition to 652 ChIP-seq tracks of lymphoblastoid cell
lines, and annotated the biological function of each latent factor using the genomic region
enrichment analysis tool. Using these annotated latent factors as reference, we developed
SNPs2ChIP, a pipeline that takes genomic region(s) as an input, identifies the relevant latent
factors with quantitative scores, and returns them along with their inferred functions. As
a case study, we focused on systemic lupus erythematosus and demonstrated our method’s
ability to infer relevant biological functions. We systematically applied SNPs2ChIP on pub-
licly available datasets, including known GWAS associations from the GWAS catalogue and
ChIP-seq peaks from a previously published study. Our approach to leverage latent patterns
across genome-wide epigenetic datasets to infer the biological functions will advance under-
standing of the genetics of human diseases by accelerating the interpretation of non-coding
genomes.

Keywords: non-coding genome; functional interpretation; epigenome; latent factor discovery;
biomedical ontology; enrichment analysis; large-scale inference; data integration

1. Introduction

Genome-wide association studies (GWAS) have successfully identified many associations be-
tween genetic variants and human diseases.’? However, functional interpretation of these as-
sociations remains challenging as most GWAS hits fall into non-coding regions of the genome.?
Advancements in high-throughput genome-wide molecular profiling methods, such as ChIP-
seq, enable molecular characterization of gene regulatory landscapes, such as histone modifica-
tion and transcription factor (TF) binding profiles.? Leveraging growing biomedical ontologies,
such as the gene ontology (GO), human phenotype ontology (HPO), and Mouse Genome Infor-

(© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.
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matics (MGI) phenotype ontology, tools based on statistical enrichment analysis on genomic
regions, such as the genomic region enrichment analysis tool (GREAT), have been used to
investigate the function of the non-coding genome.’ ¥ Further, collaborative research efforts,
such as ENCODE, the Roadmap Epigenomics project, and Genotype-Tissue Expression pro-
gram (GTEx), have also systematically generated data-rich molecular catalogues.!%12 These
large-scale epigenomic profiles, as well as other publicly available datasets on the NCBI se-
quence read archive, are integrated into epigenetic data resources, such as ChIP-Atlas and
ReMap, which provides an emerging opportunity for data mining and meta-analysis.!3

Advancements in epigenetic analysis suggest that latent patterns in epigenomic regula-
tory profiles can be discovered and characterized for downstream analyses. For example, one
TF can bind to numerous genomic loci with specific sequence features and multiple TF's
can work together by forming dimers, executing coordinated transcriptional regulatory pro-
grams.' Moreover, it is known that many TFs have multiple functions through precise co-
ordination in different contexts, that there are known interactions between histone modifica-
tions and TF occupancy, and that histone modifications and TF occupancy influence gene
expression.!? 1215 With these phenomena in mind, there has been works in harnessing these
patterns for functional interpretation of non-coding genomes. ChromHMM and Segway, unsu-
pervised statistical learning methods, successfully summarizes patterns of epigenetic profiles
as interpretable annotations,'®!” while eQTL studies examines non-coding variants in light of
molecular phenotype, such as expression levels of neighboring genes.!? While these approaches
show some success in utilizing neighboring epigenomic signals to explore molecular interpre-
tation of non-coding genomes, they are limited in leveraging genome-wide patterns of both
histone modification and TF occupancy across different functional contexts. In principle, one
can extend these analyses by leveraging all experimentally collected epigenomic profiles and
characterizing latent patterns for functional interpretation of non-coding genomic regions on
a genome-wide scale.

Here we present SNPs2ChIP, a novel method to infer function of non-coding variants by (1)
characterizing latent patterns in epigenomic regulatory profiles using an unsupervised latent
factor discovery algorithm applied to 652 ChIP-seq tracks in the ChIP-Atlas dataset, (2) infer-
ring the biological functions of the identified latent factors using GREAT enrichment analysis,
and (3) development of a pipeline that takes genomic loci as input and infers functionality of
the loci by identifying relevant latent factors using a quantitative score. Our computational
approach contributes to dissecting the genetic architecture of human diseases by accelerating
functional interpretation of non-coding variants.

2. Results
2.1. SNPs2ChIP analysis framework overview

We developed a method, SNPs2ChIP, to infer functions of non-coding loci that consists of two
computational steps: (A) construction of reference ChIP-maps and (B) using the reference
ChIP-maps to infer biological functions for user queries. To briefly summarize the first part of
our method, we collected chromatin-profiling data from ChIP-Atlas, one of the largest publicly-
available databases of ChIP-seq signals with manually curated metadata,'® and featurized the
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Fig. 1. SNPs2ChIP method overview. (A) Construction of SNPs2ChIP reference dataset. ChIP-seq
peaks of 652 assays are aggregated into a feature matrix, ChIP-map, followed by batch normalization
with surrogate variable analysis (SVA). Latent factors are characterized with singular value decompo-
sition (SVD) and their biological functions are inferred with the genomic region enrichment analysis
tool (GREAT). (B) SNPs2ChIP pipeline. Using the pre-computed reference, SNPs2ChIP identifies
the most relevant latent factors and returns them with their annotated biological functions.

ChIP-seq peaks across TFs and histone marks into a matrix, called a “ChIP-map.” To balance
the trade-off in specificity of the functional prediction and the genomic coverage of the ChIP-
map, we prepared two matrices for high-specificity and high-coverage analysis, by varying the
stringency of the featurization methods. After featurization, we applied batch normalization
with surrogate variable analysis (SVA) and singular value decomposition (SVD) in each map,
resulting latent factors preserving a linear structure optimal for interpretation..!® This was
followed by applying GREAT to find the biological functions enriched in each latent factor
(Fig. ).9 With latent factors and enriched functions as pre-computed reference, we developed
a pipeline that takes a loci as input and returns a list of relevant latent factors as well as their
enriched function. A query can be one or multiple genomic loci: GWAS SNPs, ChIP-seq peaks,
or genomic coordinates of interest (Fig. [IB).

2.2. Batch normalization of heterogeneous epigenetic features

We focused on 652 lymphoblastoid cell line experiments, the most numerous cell line in the
ChIP-Atlas database, and downloaded all non-empty ChIP-seq peak files. We divided the
entire genome into genomic bins of 1 kbp in size and placed ChIP-seq peaks, represented by
the strength of the peak, into the bins. This was done across 652 tracks, which created a
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Fig. 2. Batch normalization of ChIP-map with SVA.

ChIP-map matrix. After removing genomic bins that did not contain any peaks, we found
379,541 (covering 12.1% of genome) genomic bins and 662,024 (21.1%) genomic bins for the
high-specificity dataset and high-coverage dataset, respectively (Methods).

To normalize batch effects in each ChIP-map, we applied the SVA algorithm, a normal-
ization method useful when technical covariates are not known or have missing entries.'® Out
of 39 significant surrogate variables (SVs) identified from SVA, we found that three SVs were
significantly associated (p-value < 1.0 x 1073°, linear regression) with antibody - a biological
effect necessary to protect. The first SV captured variation attributed mainly to H3K4mel and
H3K4me3; the second SV captured variation for H3K27ac and H3K4me3; and the third SV
captured variation for CTCF, H3K4me3 and SA1. Note that the variation from one sub-group
of a given covariate can be split across multiple SVs, as is the case with H3K4me3.

We assessed the effect of the removing these SVs when regressing out SVs from ChIP-
map and compared with results of keeping all SVs in the regression. We implemented the
regression using a QR decomposition, enabling an efficient, high-dimensional multivariate
multiple regression. When removing SVs significantly associated with antibody, clear clusters
were preserved in the corrected data reflective of antibody, but not for technical effects such as
ancestry (Fig. —B). Conversely, when we including all SVs in the regression, no clusters were
observed for antibody, indicating an over-correction of data, i.e. removal of biological signal
of interest (Fig. ) Therefore, using a combination of SVA, linear regression and clustering,
we were able to preserve biologically important variation while removing unwanted technical
variation.

2.3. Latent factor discovery and their biological characterization

To find interpretable latent factors in an unbiased manner, we applied an unsupervised statis-
tical learning algorithm, SVD, to the batch normalized ChIP-map. Using the high-specificity
dataset, we found that the first three latent factors explain 8.2%, 6.0%, and 4.6 % of the
variance, respectively, and that the top 50 and 100 factors comprehensively explain 59 % and
72.5% of the variance, respectively. For the high-coverage dataset, we found the first three
latent factors explain 14.0 %, 10.7%, and 5.7 % of the variance, respectively, and that the top
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50 and 100 factors comprehensively explain 72.6 % and 82.6 % of the variance, respectively.

To characterize the biological functions of each latent factor, we identified the top 5,000
genomic bins ranked using the genomic bin contribution score derived from decomposed matri-
ces by SVD (Methods - Eq. (I)). We applied GREAT enrichment analysis for the top genomic
bins in each latent factor and identified enriched functional terms using three ontologies: GO,
HPO, and MGI phenotype ontology.>*

2.4. SNPs2ChIP identifies relevant functions of the non-coding genome

To illustrate the utility of SNPs2ChIP to infer the function of non-coding genome, we applied
the pipeline to known GWAS SNPs and ChIP-seq peaks from previously published datasets.
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Fig. 3. Genome-wide coverage of the two reference datasets of SNPs2ChIP. For each phenotype in

(A) High Specificity

(B) High Coverage

the GWAS catalog, we queried SNPs2ChIP and summarized what percentage of the SNPs can be
mapped to the latent factors for the (A) high specificity dataset and (B) high coverage dataset.

2.4.1. Genome-wide SNPs coverage of the reference datasets

Given that our reference datasets do not contain empty genomic bins, thus excluding parts
of the genome, we first evaluated the coverage of our reference dataset by applying the
SNPs2ChIP pipeline to all previously reported SNPs from the GWAS catalogue.! We ap-
plied the pipeline for each disease/trait and summarized the number and percentage of SNPs
covered by our reference datasets. Out of the 51,892 known non-intergenic GWAS SNPs we
tested, we found our high-specificity and high-coverage datasets covers 9,241 (17.8%) and
14,636 (28.2%) of SNPs (Fig. [3)).

2.4.2. Non-coding GWAS SNPs of systemic lupus erythematosus

To illustrate the utility of our approach to infer biological functions associated with non-
coding GWAS SNPs of diseases, we performed a case-study on systemic lupus erythematosus
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Fig. 4. SNPs2ChIP identifies the relevant biological functions given GWAS hits for systemic lupus
erythematosus. GREAT binomial FDR and binomial fold for HPO ontology are shown.

(SLE). SLE is an autoimmune disorder with a prevalence of 0.1% and a poorly characterized
genetic and epigenetic basis.'® Out of 425 GWAS SNPs associated with SLE, 110 and 158
SNPs are covered in the high-specificity and high-coverage reference dataset, respectively.
Applying the pipeline to the SNPs covered by high-specificity dataset, the top latent factor
identified explained 10.7% of the variance in the epigenetic landscape and was enriched for
multiple biological concepts associated with SLE. Using HPO as the reference ontology, we
found human phenotypes, such as “Abnormality of cells of the lymphoid lineage” (HP:0012140,
binomial FDR = 2.7x107%), “Lymphopenia” (HP:0001888, FDR = 2.8 x10~%), and “Hemolytic
anemia” (HP:0001878, FDR = 2.9x10~%), which are all known phenotypes for SLE (Fig. [4)).20:2!

2.4.3. ChIP-seq peaks for vitamin D receptors

To further test the applicability of SNPs2ChIP, we applied the pipeline to ChIP-seq peaks
assosciated with vitamin D receptors (VDR) as an example. Vitamin D is known to participate
in transcriptional regulation through VDRs and regulates calcium homeostatic functions.?? Its
deficiency has been implied in multiple phenotypes, including increased risk of fracture, muscle
weakness, and skeletal mineralization defect.?3

Using the ChIP-seq peaks highlighted in a previously published study,?* we applied
SNPs2ChIP and identified relevant phenotypes, such as “Parietal foramina” (HP:0002697,
FDR = 1.3 x 107%) and “Flat forehead” (HP:0004425, FDR = 2.3 x 1073).
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Fig. 5. Robustness analysis in the latent factor identification. By using all SNPs associated with
SLE, we found the top 5 relevant latent factors (Methods, Eq. ) Tterating through each SNP, we
plot the cumulative frequency of identifying each of the top 5 latent factors within the rank specified
for (A) all latent factors and (B) top 10 ranks. The dashed black line indicates the cumulative
frequency under the random null model.

2.5. Robustness Analysis in the latent factor identification

In the SNPs2ChIP pipeline, the identification of the relevant latent factor given a user query
is a critical step. To assess the robustness, we applied the pipeline on all of the SLE associated
SNPs with the high-specificity dataset and found the top 5 latent factors enriched across
the group (Methods, Eq. ) We then applied our pipeline on each SNP independently and
identified the relevant latent factors for each single SNP (Methods, Eq. (2))). We recorded the
number of SNPs that successfully mapped to each of the top 5 latent factors within the top
n ranks and reported the results as a cumulative distribution (Fig. [3]).

3. Discussion

In this study, we propose a new method, SNPs2ChIP, to infer the function of genomic loci in the
non-coding genome by leveraging latent patterns in publicly available ChIP-seq data tracks.
Using latent factors characterized by SVD and annotating them with biomedical ontologies,
we developed a pipeline that allows us to take genomic regions as input and return relevant
latent factors with their enriched biological functions. We applied our method to GWAS SNPs
and found that SNPs2ChIP can identify relevant biological functions associated with disease,
demonstrating the utility of the genome-wide epigenomic latent factors in interpretation of
non-coding SNPs. In addition, we demonstrated the applicability of our method for vitamin
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D receptor ChIP-seq peaks, illustrating the utility of our approach for a diverse set of queries.

Further, as shown in our robustness analysis, SNPs2ChIP has an ability to identify relevant
latent factors and functions even from a single SNP. This is a major advantage of SNPs2ChIP:
it requires a minimal amount of input, one genomic coordinate, to infer biological function as
it leverages latent patterns in the epigenome from across the whole genome.

As we rely on existing ChIP-seq data and we focused on lymphoblastoid cell lines, our
reference dataset has limited coverage of the genome, which is 12.1% and 21.1% for our
high-specificity and high-coverage datasets, respectively. While they still provide a GWAS set
coverage of 17.8% and 28.2%, a further expansion of the reference dataset may expand the
applicability of the methods.

The resources made available with this study, including the SNPs2ChIP pipeline as well
the processed datasets, can provide a starting point to infer the biological functions of non-
coding genomes. Combined with the expansion of large-scale epigenomic datasets,'34
results highlight the utility of latent factor analysis in interpreting the non-coding genome.

our

4. Methods
4.1. Featurization of the heterogeneous epigenetic assays

From the ChIP-Atlas database, we downloaded all available ChIP-seq peak files with FDR
corrected g-value threshold of 1.0 x 10~ for lymphoblastoid cell lines.'® Out of the 682 BED
files we obtained from the database, we found that 652 were non-empty and used these for
our analysis. To featurize the data, we defined genomic bins of size 1kbp across all autosomes
and saved them as a custom, genomic bin BED file. For the high-specificity dataset, we kept
the top 25,000 statistically significant peaks for each of the 652 BED files, to minimize the
confounders due to experimental design, and intersected each of them with the genomic bin
BED file using BEDTools.?> For the high-coverage dataset, we used all of the peaks in the
BED files and intersected these with the genomic bin BED file. For each pair of genomic bin
and ChIP-seq assay from the BED intersection, we aggregated the negative log ¢-values into
a matrix and removed the genomic bins with no peaks. We generated two ChIP-maps, our
feature matrices, for both the high-specificity and high-coverage datasets.

4.2. Batch normalization by surrogate variable analysis

We applied the SVA algorithm to the centered, scaled, and log-transformed input ChIP-
map to eliminate technical effects which may obscure biological variation.'® SVA identifies,
in an unsupervised manner, batches of variation across rows and columns of the input data
matrix that appear at a frequency greater than expected by chance; each of these batches is
represented as a single surrogate variable. We observed that the metadata for the samples had
a high rate of missingness; therefore, we devised a novel two-step approach for the removal of
technical effects and the protection of biological effects of interest. In the first step, we found
statistically significant associations between SVs and known covariates for the set of samples
with non-missing metadata using linear regression, where highly significant p-values indicate
strong correlations between SV and covariates. As a result, we assigned labels to SVs based on
the likely biological or technical variation captured by each SV. In the second step, we removed
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the SVs associated with biological effects of interest, and regressed out the remainder from
the input data matrix. We investigated the quality of SVs and the preservation of biological
signal through manual inspection of principal component analysis plots.

4.3. Latent factor discovery with singular value decomposition (SVD)

We applied SVD for our SVA normalized matrix. The normalized matrix, which we denote as
W, is of size N x M, where N and M denote the number of ChIP-seq tracks and genomic bins,
respectively. We obtained the matrix decomposition, W = UDVT, where U = (u;z);x 1S an
orthonormal matrix of size N x K whose columns are left (ChIP-seq track) singular vectors,
D is a diagonal matrix of size K x K whose elements are singular values, and V = (v;x);x 18
an orthonormal matrix of size M x K whose columns are right (genomic bin) singular vectors.
While singular values in D represent the magnitude of the latent factors, singular vectors in
U and V summarize the strength of association between latent factors and ChIP-seq tracks,
and latent factors and genomic bins, respectively.

4.3.1. Quantification of strength of associations between latent factor and genomic bins

To quantify the strength of associations between latent factor and genomic bins, we define
several quantitative scores built on the linear structures of latent factors.?52” We first define
the factor score matrix for genomic bins as G = V D. Mathematically, the factor score
matrix is equivalent to the matrix consisting of principal component vectors.?® Each element of
this matrix, which we call the genomic bin factor score and denote as g, x, is the projection
of the j-th column vector in the input matrix W of length N, which represents the epigenetic
landscape of j-th genomic bin across samples, to the k-th latent factor (principal component).26

To quantify the relative importance of a genomic bin for a given latent factor, we define
the genomic bin contribution score for k-th latent factor by squaring the genomic bin
factor scores for k-th factor and normalizing it across latent factors, i.e.

entrp™ (5) = (vjx)? (1)
The sum of genomic bin contribution scores across genomic bins is guaranteed to be one, i.e.
> cntrP™(§) = 1, because V is an orthonormal matrix. One can interpret the score as the
percent-importance of a genomic bin for the factor.?6:27

Similarly, to quantify the relative importance of a latent factor for a given genomic bin,
we define the genomic bin squared cosine score for j-th genomic bin as follows:

2
2bin (95.k)
cos”; (k) = =" (2)
’ >k (gjk)?
The sum of genomic bin squared cosine scores across latent factors is guaranteed to be one,

ie. >, cos?bin(k) = 1, because of the demoninator in Eq. . One can interpret the score as

the relative importance of latent factors for a particular genomic bin.

4.3.2. Quantification of strength of associations between latent factor and samples

We also define the same set of scores to quantify the strength of associations between latent
factors and samples. We first define the factor score matrix for samples as S = UD =
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(sik)ik- To quantify the relative importance of samples to latent factors and latent factors to
samples, we define the sample contribution score and the sample squared cosine scores
as follows:

sample

cntr} (i) = (ui,k>2; C082§ample<k) (Si,k)2 (3)

i = (.2

>k (Si)

With these scoring systems we can effectively quantify the associations among latent factors,
genomic bins, and samples.

4.4. GREAT analysis for biological characterization of latent factor

To characterize the functions of latent factors, we applied GREAT version 3.0.0 to each latent
factor.” Using ontology-based gene annotations as a reference, GREAT takes a set of genomic
regions as an input and reports enriched ontology terms. In our analysis, we focused on
gene ontology (GO), human phenotype ontology (HPO), and Mouse Genome Informatics
(MGI) phenotype ontology.5® For each latent factor, we created the query files for GREAT
by selecting the top 5,000 genomic bins ranked by genomic bin contribution score (Eq. )
and applied GREAT for these queries using default parameters.??” Given our interest to
characterize the putative functions of non-coding genomes, we focused on the GREAT binomial
test and collected summary statistics, such as binomial p-value, binomial FDR, and binomial
fold change. We sorted the functional terms outputted by GREAT using binomial FDR and
identified the ontology terms that most characterize the function of each latent factor.

4.5. Application of the SNPs2ChIP pipeline for GWAS hits and ChIP-seq
peaks

The SNPs2ChIP pipeline consists of three steps: (1) identification of the genomic bins given
a user query, (2) identification of the relevant latent factors for the genomic bins, and (3)
reporting the results of GREAT enrichment for the relevant latent factors.

4.5.1. Identification of the genomic bin for a given user’s query

SNPs2ChIP takes genomic coordinates as an input. For GWAS SNPs and ChIP-seq peaks,
one first needs to obtain their genomic coordinates. These coordinates are then mapped to
the corresponding genomic bins, if they contain a ChIP-seq peak.

4.5.2. Identification of the relevant latent factor for the genomic bins

We identify the relevant latent factors for a given genomic bin by genomic bin squared co-
sine score (Eq. ) We can identify the relevant latent factors for multiple genomic bins,
which typically corresponds to multiple inputs, by taking a weighted average of genomic bin
squared cosine scores. Let’s denote J = {ji,...,jm} be the set of genomic bins of interest and
{w1,...,wy} be the corresponding weights. We defined the weighted average of genomic bin
squared cosine score as follows:

b
2bin > jes wj - cos? (k)
cos”; (k)=
ZjEJ Wj

(4)
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We set the default value of weights to be uniform, i.e. {w1,...,w,} ={1/m,...,1/m} but the
user can specify a set of weights based on external knowledge, such as statistical significance
and effect size estimates from GWAS. Once we identify the relevant latent factors, we report
the results of GREAT enrichment analysis to the users.

4.5.3. Systematic application of SNPs2ChIP for known GWAS hits

We downloaded the GWAS Catalog v1.0 from the European Bioinformatics Institute, contain-
ing 82,735 curated SNPs.! The catalog was subsequently filtered to exclude SNPs that were
classified as intergenic to focus on SNPs associated with transcriptional cis-regulation, result-
ing 51,892 SNPs. Individual SNPs were processed by the SNPs2ChIP pipeline to determine
their enriched phenotype. To validate the robustness of the method, SNPs were grouped by
disease and run to determine their combined, enriched phenotype. As the pipeline is designed
for high-throughput data analysis, querying thousands of SNPs was done in mere seconds.
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Extracting allelic read counts from 250,000 human sequencing runs in Sequence Read Archive
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The Sequence Read Archive (SRA) contains over one million publicly available sequencing runs from
various studies using a variety of sequencing library strategies. These data inherently contain information
about underlying genomic sequence variants which we exploit to extract allelic read counts on an
unprecedented scale. We reprocessed over 250,000 human sequencing runs (>1000 TB data worth of raw
sequence data) into a single unified dataset of allelic read counts for nearly 300,000 variants of biomedical
relevance curated by NCBI dbSNP, where germline variants were detected in a median of 912 sequencing
runs, and somatic variants were detected in a median of 4,876 sequencing runs, suggesting that this dataset
facilitates identification of sequencing runs that harbor variants of interest. Allelic read counts obtained using
a targeted alignment were very similar to read counts obtained from whole-genome alignment. Analyzing
allelic read count data for matched DNA and RNA samples from tumors, we find that RNA-seq can also
recover variants identified by Whole Exome Sequencing (WXS), suggesting that reprocessed allelic read
counts can support variant detection across different library strategies in SRA. This study provides a rich
database of known human variants across SRA samples that can support future meta-analyses of human
sequence variation.

Keywords: Big data, omic analysis, FAIR, variant, single cell
1. Introduction

The reduction of sequencing cost in recent years' has allowed researchers to progress from
sequencing and analyzing a single reference human genome to studying the individual genomes of
thousands of subjects®. The large number of sequencing studies being conducted, together with
journal publication requirements for authors to deposit raw sequencing runs in a centralized and
open access sequencing archive like Sequence Read Archive (SRA)* have made it possible to
perform large scale data analysis on the millions of publically-available sequencing runs.

The SRA contains raw sequencing runs from a variety of projects from large scale
consortium studies including Epigenome Roadmap®, ENCODE?, The 1000 Genomes Project?, to
small studies being conducted by various independent laboratories. However, the publicly available
raw sequencing data are large in size which translates into high storage and computational
requirements that hinder access for the broader research community. These requirements can be
somewhat mitigated by using preprocessed data such as gene expression matrices, ChIP-seq peak
files, or summarized variant information, as such files are much smaller in size. For example, the
1000 Genomes project, The Cancer Genome Atlas (TCGA)® and Genotype-Tissue Expression
project (GTEx)’ all offer summarized variant information extracted from the raw sequences in
Variant Call Format (VCF) files, containing allelic read counts for both reference and alternative
alleles and base quality information which could be used for variant calling.

There have been many efforts to reprocess raw sequencing reads to a more tractable form.
However, many of the SRA data reprocessing efforts®® have focused on quantifying gene expression
using public RNA-seq data deposited in the SRA. Sequencing data also capture information about
sequence variants, raising the possibility of studying patterns of genetic variation using the SRA.

+: corresponding author

© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and distributed under the terms of
the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.
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The possibility of extracting variants from RNA-seq was demonstrated on a small scale in a 2015
study'® where the authors extracted variants using the GATK RNA-seq variant calling pipeline on
5,499 RNA-seq runs in the SRA.

Variant calling typically requires multiple user-specified parameters such as a minimum
cut-off for total or read-specific coverage, and usually attempts to model sequencing error explicitly.
The primary information used in variant detection is the allelic fraction, the proportion of
sequencing reads that support the variant position. Read mapping is highly concordant between
alignment tools like bowtie'', bwa'?, novoalign', supporting the idea, at least for DNA and RNA
sequencing experiments, estimates of allelic fraction should be fairly consistent regardless of the
specific alignment tool. Using a conservative set of known genetic variants that are unlikely to be
the result of sequencing errors, simple filters on coverage or allelic fraction should be sufficient to
control error rates at acceptable levels. This would make it possible to collect and analyze known
variants across the SRA without applying more complex variant callers.

To explore this possibility, we constructed an allelic read count extraction pipeline to
systematically reprocess all available sequencing runs from the SRA. We first applied standard
quality filtering to the unaligned reads (see Methods) and then aligned the reads to a subset of the
human reference genome that covers 390,000 selected somatic and germline variants curated by the
NCBI dbSNP' using bowtie2''. To show that this targeted reference does not introduce unwanted
biases into the alignment step, we validated our pipeline performance against alignments performed
using whole reference genomes. We next used the TCGA sample-matched Whole Exome
Sequencing (WXS) and RNA-seq cohort to confirm that allelic read counts derived from RNA-seq
accurately recover variants detected by WXS. We then applied this pipeline to systematically extract
variants from over 250,000 sequencing runs in the SRA. Finally, we demonstrated that this allelic
read count resource can be used to investigate variants in RNA sequencing studies, even at the
single cell level.

2. Results

2.1.  Building a fast allelic fraction extraction pipeline for the SRA

o 600,000 As of the end of 2017 the SRA included data from
§ 500,000 10,642 human sequencing studies consisting of
2.2 400,000 697,366  publicly available sequencing runs,
2 VE) 300,000 encompassing various library strategigs such as
g é’ 200,000 RNA-seq, WXS, whole genome sequencing '(WGS),
E 100,000 and ChIP-seq (Methods) and this number continues to
* ’ - increase at a rapid pace (Fig. 1). All of the human

0@@0{\9@ @\Q(&\\@Q & Q’Q\v@\%@\b %Q(\ sequences deppsited in the database were derived from

samples carrying germline and somatic variants from

the corresponding biospecimen regardless of the

original study designs. This presents the opportunity to
perform meta-analysis of human genetic variation across studies in the SRA.

However, the complete SRA spans over 1,835 trillion bases, introducing both computational

and storage resource requirements that would hinder most researchers from conducting a

meta-analysis across many sequencing studies. Therefore, to enable efficient secondary analysis for

researchers with limited access to high performance computing (HPC) infrastructure, we sought to

Fig. 1. Number of human sequencing runs are
increasing exponentially in the SRA

197


https://paperpile.com/c/Vuzgmb/Iypu
https://paperpile.com/c/Vuzgmb/BMGD
https://paperpile.com/c/Vuzgmb/kvZw
https://paperpile.com/c/Vuzgmb/JMNW
https://paperpile.com/c/Vuzgmb/VG2t
https://paperpile.com/c/Vuzgmb/BMGD

Pacific Symposium on Biocomputing 2019

Table 1. Key characteristics of variants in targeted reference

Variant type
Property
All
Has 3D structure. SNP3D table

Resource link Cited by PMC article

property Cited in PubMed or
referenced in a clinical database
Substitution Non-synonymous missense
type synonymous
Non-synonymous frameshift
Nonsense mutation
Genotype Genotypes available, also on high density
properties Genotyping kit and have phenotype associations
present in dbGaP
Phenotype Submitted from a locus-specific database
properties _
Has OMIM/OMIA
Somatic (not germline) variant
referenced in selected variant databases
(OMIM, LSDB, TPA, or in NCBI curated as
diagnostic related). The variants consist
mostly of missense mutations  with
synonymous and truncating mutations

accounting for about 15% of the database.
Most are germline variants, although the
dataset includes a small set of curated somatic
mutations'>. The characteristics of the variants
are summarized in Table 1.

We created the reference alignment
index by masking the reference to exclude
DNA sequences outside of a region spanning
the 1000 base pairs upstream and 1000 base
pairs downstream of each variant. This
filtering method had been first adopted by
Deng et al. to optimize sequencing data
processing turnaround times'.

2.2

Number of
variants

393,242.00

20,800.00
170,292.00
201,900.00

91,827.00
32,778.00
17,824.00
9,286.00
148,114.00

141,029.00

59,617.00
37,704.00

Input

Pipeline

Output

process this vast amount of data
mmto a form that can fit on a

onas 1 TB hard disk. To accomplish
this, we developed an efficient
32 data processing pipeline (Fig.
43.30 2)
51.34
B3 We first created a targeted
j:: alignment reference that
536 focuses on regions that harbor
3766 known variants (n=393,242)
curated by NCBI dbSNP'.
3586 Lhese consist predominantly of
p_— variants with PubMed
55 references or that have been

Extracting variants from SRA
human sequencing runs

Targetted reference generation

300k raw
sequencing runs
from SRA: Fastq file

300k curated variants
from dbSNP

Adaptor
identification:
trimgalore

downstream region of each
variant in GRCh38
Y
Variant specific
human reference
genome

‘ Retain 1000 upstream and

Y
Adaptor triming:
cutadapt

Alignning to targetted varaint
reference: bowtie2

A
Aligning sorting and index:
samtools

Y

Allelic count:
bam-readcount

Allelic read count
profiles of 250k human
sequencing runs

Fig. 2. Simple pipeline for extracting >300,000 human sequencing runs
from SRA. For each sequencing run, first adaptors are identified and
trimmed from raw sequencing reads. Then we align the reads to the
targeted reference and extract the allelic read counts.

Large scale allelic read count extraction of human sequence data

We retained only sequencing runs from the top five library strategies (RNA-seq, WGS, WXS,
AMPLICON, ChIP-seq), and sequencing runs with more than 150 million bases sequenced
(equivalent to at least three million reads if the samples have 50 bp per read), corresponding to a
total of 304,939 sequencing runs. Of these, 253,005 were successfully processed (Fig. 3) without
error with 300 cpu-cores in 30 days. Library strategies were divided between paired-end (64.8%)
and single-end (35.2%) sequencing. The difference between the number of pair-end sequencing and
single-end sequencing reflects the differing needs of various experimental designs (Supplementary
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Table 1). For example, paired-end sequencing greatly improves the identification of splice isoforms

in RNA-seq and structural variants in exome-seq, whereas it
provides fewer benefits for other library types that would
justify the increased cost relative to single-end sequencing.
One utility that emerges from reprocessing the
sequencing data is for imputing experimental annotations.
For example, the SRA metadata is not standardized to
contain important experimental variables like read length or
adaptor sequences, however this information can be easily
determined from the raw sequences. A median read length
of 95 bp was observed. Most runs (206,360 = 81.56%) had
adaptors automatically detected and removed. Sequence and
mapping statistics are detailed in the Supplementary Table
1. Over these sequencing runs, a median of 2.98% of base

150,000
100,000
50,000

# of processed human
sequencing runs

Library strategies
Fig. 3. Distribution of processed SRA data

pairs were identified as adaptors and were removed. A median base quality Phred score of 36 was
observed, suggesting a high overall quality of the sequenced bases in the SRA.

Overall, a median of 296.3 million bases and 10,044,529 read fragments per sample were
observed. A median of 5.83% of the reads were aligned to the targeted variant regions (Methods).
Adding read length, adaptor contents, number of reads and percentage aligned to the metadata
allows the user to better understand the quality of the sequencing runs and filter them accordingly.

2.3.  Pipeline performance for targeted variant detection
A - B
| "
In e e 2
=
el =
g3 Pearson r =0.98 Pio
£%2 B <
2 8 E =
EL o E <
3 2 o Q &
S § | O
9 o5 =
[ T 4 4 40
2B s
2 2 s
E’ g 1 : — § -
— on 5
<= ~ ol
1 210 085 0.90 095 100

Allelic read counts from
alignment against entire

reference genome whole genome alignment

Fig. 4. Targeted reference remains accurate for sequence alignment.

A Hex density plot showing the high allelic read count correlation between the
whole genome alignment (x-axis) and targeted reference alignment (y-axis).
Histogram of allelic read counts on whole genome alignment (x-axis, top) and
on targeted genome alignment (y-axis, right). B Distribution of allelic read

count correlations (x-axis) over TCGA WXS BAMs (y-axis).

Allelic read count correlations
between targeted reference and

To assess the accuracy of allelic
read counts extracted from this
targeted reference we compared
counts obtained through our pipeline
to those extracted from samples
pre-aligned to the complete hg38
genome index and downloaded
directly from the TCGA. We also
took  advantage of matched
DNA/RNA sequencing in TCGA to
evaluate the extent to which allelic
read counts extracted from RNA-seq
reflect the variants detected from
WXS (See section 2.5). We used
524 whole exome tumor sequences
from the TCGA Low Grade Glioma
(LGG) dataset to assess the
performance of our pipeline, as this
dataset included the well-known

variant (IDH1 R132H) which could serve as a positive control.

The reads from each tumor were aligned to the targeted SNP index and the allelic read
counts were compared to the pre-generated alignments available from the TCGA. The resulting
variant-locus-by-nucleotide read count matrix contains the read count for each of the four
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nucleotides across the 393,242 targeted variants at 387,950 genomic sites. We then flattened the
nucleic base read count matrix into a single allelic read count vector. For each sample, we compared
allelic read counts for all variants obtained using alignment to a targeted reference against allelic
read counts obtained from the existing TCGA alignments to a complete reference. Read counts were
highly correlated. Figure 4A shows an example from a single TCGA tumor (UUID:
2b0048e¢0-a062-40d2-alel-4bb763ealcad), in which a median of 98.2% variants differed less than
one log, fold change in allelic read count from the existing alignment (95% confidence interval:
0.0088 - 0.0554). We found similar correlation across all 524 samples, with a median Pearson
correlation (R) of 0.98 for the allelic read counts (95% CI: 0.928 - 0.992; Fig. 4B).

2.4.  Effects of PCR duplicates on estimating allelic fraction

We next evaluated the necessity of removing putative PCR duplicate reads after alignment based on
the extent to which such duplicates bias the estimate of allelic fraction in TCGA. Although most
sequence alignment pipelines include a step for removing duplicate reads that result from PCR
amplification, recent studies have cast doubt on the benefit of doing so for variant analysis'”'®. Also,
naively removing the duplicated reads could result in overcorrection in high coverage sequencing'’.

We therefore

A B e investigated the effect
— =4 k= 2 g of sequence duplicate
E § B g Z 90 % % = removal for all 300k
E, .§ 3 § 9 5 80 targeted variants across
225 ~ ‘§% 2 the 524 samples. We
2 2 “58" compared the allelic
§ 351 g E § 60 read counts extracted
83 1 EEE, ; with and  without
= 20 0 1 2 3 4 ~5” S e & o duplicate removal for
Without duplicate removal LR g each tumor WXS
log10(allelic read count) Total read counts at V;riant alignment, and

Fig. 5. A Among regions with <100 reads (grey dashed line), allelic read counts observed a median

correlate linearly between alignments with duplicate removal (y-axis) and without correlation of 0.983

duplicate removal (x-axis). However, duplicate removal may potentially (95% CI: 0.983-0.990),
underestimate read counts in regions with >100 reads (red dashed line). B Allelic  suggesting  duplicate
fraction are comparable regardless of duplicate removal except in sites with removal had limited

extremely high read count. impact on allelic read

counts. However, we
did observe a substantial bias in allelic read count estimates when duplicates are included among
sites with very high sequence read coverage. Figure S5A shows an example using UUID:
0e2c395e-ddda-4833-blee-31a9bd08a845. In this sample, deduplicated allelic read counts recover
88.9% of the original allelic read counts among all the variants with <100 reads support, while the
deduplicated allelic only recover 33.7% of the original allelic read count among all the variants with
>100 reads, a 2.63 fold reduction in read count extracted from in the high coverage region (Fig. SA,
slope of grey bar and red bar respectively). Nonetheless, across all 524 samples we observed a
difference in allelic fraction < 0.05 for over 90% of the variants when duplicates were excluded,
except in extreme cases with over 10,000 mapped reads (median 0.4% of the variants) (Fig. 5B).
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Thus with high quality sequencing data, filtering duplicates should result in only minor
improvement to the data.

2.5.  Evaluating variant extraction from RNA-seq using matched DNA/RNA samples

The SRA includes over 100k RNA-seq runs and these data contain information about the variant
status of the transcribed DNA. To determine the extent to which variants can be extracted from
RNA-seq by our pipeline, we first compared allelic fractions between matched exome sequencing on
the one hand and RNA sequencing data in TCGA on the other. TCGA contains samples which have
been subjected to both WXS and RNA-seq, which makes it a natural resource for comparing the
performance of variant calls derived from RNA-seq data using the WXS-derived variants. We
evaluated the possibility of using allelic read counts from RNA-seq to detect both germline and
somatic variants.

To evaluate the reliability of allelic read counts for identifying germline variants in RNA
sequence reads, we first compared read fractions for germline variants that were homozygous in the
corresponding TCGA WXS sample. After collecting all sites that had at least 10 reads and were
homozygous for the variant allele in the WXS read data, we evaluated the read counts at those same
sites in the RNA-seq data. A median of 5827 sites had at least 10 reads to support the variant in both
WXS and RNA-seq for each sample. Across all samples, a median of 97% (95% CI: 95.5% - 97.9%)
of sites that were homozygous in the DNA were also found to be homozygous in the matched
RNA-seq data.

Next, we explored the utility of allelic read counts for identifying somatic mutations from
RNA sequencing data. First, as a positive control, we evaluated the hotspot IDH1 somatic mutation
on chromosome 2:208248388 with 395G>A in the template strand, which is most prevalent somatic
variant in TCGA LGG on WXS as called by Varscan *° (n=371, 70.80% of patients). This variant
had been previously identified as enriched in LGG tumors and its status is a major molecular
prognostic factor in glioma as noted by the World Health Organization (WHO)*'. Using the 524
LGG tumors, we estimated allelic composition using read counts in the matched RNA-seq and WXS
independently with our pipeline. The IDH1 mutation status in WXS exhibits a bimodal distribution
(Fig. 6A). We selected 10 reads as the cutoff for defining a positive WXS variant. The reference
allele was detected in the WXS in all tumors, and 351 patients also had the alternative allele. Over
these patients the RNA-seq achieved an area under the precision recall curve (AUPRC) of 0.98 in
detecting IDH1 variants observed in the WXS data (Fig. 6B).
We next evaluated

A B C
1.0 2 the top 100 most
B —— | & frequently
vy 8 g g b .
2e 2 ‘ 2 observed somatic
i 5 g 2 variants reported
< 5 & 3 by TCGA in the
0 40 s 120 160 20 i 5 i LGG samples that
NT—— Recall AUPRC of recovering also coincided
Allelic read counts WS varlants with the targeted
Fig. 6 RNA-seq can recover variants extracted from WXS. A Minor allelic read counts of variants, since
IDH]1 hotspot mutation. Vertical red line is the binomial distribution cutoff (10 read counts). B recurrent
distribution of minor allele of IDH1 (395C>T in template strand). C RNAseq has high area mutations are

under the precision recall curve (AUPRC) of recovering WXS variants more likely to be
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drivers and present the most attractive therapeutic targets>. We used the Precision Recall Curve
(PRC) framework to determine the extent to which allelic read counts supported expression of the
mutant allele. RNA-seq generally recapitulated WXS variants (Fig. 6C), with 70% of the variants
having an AUPRC > 0.8, suggesting that majority of the variants called by exome sequencing are
expressed in the tumor. However, we do observe 6% of the variants with an AUPRC less than 0.1
when their presence was predicted from RNA-seq allelic fraction. Importantly, these later variants
were found in fewer than 10 WXS samples, such that the most recurrent somatic mutations are also
more frequently consistently expressed. Thus while absence of a somatic variant cannot be
definitively determined from RNA-seq (mutations can be present but not expressed), the most
recurrent variants appear to be frequently expressed, suggesting that many somatic mutations of
interest will be detectable in RNA-seq data from cancer studies deposited in the SRA.

2.6.  Variant landscape of the SRA

After validating the general reliability of our allelic fraction estimates, we analyzed 300K variants
across the SRA. Properties of the variants are listed in Table 1. Of 300K variants, 170,292 were
referenced by PubMed and 138,559 were curated by NCBI as clinically-relevant variants. Out of
156,757 variants with annotated functional effects, the majority were missense mutations
(n=91,827). Also, 37,704 variants were annotated as somatic mutations, derived from cancer
studies. Overall, the data included a median of
three variants per gene across 21,889 genes.

é 1 We collected read counts for reference and
B o E ;lstgr(r)l(a;tsivcla1 alleles at these' 300K positiqns for
g , uman sequencing samples in the
% 10" SRA. We used default minimum threshold of
o . two reads® as the cut-off for Varscan®’. The
* 1 Reference  Known germline Known somatic distribution of the number of variants are

alleles mutations mutations shown in Figure 7. Known germline variants

were detected in a median of 912 sequencing
runs, known somatic variants were detected in
a median of 4,876 sequencing runs, and known reference alleles were detected in a median of
33,232 sequencing runs. 337 somatic variants, 3,068 germline variants and 23,044 reference alleles
were covered by at least two reads in more than half of the sequencing runs, suggesting that SRA
data can be repurposed for studying many variants. To facilitate the analysis of variants, we
collected allelic read count in each SRA sample into a table (see Data Availability). This read count
file allows researchers to rapidly identify which sequencing runs in the SRA have read support for a
particular variant.

Fig. 7 Distribution of variants detected associated with each variant type

2.7.  Extracting unannotated single cell variants in cancer in SRA

Genotype annotations are often missing or incomplete in the SRA, and this limits the reusability
of the SRA data. Here, we show that, using the reprocessed data, we were able to recover an
important oncogenic mutation BRAF V600E in a single cell RNA-seq study of a patient with
myeloid leukemia at diagnosis and as well as at three and six months after diagnosis **.

Traditional variant calling relies on high sequencing depths to provide the statistical power
to make confident calls. However, since each cell carries only two copies of each chromosome, the
low recovery of single cell sequencing makes variant calling from DNA resequencing difficult.

202


https://paperpile.com/c/Vuzgmb/lLuP
https://paperpile.com/c/Vuzgmb/aYgX
https://paperpile.com/c/Vuzgmb/JCCI
https://paperpile.com/c/Vuzgmb/RHYL

Pacific Symposium on Biocomputing 2019

Since RNA also contains information about underlying variants and may exist at hundreds of copies
per cell®, calling variants from single-cell RNA-seq data may circumvent the limitations of DNA
resequencing for variants

A B C D in transcribed regions.

3 100 . o= o 2

° g0l g o=l % 5 10 We were able to detect an
= L] = > . .
E o ;é 8. 'K important oncogenic
= @ dbSNPs from neighboring regions 5 3 = .

; 40 Variant at BRAF V600 = E Sz 2 mutation, BRAF V6OOE,
% 3 & S || 2 i in single cells using our
g 204 5 < Pz o2 . )

B f z L G 8 unified allelic read counts.
2 . ® otter %0 o o 0@ 0 30 £ e

g Tt —rr1—+— 2h b B The overall read depth for

Genomic positions near BRAF V600

the region was 45.9 reads
Fig. 8 A allelic read counts can recover obvious variants (example: chr7-140753336). B Base quality, d 17 sit ithin the 20
and C read count of reads at chr7-140753336 for reference allele (blue) and alternative allele an Sites within the
(orange). D Allelic read count of alternative allele can track cancer progression. bp windows around BRAF

V600E had read support
for the reference allele. Alternative alleles at the BRAF V600 hotspot were detected in more than
95% cells (Fig. 8A). Also, the alternative allele (T) had a median base quality Phred score of 38
(Fig. 8B) and a median of 22.0 reads to support it (Fig. 8C). Interestingly, we observed a reduction
in the reference allele read count over the course of treatment (Fig. 8D) with a corresponding higher
fraction of reads supporting the alternate allele, suggesting that the clone with BRAF mutations
became more prevalent among the surviving cancer cells, concording with the observation in the
study that relapse occurred after treatment.

3. DISCUSSION

Most published studies on non-protected raw sequencing data are expected to be deposited in the
NCBI SRA as a result of journal requirements, and this vast amount of raw sequencing data
represents a an opportunity to power large-scale meta-analyses for the interaction of sequence
variants with experimental conditions. However, these petabytes worth of sequencing data introduce
a computational challenge for analyzing such variants. One solution is to develop a map of relevant
sequence variants in the SRA using allelic count profiles.

To create allelic read count profiles from the SRA, we constructed a bioinformatics pipeline
with short processing turnaround time by mapping the raw sequencing reads to a targeted reference
specific to key somatic and germline variant(s) curated by the NCBI dbSNP. We validated the
accuracy of the pipeline by comparing read counts obtained with targeted alignment to counts
obtained using complete alignment pipelines, and evaluated genotype consistency across multiple
sequencing datasets derived from the same sample. These results confirm that the targeted alignment
pipeline generates allelic read counts that are highly correlated to those from whole genome
alignments.

Variant calling has traditionally been performed from DNA sequences, but WXS and WGS
library strategies comprise only 40% of the total human SRA data. Thus we also sought to infer the
presence of variants from RNA-seq allelic read counts. While RNA may be less reliable for
inferring the presence or absence of variants due to gene and allele-specific expression, 61.8% of the
RNA-seq samples have more than a million reads mapped onto the targeted variant regions. We also
found that highly recurrent somatic mutations detected in WXS of low grade gliomas were also
frequently expressed in matched RNA-seq data. Thus, it would also be interesting to utilize the
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germline allelic read counts extracted from the SRA RNAseq dataset to conduct a large-scale
systematic EQTL study. We may also use the somatic allelic read counts in single cell cancer
studies to help decipher the interactions between clonal mutations and clonal expressions in tumor
heterogeneity.

To the best of our knowledge, this is the first attempt to massively reprocess the human
samples in the SRA for the purpose of extracting allelic read counts. The computational
infrastructure required to generate variant data at scale presents a barrier to many researchers.
Consortia that generate a large volume of sequencing data, such as GTEx, TCGA or the 1000
Genome Project, all offer preprocessed files that enable researchers from the broader community to
identify novel findings. Although variant calls are available for some of the datasets included in
SRA, significant effort would be required to aggregate these disparate datasets, and most of the
non-consortia SRA samples do not have such data available. Simply providing allelic read counts
derived through a common bioinformatic pipeline also avoids technical variation that can result
from different choice of computational tools and their associated parameter choices. Therefore, we
contend that our unfiltered allelic read counts will have broad utility for post hoc analysis.

Many applications require estimates of the magnitude of allelic fraction for inference. This
would be particularly useful for questions related to imprinting or reconstruction of tumor subclonal
architecture. We found that presence of duplicate reads did not significantly bias estimates of allelic
fraction when the quality of the sequencing data is high. However for lower quality datasets or
different library strategies, it may still be necessary to remove duplicate reads to obtain high quality
estimates. Further analysis is merited to determine which datasets or variants are most confounded if
duplicates are not removed. Future releases of the database will include estimates of allelic fraction
both before and after removing PCR duplicates.

In conclusion, by reprocessing the raw sequencing runs from the SRA, we improve the
findability, accessibility, interoperability, reusability (FAIR)* of of 250,000 sequencing runs. As the
SRA continues to grow, it will be necessary to continuously update the map of variants present in
SRA samples. To support variant meta-analyses using the SRA, the next requirement will be
unification of the SRA data, including biospecimen and experimental annotations. We anticipate
that further refinement of the SRA through efforts such as this will promote reanalysis of existing
datasets and lead to new biological discoveries.

4. METHODS

4.1. SRA Metadata download

SRA metadata (files: NCBI SRA Metadata Full .tar.gz and SRA Run Members.tab) were
downloaded from ftp.ncbi.nlm.nih.gov/sra/reports/Metadata/ on Jan 4 2018. These files contain the
raw freetext biospecimen and experimental annotations. SRA Run Members.tab details the
relationships between SRA project ID (SRP), sample ID (SRS), experiment ID (SRX) and
sequencing run IDs (SRR). We processed only sequencing runs with accession visibility status
“public”, with availability status “live”, and sequencing runs that contains more than 150 million
nucleotides bases. We also only included sequencing runs generated from the following library
strategies: RNA-Seq, WGS, WXS, ChIP-Seq, AMPLICON. Only samples with layout defined as
either SINGLE or PAIRED were considered. We removed SRA study ERP013950 as we noticed it
has annotation indicating a total of 85,608 WGS sequencing runs which seem to stem from
erroneous submission, as it was only associated with nine biological samples (BioSample) IDs and
the experimental annotation was unclear on the nature of the study.
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4.2. NCBI dbSNP structure
NCBI dbSNP' curated a set of SNPs and uses each bit in the bitfield encoding schema to indicate a

specific evidence support (ftp:/ftp.ncbi.nlm.nih.gov/snp/specs/dbSNP_BitField latest.pdf). Some evidence
supports are derived from databases, for example, NCBI ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/),
Online Mendelian Inheritance in Man (OMIM, url: https:/www.omim.org/), Locus-Specific DataBases
(LSDB, url: http://www.hgvs.org/locus-specific-mutation-databases), and Third Party Annotation (TPA, url:
https://www.ddbj.nig.ac.jp/ddbj/tpa-e. html). ClinVar contains a curated set of published human

variant-phenotype associations. OMIM contains the genotypes and phenotypes of all known mendelian
disorders for over 15,000 human genes. LSDB provides gene-centric links to various databases that collect
information about variant phenotypes. TPA is a nucleotide sequence data collection assembled from
experimentally determined variants from DDBJ, EMBL-Bank (https://www.ebi.ac.uk/), GenBank,
International Nucleotide Sequence Database Collaboration (INSDC) (http://www.insdc.org/), and/ or Trace
Archive (https:/trace.ncbi.nlm.nih.gov/Traces/home/) with additional feature annotations supported by
peer-reviewed experimental or inferential methods.

4.3.  Targeted reference building

Variants were obtained from dbSNP (downloaded on 4, January on 2017 from
ftp:/ftp.ncbi.nlm.nih.gov/snp/organisms/human 9606 _b150 GRCh38p7/VCF/00-All.vcf.gz),
which contained 325,174,853 sites in total, effectively one tenth of our selected human reference
genome length (3,099,734,149 bp, version: hg38). We retained only variants with a resource link to
any of the existing databases or with support from NCBI curation, indicated by a non zero value for
byte 2 of Flag 1 in the NCBI bit field encoding schema, resulting in 393,242 variants. To generate a
targeted reference for these variants, we defined 1000 bp downstream and 1000 bp upstream of each
SNP as the mapping window. All the regions outside of the windows were masked with base “N”
using bedtools v2.26.0 in the reference FASTA file. The reference index was built using bowtie2

v2.2.6'" with the merged FASTA file, using default parameters.

4.4.  Extracting variants from raw sequencing read FASTQ file

We used SRA?® prefetch v2.8.0 to download SRR files. Next, fastq-dump v2.4.2 from SRA tool kit
was used to extract FASTQ files from SRR into the standard output stream. Trim Galore! version
0.4.0 (url: https:/github.com/FelixKrueger/TrimGalore) was then applied to identify adapter
sequences using the first 10,000 reads, and the identified adaptor sequence was trimmed in the
FASTQ file using cutadapt version 1.16*, the trimmed reads were then aligned onto the targeted
reference (we did not use Trim Galore! to trim the adaptor as it cannot be easily UNIX piped).
Bowtie2 was run with the “--no-unal” parameter to retain only the reads mappable to the target
regions in order to minimize the amount of aligned reads for sorting. The alignment file was than
sorted using samtools v1.2. and samtools idxstats was used for calculating the number of reads that
mapped onto each FASTA reference record. bam-readcount v0.8.0 was used for extracting the
per-base allelic read count and per-base quality in the sorted alignment file for each of the targeted
genomic coordinates. The paired-end reads were processed the same way as the single-end reads
with the exception that paired-end and interleave reads options in fastq-dump, cutadapt, and
bowtie2, were specified to ensure proper treatment of paired-end reads. The allelic read counts
consist of both the reference allele and alternative allele, and they are retained in the output
regardless of the zygosity.
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4.5. TCGA download

A gdc_manifest was downloaded from the gdc portal on 2017-12-27. We downloaded the TCGA
data using gdc-client v1.3.0. We downloaded the associated metadata using the TCGA REST API
interface https://api.gdc.cancer.gov/files/. All the alignment files preprocessed from TCGA using
GATK pipeline were downloaded. The alignment files were mapped onto GRCh38 with all the raw
reads, including read sequence duplicates.

5. Supplementary code and data availability

The python scripts for the pipeline and the jupyter-notebooks for generating the figures are
deposited on github (https:/github.com/brianyiktaktsui/Skymap) and the data is publicly available
on synapse (https://www.synapse.org/#!Synapse:synl1415602). Supplementary table 1 is available
on http://hannahcarterlab.org/skymapvariantpsbsupplementarytablel/.
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Benchmark challenges, such as the Critical Assessment of Structure Prediction (CASP) and
Dialogue for Reverse Engineering Assessments and Methods (DREAM) have been instrumental in
driving the development of bioinformatics methods. Typically, challenges are posted, and then
competitors perform a prediction based upon blinded test data. Challengers then submit their
answers to a central server where they are scored. Recent efforts to automate these challenges have
been enabled by systems in which challengers submit Docker containers, a unit of software that
packages up code and all of its dependencies, to be run on the cloud. Despite their incredible value
for providing an unbiased test-bed for the bioinformatics community, there remain opportunities to
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further enhance the potential impact of benchmark challenges. Specifically, current approaches
only evaluate end-to-end performance; it is nearly impossible to directly compare methodologies or
parameters. Furthermore, the scientific community cannot easily reuse challengers’ approaches,
due to lack of specifics, ambiguity in tools and parameters as well as problems in sharing and
maintenance. Lastly, the intuition behind why particular steps are used is not captured, as the
proposed workflows are not explicitly defined, making it cumbersome to understand the flow and
utilization of data. Here we introduce an approach to overcome these limitations based upon the
WINGS semantic workflow system. Specifically, WINGS enables researchers to submit complete
semantic workflows as challenge submissions. By submitting entries as workflows, it then
becomes possible to compare not just the results and performance of a challenger, but also the
methodology employed. This is particularly important when dozens of challenge entries may use
nearly identical tools, but with only subtle changes in parameters (and radical differences in
results). WINGS uses a component driven workflow design and offers intelligent parameter and
data selection by reasoning about data characteristics. This proves to be especially critical in
bioinformatics workflows where using default or incorrect parameter values is prone to drastically
altering results. Different challenge entries may be readily compared through the use of abstract
workflows, which also facilitate reuse. WINGS is housed on a cloud based setup, which stores
data, dependencies and workflows for easy sharing and utility. It also has the ability to scale
workflow executions using distributed computing through the Pegasus workflow execution system.
We demonstrate the application of this architecture to the DREAM proteogenomic challenge.

Keywords: Workflows; Semantic Workflows; DREAM Challenges; Proteogenomics;
Benchmarking; Big Data

1. Introduction

The volume of experimental data being generated in the field of experimental biology is growing
at a rapid pace in both size and variety'?>. With the advent of increasingly diverse data types, many
of which are high throughput, the bioinformatics community is introducing sophisticated
computational approaches for data analysis**.

To compare different approaches, community-wide competitive benchmark challenges have
gained popularity as an unbiased method to better understand the variety of pipelines proposed by
different groups. Popular challenges include the Dialogue for Reverse Engineering Assessments
and Methods (DREAM)>, Critical Assessment of Structure Prediction (CASP) protein structure
prediction® and The Association of Biomolecular Resource Facilities’ (ABRF) Proteome
Informatics Research Group’s (iPRG) detection and prediction challenges’. These challenges give
competitors the opportunity to test (in a blind and unbiased manner) their approach against others
in the field, and have been instrumental in advancing diverse areas from protein structure
prediction® to variant calling’ to analysis of pathology data'®.

Unfortunately, evaluations in these competitions have traditionally been limited to metrics that
evaluate solely based on scores. Comparisons of the methods that gave rise to those results are
often left to manual interpretation. When the difference between a winner and an extremely poor
performer may come down to a handful of parameters in otherwise identical workflows, the lack
of transparency in methods is a huge missed opportunity for the bioinformatics community. In
addition, winning methods are rarely shared with the broader community, as it is cumbersome to
make winning methods accessible beyond the competition framework. Thus, while these
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challenges provide a forum for bioinformatics researchers to independently evaluate the
performance of their approaches against others, the current execution environment for challenges
does not facilitate deep comparison and sharing of approaches.

Consequently, there is a critical need to reconsider the infrastructure used for executing
benchmark challenges. Here we examine the potential benefits of conducting benchmark
challenges within a semantic workflow environment. Workflow environments, such as Galaxy!'!
and GenePattern'2, would enable a challenge to examine not just the final results, but also all the
steps of a method. This could include all dependencies, relevant data, and workflow components.
By having challengers enter their submissions as workflows, which are executed on challenge data
in the cloud, it becomes possible to more deeply perform a meta-analysis of the entries. In
addition, submissions could be easily reused and shared by members of the broader scientific
community.

This work describes our effort to date using the WINGS!? semantic workflow system to
submit entries to the DREAM proteogenomic challenge. While WINGS is an established (ready-
to-download for server) workflow system!4, employing it as a submission and storing protocol for
data analysis challenges is a novel use of this framework. In addition to the advantages typical of
workflow systems, WINGS has additional features due to its use of semantic representations and
reasoning about workflow steps and data. WINGS uses semantic annotations of data
characteristics and step requirements in order to facilitate the selection of appropriate input
parameter values based on metadata. WINGS additionally supports the creation of an abstract
workflow component for a class of tools that perform a similar task, which greatly facilitates the
comparison of different challenge entries. Finally, WINGS uses the W3C PROV standard" to
record the complete provenance of the
workflow execution details that led to a
final result, including what tools and
versions were used, how algorithm
parameters were set, and the overall
method. Key features of the execution
environment of WINGS include: (a) a
framework for recording all runtime
dependencies of multi-step workflows,
where each step is a self—contained | 9
component facilitated by employing ) WINGS Workdiow syatom
Docker'® images. Docker offers a virtual

DREAVY

Re-use
1
| ? £
1

Compare
Pag

Enhancements

L . Fig. 1. Schematic for WINGS workflows in the context of
platform for building, sharing and  ga modeling and analysis competitions e.g. DREAM
running  application  within  self-  challenges. Building semantic workflows on the WINGS
sufficient “containers” which allow  architecture enables widespread use of algorithms and

. methods, and enables storage and maintenance of data and
encapsulation a'nd storage of WINGS workflows for use with high-throughput experiments.
workflows. This includes the tools and

data underlying each step (facilitating benchmarking), (b) a dynamic cloud based environment to
house these workflows, complete with all runtime dependencies and data (facilitating
reproducibility), and (c) a scalable execution environment (combination of WINGS and the
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Pegasus workflow management system!” for distributed computing to reduce computational cost)
to run workflows multiple times with new parameters or data (facilitating reusability).

Figure 1 shows a schematic of the use of WINGS for DREAM challenges. Integrating
WINGS in current bioinformatics benchmarking challenges will support the reuse of the best
performing solutions. Furthermore, it will expedite comparison between multiple different
solutions, which potentially use similar constructs and tools, but differ in parameterizations that
lead to significant result changes. This concludes to a better understanding of the underlying
reasons that lead to a successful solution. Lastly, the extensive provenance records of all
submitted solutions will greatly facilitate widespread use and adoption.

We discuss the WINGS design and the specifics of the workflow and environment
construction in the sections below. Further, as proof of concept, we employ WINGS workflows to
construct a full-scale pipeline for the NCI-CPTAC DREAM proteogenomic (protein prediction)
challenge!® that exhibits the main features of WINGS for reusability of workflows, reproducibility
of results, and e
benchmarking  of  how Preparingi
results are impacted by workflow!
subtle workflow variations. i
Lastly, we build multiple
variations of the protein
prediction workflow, Submitting
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-Data
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Fig. 2. Using WINGS in each phase of benchmarking challenges to facilitate
benchmarking, reproducibility, and reusability.
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facilitate benchmarking, reproducibility, and reusability.

2.1. Preparing and submitting workflows in WINGS for benchmark challenges

The architecture and setup of WINGS (described in detail in the supplementary materials)
facilitate easy usability and efficient sharing. A WINGS image, encapsulated by a Docker!®
container embedded with possible dependencies and software tools that may be needed by
challengers to implement workflow steps, is built and made available at the onset of the challenge
(Figure 2). New tools and software, as required by the codebase of each submission, can then be
additionally included by the user within the WINGS framework where the submission pipeline is
built.

WINGS facilitates the effective
combination of utilities, scripts and
tools based on different languages
together under the umbrella of one
single workflow, while allowing the
user to see the high level view of the e
workflow steps in terms of the \Nm - ’«fﬁ/ —F

Semantic suggestion -
according to data type and . L e | O

defaults D B 0
) File input to a component

dlayot @ Q @ Grab Image

Input parameter \@) cdHIs pifile

funCtIOHS lncluded Wlthll’l the Intermediate data | Wm"ﬁ“"s m
workflow. Figure 3 showcases the P 7 ¥ e
N .

different components of a WINGS *
workflow. The main constructs
involved are (1) Components, which
encapsulate executable code
described in terms of input data,

(g Final output data
ST i

Fig. 3. Multiple components are connected in WINGS to design a
workflow, as is typical of workflow systems. WINGS has unique
features supported by semantic representations and reasoning: (a)

parameters and outputs, each with
unique datatypes and other semantic
constraints (2) Abstract components,
which can execute one of several

automated suggestions of datasets and parameter values that are
compatible with the current design of the workflow, (b) the
possibility of defining abstract components that can be implemented
by different tools.

codes with the same general functionality (e.g. an abstract component for normalization could be
implemented by different normalization techniques, all employed on the same input, but resulting
in different normalized data), (3) Input parameters, which may be string, integer, float, boolean or
date values, (4) Input files, with metadata describing their type and contents, and (5) Intermediate
and final data, which is output obtained from a component’s execution that can be used as input to
another component for further analysis.

Construction of a workflow in WINGS involves: (1) Creating data types and uploading raw
input data, (2) Creating individual components for each distinct step in the workflow and
supplying the code and scripts to generate outputs from inputs, (3) Connecting the components to
reflect the flow of data from one to another. Additionally, the user can specify semantic metadata
and validation rules to datasets, components, and workflows, which are used by WINGS to reason
about the workflow and suggest data or parameters as well as to validate those provided by the
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user. The details of building a workflow in WINGS, using standard RNA-Seq processing as an
example, are included in the supplementary materials.

We used WINGS for the NCI-CPTAC DREAM proteogenomic challenge. We created a
workflow for predicting protein levels from transcriptomics data, which includes the processing of
transcriptomics data from raw sequencing reads to a normalized gene-expression matrix used for
protein level prediction.

2.2. Benchmarking, comparison, upgrade and sharing of workflows

Benchmarking challenges, such as the DREAM challenges, have historically evaluated the
performance of each challenger’s submission and reported on the top performing approaches.
With the integration of WINGS, all submitted entries would be described as WINGS workflows.
Each step of the workflows would be encapsulated in self-contained modules. Thus, each
submitted workflow and their steps, can be benchmarked and compared amongst one another.
WINGS abstract components would prove especially useful for comparisons as a challenger’s
workflow component will house the execution machinery for their specific approach while
maintaining the same input and output as the components designed by their peers. Additionally,
benchmarking and comparison facilitates iteratively fine-tuning a bioinformatics workflow, as it
allows for easy comparisons of different input parameters, files and software modules. A record of
executed workflows, with the associated meta-data as maintained in WINGS, helps identify and
correct errors as well as optimize a workflow.

We use the protein prediction pipeline template provided to DREAM proteogenomic challenge
participants and construct 6 variations on the same workflow (using abstract components),
enabling benchmarking and comparative analysis.

Different variations of the workflow are initially compared on the basis of the same
performance metric used to evaluate the results of the DREAM proteogenomics challenge. This is
a correctness score, which is the aggregated Pearson’s correlation of predicted protein levels to
actual protein levels across samples. To further our understanding of the comparison between
workflow variations, we compare three scales of data amongst each workflow execution: aligned
reads, quantified transcriptomics expression, and final protein level prediction. This allows us to
understand the factors culminating in the resulting correctness score. Aligned reads are compared
by read coverage areas of the resulting BAM files (comparison employs deeptools module
“multibamsummary”!?), quantified expression and predicted protein levels are compared by
assessing sample and gene-wise Spearman correlation of transcript/protein levels. WINGS
facilitates this step-by-step comparison by allowing intermediate outputs to act as input to
components performing individualized comparison. Executing non-WINGS challenge entries to
store and compare intermediate output is potentially cumbersome and prone to errors as we would
need: (a) access to the complete pipeline of each participant, (b) detailed annotations within the
subsequent code explaining each step of the pipeline, and (c) computational power and storage to
execute multiple workflows and store each intermediate and final output.

Upon completion of a challenge, the best performing solutions can easily be maintained and
upgraded within the confines of the WINGS system. Any tools and data utilized can be swapped
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for latest versions. Additionally, utilizing the capabilities of containers ensures that the latest
workflow and its ecosystem (dependencies and tools) can be encapsulated and shared with the
community. The reusability of a workflow is not hampered by missing configurations, by lack of
expertise to setup the computational environment, or by the absence of comprehensive
descriptions of the pipeline itself.

3. Results

3.1. WINGS workflow construction for the DREAM proteogenomic challenge

As proof of concept for incorporating WINGS into a benchmark challenge, we built a workflow
that performed protein level prediction from processed and normalized transcriptomics (RNA-Seq)
data, mimicking the requirements of sub-challenge 2 of the NCI-CPTAC DREAM proteogenomic
challenge 2018. Our workflow included the generation of a canonical transcriptomic expression
matrix from raw reads allowing us to examine how sensitive the predictions were to changes at
many phases of the workflow. Below we describe (Figure 4), (1) The entire workflow for protein
level prediction from transcriptomics data and (2) The data and data types required to be uploaded
and constructed in WINGS to facilitate workflow execution.

3.1.1. The protein prediction workflow

As our WOI‘kﬂOW aims @ Abstract Alignment

. Component
to gauge protein [L_Suweu E—Usmmwaﬂ  dat

-FASTQ ¥ igned data
levels for a set Of """" Quantification ----‘I..‘._ Quantification
v o, components = : = = |components
X (FeatureCount - *. |(Cufflinks
samples from raw and A,?@ s ROl o
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p . . * o o ) =————————3> Quantified and normalized data

transcriptomics | - l Quantify Abstract Prediction
RNA S d t t . v .. o oo sio s o fgmponent ,

- " * m - — — eneric Model
( L. eq) a a’ 1t1s TraI:‘s;:'lpt - = ¢ & |Gene-Specific Model)
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.. . X X
distinct sections. (1) |  f======= Predict v
Al . f \ e, Protein level prediction
lgnment o raw rz::iikl::ils ’ > jCorrectness scoring
read output from the [t= Model
sequencer, 2)

. . Fig. 4. The protein prediction rkfl as implemented in WINGS. The black
Quantification and g e protein predictio workflow as implemer ed W GS e blac
normalization per boxes show the workflow schematic in terms of input, intermediate and output files.

Z

Alignment (purple), quantification (blue) and prediction (orange) are the three main
sections of the workflow. The green boxes represent the changes to tools and
reads and lastly (3) parameters that result in variation of this predictive pipeline, and subsequently
Prediction of protein  different outputs. On the left is the WINGS wire diagram of the complete workflow,
levels from processed ~ with annotations marking the three main steps.

sample of aligned

and normalized transcriptomics data (Figure 4).
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3.1.2. The data and data type categorization for a workflow

Input, output and intermediate files that are produced by the workflow dictate data types within
WINGS (Figure 4). For the protein prediction workflow, the input files — RNA-sequencer output
(FASTQ format), the output files — protein level matrix (TSV format) and the intermediate files -
aligned reads (amongst others) (BAM format) guide the different data types to be constructed by
the user apropos to the workflow.

The data utilized for protein prediction is The Cancer Genome Atlas/Clinical Proteomic Tumor
Analysis Consortium (TCGA/CPTAC)-Colorectal Cancer datasets>®?!, which is one of the
foundational proteogenomics datasets published by the National Cancer Institute (NCI). The data
consists of transcriptomics and proteomics for 89 patient samples that are processed, analyzed and
well characterized by multiple published experiments?>. The raw data is available from both
TCGA and CPTAC, and the processed data was extracted from supplementary material of
associated publications. The data is housed within the WINGS image, hosted on an Amazon Web
Server (supplementary material), contained within the workflow ecosystem, along with all the
tools and scripts needed by the pipeline.

3.2. Workflow variations for predicting protein levels

We select 3 specific changes to the protein prediction workflow, spanning the three levels of input
data processing and compared the final result. We aimed to make changes at each level of data
dimensionality to assess the impact on the final protein prediction. The changes are made to (1)
Alignment tools, (2) Transcript level quantification method and (3) Protein level prediction
method as is summarized in Figure 4.

Alignment Tools (STAR? versus TopHat?*) — We utilize the two widely adopted alignment tools
for comparison. STAR is a fast, reliable reads aligner which requires a large amount of computing
power but claims to address most shortcomings of other RNA-Seq aligners. TopHat is a traditional
splice read mapper for RNA-Seq, which uses the ultra high-throughput short read aligner Bowtie
to perform read alignment followed by identification of splice junctions.

Transcript level quantification method (FPKM versus RPKM) —The two most popular methods to
quantify transcripts level expression are Fragments Per Kilobase of transcript per Million mapped
reads (FPKM) and Reads Per Kilobase of transcript, per Million mapped reads (RPKM). Both
normalize according to gene length, RPKM utilizes reads whereas FPKM estimates abundance
based on fragments observed in a paired end experiment. We utilize the cufflinks suite® (cufflinks,
cuffmerge, cuffquant and cuffnorm) to assess the FPKM quantification and featureCounts®> with
the EdgeR?® R package to obtain the RPKM quantification.

Prediction method (Generic-Linear versus Gene-Specific) — The winners of the DREAM
proteogenomic challenge employed multiple different models and one of the superior results was
obtained by employing a Gene-Specific modeling technique for prediction?’’. Within our
workflow, we aim to emulate their technique by building a unique linear model for each of the
proteins to be predicted (Gene-Specific) and compare it against a one-fits-all linear model
(Generic-Linear) that uses the entirety of the training data irrespective of gene and site specificity.
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3.3. Benchmarking and correctness of protein prediction across workflow variations

As detailed above, a total of 6 different variations of the protein prediction workflow were
executed using WINGS. Workflow variations included changes to the 3 distinct sections of the
protein prediction workflow, namely alignment, quantification and prediction. Table 1
summarizes the correctness (of prediction) score of the final result obtained from each variant of

Table 1. Pearson correlation based correctness score, and time taken for execution of each workflow configuration
for protein level prediction of 89 samples and ~3000 proteins

Alignment Quantification Predictive Model Correctness Score Time Taken
STAR FPKM Linear 0.2161 ~29 hrs
STAR RPKM Linear 0.2155 ~20 hrs
STAR FPKM Gene-Specific 0.9064 ~29 hrs
STAR RPKM Gene-Specific 0.9124 ~20 hrs
TopHat RPKM Linear 0.2053 ~103 hrs
TopHat RPKM Gene-Specific 0.9080 ~103 hrs

the workflow. We also note the approximate time (automatically recorded for each WINGS
workflow execution) taken for each workflow completion. We observe the differences in quality
of results based on the changes in different steps and dimensions of the prediction workflow.
Namely, the largest change in resulting quality emanated from the different models used for
prediction. The gene-specific model outperformed the generic linear model in all configurations.
The alignment and quantification presented some minute changes in the final result quality but
large differences in computational resource utilization, as the execution time was vastly different
between STAR and TopHat usage, as well as evaluation of RPKM and FPKM.

3.4. Comparison of workflow variations for predicting protein level

Since intermediate output at each level 1 : :
. . . . 1 Comparison of aligned
is readily available in the WINGS C'@ G&B ! 10] reads across samples
¥ 1 = — el
provenance records, we explore each of e 1 Sz —
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oKF 9
scales. Namely, we compare the C“"E‘m" ik P> 203
. . ! S g
aligned reads, the transcript 2 I EZgB
. . . Plot_sample_wise_correlation_of BAMs | g s -
quantitation and finally the predicted , .-
. . 1
protein levels. Figure 5 shows the : e ——
1 Samples
WINGS workflow and the L H

corresponding output for comparing  Fig. 5. Correlation between TopHat and STAR aligned
aligned reads (BAM files). The reads across 10 samples (right) from the protein prediction
component uses the utilities described ~ Workflow in WINGS (right).

in the section above to calculate the
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correlation between read coverage for aligned reads obtained from both TopHat and STAR.
Figure 6 presents the component performing comparison of transcript quantification utilizing both
FPKM and RPKM methodologies. The output visualizes a comprehensive comparison of both
quantifications, by assessing the number of genes identified, gene and sample wise correlation and

dynamic ranges of the

. r _________________________ -= Overlap of genes identified =~ Gene-wise correlation
gene-level expression. : I _—
1 1 FPKM RPKM ®»
1 i g
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comparative analysis. from the protein prediction workflow and the corresponding WINGS component
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distribution comparison
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analysis possible within the confines of
WINGS allows us to fully understand
the impact of each step’s process on
the final result of the protein prediction
workflow. Further, since all
intermediate data is accessible for each
execution, data  analysis  and
exploration can be performed in
parallel at each step, including quality
metrics, sanity checks and identifying
critical data attributes characterizing
inner workings of the pipeline. WINGS
components performing analysis and
exploration could be appended to the
main workflow where they access
intermediate  data and  provide
immediate context to the workflow
execution.
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4. Discussion and Conclusion

Our work presents the WINGS workflow infrastructure as an easy to use, effective and efficient
platform for storing, maintaining and executing solutions submitted to analytical and modeling
challenges. WINGS not only allows for standardization of submissions and effective reuse of
workflows, it also allows for intuitive comparison between workflows as well as potential for
changes and upgrades to ensure widespread adoption and rigorous reproducibility. As a proof of
concept, we developed a protein prediction workflow using WINGS, akin to the DREAM
proteogenomic challenge, which uses raw RNA-sequencing data as input, processing and
modeling it to generate prediction for protein levels. WINGS houses the input data, performs
benchmarking with different tools, techniques and models to identify the most effective
configuration for protein prediction. In addition, for each variation of the workflow, we are able to
identify and isolate critical changes in data across different steps as well as explore the nuances of
the predictive model. Our experiments show the vast capability of WINGS and its usefulness to
future bioinformatics analysis and modeling challenges. Additionally, incorporation of the
WINGS paradigm in the context of data modeling and analytical challenges sheds light on a
broader question of why a solution performs better than another. Constructing workflows with
WINGS allows for researchers to use the most innovative methods by easily reusing the best
performing approaches available for any given research question.

Supplementary material available at: https://github.com/arunima2/Supplementary PSB_2019
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For the 2019 Pacific Symposium on Biocomputing’s session on precision medicine, we present new
research on computational techniques in range of areas including data curation, whole genome
analysis, transcriptomics, microbiome profiling, EHR data-mining, and histological image
processing.
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1. Introduction

For this session we sought submissions that drive research forward in the development of
techniques in high resolution data science to advance personalization in clinical care based on
quantified models. The roots of using data to improve healthcare and to personalize medicine are
ancient and run deep in medicine. Hippocrates recommended that physicians learn to read so they
could keep records and learn how to treat new patients by studying the case histories their
colleagues compiled. James Lind, a naval surgeon, performed the first controlled clinical trial of a
therapeutic intervention in 1747, with a multi-arm study of six different possible interventions for
scurvy. William Osler (1849-1919), originator of the modern system of training physicians, said
“The good physician treats the disease, the great physician treats the patient who has the disease.”
However, it has only been within the last few decades that we have had the tools to change the
approach to understanding a patient from a somewhat subjective art to a deeply quantified science.
We have advanced rapidly in molecular profiling from expensive single genomes to increasingly
low cost genomic, transcriptomic, and proteomic profiling of single human cells. The massive
switch to electronic health records, including the rise of large volumes of electronic imaging data
in such forms as CT and MRI, has created huge volumes of computationally tractable data within
the healthcare system. With an ever increasingly connected world, biosensors and mobile health
tracking devices are providing new streams of phenotypic data. Inspired by the very earliest efforts
in pushing medicine toward being a system of constant improvement and innovation based on data
and experimentation (planned and naturally occurring), data is being collected in ever larger

T Supported by U41 HG007346 and U19 HD077627
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volumes. However, we increasingly need innovation in bioinformatic techniques that help
organize this data, discern the multi-omic characterization of disease, elucidate pathophysiology at
the level of cells and tissues, and create actionable insights for points of intervention. The papers
in this session span this gamut, and we hope will help drive the field from being not only precise,
but also accurate in promoting the health and wellbeing improvements that can have widespread
impact.

2. Session Papers

2.1. Data Curation Tools and Techniques

Peyton Greenside and colleagues [1] have developed a tool, CrowdVariant, based on Google’s
crowdsourcing platform to allow non-experts to annotate genomic data. They demonstrate with
data from the Genome In A Bottle Consortium that the general public can be quickly trained to
annotate deletions as a proof of concept. As the authors note, the images derived from genomic
data, such as NGS read alignment create visual patterns that non-experts can be quickly trained to
identify and interpret, opening up plenty of opportunity for future efforts to leverage the “wisdom
of the crowd” in the expensive task of genome annotation, and potentially other forms of
biomedical data.

Moving from the human crowd to the internal crowd of microbial flora, Wontack Han and Yuzhen
Ye [2] have developed a repository of microbial marker genes and a set of tools to link microbial
markers with human host phenotype, with an initial focus on diabetes, liver cirrhosis, and cancer.
Their computational pipeline, Mi2P (Microbiome to Phenotype) is a publicly available project in
Sourceforge.?

Another project helping to manage data related to precision medicine is the work of Zhiyue Tom
Hu and colleagues [3], where they describe a framework for addressing inconsistency in large
pharmacogenomic data sets, where individual potential therapeutics are screened against cancer
cell lines. The method, Alternating Imputation and Correction Method (AICM), uses shared
overlap of a handful of tested medications to bring divergent datasets into alignment for
comparison across the full span of data. They show the validity of this approach with three large
pharmacogenomic datasets.

2.2. Techniques in Probing Complex Genome-Phenome Interactions

Autism is a complex phenotype, with a strongly heritable component little explained by known
genetic variants. Maya Varma and colleagues [4] have made creative use of a creative control
group (progressive supranuclear palsy) to probe the genomic dark matter of non-coding regions to
identify a set of genetic markers associated with autism. Despite significant work to remove

2 https://sourceforge.net/projects/mi2p/
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potential batch effects, they are able to achieve very strong classification accuracy (0.96 AUC)
based on genetic features for identifying autism cases, suggesting the features they have identified
in non-coding regions may be causal in ways that we have yet to identify.

Xinyuan Zhang and colleagues [5] tackle a different kind of complexity, as they look for
pleiotropy in cardiovascular and neurological diseases in a dataset of 530,000 SNPs coupled with
phenotypes extracted from EHR data for 43,870 individuals from the eMERGE network. Genes
certainly play different roles in different contexts, such as different tissue types, different
environmental stimuli, and different life histories; however, pleiotropy has been hard to detect in
prior studies, due to a mix of factors including small datasets barely powered to find even simple
single variant-phenotype interactions and poor phenotypic characterization. Here, leveraging a
large dataset and the rich clinical annotations, they present a framework mixing a range of
approaches to detect pleiotropy.

2.3. Molecular Biology of the Tissues

The natural extension for precision medicine discovery from the genome is moving into functional
data and specifically gene expression. However, gene expression is very context specific, as noted
in the work in this session. Derek Reiman and colleagues [6] look at the relationship between
histopathology and gene expression in cancer, with a special focus on immune infiltration in the
tumor micro-environment, of potential relevance to immune therapies in oncology. Applying a
neural net based approach, they show that integrating features derived from digital surgical
pathology imaging and RNA-Seq can automatically predict infiltration of the tumor by NK cells,
macrophages, and CD8+ T-cells.

Binglan Li and colleagues [7] also focus on gene expression, and did tissue specific transcriptome
wide association studies on clinical phenotypes in set of 4,360 individuals in an AIDS clinical
trial, leveraging data on the context specificity of gene expression and eQTL’s from the GTEx
(Genotype Tissue Expression Project). This work has a poster at the conference and a paper in the
proceedings.

2.4. Creating Actionable Insights

Precision medicine is about moving beyond just discovery to changing clinical practice with
precise, personalized data. This session includes two pieces of work in this direction. The first is
similar in direction with the previously mentioned work in that it focuses on eQTLs and gene
expression regulatory relationships, but its focus is on therapeutic discovery and drug
repositioning. Francesca Vitali and colleagues [8] use a network biology and semantic similarity
approach to look for putative shared functional relationships between diseases to propose
opportunities for drug repurposing.
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Rounding out our session is work positioned to directly make recommendations around care
decisions, particularly around the problem of when to order lab tests for critically ill patients.
Patients in the ICU can have rapidly worsening clinical status, and blood-based diagnostic testing
can help detect early signs of dangerous conditions such as sepsis or kidney failure. However,
testing is not free, both in actual expense, but also patients do not have an infinite blood volume.
Although patients in the ICU can have continuous venous access, in the general case, a blood draw
is a form of invasive procedure, with discomfort and some risk involved. Li-Fang Cheng and
colleagues [9] have developed a reinforcement learning framework to train a system for an optimal
testing policy. This type of approach can both reduce unnecessary lab testing, but also suggests
testing earlier than is currently done, in advance of critical events, ideally enabling early
intervention to prevent poor outcomes.
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Copy number variants (CNVs) are an important type of genetic variation that play a causal
role in many diseases. The ability to identify high quality CNVs is of substantial clinical
relevance. However, CNVs are notoriously difficult to identify accurately from array-based
methods and next-generation sequencing (NGS) data, particularly for small (< 10kbp)
CNVs. Manual curation by experts widely remains the gold standard but cannot scale with
the pace of sequencing, particularly in fast-growing clinical applications. We present the
first proof-of-principle study demonstrating high throughput manual curation of putative
CNVs by non-experts. We developed a crowdsourcing framework, called CrowdVariant, that
leverages Google’s high-throughput crowdsourcing platform to create a high confidence
set of deletions for NA24385 (NIST HG002/RM 8391), an Ashkenazim reference sample
developed in partnership with the Genome In A Bottle (GIAB) Consortium. We show that
non-experts tend to agree both with each other and with experts on putative CNVs. We show
that crowdsourced non-expert classifications can be used to accurately assign copy number
status to putative CNV calls and identify 1,781 high confidence deletions in a reference
sample. Multiple lines of evidence suggest these calls are a substantial improvement over
existing CNV callsets and can also be useful in benchmarking and improving CNV calling
algorithms. Our crowdsourcing methodology takes the first step toward showing the clinical
potential for manual curation of CNVs at scale and can further guide other crowdsourcing
genomics applications.

Keywords: copy number variation, precision medicine, crowdsourcing
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1. Introduction

Copy number variation is a type of structural variation that involves large-scale duplications
or deletions of parts of a chromosome. Copy number variants can have substantial effects on
cell and organism phenotype and are associated with many kinds of human disease (Redon
et al., 2006) (Feuk, Carson, & Scherer, 2006) (Sudmant et al., 2015). Identifying CNVs is an
important component of clinical pipelines for assessing genetic mutations that contribute to
disease progression. Numerous algorithms have been developed to characterize these variants
from genotyping arrays and next-generation sequencing data (English et al., 2015) (Tattini,
D’Aurizio, & Magi, 2015) (Mills et al., 2011) (Kidd et al., 2008). However, these algorithms
often have poor concordance on both the location and the type of copy number variant, par-
ticularly for small-scale (< 10kbp) CNVs (Scherer et al., 2007) (Pinto et al., 2011), leading
experts to rely heavily on manual curation. One key challenge in further developing and as-
sessing these algorithms is the lack of a large set of ”gold standard” or reference copy number
variants.

Crowdsourcing has been used successfully to obtain gold standard labels in projects such as
Galaxy Zoo (Raddick et al., 2010), ClickWorkers (Ishikawa, ST and Gulick, 2012), FoldIt
(Cooper et al., 2010), and Zooniverse (Prather et al., 2013), but little investigation has been
done to understand how crowdsourcing can be best utilized to analyze genomic variation
(Haghighi et al., 2018). Basic questions include whether or not any domain expertise is truly
needed, how large the crowd should be, and how to best train and display genetic variation
to workers. We investigated the use of crowdsourcing platforms to classify copy number vari-
ants, focusing on deletions, and to address these basic questions. Google has developed the
Crowd Compute platform to facilitate large-scale crowdsourcing problems, and we developed
our framework with this platform to enable high throughput classifications. In this work we
show proof of principle in a well characterized reference genome, an essential first step before
deploying the method on more variable genomes such as from clinical samples. In a similar
vein, we focus on deletions as the most frequent and also likely easiest to classify type of
structural variation before focusing on more complex applications. CrowdVariant can be used
to develop high confidence CNV sets, to benchmark new CNV detection algorithms, and to
enable high throughput manual curation of CNVs using both experts and non-experts.

2. Results
2.1. The CrowdVariant Framework

The CrowdVariant framework uses a crowdsourcing platform to display putative copy number
variant sites to workers and aggregates classifications from a pool of workers to determine the
copy number state. Using this framework, we first ran an experiment to compare non-expert
and expert classifications on a pilot set of putative CNV sites and then expanded our classi-

(© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC)
4.0 License.

225



Pacific Symposium on Biocomputing 2019

fications to curate a genome-wide set of high confidence CNVs [Figure 1].

Determine
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Fig. 1. The experimental design was constructed to first evaluate a pilot set of sites with both
experts and non-experts before applying the same framework to a genome-wide set of sites using
non-experts only.

CrowdVariant displays pileup images of putative copy number variant sites using the Integra-
tive Genomics Viewer (IGV), showing all reads aligned to the site and the flanking regions
[Supplementary Figure 1] (Thorvaldsdéttir, Robinson, & Mesirov, 2013). Workers classify the
site, assess break point accuracy and report their confidence based on seeing one image at a
time.

We selected a set of 500 putative deletion sites for the pilot phase of our study. We first called
putative sites using an ensemble approach from multiple sequencing technologies (Illumina,
PacBio, Complete Genomics and BioNano) and corresponding algorithms (see Supplementary
Methods for details) (Abyzov, Urban, Snyder, & Gerstein, 2011) (Garrison & Marth, 2012)
(Mohiyuddin et al., 2015) (Hormozdiari, Hajirasouliha, McPherson, Eichler, & Sahinalp, 2011)
(Igbal, Caccamo, Turner, Flicek, & McVean, 2012) (Mak et al., 2016) (Chaisson et al., 2014)
(Nattestad & Schatz, 2016) (Drmanac et al., 2010). We then randomly selected from all pu-
tative sites 500 pilot sites ranging from 100bp to 3000bp with varying levels of support from
existing algorithms [Supplementary Table 1].

We used aligned 10X Genomics (10X) and Illumina paired-end (Illumina) reads from the
reference Ashkenazim trio made available by the Genome In A Bottle (GIAB) Consortium
(Zook et al., 2016). For each putative copy number variant site, we generated an image for
each member of the trio (son/mother/father) using Illumina reads, one image for the son’s
diploid reads and one image for each haplotype of the son’s reads using 10X reads. Although
workers potentially saw multiple images of the same site, we did not disclose to workers the
experimental design, the sequencing technology, the individual or the site being shown in an
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effort to most fairly compare experts and non-experts.

In our pilot study, 20 non-experts each classified all 6 images for the 500 pilot sites. We
launched a global recruitment for self-reported experts curators with over 110 individuals
from several dozen institutions signing up to classify variants. The participation rate was
highly variable with an average of 76 questions per expert [Supplementary Figure 2|. We
ensured that all 6 images for at least 100 sites were classified by 5 experts each.

2.2. Non-experts can curate high quality copy number variants

Both experts and non-experts agreed on a consensus classification for the majority of sites
[Supplementary Figure 3]. We visualized the responses for non-experts [Figure 2| and experts
[Figure 3| by weighting each copy number classification and clustering workers and sites to re-
veal performance differences across sequencing platforms and individuals. We kept the identity
of each non-expert worker separate, but we merged the expert answers into artificial work-
ers 1 through 5 as experts did not answer enough questions individually to be meaningfully
compared. For 86% of images, at least 70% of non-expert workers agreed on the classification,
showing that non-experts can be trained to interpret copy number variants in a consistent
manner [Supplementary Table 2]. Non-experts primarily had difficulty classifying haplotype
images and systematically confused CN2s as CN1s for haplotype images only (see Fig. 8 haplo-
type heatmaps). Beyond these systematic errors, there were several non-experts that deviated
from the majority either from lack of effort or understanding. Improving the documentation
by showing more than 2 examples of each copy number type could further improve non-expert
performance.

Agreement among workers was used to assign a final classification and confidence score to each
putative site. We defined the CrowdVariant score as the proportion of workers that voted in
favor of the most popular classification (CNO/CN1/CN2/None of the Above), with higher
scores reflecting more confident classifications. We incorporated worker classifications for all
images of the same site, but classified each site for each individual in the trio independently.
We counted all diploid classifications but only those haploid classifications where the pair of
haplotype images was consistent with a diploid classification [Supplementary Methods]. We
assign the most likely copy number state to each site by selecting the classification with the
largest proportion of votes.

Non-experts performed similarly to experts when comparing the rate of Mendelian violations
among the trio (classifications that would not plausible from Mendelian inheritance) for each
site [Supplementary Methods| [Table 1]. We found that 89% and 90% of all sites were classi-
fied without a Mendelian violation for experts and non-experts, respectively. The sites with
Mendelian violations had lower scores and could largely be filtered out of the high quality
set. The CrowdVariant scores discriminated Mendelian violations from genetically plausible
trio classifications with an AUC of 0.89 for non-experts and an AUC of 0.87 for experts [Sup-
plementary Methods| [Supplementary Figure 4]. For comparison, we randomized all answers
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Fig. 2. Non-expert classifications for 500 sites were color coded, weighted and clustered (see Supp.
Methods for details). Rows represent a question (i.e. an image of a putative site using a particular
sequencing technology) and columns represent workers. Clockwise from top left: 10X son, 10X son
haplotype 1 only, 10X son haplotype 2 only, Illumina mother, Illumina father, Illumina son.
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Fig. 3. Expert classifications for 100 sites were color coded, weighted and clustered (see Supp.
Methods for details). Rows represent a question (i.e. an image of a site using a particular sequencing
technology) and columns represent workers. Left to right: 10X son, 10X son haplotype 1 only, 10X
son haplotype 2 only, Illumina son, Illumina father, Illumina mother.

by re-sampling the entire worker by classification matrices for experts and non-experts and
re-computed the rate of Mendelian violations [Supplementary Table 3]. The AUCs for expert
and non-expert randomized answers were 0.47 and 0.50, respectively, and both 95% confidence
intervals overlapped a random AUC of 0.5.

We curated a high confidence set of CNVs for the son (NA24385) with high probability of
correctness and no Mendelian violations [Supplementary Materials]. We initially intended to
use self-reported confidence to filter lower quality classifications, but most non-experts consis-
tently reported medium to high confidence despite minimal training [Supplementary Figure
5]. To avoid relying on self-reported confidence, we ranked all 500 sites by their CrowdVariant
score and selected all sites with a higher score than the site with the first Mendelian violation.
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D
Meotric ata Set Expert Non-expert

Percent of sites without violation | 89/100 (89%) | 448/500 (90%)

ROC AUC 0.87 0.89
ROC AUC 95% confidence interval || [0.79, 0.95] [0.86, 0.92]
Average violation probability 0.15 0.14

This violation occurred at score 0.83 and resulted in discarding approximately half of the sites
for a total of 266 high confidence sites. The high confidence set of sites contains 122 CN0, 138
CN1, 5 CN2 and 1 ”None of the above” classification. 252 out of 266 are supported by at least
two other technologies. Importantly, for all sites in the high quality set that were classified by
both experts and non-experts, there was 100% agreement (n=>56 sites) between experts and
non-experts.

2.3. CrowdVariant can classify CNVs with variable support or unclear
breakpoints

CrowdVariant agrees with consensus classifications from existing algorithms, while also clas-
sifying variants that are challenging for existing algorithms. CrowdVariant scores assigned to
each site are correlated with the number of technologies underlying the original calls [Figure
4]. CrowdVariant classifications also show strong agreement with svviz (Spies, Zook, Salit, &
Sidow, 2015), a semi-automated visualization tool that determines whether each read sup-
ports the reference allele, alternate allele, or is ambiguous. We used a preliminary heuristic
method to classify copy number variants based on the read counts supporting the reference
and alternate alleles as determined by svviz for each dataset, and required agreement across
all datasets that had clear support for a genotype [Supplementary Methods]. When comparing
all high confidence classifications, agreement with svviz was 82%. CrowdVariant was able to
resolve 26 sites that were uncertain for svviz, explaining part of the discrepancy. When we
removed sites that were classified as "None of the Above” in CrowdVariant or uncertain in
svviz, agreement was 91% between the two methods. Agreement with svviz also increased
with the number of supporting technologies [Figure 5.

The true power of incorporating many data types is clear when all 6 images of the same site are
viewed together [Figure 6]. We find in multiple cases the crowd is able to resolve copy number
state where other methods cannot, particularly when the boundary points are incorrect or
ambiguous [Figure 7, Supplementary Figure 7]. While non-experts make some mistakes, we
find that they do so in a consistent manner, such as mistaking a difficult-to-sequence region
for a deletion, and they could likely be trained to recognize other features in the image that
would clarify these mistakes. Phased data is particularly powerful for classifying heterozygous
CNVs that are otherwise ambiguous and provides visual confirmation of the CrowdVariant
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Fig. 5. Agreement (within each bin) with svviz
classifications for sites with varying support from
orthogonal technologies. We only compare sites
with CNO, CN1 or CN2 classifications from both
methods.

Fig. 4. CrowdVariant scores determined by
non-expert workers stratified by the number
of supporting technologies from existing CNV
callers.

results in conjunction with all other images for the site.
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Fig. 6. Viewing all image types together shows the power of combining familial and phasing in-
formation in different sequencing platforms. This variant (chr15:36160125-36162210) was classified
as copy number 1 in the son with CrowdVariant score 1.0 and is part of the high quality set. The
variant is visible in the mother, both diploid son images and one of the haplotype images. Clockwise
from top left: llumina mother, 10X son, 10X son haplotype 1, 10X son haplotype 2, lllumina son,
Illumina father.
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Fig. 7. Viewing all image types together shows the power of combining familial and phasing infor-
mation in different sequencing platforms. This variant (chr19:57111292-57111809) was classified as
CN1 in the son with score 0.89 and is part of the high quality set. Svviz classified this example as
CN2 due to the imprecise breakpoints. Clockwise from top left: Illumina mother, 10X son, 10X son
haplotype 1, 10X son haplotype 2, [llumina son, Illumina father. Mother appears to share CNV with
the son, while the father is wildtype. Visualizations produced by default IGV settings.

2.4. CrowdVariant can be used to curate a genome-wide high quality set of
copy number variants

Having demonstrated that we can use non-expert workers to curate a high quality set of copy
number variants, we expanded our classifications genome-wide. We took all putative CNV
sites that were supported by GIAB callsets from at least 2 technologies and had not been
classified in the pilot set (n=2271) and recruited 20 non-expert classifications for each site for
all 6 image types. Due to the larger volume of images, not every worker classified all images
in the genome-wide set. Consistent with the pilot study, we observed strong agreement among
non-expert workers in the genome-wide set. Again, the primary inconsistencies were classifi-
cations for the haplotype images [Figure 8§].

We scored each site by the proportion of workers voting for each classification and applied the
threshold determined by the first 500 sites to curate high quality genome-wide classifications.
This resulted in 1,515 new high confidence sites for the son (NA24385). The CrowdVariant
scores for these sites correlate with the number of supporting technologies [Figure 9]. Likely
due to requiring 2 supporting technologies, these sites were in even stronger agreement with
svviz with 97.2% agreement among sites given CN0/CN1/CN2 classifications with both meth-
ods [Figure 10]. The high quality genome-wide set includes calls for 93 sites that svviz found
uncertain. The additional genome-wide set includes 959 CN1, 552 CNO, 3 CN2 and 1 None of
the Above. The CrowdVariant scores for the genome-wide set of CNVs also demonstrate sim-
ilar concordance with orthogonal technologies [Figure 9] and classify Mendelian violations in
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Fig. 8. Nomn-expert classifications for genome-wide sites in Phase 3 were color coded, weighted and
clustered. Rows represent a question (i.e. an image of a particular site using a particular sequencing
technology) and columns represent workers. Clockwise from top left: 10X son, 10X son haplotype 1
only, 10X son haplotype 2 only, Illumina mother, Illumina father, Illumina son.

the trio with auROC 0.94 [Supplementary Figure 8]. Above the threshold for high confidence
determined from the pilot study, there was only one Mendelian violation in the genome-wide
set occurring at a score of 0.94 [Supplementary Figure 9]. Combining with the 266 high quality
sites from the pilot set, we finalized a set of 1,781 high confidence CNVs.
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Fig. 9. CrowdVariant scores for all genome-
wide sites determined by non-expert workers
stratify by the number of supporting technolo-
gies from existing CNV callers.
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Fig. 10. Agreement with svviz classifications for
genome-wide sites with varying support from or-
thogonal technologies. We only compare sites with
CNO, CN1 or CN2 classifications from both meth-
ods.

232



Pacific Symposium on Biocomputing 2019

3. Discussion

We show that individuals with no background in genomics can be trained to accurately clas-
sify and thereby curate copy number variants. This is possible because the classification of
CNVs based on images of aligned NGS reads is ultimately a pattern recognition problem, and
even non-experts with limited training can excel at recognizing these patterns. As soliciting
expert participation is prohibitively more difficult than non-expert participation (evident in
the small amount of expert data we were able to collect), the ability to use non-experts en-
ables crowdsourcing on a substantially larger scale. Deployment of manual curation on the
ever growing body of clinical samples would likely require this adaptation as the volume will
quickly exceed the capacity of experts. In this study, the larger scale afforded by non-expert
workers allowed us to curate thousands of putative CNVs across the entire genome of a single
individual from the Genome In A Bottle reference collection.

We are able to use non-expert classifications by using confidence scores to recognize the limit
of their abilities. For many applications, such as deriving gold standard labels to improve ma-
chine learning methods, it is more critical to determine which classifications are trusted than
to classify everything correctly. As machine learning approaches are increasingly adopted to
solve genomic problems, crowdsourcing can provide an avenue to derive trusted training sets
at high throughput for low cost.

While we have shown that crowdsourcing can be used to generate high confidence labels for
CNVs, there are several limitations to our study. First, the set of CNVs we present is not a
complete set for the GIAB Ashkenazim son (NA24385), but instead a set of the highest confi-
dence sites. Further, we only know that a CNV is segregating at the site, but we do not know
its exact position or size. One broader limitation of crowdsourcing is that people can be consis-
tent but wrong, however this limitation is shared by other approaches such as ensemble-based
computational methods. In the current framework, our high confidence classifications are also
enriched for sites that are overall easier to classify. However, there are many ways to increase
confidence for more difficult questions by scaling the number of workers, augmenting training
schemes, improving confidence metrics or considering alternative experimental designs such as
those that incorporate both experts and non-experts depending on the particular question’s
difficulty. Nevertheless, we are confident that our crowdsourced, genome-wide set of curated
CNVs will prove valuable to methods developers working to improve CNV calling algorithms.

Many possibilities exist for improving and expanding on this proof-of-concept study demon-
strating the crowdsourcing curation of genomic variants. Incorporating images from additional
technologies, such as long-read sequencing, could likely identify additional high confidence sites
and remove some errors from using only short reads. Additional work might also use input
from users about the precision of breakpoints. Other types of images could also be used, such
as dot plots from assembly-assembly alignments and svviz images with reads mapped to ref-
erence and alternate alleles. These additional methods may help non-experts classify more
difficult types of structural variants, like complex changes, insertions, inversions, and translo-
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cations, as well as variants in difficult, repetitive regions of the genome.

We use Google’s high throughput crowdsourcing platform, but as additional crowdsourcing
platforms become available at low cost, soliciting participation from the crowd will become
progressively easier. By using strategic experimental design, crowdsourcing can be a produc-
tive avenue to compete with and improve upon computational methods in difficult areas of
genomics. Copy number variation, a domain where many experts still use manual inspection,
is just one of these many areas. We provide a resource of high quality copy number variant
classifications for a reference genome as a result of our study but ultimately see the potential
expand far beyond these results.

Data Access

All Supplementary Methods, Figures and Data are available at ftp://ftp-trace.ncbi.nlm
.nih.gov/giab/ftp/technical/CrowdVariant_SupplementaryInfo/. We provide the scores
for each putative copy number variant site and label the high quality sites. All raw worker
answers for both non-experts and experts are available as well.
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The microbiome research is going through an evolutionary transition from focusing on the
characterization of reference microbiomes associated with different environments/hosts to
the translational applications, including using microbiome for disease diagnosis, improving
the efficacy of cancer treatments, and prevention of diseases (e.g., using probiotics). Micro-
bial markers have been identified from microbiome data derived from cohorts of patients
with different diseases, treatment responsiveness, etc, and often predictors based on these
markers were built for predicting host phenotype given a microbiome dataset (e.g., to pre-
dict if a person has type 2 diabetes given his or her microbiome data). Unfortunately, these
microbial markers and predictors are often not published so are not reusable by others. In
this paper, we report the curation of a repository of microbial marker genes and predictors
built from these markers for microbiome-based prediction of host phenotype, and a compu-
tational pipeline called Mi2P (from Microbiome to Phenotype) for using the repository. As
an initial effort, we focus on microbial marker genes related to two diseases, type 2 diabetes
and liver cirrhosis, and immunotherapy efficacy for two types of cancer, non-small-cell lung
cancer (NSCLC) and renal cell carcinoma (RCC). We characterized the marker genes from
metagenomic data using our recently developed subtractive assembly approach. We showed
that predictors built from these microbial marker genes can provide fast and reasonably ac-
curate prediction of host phenotype given microbiome data. As understanding and making
use of microbiome data (our second genome) is becoming vital as we move forward in this
age of precision health and precision medicine, we believe that such a repository will be
useful for enabling translational applications of microbiome data.

Keywords: microbiome; microbial marker gene; type 2 diabetes; liver cirrhosis; immunother-
apy efficacy.

1. Introduction

Recent studies of microbiomes (i.e., communities of microorganisms) have shaped a new view
of the biological world in which various microbial organisms play important roles in the health
of humans, animals, plants, and the environment.!* Metagenome-wide association studies®
have enabled the high-resolution discovery of associations between the microbiome and human
diseases, including type 2 diabetes,® liver cirrhosis,” atherosclerotic cardiovascular disease,®
colorectal cancer? and rheumatoid arthritis.!® The announcement of the National Microbiome
Initiative (NMI) on May 13, 2016, marks a milestone in microbiome research. The NMI aims

(© 2018 Wontack Han and Yuzhen Ye. Open Access chapter published by World Scientific Publishing
Company and distributed under the terms of the Creative Commons Attribution Non-Commercial
(CC BY-NC) 4.0 License.
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to advance the understanding of microbiome behavior and enable protection and restoration
of healthy microbiome function. Development of computational tools for interpretation and
integration of meta-omics data will be key to advancing the field and ultimately achieving the
goal of the NMI.

Unlike traditional microbial genomic sequencing projects, metagenomics attempts to di-
rectly characterize the entire collection of genes within an environmental sample (i.e., the
metagenome) and analyze their biochemical activities and complex interactions.!»!? Land-
mark progress in metagenomics occurred in 2004'3'% when two research groups published
results from large-scale environmental sequencing projects. Many more metagenomic projects
have been conducted or are ongoing, representing broadened applications from ecology and
environmental sciences'® to the chemical industry!'® and human health.!” Metagenomics, in
principle, enables the study of any microbial organism, including the large number of mi-
croorganisms that cannot be isolated or are difficult to grow in a lab. More importantly,
microbes, by nature, live in communities where they interact with each other by exchanging
nutrients, metabolites, and signaling molecules. Metagenomics enables the characterization of
microbes in natural environments, addressing important biological questions related to mi-
crobial environments such as the diversity of microbes in different environments,'® microbial
(and microbe-host) interactions,! and the environmental and evolutionary processes.?"

Earlier metagenomics studies focused on the characterization of reference microbiomes
associated with different environments/hosts. Recent studies shift the emphasis to the trans-
lational applications, including using microbiome for disease diagnosis, improving the efficacy
of cancer treatments (including cancer chemotherapy and immunotherapy), and prevention
of diseases (e.g., using probiotics).?! Gut bacterium Eggerthella lenta was found to be able
to manipulate cardiac drug inactivation.?? Harnessing the host immune system constitutes a
promising cancer therapeutic because of its potential to specifically target tumor cells while
limiting harm to normal tissues. Recent clinical success has fueled the enthusiasm about
immunotherapy using antibodies that block immune inhibitory pathways, specifically, the
CTLA-4 and the PD-1/PD-L1 axis.???3 The gut microbiota plays an important role in shap-
ing hosts immune responses,?* so there is no surprise that a few recent studies have shown that
intestinal microbiota (and some particular microbial species/strains) can mediate immune ac-
tivation in response to chemotherapeutic agents and immunotherapy. Sivan and colleagues?
found that commensal Bifidobacterium promotes antitumor immunity and facilitates anti
PD-L1 efficacy. They also found that oral administration of Bifidobacterium alone improved
tumor control to the same degree as anti PD-L1 therapy (checkpoint blockade), and combi-
nation treatment nearly abolished tumor outgrowth. Gut microbiota can also modulate the
actions of chemotherapeutic drugs used in cancer and other disease, reducing the toxicity of
chemotherapeutic compounds and improve their efficacy.? A working knowledge of the micro-
biome (our second genome??) is vital as we move forward in this age of precision health and
precision medicine,?® especially in the area of cancer research, which aims at effective treat-
ments for various kinds of cancer based on the knowledge of genetics, biology of the disease
and host-microbiome interactions.??

The success of the translational applications of microbiome data relies on the character-
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ization of differential markers (species, genes, biological pathways, among others) that can
differentiate different groups of microbiome data (e.g., healthy individuals versus patients,
treatment responders versus non-responders). It is also important to understand factors in-
fluencing the gut microbiome and strategies to manipulate the microbiome to augment ther-
apeutic responses and disease prevention.3°

To derive microbial markers that are associated with a specific host phenotype (e.g.,
healthy versus diseased), a key task is to compare two groups of microbiome (e.g., one group
of microbiome data derived from healthy individuals versus a group derived from patients)
to detect consistent differences (e.g., species or genes) between the groups, considering the
large inter- and intra-individual variations of the microbiome.3! The typical analysis workflow
is to assemble and annotate metagenomic datasets individually or as a whole, followed by
statistical tests to identify differentially abundant species/genes. The subtractive assembly
approaches we previously developed, subtractive assembly (SA)32 and concurrent subtractive
assembly (CoSA) approach,®3 are de novo assembly approaches for comparative metagenomics
that first detect differential reads between two groups of metagenomes and then only assemble
these reads. When evaluated using simulated and real type 2 diabetes microbiome datasets,3?
our subtractive assembly approaches reduce the datasets up front, which also result in better
characterization of the differential genes.

Recent studies have revealed microbial markers for disease diagnosis and other purposes,
and predictors built based on these markers have achieved promising accuracy for predictions.
The pitfall of most of these studies is that the microbial markers and predictors built from these
markers are not made available for others to use. For example, Qin et al.” constructed a support
vector machine discriminator based on microbiome data for liver cirrhosis prediction using 15
gene markers, achieving impressive accuracy, with AUC (area under the receiver operating
characteristic curve) of 0.918 and 0.838, respectively, for training and leave-one-out cross-
validation. Although the authors listed the identities of these 15 genes in a supplementary table
(Supp Table 12 in7), they did not release the gene sequences, nor the discriminator they built.
It makes it impossible for others to use their marker genes and predictors. Using our recently
developed computational approach CoSA 33 we re-analyzed several large collections of publicly
available microbiome datasets, in an attempt to create a repository of microbial marker genes
and the predictors built from these marker genes for translational applications of microbiome
data (e.g., to predict if a cancer patient is likely to be responsive to PD-1 blockage treatment
given his/her microbiome data). We note there is no shortage of microbiome repositories;
instances include the Human Microbiome Project repository (‘http://hmpdacc.org) and the
MG-RAST server (https://www.mg-rast.org). However, there is no repository of bacterial
marker genes and predictors for microbiome-based predictions to the best of our knowledge.
As a proof of concept, we focused on two diseases, type 2 diabetes and liver cirrhosis, and two
types of cancers. We first extracted microbial marker genes from these microbiome datasets,
then built predictors using these genes, and finally created a repository of the marker genes
and predictors, as well as a companion computational pipeline for using this repository.
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2. Methods

2.1. Microbiome datasets

We focus on microbial genes related with two diseases and the treatment efficacy of two types
of cancer:

(a)

(b)

(d)

T2D (type 2 diabetes). We used the T2D cohort from a study,’ which contains microbiome
data from two groups of 70-year-old European women, one group of 50 with T2D and the
other a matched group of healthy controls (NGT group; 43 participants). We previously
used this cohort for testing our subtractive assembly approaches.?2:33

Cirrhosis (liver cirrhosis). Qin et al.” derived metagenomic datasets from 98 Chinese pa-
tients with liver cirrhosis and 83 healthy individuals as training datasets to infer marker
genes and build a predictor, and microbiome data from additional 25 patients and 31
healthy controls as validation datasets. Similarly, we used their training datasets for char-
acterization of marker genes and training of predictors, and their validation datasets for
independent tests of the predictors for liver cirrhosis.

NSCLC (non-small-cell lung cancer). It has been shown that gut bacteria can affect pa-
tient responses to cancer immunotherapy (e.g., immune checkpoint inhibitors ICIs that
target the PD-1/PD-L1 axis). Routy et al.3* found that primary resistance to ICIs can
be attributed to abnormal gut microbiome composition, and fecal microbiota transplan-
tation (FMT) from cancer patients who responded to ICIs into germ-free or antibiotic-
treated mice ameliorated the antitumor effects of PD-1 blockade, whereas FMT from
non-responding patients failed to do so. They sequenced the microbiome of the stool sam-
ples at diagnosis, and showed correlations between clinical responses to ICIs and relative
abundance of Akkermansia muciniphila. We used microbiome datasets from this study,
which includes 32 non-responders and 33 responders, aiming to infer marker genes that
can be used to distinguish responders from non-responders.

RCC (renal cell carcinoma). We used datasets from the same study®! that involve 20
non-responders versus 42 responders to a different cancer type, renal cell carcinoma.

Table 1 summarizes the microbiome datasets that were re-analyzed in this paper.

Table 1: Summary of the microbiome datasets for training the predictors.

Abr. Disease Reference # of  Total base pairs

samples (bps)
T2D Type 2 diabetes [6] 93 225 GB
Cirrhosis Liver cirrhosis [7] 181 817 GB
NSCLC  Non-small-cell lung cancer [34] 65 153 GB
RCC Renal cell carcinoma [34] 62 147 GB
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2.2. Microbial gene characterization and quantification

For each collection of above mentioned microbiome datasets, we first applied CoSA to assem-
ble genes that are potentially differential between the groups (i.e., for the T2D collection and
the liver collection, the patient group versus group of healthy individuals, and for the NSCLC
and RCC collections, responders versus non-responders). These genes were then subject to
feature selection. Using selected marker genes, different machine learning (ML) approaches
were employed to build predictors for microbiome-based host phenotype prediction. We re-
fer the readers to our previous publications3?33 for details about our subtractive assembly
approach CoSA. Briefly, the CoSA approach uses a Wilcoxon rank-sum (WRS) test to de-
tect k-mers that are differentially abundant between two groups of microbiomes (CoSA uses
KMC2% for k-mer counting, and employs the “mannwhitneyutest” function from ALGLIB
(http://www.alglib.net) for the test). It then uses identified differential k-mers to extract
reads (by a voting strategy) that are likely from the sub-metagenome with consistent abun-
dance differences between the groups of microbiomes. Further, CoSA attempts to reduce the
redundancy of reads (from abundant common species) by excluding reads containing abun-
dant k-mers. Extracted reads are then assembled using MegaHit,?¢ and genes are predicted
from the assembled contigs using FragGeneScan.?” The quantification of the genes in each
microbiome is done by reads mapping of shotgun reads onto the genes using Bowtie 2.38 We
counted a gene’s abundance based on the counts of both uniquely and multiplely mapped
reads (the contribution of multiplely mapped reads to a gene was computed according to the
proportion of the read counts divided by the gene’s unique abundance”). The read counts were
then normalized per kilobase of gene per million of reads in each sample.

2.3. Inference of microbial marker genes using machine learning
approaches

Microbial genes assembled and quantified mentioned above for the different microbiome
datasets were used as candidate features for selecting microbial marker genes and for training
predictors for microbiome-based host phenotype prediction (see Figure 1(a)). For feature se-
lection, we first applied a g-value cutoff and then used two different feature selection methods
(tree-based feature selection and L1-based feature selection) to select a smaller number of mi-
crobial genes, and used them as microbial marker genes. We tried different ML algorithms for
phenotype prediction, including Support Vector Machines (SVM), Random Forests (RF), De-
cision Trees (DT), Neural Networks (NN), and K-nearest Neighbor (KN) approach, along with
different cross-validation strategies. We used the scikit-learn (http://scikit-learn.org) im-
plementation of these ML approaches in this study. We tested RF with 10, 100 and 1000 trees
and KN with 20 neighbors. For NN, we used Bernoulli Restricted Boltzmann Machine (RBM)
with 3200 binary hidden units. We used the default settings for SVM and DT.

2.4. Mi2P: from microbiome to phenotype

We created a repository of above mentioned microbial marker genes and predictors built from
the marker genes. We also developed a computational pipeline called Mi2P (which stands
for “from Microbiome to Phenotype”) for users to use this repository. As shown in Figure
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1(b), Mi2P is composed of three main steps: 1) mapping of metagenomic sequencing reads
onto the marker genes using Bowtie 2;% 2) quantification of the marker genes based on read
counts, using both uniquely and multiplely mapped reads (see 2.2); and 3) the estimated
gene abundances are used as input features to the microbiome-based phenotype predictors. A
wrapper script is included in the pipeline for the one-stop use of our pipeline, which takes a
metagenomic dataset as the input, and reports prediction as the main output. It also outputs
some intermediate results including the estimated gene abundances. Mi2P is available as open
source software for download at sourceforge (https://sourceforge.net/projects/mi2p/).

Group A Group B Input: microbiome
Case Control (shotgun sequences)
N\, cosa N
eads Collections of
Extracted reads i
mapping marker genes

Assembly L (for T2D etc)
Gene prediction]

Bacterial genes Marker gene abundances

Feature selection|

Prediction Phenotype
Marker genes predictors
Training 1 |
Predictors Host phenotype prediction
(a) Model curation (b) Mi2P

Fig. 1: Schematic representations of the model curation based on CoSA (a) and Mi2P (Mi-
crobiome to Phenotype) pipeline (b).

3. Results
3.1. Accuracy of microbiome-based predictors

We built predictors for predicting host phenotype based on the microbiome data. We evaluated
the accuracy of the predictors using different cross-validation strategies and ML approaches.
Furthermore, we tested two different feature selection approaches (tree-based and L1-based)
with liver cirrhosis data sets. Since we have already reported the performance of T2D predic-
tion in our previous publications,??3% we focused on reporting the results for liver cirrhosis
and cancer treatment responsiveness prediction based on microbiome data in this paper.
Figure 2 shows the ROC plots for liver cirrhosis prediction using different ML approaches
and feature selection methods. The figure shows that RF achieved better predictions than
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SVM approach. It also shows that predictors built from genes selected using the tree-based
feature selection method performed better as compared to L1-based feature selection method.
We therefore chose the tree-based feature selection as the default approach in our pipeline.

Table 2 summarizes the accuracy of the predictors we built for liver cirrhosis. Our SVM
based predictor achieved comparable performance as the predictor reported in Qin et al..”
However, our RF based predictor achieved significantly better predictions with higher AUCs.
We speculate that the accuracy improvement is a result of the combination of more marker
genes and a different machine learning approach (RF). We note that we tested RF using
different numbers of trees, including 10, 100 and 1000. We found that RF with 100 trees and
1000 trees achieved slightly better predictions than RF with 10 trees. Balancing running time
and accuracy, we chose RF with 100 trees.

Table 2: Accuracy of microbiome-based predictors for liver cirrhosis.

methods # ol marker gun i RE (100 trees) NN KN

genes
crossd Qin et al. 15¢ 0.84 ¢ N/A N/A N/A
Our approach 46 0.92 0.92 0.88 0.71
1. Qinet al. 15¢ 0.84 ¢ N/A N/A N/A
validation® =y - proach 46 0.83 0.93 0.81  0.72

@: the “cross” columns show the leave-one-out validation result (see Figure 2 (a)
for 5 fold cross-validation results). °: validation using microbiome data unseen in
the training of the predictor. ¢: numbers taken from the paper.”

Table 3 summarizes the accuracy for predicting immunotherapy responders versus non-
responders based on microbiome data. Correlations between clinical responses to immunother-
apy (ICI) and the relative abundance of Akkermansia muciniphila were reported in,3* how-
ever, no predictors were built by the authors. Here, we built predictors for immunotherapy
responsiveness using the RF approach with a small collection of marker genes, which achieved
reasonably accurate predictions for NSCLC. Predictions of RCC based on microbiome data
were less accurate. We tested RF predictors with different trees, and results show that RF with
100 trees performed relatively well for both cancers, similar to prediction of liver cirrhosis.
Therefore, we chose RF predictors with 100 trees for immunotherapy resposiveness prediction
to include in our Mi2P package. We note that we also applied SVM approach to this dataset,
which however achieved much worse predictions (AUC = 0.61) than the RF predictors.

3.2. Microbial marker genes

We include the sequences of microbial marker genes (both proteins and gene sequences), along
with their annotations (by hmmscan®’) in the Mi2P package. Table 4 shows a few examples
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Mean ROC of liver cirrhosis predictors
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” —— Mean ROC of SVM (AUC = 0.94)

0.2 —— Mean ROC of RF (AUC = 0.96)

|| Mean ROC of DT (AUC = 0.87)
—— Mean ROC of NN (AUC = 0.91)

ood | Mean ROC of KN (AUC = 0.92)
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0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

(a) Tree-based feature selection

Mean ROC of liver cirrhosis predictors

1.0+

0.8

0.6 1

0.4 1

True Positive Rate

—— Mean ROC of SVM (AUC = 0.91)
0.2 1 —— Mean ROC of RF (AUC = 0.92)
Mean ROC of DT (AUC = 0.79)
—— Mean ROC of NN (AUC = 0.79)
0.0 - Mean ROC of KN (AUC = 0.88)

T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

(b) L1-based feature selection

Fig. 2: Receiver operating characteristic (ROC) plots of the liver cirrhosis predictors using
different ML approaches. We also tested two feature selection methods: tree-based feature
selection and L1-based feature selection, and the results are shown in (a) and (b), respectively.
The ROC curves were averaged over five cross validation results.

243



Pacific Symposium on Biocomputing 2019

Table 3: Accuracy of microbiome-based prediction of responders versus non-responders to
cancer treatment using RF (with 10, 100, and 1000 trees), DT and NN approaches.

Cancer # of RF DT NN
type marker genes 10 100 1000 mean AUC mean AUC
NSCLC 116 0.86 0.91 0.89 0.72 0.81
RCC 85 0.84 0.83 0.81 0.79 0.78

identified from the liver cirrhosis cohort. These marker genes can be either more abundant in
healthy individuals (i.e., depleted in liver cirrhosis microbiomes), or more abundant in liver
cirrhosis microbiomes. We also note that a significant fraction of genes have no functional
annotations according to hmmscan search (or annotated to a domain without functional an-
notations, such as DUF3829): 0 out of 5 (0%) depleted genes, and 4 out of 41 (10%) enriched
genes in liver cirrohosis microbiomes have no functional annotations.

Table 4: Examples of microbial marker genes for liver cirrhosis prediction.

Gene id Putative function Pfam domain

Depleted in liver cirrhosis microbiome

H_ k9923554 _31.534_ Tripartite ATP-independent periplasmic transporters DctQ
H_k99_23763.1365.1613_ Helix-turn-helix domain HTH_31
H_k99_38620_1_453+ Acyltransferase family Acyl_transf_3
H_k99_59586_373_654 _- Amidohydrolase Amidohydro_2
H_k99_64410_1_617_- REC lobe of CRISPR-associated endonuclease Cas9 Cas9_REC

Enriched in liver cirrhosis microbiome

L_k99.1592_1_390_- Polysaccharide biosynthesis C-terminal domain Polysacc_synt_C
L k99_7366_1_565_- Carbon starvation protein CstA CstA
L_k99.13622_1_326_+ Septation ring formation regulator, EzrA EzrA

L k99_52773_82_623_+ Sodium:sulfate symporter transmembrane region Na_sulph_symp
L_k99_52825_1_408_+ D-isomer specific 2-hydroxyacid dehydrogenase 2-Hacid_dh_C

3.3. Running time of Mi2P pipeline

We provide a wrapper script in Mi2P pipeline for users to employ our repository of microbial
marker genes and predictors. We show that this pipeline gives fast prediction of host phenotype
from a query microbiome dataset (of shotgun sequences), thanks to the relatively small number
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of microbial marker genes that need to be considered. For example, on a linux computer (with
Intel(R) Xeon(R) CPU E5-2623 v3 @ 3.00GHz), running the pipeline for two test datasets,
one from the liver cirrhosis collection (ERR528314 with 3 Gbps), and the other one from the
NSCLC collection (ERR2213736 with 2 Gbps) each took less than 6 min to complete.

4. Discussion

Our current repository of microbial marker genes and predictors is rather limited, covering only
four host phenotypes. We plan to apply the same analysis to more collections of microbiome
datasets associated with human diseases and treatment efficacy. We believe there will be no
shortage of such datasets due to the soaring interests in microbiome research associated with
human health and diseases. In addition, we will seek to collect microbial marker genes using
other approaches (e.g., based on the literature search) to enrich our repository.

A challenging problem in making our repository of microbial maker genes and predictors
useful will be the generalization issue, due to both the biological complexity (e.g., stratification
of the samples that were used to build the classifiers) and technical complexity (e.g., over-
fitting of the predictors). The generalization issue is a general problem in machine learning,
and methods have been proposed to alleviate the problem. We will explore some of the exist-
ing approaches to address this challenge. In addition, we will explore approaches to provide
confidence of predictions, rather than to simply provide yes or no prediction.

Further studies of the microbial marker genes will be needed to understand why they
are important for microbiome-host interaction, contributing to the host phenotype. We also
note that a significant fraction of the identified marker genes are of unknown functions. We
will exploit different homology- and context-based approaches to predict the functions of
these genes. Boosted by the accumulation of microbial genomes and metagenomes, a few new
methods, including our own guilt-by-association approach (the community profiling approach),
have been developed for functional annotation of microbial genes.*4! We plan to utilize these
approaches in our future research.
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The inconsistency of open pharmacogenomics datasets produced by different studies lim-
its the usage of such datasets in many tasks, such as biomarker discovery. Investigation of
multiple pharmacogenomics datasets confirmed that the pairwise sensitivity data correla-
tion between drugs, or rows, across different studies (drug-wise) is relatively low, while the
pairwise sensitivity data correlation between cell-lines, or columns, across different stud-
ies (cell-wise) is considerably strong. This common interesting observation across multiple
pharmacogenomics datasets suggests the existence of subtle consistency among the different
studies (i.e., strong cell-wise correlation). However, significant noises are also shown (i.e.,
weak drug-wise correlation) and have prevented researchers from comfortably using the data
directly. Motivated by this observation, we propose a novel framework for addressing the in-
consistency between large-scale pharmacogenomics data sets. Our method can significantly
boost the drug-wise correlation and can be easily applied to re-summarized and normalized
datasets proposed by others. We also investigate our algorithm based on many different cri-
teria to demonstrate that the corrected datasets are not only consistent, but also biologically
meaningful. Eventually, we propose to extend our main algorithm into a framework, so that
in the future when more datasets become publicly available, our framework can hopefully
offer a “ground-truth” guidance for references.

Keywords: Pharmacogenomics Datasets; Precision Medicine; Biomarker Discovery

1. Introduction

One goal of precision medicine is to select optimal therapies for individual cancer patients
based on individual molecular biomarkers identified from clinical trials.!® Molecular biomark-
ers for many cancer drugs are currently quite limited, and it takes many years to identify and
validate a biomarker for a single drug in clinical trials.*> Recent pharmacogenomics studies,
where drugs are tested against panels of molecularly characterized cancer cell lines, enabled
large-scale identification of various types of molecular biomarkers by correlating drug sen-
sitivity with molecular profiles of pre-treatment cancer cell lines.'9 These biomarkers are
expected to predict the chance that cancer cells will respond to individual drugs.

There have been a handful of similar pharmacogenomic studies since Cancer Cell Line
Encyclopedia (CCLE)” and Genomics of Cancer Genome Project (CGP)!! were published in
2012 by the Broad Institute and Sanger Institute, respectively. CCLE included sensitivity data

© 2018 The Authors. Open Access chapter published by World Scientific Publishing Company and
distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0
License.
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for 1046 cell lines and 24 compounds; CGP included data for almost 700 cell lines and 138
compounds. The following Broad Institute’s Cancer Therapeutics Response Portal (CTRPv2)
dataset included 860 cell lines and 481 compounds.®!213 The dataset from the Institute for
Molecular Medicine Finland (FIMM) included 50 cell lines and 52 compounds.'* The new
version of Genomics of Drug Sensitivity in Cancer (GDSC1000) dataset included 1001 cell
lines and 251 compounds. There have also been similar pharmacogenomics studies specific to
particular cancers including acute myeloid leukemia.® 17

Each dataset is essentially a data matrix, where each row represents one drug, each column
represent one cell line, and values are sensitivity measures derived from dose-response curves.
IC50 (concentration at which the drug inhibited 50% of the maximum cellular growth) and
AUC (area under the activity curve measuring dose response) are commonly used as sensitivity
measures. However, recent re-investigation of published pharmacogenomics data has revealed
the inconsistency of drug sensitivity data among different studies, raising the concern of us-
ing them for biomarker discovery.'®' In the recent comparison of drug sensitivity measures
between CGP and CCLE for 15 drugs tested on the 471 shared cell lines, the vast majority
of drugs yielded poor concordance (median Spearman’s rank correlation of 0.28 and 0.35 for
IC50 and AUC, respectively).1®

There have been numerous attempts to address this issue. Mpindi et al. proposed to in-
crease the consistency through harmonizing the readout and drug concentration range.?° They
re-analyzed the dose-response data using a standardized AUC response metric. They found
high concordance between FIMM and CCLE and reasoned that similar experimental proto-
cols were applied, including the same readout, similar controls. Bouhaddou et al. calculated a
common viability metric across a shared logl0-dose range, and computed slope, AUC values
and found the new matrix could lead to better consistency.?! Hafner et al. proposed another
metric called GR50 to summarize drug sensitivity and demonstrated its superiority in assess-
ing the effects of drugs in dividing cells.?? Most proposed ideas focused on forming better
summarization metric and/or standardizing experiments and data processing pipeline. Unfor-
tunately, standardization methods cannot address the inconsistency issues of existing datasets.
Re-summarization methods rely heavily on the assumption that the raw data is correct. But
since datasets produced under similar experimental protocols are more consistent with each
other, there surely exists some technical noises on the raw data.?? Hence when the overlap-
ping part between datasets grows bigger and the noise sources become more complex, these
methods might not work well. Note that most of the studies have focused on the overlaps
between CCLE and other datasets, which only contain very limited number of drugs. Novel
computational methods correcting large-scale summarized data are therefore in urgent need.

Studies confirmed that drug-wise correlation is poor, but the cell-wise correlation is con-
siderably strong (for example: overlapping cell lines between CTRPv2 and GDSC1000 have
a median Spearman’s correlation of 0.553), suggesting the underlying consistency of phar-
macogenomics datasets. Inspired by this observation, we developed a novel computational
method Alternating Imputation and Correction Method (AICM). Through purely correcting
data based on their cell-wise correlation, AICM significantly improves the drug-wise correla-
tion and hence makes the datasets more credible in future work. Furthermore, since AICM
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works on summarized data, it can easily concatenate with all previous methods proposed to
improve the summarization of raw data — just run on the re-summarized data. To the best
of our knowledge, this is the first method that leverages cell-wise information into correcting
data to address such challenge. We release the code and corrected datasets to the communityP]

2. Method
2.1. Method overview

The main goal is to increase the drug-wise correlation between two datasets, denoted as
A, B € R"P — p drugs and p cell lines — for convenience. We denote the ith row of matrix
A as Ay j, then the goal can be formalized into the following problem:

max ZCOI“I“ [z] g( )[%]) (1)
=1

This is a more generalized idea than Renyi’s correlation as we define f, g not functions but
operations such that f,g: R"*? — R"*?" where n',p’ € Z,. Operations include using a new
summarization metric to re-summarize raw data and subsampling the data.

Now, since cell-wise correlation is consistently more concordant across different studies
than drug-wise correlation, we can raise one natural question: can we rely on the cell-wise
information to correct the datasets so that the drug-wise correlation will also be improved?
We denote A7 as the jth column of A and A7 as the union of all column A7 such that j € J,
then more precisely, we want to develop some operation f, ¢ such that

max ZCorr (A|A7, BY); 4, 9(B|A?, B);; 1) JgO{k:} (2)
k=1

s.t. Hf( )= Al <ea, [If(B)- Bl <es (3)

where (-|A7, BY), J C | }_,{k} means either partial or all corresponding column information of
A and B is given. || - || in denotes an arbitrary matrix norm, and €4, ep are some arbitrary
tolerance that we allow maximum departure from the original values. We have found that
there are considerably large amount of missing data in these datasets. Surprisingly, with some
simple linear regression based imputation of these missing data based solely on the cell-wise
information, we found increase in drug-wise correlation. This confirmed our hypothesis that
cell-wise information can be utilized to correct the datasets. Thus, AICM is developed to
accomplish this goal by randomly dropping the parts of one dataset’s column and re-fit based
on another dataset’s corresponding column with a simple linear regression with /., norm
regularization. /o, norm is leveraged to regularize large departure from the original data as it
bounds the maximum departure of fitted values from original values. The corrected values are
subject to a hard threshold assuming that the data are not completely destroyed by noises,
so that the corrected data shall not depart too far from the original value. By repeating
such regression process interactively between two datasets, AICM hopes to reveal the true
information shared in between these datasets and hence increase the drug-wise consistency.

®https://github.com/tomwhoooo/aicm
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2.2. Algorithm

The main idea is as described above: we uniformly randomly drop the values from one matrix
(response matrix) and use the other matrix’s column (variable matrix) to impute dropped
values. We then threshold the imputed values into the final correction by some proportional
threshold with respect to the original values of the response matrix. We iteratively repeat this
process by swapping the role of response and variable between two matrices. Below are the
hyperparameters for the algorithm:

e max iterations (iter € Z,): how many iterations the alternating imputation and cor-
rection need to be run.

e dropping rate (r € (0,1)): what percent of the data from the response matrix should
be dropped each iteration

e regularization term (), € Ry ): how much the original value should be taken into account
during the regression process

e hard proportional constraint (A, € (0,1)): how many percentage points percent the
imputed data can depart from the original value absolutely

And the full algorithm is described in detail as in Algorithm[i] We use a simple linear regression
with /o norm (Eq)) regularization for fitting process. Besides this, one can always use other
fitting methods. For example, if one believes sparsity needs to be incorporated, one can use
more weights and an ¢; norm, or if one believes there needs to be some group effects across
cell lines, one can use an ¢; and ¢ norm penalty. These ideas are similar to the idea of Lasso
and Elastic Net.?324 However, it is suggested that the objective function of this fitting process
should remain convex, since solving non-convex problems would highly likely lead to a local
extrema (or even a saddle point) and thus cause disastrous variations among trials.

2.3. Remarks

Although the whole iterative procedures are not convex, the main objective function is
convex and hence the solution of this function would be a global minimum with an appropriate
solver. Thus can be solved efficiently and accurately by various methods such as proximal
gradient algorithm and alternating direction of multipliers (ADMM).2526 They have well-
established convergence theorems and are available in many open-source (i.e. SCS?7) and
industrial solvers.?®

In the next section, we will show the results of our algorithm on real datasets, as well
as synthetic datasets to demonstrate our method significantly increases drug-wise correlation
remarkably and does not artificially increase the correlation under certain assumption. We
will also show the result is indeed biologically meaningful.

3. Results and Discussion
3.1. Synthetic datasets

The alternative correction procedure (Swap) in AICM essentially agglomerates two datasets.
It inevitably gives rise to the concern that the corrected datasets are forced to be similar
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Algorithm 1 Alternating Imputation and Correction Method (AICM)

Hyperparameter: Dropping rate r, maximum iteration iter, regularization term \,, and
hard constraint term \j,.
Input: Two data matrices, of both n drugs and p cell-lines with summarized sensitivity data,
denote as A, B € R™P. We denote jth column of two matrices as o/, b, j € {1,2,...,p}
respectively. We denote the entry at ith row and jth column as A;; and B;; respectively,
{i,7} €{1,2,...,n} x{1,2,...,p}.
Initialization: For each j € {1,2,...,p}, for all i € {1,2,...n} such that B;; is missing while
Ajj is not, we denote such set as Bj*, we fit a linear model such that o, 8; maximizes
|67 — aja? + Bj]|2 and then impute the missing values as BgA = a;Aij + f;. Then swap the
role of A and B and repeat the above process. Now we have two matrices with same missing
indices.
for k in {1,2,... Iter} do

Swap: A — B,B — A.

Drop: Randomly drop r x n x p data uniformly from A, we denote the indices of
the dropped data as D C {1,2,...,n} x {1,2,...,p}, and hence dropped data as a set

APR .= {U{i’j}ep Al‘j}. In a similar fashion, we denote dropped data of column k as

akn = {U{z‘,j}eD,\ﬁ st =k Aij}, we denote the corresponding data in kth column of B as

bipr- We fit a set of parameters a; € R,8; € R for each j with the following objective
function:

. 1. . , ,
min ;Hb] — (aja’ + Bj)ll2 + Mrllapg — (ajb)pg + Bi)llco (4)

a;,B;

Correction: Set a{)R = ajbf;DR + B, for each j. We denote the set of corrected value as

{ANMP} = U§:1{af3R}‘
Threshold: For {i, j} € D, we set {A™MP},;. to

{A™P}; = max (min (Aij, (1 — An)Ag) , (14 An) Ajj) (5)

end for

regardless of the ground truth. For example, one easily questions whether AICM improves
the between-group correlation of placebo — it functions as white noise, thus is expected to be
uncorrelated between one dataset and another. In addition, the induced randomness (Drop) in
AICM might well shake one’s confidence in the stability and reliability of this method. In this
section, we utilize synthetic datasets to demonstrate that AICM are free of these hypothetical
troubles.

In the most ideal scenario, where there exist no technical or biological noises, the drug
sensitivity matrices are expected to be the same across distinct research teams. For simplicity,
we assume that the ground truth can be separated into the drug part and the cell part. Then,
the observed matrix can be modelled as

M=al-1"+a-b" +w, (6)

where « is the baseline, a € R™ contains the information about the n drugs, b € R? summarizes
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the structure of the cell lines. The matrix ol - 17 + a- b’ represents the ground truth of the
drug sensitivities. We simulate the ineffective drugs as uncorrelated rows by setting the top
m entries of a to 0’s while the other rows associated with non-zero values (hence correlated)
in a are regarded as effective drugs. W € R™? is a random matrix from a matrix normal
distribution which reflects the composite of noise. In this study, we set n = 50, p = 40, m = 10.
The details of the data generation process are deferred to supplementary materia]ﬂ

We apply AICM to the synthetic datasets with 30 different combinations of hyperparame-
ters iter and A\p: iter € {20, 40,80, 100, 120,140} and A, € {0.05,0.1,0.15,0.2,0.25}, and repeat the
method for 20 times for each combination. With careful selection, we take (iter, \;) = (80,0.1)
because this combination gives acceptable reduction on correlations between first ten uncor-
related rows and strong increase of correlations between correlated rows as demonstrated (see
Figure . In addition, A\, = 0.1 is a conservative control of the correction step. Note that the
normalized distances between the two matrices and the ground truth are reduced to 1.188 and
1.170 respectively after correction (the distances are 1.272 and 1.267 before correction). The
decrease in distance is relatively significant, given the fact that we put a hard proportional
threshold at 10% for each individual value. Therefore, AICM does help reduce the noise in the
observed matrices. Furthermore, the Spearman’s correlation median of the correlated rows is
increased to 0.390 from 0.219 with standard deviation 0.021, while the Spearman’s correlation
median of uncorrelated rows is reduced to 0.084 from 0.095 with standard deviation 0.010. It
indicates that the result is insensitive to the randomness of the dropping procedure in AICM.
In Figure[2] the actual shift of the correlation distributions is displayed. On top of incremental
correlations of correlated rows, there appear to be reduced correlations of uncorrelated rows
after using AICM. It implies that our method not only enhances the real signals, but also
exposes the fake ones. Thus, the original concern is eliminated on indiscriminately blending
signals between datasets.

Uncorrelated Rows Correlated Rows

450
-173.8 -151.5 EE205 = g = Fards Zilde 37.6 44.3

240
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80
218.7 329.6 -0

- 40
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Ap: 0.05 0.1 0.15 0.2 0.25 Ap: 0.05 0.1 0.15 0.2 0.25

Fig. 1: The percentage change (%) of the medians of the correlations on synthetic datasets
with different parameters. z-axis is iter and y-axis is \j.

Phttps: //github.com /tomwhoooo/aicm /blob/master /paper _supp
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Fig. 2: Distribution of drug-wise correlations between the synthetic datasets before AICM is
applied and after. Note that the darker green bars denote overlap of uncorrelated rows and
correlated rows in this histogram.

3.2. Real datasets

We choose the three largest datasets in PharmacoGX: CTRPv2, GDSC1000, and FIMM as
case studies.®!11319 Drug names are compared by first converting to InChIKey via the we-
bchem R package.?® For the GDSC1000 dataset, 60 InChIKeys are subsequently manually
retrieved from PubChem. A Python script is prepared and used to retrieve generic cell line
“Accession numbers” from Cellosaurus.?® Given that not all cell lines returned Accession num-
bers, we remove symbols, spaces, and case from the names of the remaining cell lines for
improved matching between datasets. For each of the three datasets, their respective 1C50
and AUC data are obtained from PharmacoGx. Duplicate experiments are removed from
CTRPv2 and GDSC1000 by removing all instances of a certain culture medium. Finally, the
six dataframes are filtered for matching cell lines and drugs between each other, yielding 12
dataframes which contain IC50 and AUC between all 3 datasets.

With the optimal hyperparameters fetched from synthetic data, we demonstrate the shift
of Spearman’s correlation between 90 drugs overlapping between GDSC1000 and CTRPv2
after AICM is deployed in Figure [3al The data uses AUC summarization. It is clear that after
AICM is deployed, the two datasets become more concordant with each other — this can be
observed from both individual drug scatter plot and overall distribution. We also demonstrate
two similar graphs between 30 overlapping drugs between CTRPv2 and FIMM, 29 overlapping
drugs between GDSC1000 and FIMM with AUC summarization in Figure [3b] and

Note that when we calculate the correlation, the original values that are missing are
discarded from both matrices for fair comparison. Brief statistics of the original and post-
correction drug-wise Spearman’s correlation can be found in Table 1. For significance, we
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used the cutoff of one-sided test at p-value 0.05 using the significance test of Spearman’s cor-
relation proposed by Jerrold Zar.3! The values present what percentage of drugs is significant
across two datasets.

Datasets Mean Median Significant Size
Before | After | Before | After | Before | After | Drug | Cell
CTRPv2 & GDSC1000 | 0.261 | 0.410 | 0.249 | 0.411 | 63.33% | 90.00% | 90 | 566
CTRPv2 & FIMM 0.485 | 0.624 | 0.468 | 0.585 | 70.00% | 93.33% | 30 41
GDSC1000 & FIMM | 0.250 | 0.352 | 0.278 | 0.380 | 27.59% | 55.17% | 29 47

Table 1: Brief statistics of the original and post-correction drug-wise Spearman’s correlation

=
g
N . L
FR L o . o
2 . .o H . H 2
8 . . . : . [ H
£, . e . .
N . . H . H
& B z, . , £ o
o . ° E o ® . %
H oo s o o o o
% 0 . s 2 .o o £
3 e £ .. R £l .
§ R < / H
g ele s £ e . H
& > 8 &0
T Too s 10T W B W o2 o m Too 1 2 5 15 e o2 W
riginal drug-wise Spearman correlation between CTRP and GDSC Original drug-wise o, between GDSC and FIMM Origi ig-wise p, between CTRP and FIMM
The plot the shift of drug- CTRP and GDSC The plot summarizing the shift of drug-wise correlation between GDSC and FIMM The plot st rizing the shift of drug-wise correlation between CTRP and FIMM

Fig. 3: The shift of Spearman’s correlation, both individually and as a distribution, of common
drugs between specified datasets before and after AICM is run.

We demonstrate the scatter plots of some individual drug’s effect on cell lines before and
after AICM correction in Figure [, we can indeed see the scatter plots become more concor-
dant across datasets. We color the plots in a similar fashion as Safikhani et al.: we use blue
(sensitive) to denote both datasets > 0.2 and red (resistant) for both < 0.2; orange denotes
inconsistency.'® We pay particular interest to drugs that show significant improvement and
drugs that show little improvement. We can see that drugs such as ZSTK474. Rapamycin,
JQ1, OSI027 and PIK93 show significant improvement. Although Velaparib shows little im-
provement, it is known to be a very selective PARP inhibitor; it is not effective in any of cancer
cell lines examined in this study. Thus it would be meaningless and artificial to increase the
correlation across two datasets.

We also present the scatter plots of some drugs shared by all three datasets: CTRPv2,
GDSC1000 and FIMM. We can see that in both and the two graphs on the right
consistently demonstrate more similar pattern than the two graphs on the left, which confirms
that the variation across multiple datasets is alleviated after AICM is deployed — AICM indeed

255



28TKaT4
Before correction

Alter correction

Pacific Symposium on Biocomputing 2019

Before correction

RAPAMYCIN

After correction

Before correction

Jat

After correction

Median /., =0.22

0s

CTRP AUC

CTRP AUC

CTRP AUC

Mediar

(a) ZSTKAT74.

osio27
Before correction

After correction

0 06
GDSC AUC

(b) RAPAMYCIN.

PIK93

Before correction

After correction

CTRP AUC

Median , =0.21

Median , =0.42

CTRP AUC

()

JQ1.

VELIPARIB.

Before correction

After correction

T
I Median p, =0.25 Median Median p. Median , =-0.045 ] [ Median p, =-0.011
I
08 ' 08 0.8 08
I
I
I
I o 0w o © 06 ° 06
! 2 2 2 2
I o o o o
5 w B E 0 5 04
0.2 02 02f - - - - - T ™, O oo 02
2 2 N 2
° 4
% o
00 h 00 00
00 02 01 o5 os 10 o T 00 6z 01 06 05 10 01 o5 os 10 00 62 01 o5 05 10
GDSC AUC GDSC AUC GDSC AUC GDSC AUC GDSC AUC

(d) 0S1027.

Fig. 4: Individual drugs with respect to individual cell lines before and after AICM is deployed.
First five demonstrate drugs whose correlations are significantly improved and the last one
demonstrates a drug whose correlation is poorly improved.

(e) PIK93. (f) Velaparib.

recovers some meaningful signals.

PACLITAXEL NAVITOCLAX
Before correction After correction Before correction After correction
10 T T :.\ T T T T T 10 10 T T T T T T T T 10
| ° | | |
L] L
I ° I 8 I I
osl ! oo ° ] L ‘ . ® dos 08| | 1 3 ! 108
°
| LY ® I .‘ o | |
| 0 ® | ° ¢ I I
Q06 I 1 ot I ° e Jo6 v o6l I 1 ut I {06
> | ° = | ® =] | 2 |
x o x . z S
I I I
g : ..-’ ° g | ee® ° g I efe g I -:
5 ooal 0%e © . 5t i & doa 5 ooal | y St | o4
L %o ® oo o, | od
o
° 1, o S © og ® 2 o 1% o
1 R Lk -1 R T ET LT 0.2 D2f == P mm e e e e e m e a - o=t @ - === e ] 0.2
| I d o o ® |
o
| o ] o 0,8 P B 353\ o
L)
0.0 T . . ° . . . 0.0 0.0 Ba B%0 . \ . AN \ \ L 0.0
0.0 02 04 0.6 08 10 0.0 02 04 0.6 08 10 0.0 02 04 06 08 1.0 00 02 04 06 08 1.0
FIMM AUC FIMM AUC FIMM AUC FIMM AUC
10 T T T T T T T T 10 10 T T T T T T T T 10
| | | ° |
I I I I
0.8 i 1 t i Ho.8 0.8 | \ 1 F ) ° Jos
| | I I
] ] I @ I °
°
Q06| I 1 97 I o, {06 Y o6f Q 1gt I {06
= | ® = | = | = |
o) | ° Q l 5] ? ° 8] e
) * ° I} ® @ ] [
2 o4f ! 1 8t s o@ Joa 3 oaf ! 1 8t Joa
! . oo ! ° b !
I ° I o’ | e
| o | . o o L ol
0.2fF - -4 ---® -~ — e R 0.2 0.2f =& 4 - - -- - — F <4 #—---------— 0.2
ee s © 00® °
l e © e o I o!
i l ° P oo ° pn% 1%
o
0.0 | ? | . | °, . . 0.0 0.0 B3R o °, \ . 88,% 0 \ \ . 0.0
0.0 02 04 0.6 08 10 0.0 02 04 0.6 08 10 0.0 02 04 06 08 1.0 00 02 04 06 08 1.0
FIMM AUC FIMM AUC FIMM AUC FIMM AUC

(a) Drug Paclitaxel. (b) Drug Navitoclax.

Fig. 5: Overlapping drugs across three datasets.
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4. Conclusions and Future Work

In this work, we develop a genuine algorithm by alternatively dropping and fitting cell-wise
data and succeeds in improving the drug-wise correlation. The algorithm is flexible to incor-
porate different ideas. For example, one can replace the fitting process with other regression
methods if one had different assumptions in mind. We have shown that with appropriate hy-
perparameters chosen, AICM can improve the drug-wise correlation across different studies
and that the increase in correlation is indeed concordant and biologically meaningful.

We realize the limitation of AICM’s dependence on the overlapping of existing data, while
such data is rather rare. We did not include experiment on CCLE dataset primarily because
it has very limited drug overlap with other existing datasets. Also, AICM currently does not
purport to correct sensitivity data of new drugs. Future work will be to extend such algorithm
into a complete framework. AICM is able to scale to reasonable amount of datasets. When a
new dataset is coming in, say X, we can conduct AICM procedure between this dataset and
each existing dataset, say Yi,Ys,...Y,, vield n corrected datasets, X1, Xs, ..., X,. Afterward,
we can do an average on corrected to specify the corrected new dataset, i.e. X = LS, X;.
We will maintain a database of corrected existing drugs and cells, and when more data comes
in, we will be able to incorporate it. We hope as more data comes in, the database would
asymptotically become more accurate of reflecting true relationship between drugs and cell
lines and can thus serve as a ground-truth guidance. As for new drugs, we will develop either
a generative algorithm or a clustering algorithm, i.e. getting the latent distribution where
drug is “generated” or cluster it based on existing features, and find similar existing drugs in
hope of some practical guidance. We believe our corrected datasets will facilitate biomarker
discovery.
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Autism spectrum disorder (ASD) is a heritable neurodevelopmental disorder affecting 1 in
59 children. While noncoding genetic variation has been shown to play a major role in many
complex disorders, the contribution of these regions to ASD susceptibility remains unclear.
Genetic analyses of ASD typically use unaffected family members as controls; however, we
hypothesize that this method does not effectively elevate variant signal in the noncoding
region due to family members having subclinical phenotypes arising from common genetic
mechanisms. In this study, we use a separate, unrelated outgroup of individuals with pro-
gressive supranuclear palsy (PSP), a neurodegenerative condition with no known etiological
overlap with ASD, as a control population. We use whole genome sequencing data from a
large cohort of 2182 children with ASD and 379 controls with PSP, sequenced at the same
facility with the same machines and variant calling pipeline, in order to investigate the role
of noncoding variation in the ASD phenotype. We analyze seven major types of noncoding
variants: microRNAs, human accelerated regions, hypersensitive sites, transcription fac-
tor binding sites, DNA repeat sequences, simple repeat sequences, and CpG islands. After
identifying and removing batch effects between the two groups, we trained an ¢1-regularized
logistic regression classifier to predict ASD status from each set of variants. The classifier
trained on simple repeat sequences performed well on a held-out test set (AUC-ROC =
0.960); this classifier was also able to differentiate ASD cases from controls when applied to
a completely independent dataset (AUC-ROC = 0.960). This suggests that variation in sim-
ple repeat regions is predictive of the ASD phenotype and may contribute to ASD risk. Our
results show the importance of the noncoding region and the utility of independent control
groups in effectively linking genetic variation to disease phenotype for complex disorders.
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1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social
impairments, communication difficulties, and restricted and repetitive patterns of behavior.
ASD usually manifests in infants and children and presents a wide range of symptoms that
vary from person to person. Currently, 1 in 59 children in the United States are affected, and
prevalence rates are expected to increase drastically over the next decade.! ASD is known
to be highly genetic with a concordance rate between monozygotic twins of 77-99%.23 The
genetic architecture of the disorder is known to be complex, with an estimated 1000 genes
involved in disease susceptibility, spanning common, rare, and de novo variants.*?

Models exploring the genetic basis of ASD typically focus on protein-coding genes; how-
ever, coding sequences account for only 1.5% of human DNA. The remaining segments of
DNA are comprised of noncoding regions, which have been shown to play an important role
in many genetic disorders. For example, recessive mutations in the PTF1A gene enhancer can
cause pancreatic agenesis,% a common mutation in the RET enhancer increases risk for Hirsch-
prung disease,” and mutations in topologically associating chromatin domains can cause limb
malformation.® Furthermore, a meta-analysis of over a thousand genetic association studies
showed that most of the disease-associated single nucleotide variants identified by genome
wide association studies (GWAS) lie in the noncoding region.”

However, the contribution of noncoding variants to ASD still remains unclear. A recent
analysis of whole genome sequences of 516 children with ASD and their unaffected family
members concluded that individuals with ASD tend to have significantly more de novo muta-
tions in noncoding regions. The study evaluated two noncoding regions: untranslated regions
(UTRs) of genes and conserved transcription factor binding sites that map to sites of DNase
I hypersensitivity.!® However, a separate evaluation of the same dataset concluded that al-
though individuals with ASD possessed a small excess of de novo mutations in noncoding
regions, there were no significant results across over 50,000 regulatory classes after multiple
testing correction.!!

As shown by these studies, population genetic analyses typically classify unaffected family
members as controls. However, we hypothesize that this assumption does not effectively elevate
variant signal from the genome for ASD cohorts. For example, close relatives of individuals
with ASD often exhibit autistic behaviors, such as social deficits and delayed speech.!?!3
Thus, it is possible that family members possess a subclinical phenotype of ASD that may
arise from genomic features shared with their affected children. Also, the diagnostic criteria
for ASD were modified in 2013 with the release of the fifth edition of the Diagnostic and
Statistical Manual of Mental Disorders. Most parents would have been evaluated using an
earlier version of diagnostic criteria, making it possible that some would qualify for an ASD
diagnosis by modern clinical standards.

In order to address this issue and to exacerbate signal in the noncoding region, we introduce
a separate outgroup of patients with progressive supranuclear palsy (PSP), a neurodegener-
ative condition that causes difficulty with movement and thought.!* We chose this group of
control patients because there is no known etiological overlap or comorbidity between PSP and
ASD, and PSP is generally not heritable. There are some familial cases caused by a mutation
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in at least one copy of the gene MAPT on chromosome 17, but this is the only gene currently
known to be linked with PSP.'> No patients in the control group exhibit symptoms of ASD.
In this work, we use whole genome sequencing data from 2182 children with ASD and 379
PSP controls to investigate the role of noncoding variants in ASD susceptibility.

This study focuses on seven major noncoding regions: tissue specific microRNAs, hu-
man accelerated regions, hypersensitive sites, transcription factor binding sites, DNA repeat
sequences, simple repeat sequences, and CpG islands. Tissue-specific microRNAs play impor-
tant roles in the regulation of mRNA expression and the development of neurons, and recent
studies have implicated a total of 219 microRNAs in the development of ASD.'6 Human accel-
erated regions, which consist of only 49 highly-conserved segments in DNA, have been shown
to regulate neural activity, with de novo copy number variations in these regions enriched in
individuals with ASD.'" Hypersensitive sites are regulatory regions that are sensitive to cleav-
age by nucleases, and de novo mutations in these regions are significantly enriched in ASD
probands.'® Transcription-factor binding sites are located in the noncoding regions of genes
and assist in the regulation of transcription; variants in binding sites in MEGF10 and TCF4
have been associated with ASD and other intellectual disabilities.'®2° DNA Repeat sequences
and simple repeat sequences are sequences of repeating base pairs, distinguished by the length
of the repeating pattern, that have been linked to neuronal differentiation and brain develop-
ment.?! Finally, CpG islands, which consist of regions with high frequencies of the cytosine
and guanine base pairs, can have higher rates of methylation in individuals with ASD.??

2. Methods
2.1. Data and Preprocessing

We analyzed 30x-coverage whole genome sequencing data from the Hartwell Foundation’s
Autism Research and Technology Initiative (iIHART); iHART has amassed data from 1006
multiplex families, each with at least two ASD-affected children. We also analyzed 30x-
coverage whole genome sequencing data from 379 patients diagnosed with PSP. In order
to limit batch effects due to inconsistencies in sequencing methodologies, we sequenced both
populations at the New York Genome Center with [llumina HiSeq X instruments and utilized
the same GATK variant calling pipeline; in addition, there is no sample overlap between the
cohorts.

Chromosome coordinate lists for the seven noncoding regions were downloaded from the
UCSC Genome Browser and the Regulatory Elements Database.?>?* Quality control was per-
formed on the variant call format (VCF) files by removing all variants with high excess het-
erozygosity scores, which typically indicate sequencing artifacts or consanguinity within the
population. We then filtered the variant-call format files to extract all variants within these
regions that were present in both the PSP and ASD populations. We also removed all variants
with a large proportion (greater than 20%) of missing sites.

2.2. Accounting for Batch Effects

Batch effects present a major challenge when combining whole genome sequencing data across
cohorts, resulting in many false positive associations.?® Batch effects can result from almost
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any step in the whole genome sequencing procedure, including library preparation, sequenc-
ing machine or center, sequencing depth, and variant calling pipelines.?6 Several methods
have been developed to mitigate these effects, but these procedures focus on reducing batch
effects for datasets collected and analyzed independently.?”2® In our case, care was taken to
sequence our ASD case and PSP control samples at the same center with the same platform
and to analyze them using identical variant calling pipelines. In order to detect the more
subtle batch effects that may remain, we expand on the method used by the UK10K project,
detecting batch effects using a genome-wide association test with batch (ASD and PSP) as
the phenotype.?? To do this, we performed a chi-squared test for each variant, comparing the
number of individuals with homozygous reference, heterozygous, homozygous alternate, and
missing genotypes between the two datasets. Any variants with a batch association p-value
below 0.05 after applying a Bonferroni multiple testing correction were discarded, resulting in
the removal of approximately 5% of variants. Figure 1 shows the number of variants within
each region that passed our preprocessing and batch effect filters.

H T ipti
Tissue-Specific uman Hypersensitive ranscription DNA Repeat Simple Repeat

miRNA Acceletrated Sites Factor' Binding Sequences Sequences CpG Islands
Regions Sites
1564 647 577,900 325,003 684,487 232,193 168,953

Fig. 1. Number of noncoding variants of each type after applying preprocessing filters and removing
variants affected by batch effects.

2.3. Feature Representation and Logistic Regression Classifier

We designed a machine learning approach to determine if variation within noncoding regions
could be utilized to predict ASD. In order to capture variant information from both the ASD
and PSP populations, we constructed binary feature matrices for each of the seven noncoding
regions. Each matrix includes 2561 rows corresponding to the 379 PSP control patients and
2182 ASD case patients; the columns represent the variants (shown in Fig. 1) associated with
the region. We set each cell of the matrix as 1 if the individual expressed an alteration at the
variant site (either heterozygous or homozygous alternate) and as 0 if the variant matched the
reference sequence. Since several of these feature matrices included over one billion elements, all
matrices were encoded in a customized sparse representation to ensure that machine learning
would remain computationally tractable.

We created a logistic regression classifier with ¢; regularization in order to encourage the
use of the smallest possible number of relevant features. 80% of the individuals in the dataset
were randomly selected for inclusion in the training set, and the remaining 20% were added to
the held-out test set; train and test sets were divided by family, so there is no familial overlap
between sets. In order to address class imbalance between the case and control populations,
we adjusted classifier weights such that they are inversely proportional to class sizes. We ran
5-fold cross validation in order to tune the level of regularization (represented by ). Then,
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we evaluated performance on the held-out test set by measuring F; scores, precision, recall,
and AUC-ROC.

We extracted the top-ranked variants from each of the seven noncoding regions for further
analysis by selecting the five variants from each classifier with the highest positive regression
coefficient values as well as the five variants with the lowest negative coefficient values. We also
confirmed that these variants were highly-ranked across multiple folds in our cross-validation
tests.

Boolean Feature Matrix Machine Learning

Case: ASD Quality E— miRNA E— Classifier — >
Whole Controlled
Genome E— ASD Intersection: HAR (Gl
Sequences Variants Variants
present » Hyp itive Sites > Classifier E—
2182 patients in both
populations —— TFBS —_— Classifier — To\|I>-R‘anI:ed
ariants
with batch
Control: PSP Quality effects —————> DNA Repeats ———» Classifier E—
Whole Controlled / filtered out
Genome B PSP » Simple Repeats > Classifier —
Sequences Variants

——— > CpGlslands — » Classifier —_—
379 patients

Fig. 2.  Machine learning pipeline. Variants were called separately for cases and controls. The variant
calls were then merged and a batch-effect filter was applied. Feature matrices were created for each
of the seven noncoding regions and served as input to ¢i-regularized logistic regression classifiers.
Finally, the top-ranked features were extracted from each classifier.

2.4. Validation

We validated the performance of our classifier using a held-out test set composed of 20% of
the individuals from both cohorts. To demonstrate that our classifier can generalize, we also
measured performance of our trained models on a completely independent cohort consisting
of 517 ASD patients from the Simons Simplex Collection3® and 2054 control individuals from
the 1000 Genomes Project.?! These cohorts were sequenced at different depths on different
machines; however, the same GATK variant calling pipeline was utilized. We use this cohort
to show that our classifier can effectively generalize to new populations and that we have
adequately addressed batch effects in our training data.

Next, we devised a bootstrap test in order to determine if the seven groups of features used
in this analysis were relevant predictors of ASD status when compared to random variants. To
do so, we randomly sampled from the set of variants called in both the PSP and ASD cohorts.
Feature matrices were designed according to the same procedures outlined in sections 2.1 and
2.2, and classifiers were trained on the random variants using the procedure outlined in section
2.3. This process was repeated between 20 and 100 times to obtain 95% confidence intervals.
We ran separate bootstrap tests using different numbers of variants in order to account for
the wide range in sizes of our variant sets; bootstrap test sizes range from 102 to 10° variants.

We also ran several tests to ensure that our logistic regression classifier was not biased by
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population stratification. Ethnicity is responsible for much of the variation in human genomes,
so to ensure that population substructure was not confounding our results, we examined
performance separately for Europeans and non-Europeans in our test set. Autism is also sex-
biased, with males about 4 times more likely to be affected than females; in order to verify
that our results are robust to differences in the sex chromosomes, we also examined test
performance on males and females separately.

Finally, we evaluated the biological functions of top-ranked variants in order to determine
potential correlation with the ASD phenotype.

3. Results
3.1. Classifier Performance

Results from the logistic regression classifier as well as top-ranked variants are summarized
in Figure 3. The classifier was evaluated on a held-out test set and was able to differentiate
between ASD and PSP with high accuracy, with AUC-ROC values ranging from 0.600 to
0.960. The logistic regression classifier trained on variants located in simple repeat sequences
showed the best performance out of all seven variant sets.

miRNA HAR Hypersensitive Sites TFBS DNA Repeats Simple Repeats CpG Islands
A\ = 10: 110 variants A\ = 10: 108 variants N =10: 614 variants A\ = 10: 637 variants X\ = 10: 649 variants A = 10: 519 variants N\ = 10: 522 variants
AUC-ROC = 0.602 AUC-ROC = 0.600 AUC-ROC = 0.891 AUC-ROC = 0.774 AUC-ROC = 0.852 AUC-ROC = 0.960 AUC-ROC = 0.850
Precision = 0.889 Precision = 0.893 Precision = 0.933 Precision = 0.888 Precision = 0.898 Precision = 0.949 Precision = 0.924
Recall = 0.619 Recall = 0.548 Recall = 0.922 Recall = 0.896 Recall = 0.932 Recall = 0.958 Recall = 0.915
Fi Score = 0.730 F1 Score = 0.679 F1 Score = 0.928 F1 Score = 0.892 F1 Score = 0.915 F1 Score = 0.953 F1 Score = 0.920
Positive: Positive: Positive: Positive: Positive: Positive Positive:
1-200938662 4-138785309 1-17426602 2-119593844 3-63405151 3-30550980 1-47082513
" 3-124950150 4-182253283 2-215085206 5-160684599 5-20981037 14-37565015 8-102506074
E 4-83551007 16-78992353 11-63902879 8-114307607 6-13509234 17-11206720 14-91731023
& 4-185678110 20-708998 15-42187492 11-124235672 12-92626545 22-27486124 18-29304254
_>° 8-11702375 20-61733540 16-1537926 19-30841145 20-18174324 X-3127935 19-2137000
_E: Negative: Negative: Negative: Negative: Negative: Negative: Negative:
S 1-56961756 1-3089839 1-39900230 9-119245085 5-155993630 7-137369693 6-131949293
g- 2-32380330 1-81623829 1-151762599 14-100995452 6-122479014 8-26074016 13-37006117
Lo 9-14086349 9-2621560 2-11797152 16-1894991 7-14626211 10-49883667 15-82338172
12-6928569 12-92757463 12-132339648 18-5600042 7-128128428 X-55147362 18-33077673
X-153609616 16-5508166 19-1361712 X-145430634 15-91429519 X-143750718 19-46095110

Fig. 3. Machine learning results. We performed ¢1-regularized logistic regression for each noncoding
region. AUC-ROC, precision, recall, and Fj score show performance evaluated on the held-out test
set. A values for each noncoding region, as well as the number of remaining variants with nonzero
coefficients remaining after feature selection, are listed. The 10 top-ranked variants for each classifier
are listed in GRCh37 coordinates; the presence of variants with positive coefficient scores and the
absence of variants with negative coefficient scores are likely to suggest the ASD phenotype.

3.2. Bootstrap Test

To determine whether the seven types of noncoding regions we tested are more predictive of
ASD status than random sets of variants, we performed a bootstrap test. Figure 4 shows the
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95% confidence interval for AUC-ROC performance of random variant sets of various sizes
on the held-out test set. As the number of variants used for prediction increases, the AUC
values achieved by the classifier also increase. This is expected because as we incorporate more
variants into our classifier, we become increasingly likely to by chance include ASD-associated
variants or variants in linkage-disequilibrium with autism-associated variants. Furthermore,
as the number of variants included in the classifier increases, any subtle batch effects missed
by our filtering procedure will begin to influence results.

We see that after accounting for variant set size, the microRNA, human accelerated re-
gion, and CpG island variant sets perform within the bootstrapped 95% confidence interval.
Hypersensitive sites, transcription factor binding sites, and DNA repeat sequences all perform
worse than random variant sets. These noncoding regions may not be associated with ASD,
or our batch effect correction procedure may have been too stringent and removed important
autism-associated signal. The classifier trained on simple repeat sequences is the only variant
set that significantly outperforms the random bootstrap with a Bonferonni corrected p-value
(accounting for the 7 tests performed) of 0.0287. This suggests that genetic variation within
simple repeats may be associated with ASD risk.

10 Eootstrap Test - 95% Confidence Interval

miRNA [ ]

Human Accelerated Regions

0.9 Hypersensitive Sites

Transcription Factor Binding Sites ® ®
DNA Repeat Seguences

Simple Repeat Seguences

CpG Islands

L]

o7

AUC-ROC Value

06 [ ] @

05

10° 10° 10 10* 10°
Number of Variants

Fig. 4. FEwvaluating prediction performance of noncoding regions. The blue shaded region shows the
95% confidence interval for AUC-ROC performance of randomly selected sets of variants. As the
number of variants provided to the model increases, performance increases as well. Six of the non-
coding regions we studied performed at or below the bootstrapped models. However, the simple
repeat sequences variants significantly outperformed the bootstrap, suggesting that these noncoding
variants may be associated with ASD.

3.3. Performance on an Independent Test Set

In order to measure generalization ability, all seven classi